
                          Konzack, M., Mcketterick, T. J., Ophelders, T., Buchin, M., Giuggioli,
L., Long, J., Nelson, T., Westenberg, M. A., & Buchin, K. (2017).
Visual Analytics of Delays and Interaction in Movement Data.
International Journal of Geographical Information Science, 31(2), 320-
345. https://doi.org/10.1080/13658816.2016.1199806

Publisher's PDF, also known as Version of record
License (if available):
CC BY-NC-ND
Link to published version (if available):
10.1080/13658816.2016.1199806

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Taylor & Francis at
http://www.tandfonline.com/doi/full/10.1080/13658816.2016.1199806. Please refer to any applicable terms of
use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1080/13658816.2016.1199806
https://doi.org/10.1080/13658816.2016.1199806
https://research-information.bris.ac.uk/en/publications/cb444473-61a6-4176-83a0-63cd97ca4e4d
https://research-information.bris.ac.uk/en/publications/cb444473-61a6-4176-83a0-63cd97ca4e4d


Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tgis20

Download by: [University of Bristol] Date: 21 March 2017, At: 06:07

International Journal of Geographical Information
Science

ISSN: 1365-8816 (Print) 1362-3087 (Online) Journal homepage: http://www.tandfonline.com/loi/tgis20

Visual analytics of delays and interaction in
movement data

Maximilian Konzack, Thomas McKetterick, Tim Ophelders, Maike Buchin,
Luca Giuggioli, Jed Long, Trisalyn Nelson, Michel A. Westenberg & Kevin
Buchin

To cite this article: Maximilian Konzack, Thomas McKetterick, Tim Ophelders, Maike Buchin, Luca
Giuggioli, Jed Long, Trisalyn Nelson, Michel A. Westenberg & Kevin Buchin (2017) Visual analytics
of delays and interaction in movement data, International Journal of Geographical Information
Science, 31:2, 320-345, DOI: 10.1080/13658816.2016.1199806

To link to this article:  http://dx.doi.org/10.1080/13658816.2016.1199806

© 2016 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 21 Jun 2016.

Submit your article to this journal 

Article views: 462

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tgis20
http://www.tandfonline.com/loi/tgis20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2016.1199806
http://dx.doi.org/10.1080/13658816.2016.1199806
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/13658816.2016.1199806
http://www.tandfonline.com/doi/mlt/10.1080/13658816.2016.1199806
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2016.1199806&domain=pdf&date_stamp=2016-06-21
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2016.1199806&domain=pdf&date_stamp=2016-06-21


Visual analytics of delays and interaction in movement data

Maximilian Konzacka, Thomas McKetterickb, Tim Opheldersa, Maike Buchinc,
Luca Giuggiolid, Jed Long e, Trisalyn Nelsonf, Michel A. Westenberga

and Kevin Buchina

aDepartment of Mathematics and Computer Science, TU Eindhoven, Eindhoven, The Netherlands; bBristol
Centre for Complexity Sciences, University of Bristol, Bristol, UK; cFakultät für Mathematik, Ruhr-Universität
Bochum, Bochum, Germany; dDepartment of Engineering Mathematics, University of Bristol, Bristol, UK;
eSchool of Geography & Geosciences, University of St Andrews, St Andrews, UK; fDepartment of
Geography, University of Victoria, Victoria, Canada

ABSTRACT

The analysis of interaction between movement trajectories is of inter-
est for various domains when movement of multiple objects is con-
cerned. Interaction often includes a delayed response, making it
difficult to detect interaction with current methods that compare
movement at specific time intervals. We propose analyses and visua-
lizations, on a local and global scale, of delayed movement responses,
where an action is followed by a reaction over time, on trajectories
recorded simultaneously. We developed a novel approach to compute
the global delay in subquadratic time using a fast Fourier transform
(FFT). Central to our local analysis of delays is the computation of a
matching between the trajectories in a so-called delay space. It
encodes the similarities between all pairs of points of the trajectories.
In the visualization, the edges of the matching are bundled into
patches, such that shape and color of a patch help to encode changes
in an interaction pattern. To evaluate our approach experimentally, we
have implemented it as a prototype visual analytics tool and have
applied the tool on three bidimensional data sets. For this we used
variousmeasures to compute the delay space, including the directional
distance, a new similarity measure, which captures more complex
interactions by combining directional and spatial characteristics. We
comparematchings of variousmethods computing similarity between
trajectories. We also compare various procedures to compute the
matching in the delay space, specifically the Fréchet distance, dynamic
time warping (DTW), and edit distance (ED). Finally, we demonstrate
how to validate the consistency of pairwise matchings by computing
matchings between more than two trajectories.
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1. Introduction

In a wide range of applications, such as biology, urban planning, sports, or ecology,
movement data are being collected in the form of trajectories. In recent years, technol-

ogy advances have led to a rapid improvement in the ability to record trajectory data
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(Nathan and Giuggioli 2013). New technology allows scientists to collect data of high

resolution, long durations and for a large number of simultaneously moving entities.
Coupled with methodological advancements movement data offer an opportunity to
better understand the mechanisms and behavioral ecology guiding collective motion. In
order to explore such data interactively, this research integrates interaction and delayed

responses on movement data in a new visual analytics tool.
Interaction is the interdependency in the movements of two trajectories (Doncaster

1990). The computation of interaction events is motivated by understanding combined

movements of separation, attraction, or mutual repulsion between the moving objects.
One way to identify interaction is to compute an alignment between the trajectories.
Within an alignment, any point of one moving object is mapped to another point or a

range of points from the other moving object. We are interested in exploring delayed
responses in the movement, where one moving object moves into a new direction, an
action pattern, and this is followed by an adaption of the other moving object, a
reaction pattern, over time. To capture such patterns, we need the so-called interaction

measures, which are similarity measures adapted to cover aspects of interaction. An
example of such an action–reaction pattern is depicted in Figure 1.

Delay is the temporal difference for a pair of points from the trajectories. In Figure 1

the progression of delays is visualized as a dotted curve. Either positive or negative delays
can occur over time, depending on whether the first point of the pair has a larger time
stamp than the second one or vice versa. A positive delay corresponds to the first point

being delayed, while a negative delay corresponds to the second point being delayed.
Using the direction of movement and the displacement at corresponding time

stamps of the trajectories, Long and Nelson (2013) define the dynamic interaction

measure for the calculation of strength and degree of interaction between the moving
objects. However, interaction often includes a delayed response. For example, delays are
expected in interaction movement patterns for behaviors associated with pursuit and
escape, confrontation, and avoidance (Merki and Laube 2012).

Computational methods for detecting a delayed response often search for movement
episodes from two trajectories with similar characteristics but with a delay for one of the
trajectories. Reaction delay is a key parameter in ascertaining leadership and causality,

decreasing
interaction

adjusted action reaction

0

0

edges of the matching
start end

distance delay

delay

Figure 1. A sketch for an action–reaction pattern in an overlayed distance and delay plot. The
progression of the delay is depicted as a dotted line, and the distances as a black line. At first the
interaction decreases to an adjusted level. An action then results in a peak of the distances, where
one trajectory moves into a new direction. The delay increases rapidly at this point, and it reaches its
maximum at the beginning of the reaction phase. The reaction of the other trajectory results in a
shrinking of the distances again. The delay decreases, after reaching the maximum, accordingly.
Finally, a new adjusted level is reached until a new action invokes another action–reaction pattern.
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since a moving entity requires time to perceive, process, and respond to the motion of

its neighbor. Hence, the movement patterns are characterized by periods of interactive
and noninteractive behavior. Such an episode refers to one period over time, and it
might, therefore, be expressed as a sequence of points ranging from one point to all of
them. This depends on the level of analysis of the interactive behavior. The scope of the

analysis can be varied from a local analysis over episodes to a global analysis. A local
analysis reveals the times and locations of dynamic interactions, and it allows a finer
treatment of the interaction itself (Long and Nelson 2013).

A ‘follow-behind’ pattern is detected in Buchin et al. (2008) by finding episodes where
two trajectories move through approximately the same locations but with a small delay.
Nagy et al. (2010) compute a similar pattern by looking at how a trajectory copies the

direction of movement of another with a delay. Using a time-ordering procedure to
analyze the cross-correlation of velocity and distance, Giuggioli et al. (2015) extract
interaction delays and are able to classify copying patterns in both space and direction.

There is a wide range of alignment methods, e.g., dynamic time warping (DTW)

(Berndt and Clifford 1994), edit distance on real sequences (EDR) (Chen et al. 2005), and
the Fréchet distance (Alt and Godau 1995), that aim at simply identifying similar move-
ment. We discuss these methods in more detail in Section 4.2.

In movement analysis there is a growing interest in analysis methods that include
visualizations. Andrienko et al. (2013) analyze delayed responses in the context of group
movement. To identify a group ordering over time, they precompute firstly a centroid on

the collection of trajectories, and rank then the interaction of a trajectory and the
centroid for each trajectory of the group. One pattern that they detect is the direc-
tion-based delay pattern by Nagy et al. (2010). Its occurrence is visualized in space and

time.
Our aim is a visual analytics approach to explore delayed responses in the form of

action–reaction patterns. For this purpose we propose an approach to analyze and
visualize delays in two trajectories. We expect that the trajectories have been recorded

simultaneously and with the same sampling rate such that the input data captures
spatial and temporal relationships at the same time.

Although our focus is on pairs of trajectories, we also show the application of our

methodology to a set of three simultaneous trajectories. Computing and visualizing an
alignment on k trajectories is cumbersome since the computational time of current
state-of-the-art techniques for alignments grows exponential in the number of trajec-

tories. Thus, it is inherently demanding to develop an interactive visualization for k

trajectories that captures interaction events.
To determine whether two trajectories have interactions at all, we develop a new

approach to compute a global correlation in subquadratic time in the length of the
trajectories (see Section 3). The global measure captures the overall interaction between
the moving objects by computing the correlation via the fast Fourier transform (FFT) and
approximates the global delay under an interaction measure.

We have implemented our approach in a prototype visual analytics tool. Building on
recent research (Konzack et al. 2015), we also introduced a novel similarity measure
between trajectories, which incorporates spatial and directional characteristics. Crucial to

the approach to analyze delays locally is the computation of a matching between
simultaneously recorded trajectories. The matching algorithm optimizes the alignment
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of the matching with respect to certain features of the trajectories. The temporal

alignment is then used, which is induced by a matching, to analyze the delay. This
approach scales up to hundred points in the trajectories, since it visualizes the trajec-
tories and their interaction patterns as a whole. This approach is summarized in
Section 4.

In this article, we conduct new, extensive experiments on the FFT approach and the
matching-based approach on three data sets (see Section 5). We compare these results
to those obtained by the time-ordering approach by Giuggioli et al. (2015), DTW, and

others. We extend the matching-based approach to three trajectories in order to relate
the result on the interaction among the three moving objects with a pair-wise analysis of
the triplet.

2. Interaction and similarity measures

Measuring interaction is closely linked to measuring similarity. In this section, we
describe properties of these measures and review interaction measures used in our

tool. Trajectory data can be represented as a sequence of points over time. Hence, it
consists of directions and locations. Interaction measures can be distinguished into
these types. We are interested in different facts of interaction. By combining existing

measures into a single measure, the combined measure expresses more complex inter-
actions. In this work, we analyze only discrete trajectories to have a well-defined delay.

Definition 2.1: A discrete trajectory T is a sequence of n time-stamped points

hðp1; t1Þ; ðp2; t2Þ; . . . ðpn; tnÞi, where each pi 2 R
d and each ti 2 R

þ for i 2 1; . . . ; nf g. T
(t) selects the corresponding point in the trajectory for a valid time stamp t.

For a pair of points from the trajectories, a delay is a time difference of the corre-
sponding time stamps. Without loss of generality, we assume that a delay τ has a
discrete value between 0 and n – 1. The sampling rate of the underlying data set is
then multiplied with τ to obtain an actual delay, e.g., in seconds.

Before elaborating on the interaction measures that we used in our algorithms for
computing a matching, we look at common properties that these measures should
provide. Without loss of generality, we presume that the measures are given as a

distance, i.e., smaller distance values correspond to higher similarity. A distance can be
easily transformed into a similarity measure and vice versa.

Definition 2.2: A metric on a set X with d : X � X ! R satisfies the following conditions

for all x, y, z ∈ X

dðx; yÞ � 0 (i)

dðx; yÞ ¼ 0 iff: x ¼ y (ii)

dðx; yÞ ¼ dðy; xÞ (iii)

dðx; zÞ � dðx; yÞ þ dðy; zÞ: (iv)

We require the properties of a premetric (with symmetry). It is essentially a metric, for

which the distance might be zero for some x ≠ y (ii) and the triangle inequality does not
have to hold (iv).
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Given a pair of points ðp; qÞ 2 R
d � R

d on trajectories T1 and T2, a similarity measure

can be computed from spatial properties or the direction of the movement (p, q). The
movement vector pp′ is the directed line segment from p to the consecutive point p′

with length δp. The same holds for q respectively.
The direction of p in T1 measures an angle θp on the movement vector pp′ with regard

to some other criteria. Very frequently, the heading is used, which is an angle θp spanned
among pp′ and an axis, usually the x-axis (Long and Nelson 2013), as depicted in Figure 2
for two-dimensional trajectories.

Other notions for measuring angles are possible as well. The turning angle is the angle
between pp′ and its consecutive movement vector (Kareiva and Shigesada 1983). The
angle between the line segment pq and the movement vector pp′ is the so-called

exposure angle (Giuggioli et al. 2015). It can be used to identify leadership between
the trajectories, since it expresses relative headings with respect to a line segment of a
pair of points from the moving objects.

Direction-based measures calculate a correlation from the two angles θp and θq from

a pair (p, q). A simple directional similarity measure on (p, q) is the cosine of the
difference between θp and θq (Long and Nelson 2013). If both entities move into the
same direction, its value is 1. As the directions from the movement vectors point into

opposite directions, the similarity value is –1.
A similarity measure on spatial properties uses either the locations of a pair of points

or the movement vectors of a pair of points. By using the Euclidean distance, we are able

to measure the similarity of point locations.
The displacement (Long and Nelson 2013) expresses a similarity between δp and δq,

the lengths of movement vectors pp′ and qq′. The parameter α controls the behavior of

the similarity measure.

displacementðp; qÞ :¼ 1�
jδp � δqj

δp þ δq

� �α

: (1)

By using a large α, it restricts the displacement to regard large differences as more
similar. To consider large differences as dissimilar, α is set to one as a default.

Next, we survey premetrics that combine both directional and spatial properties. The

dynamic interaction measure proposed by Long and Nelson (2013) is one of these
premetrics: it multiplies the displacement with the cosine on the difference of the
headings.

sðp; qÞ :¼ cosðθp � θqÞ � 1�
jδp � δqj

δp þ δq

� �α� �

:

p q

p′

q′

δp δq

θp
θq

Figure 2. A metric space with p ∈ T1 and q ∈ T2 in R
2.
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If one of the factors becomes zero, then either the impact of the heading or the

movement vector is suppressed. This means, therefore, that the other part does not
contribute anymore (see Figure 3).

This issue can be resolved by scaling the distance d(p, q) between (p, q) by the
similarity of the headings θp and θq. The distance d(p, q) can be an arbitrary LP norm on

(p, q). We call this the directional distance (Konzack et al. 2015):

ddirðp; qÞ :¼ dðp; qÞ � ½2� cosðθp � θqÞ�:

Thus, the directional distance scales the actual distance on the pair of points (p, q) by
the similarity of directions. In contrast to this, the dynamic interaction measure by Long

and Nelson (2013) uses the movement vectors instead of a distance norm. The more the
angles of p and q deviate, the more the distance between them stretches.

In order to measure similarity on k moving objects simultaneously, we need to

extend our notion of a premetric to k trajectories. Given points (p1, p2, . . ., pk) in

R
d � R

d � . . .� R
d , we want to have an interaction measure on k trajectories simulta-

neously: d(p1, p2, . . ., pk).

One way to compose such a measure is to use the sum, the squared sum, or the
maximum of a pairwise interaction measure, e.g., for the directional distance and the
sum, the combined distance measure is the following:

dðp1; p2; . . . ; pkÞ :¼
X

n

i¼1

X

n

j¼iþ1

ddirðpi; pjÞ

Another example is the following as we choose the max-value of the pairwise
Euclidean distance d2:

dðp1; p2; . . . ; pkÞ :¼ max
1�i�n;iþ1�j�n

d2ðpi; pjÞ
� �

An interesting question is how to define an interaction measure that is sensitive to
the movement in the trajectories. In Figure 4 a zig-zag movement is in one trajectory,

meanwhile the other trajectory progresses into the global direction. It is, therefore,
desirable to design similarity measures that capture such irregular movements as a
special type of interaction, or as a particular similarity value.

θp

p qθq

Figure 3. Cosine on heading between θp and θq yields zero for two-dimensional trajectories.
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3. Fast computation of global delays

Given a similarity measure d for interaction of time-stamped trajectories, the global

delay (τglobal) between trajectories T1 and T2 is the time shift τ that maximizes the
similarity between T1 and a copy of T2 whose points have been delayed by τ time
units. Hence, the global delay τglobal has O(n) possible time shift values within the range
[0, n – 1].

τglobalðT1; T2Þ ¼ argmaxτ
1

n

X

ði;iþτÞ 2 ½0;n�1�2

dðT1ðiÞ; T2ði þ τÞÞ: (2)

For trajectories with many points, it is desirable to compute such global delays
efficiently. A simple but time-consuming approach would be to individually compute
the similarity between trajectories for all possible time shifts. As an alternative to this O
(n2) time algorithm, it turns out that for the similarity measures defined in Section 2, the

global delay between the two trajectories can be approximated in time subquadratic in
their length. More specifically, using a FFT, we can approximate the similarities for all O
(n) candidate values of the global delay efficiently in a total of O(n log n) time. From

those candidate values, we extract in linear time the global delay; which is the delay
with the maximum similarity of the candidate values.

3.1. Correlations and the fast Fourier transform

First we introduce the basic notions on FFT, see for instance (Brigham 1988), then we

apply them to trajectories. The correlation between the two complex numbers a and
b is defined as the complex number corrða; bÞ ¼ �a � b where �a is the complex con-
jugate of a. More general, the correlation between sequences A ¼ ½a0; a1; . . . ; an�1�

and B ¼ ½b0; b1; . . . ; bn�1� of complex numbers is defined as:

corrðA; BÞ ¼
X

n�1

i¼0

�ai � bi:

The cross-correlation A ? B defines a correlation for every time shift τ ∈ [0, 1, . . ., n – 1],
such that when τ = 0, we have that ðA ? BÞτ is exactly corr(A, B).

ðA ? BÞτ ¼
X

n�1

i¼0

�ai � bðiþτÞmodn:

Figure 4. Zig-zag movement of one trajectory while the other moves towards the global direction.
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The FFT F and its inverse F–1 take as input a sequence of n complex numbers and

return a sequence of n complex numbers. The cross-correlation theorem states that A ? B

can be computed for the n values of τ using the FFT as follows:

A ? B ¼ F�1 FðAÞ � FðBÞ
� 	

:

X and X.Y operations on sequences act in an element-wise fashion. Since F and F–1 both
take O(n log n) time to compute, the n values ½ðA ? BÞ0; . . . ; ðA ? BÞn�1� of the cross-

correlation are computable in O(n log n) time.
To obtain a global delay τglobal, see Equation (2), we apply these fundamentals now to

trajectories. Trajectories have a finite amount of points. The cross-correlation, however, is
based on the assumption that the trajectories repeat indefinitely. We discuss this
conversion of the trajectories in the following.

To account for trajectories that do not repeat, we must correlate time stamps that are
outside the range (i or i + τ ∉ [0, n – 1]) with value zero. This is achieved by padding both
sequences c(T1) and c(T2) of complex values with n zeros. The function c resembles a
trajectory under a similarity measure as a sequence of complex numbers. For T1, this

yields a sequence Cðτ1Þ ¼ ½cðT1ð0ÞÞ; cðT1ð1ÞÞ; . . . ; cðT1ðn� 1ÞÞ; 0; 0; . . . ; 0� of length 2n.
Computing the cross-correlation between the padded sequences then correctly handles
delayed time stamps that are out of range. Correlations for negative delays – n < τ < 0

are now stored at index 2n + τ of CðT1Þ ? CðT2Þ and correlations for delays 0 ≤ τ < n are
simply stored at index τ. The interaction for a delay is given by the corresponding
correlation divided by n.

3.2. Approximating similarity measures using correlation

We wish to use the FFT to compute the global delay between trajectories under the

similarity measures of Section 2. For this both trajectories are converted into a sequence
of complex numbers, such that the similarity under time shifts can be derived from their
cross-correlation. In particular, for a given interaction measure d(p, q), we are looking for
a function i that converts a data point of a trajectory into a complex number, such that

dðp; qÞ � corrðcðpÞ; cðqÞÞ ¼ cðpÞ � cðqÞ for all pairs of points p and i on the trajectories
that we want to compare. It is often convenient to write the function i in polar
coordinates, such that the magnitude of cðpÞ : C is fðpÞ : R and its angle in the complex

plane is gðpÞ : R .

cðpÞ ¼ fðpÞegðpÞi:

The correlation between c(p) and c(q) is then given by

corrðcðpÞ; cðqÞÞ ¼ fðpÞe�gðpÞi � fðqÞegðqÞi ¼ fðpÞfðqÞeðgðqÞ�gðpÞÞi
:

As an example consider the direction-based similarity measure d(θp, θq) = cos(θp– θq).

In that case, taking f(θp) = 1 and g(θp) = θp gives us cðθpÞ ¼ eθp i, and we obtain

corrðcðθpÞ; cðθqÞÞ ¼ eðθq�θpÞi ¼ cosðθq � θpÞ þ i sinðθq � θpÞ, from which the exact origi-

nal similarity measure cos(θp– θq) can be derived. We show that if an interaction

measure d can be derived from the correlation in this way, the global delay between
the two trajectories can be computed in O(n log n) time.
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For displacement-based similarity measures, it is challenging to extract the original
similarity measure from such a correlation. Instead, we approximate displacements δp, δq
from the displacement similarity measure, see Equation (1), by

fðδpÞ ¼ 1; and gðδpÞ ¼
π

2

logðδp þ βÞ

log 1þ 1
β

� 	 :

To approximate the displacements δp and δq well, β is chosen depending on α from

the displacement similarity measure.
Here δq and δp are normalized to lie in the range [0, 1]. The difference between the

original measure d(δp, δq) and our approximation corr(c(δp), c(δq)) is shown in Figure 5.
One clear difference is how small displacements are correlated. Whereas the original

measure barely correlates small displacements, our approximation treats such displace-
ments as similar, which seems more natural. If this is not intended, the function f can be
tuned to suppress this correlation of low displacements. In particular, taking f (x) = xγ

allows us to discriminate more between small or large displacements, depending on the
parameter γ.

4. Visual analytics for local analysis of delays

Varying the temporal scale in analyzing movement data is important to extract move-
ment patterns (Laube and Purves 2011). The global analysis of delays, discussed in
Section 3, enables to quantify whether and how much the trajectories are correlated.

To explore interaction events in detail, an approach over time and space on a local level
is necessary.

In this section we summarize previous work (Konzack et al. 2015) where a matching

between the two trajectories was used to compute local movement patterns on a so-
called delay space. To capture them in a visually salient way, we bundle edges as

Figure 5. Comparison of displacements with our approximation. (a) Displacements α = 2 (Long and
Nelson 2013). (b) Approximation using β = 0.15, f(dp) = 1 andgðdpÞ ¼

π
2

logðdpþβÞ

log 1þ1
βð Þ
.
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patches to indicate the source and relevance of the interaction event. Our focus lies on

episodes of movement in which two moving entities show similar characteristics but
possibly with a delay.

4.1. Requirements for analyzing interactions

The main analysis task concerns the interpretation of interaction events and patterns in

two trajectories. Since interaction can be defined in different ways depending on the
context, our visual analytics tool should allow the analyst to identify interaction pat-
terns/events in the data for various interaction measures.

There can be many events, which may impede visual analysis if they are all shown in
detail. The visualization should therefore allow an aggregation of the surroundings of a
movement pattern to help an analyst focus on the progression of the interaction before
and beyond the current event. This leads to the requirement that critical events should

be visually salient.
Interaction of moving objects occurs at different scales: globally over the trajectories

as a whole, locally at a specific point in time or over some time interval, or in episodes (a

partitioning) of particular patterns (Laube et al. 2007). An analysis tool should therefore
provide means to analyze interaction at different scales.

Our computational approach relies on determining a matching between the two

trajectories in what we call a delay space. For the purpose of the analysis, it is necessary
to understand the spatial structure of the delay space and its relation to the correspond-
ing matching in space and time.

4.2. Computing matchings

To identify a potential interaction between the two moving entities, we are looking
for pairs of data points, one from each trajectory, that are similar according to one of
the distance measures discussed in Section 2. For this purpose, we first define the

delay space as a grid of distances for all pairs of points on the two trajectories (see
Figure 7(b)). More formally, given two trajectories with jτ1j ¼ m and jτ2j ¼ n, the
delay space

DL : 1;m½ � � 1; n½ � ! R
þ

is a grid of m × n points (pi, qj) ∈ T1 × T2.
To identify delayed interactions, we compute a plausible alignment between the

two trajectories. Such an alignment should map any point of one of the trajectories

to another point on the other trajectory or to a contiguous range of points of the
other trajectory. We call such an alignment a matching between the trajectories. In
the delay space, this corresponds to a bi-monotone curve from the lower left
corner (starting points of both trajectories) DL[1, 1] to the upper right (end points

of both trajectories) DL[m, n]. Such a matching is shown as a green curve in
Figure 7(b).

As a base for our analysis, we pick an alignment of overall high similarity, a matching

between the two trajectories. There is a wide range of similarity measures for trajectories
that are based on finding such an alignment.
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DTW aligns two trajectories – or more generally two time series – as to minimize the

(squared) sum of distances between matched elements. The alignment can be com-
puted in quadratic time using dynamic programming (Berndt and Clifford 1994).

The edit distance (ED) is a widely used measure for similarity between the two strings
(Maier 1978). It has been applied in bioinformatics and language processing. The EDR is

an adaption of ED for sequences with numerical values, for instance trajectories (Chen
et al. 2005). The EDR tackles the problem of transforming numerical values into integer
values from ED by defining a match on a pair of points. A pair of points is matched in

EDR when the distance between the pair is less or equal to an ε threshold. To compute
the EDR, a similar dynamic program as for DTW is used. The ε threshold restricts the
choices within the dynamic program of EDR. DTW uses distances in the dynamic

program, whereas EDR uses unit costs. The longest common subsequence (LCSS) is
essentially a restricted version of the ED, where only two of the three operations of
the ED are allowed (Wagner and Fischer 1974).

Another alignment method minimizes the maximum distance along the trajectories.

For curves, it is based on the Fréchet distance, and the corresponding matching can be
computed in near-quadratic time (Alt and Godau 1995). More specifically, we use a so-
called locally correct Fréchet matching (LCFM). Such a matching has the following

property: if we take any subcurve of the matching (starting at a pair of time stamps
(is, js) and ending at a pair (ie, je) and consider the subgrid of the delay space restricted to
the corresponding time stamps (DL	 : is; ie½ � � js; je½ � ! R

þ), then an LCFM also mini-

mizes the maximum distance restricted to this subgrid (Buchin et al. 2012). Similar to
this restriction, a profile function determines the structure of such a matching in a
lexicographic Fréchet matching (Rote 2014). In our tool we use the dynamic program-

ming algorithm from Buchin et al. (2012) to compute such a discrete matching based on
the Fréchet distance. The main idea is to construct a tree, with DL[1, 1] as the root, to all
valid, subsequent and monotonous paths towards the root. All vertices on the path from
DL[m, n] to the root are edges of the matching. This algorithm works with any premetric

(see Section 2) while Buchin et al. (2012) used it only with Euclidean distances.
To compute a matching on three or more trajectories, we need to extend the notion

of a Fréchet matching from the two trajectories to a set of trajectories. Dumitrescu and

Rote (2004) proposed a definition on the Fréchet distance on a set of curves. The Fréchet
distance then is the longest leash in the set of curves, such that the length of the longest
leash is minimized over all tuples of points from the input curves. Dumitrescu and Rote

(2004) showed that a 2-approximation of the Fréchet distance on the set of curves can
be constructed from all pairwise Fréchet distances.

Our visual analytics tool supports any of the alignment methods above and any

similarity measures (see Section 2), which allows to use a premetric in the delay space.

4.3. Interactive analysis of delays in matchings

The visual analytics approach allows users to explore matchings on two trajectories, the
degree of interaction and delays (Konzack et al. 2015). The proposed approach was
implemented in a prototype visual analytics tool, which supports multiple coordinated

views of the trajectories, matching, delay space, delay plot, and distance plot for the
purpose of visual exploration. To avoid visual clutter in the trajectory plot, we bundle
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edges of a matching in colored patches. This makes changes of the delay visible over

time, such that important local movement patterns can be perceived. A screen shot of
the tool is shown in Figure 6.

The analytical process behind our visual analytics tool is the following:

(1) Open and load a data set
(2) Select a similarity measure and an alignment method
(3) Analyze the structure of the matching

(4) Refine the parameters of the alignment method and the similarity measure
(5) Identify interaction events by browsing the edges

First we need to open and load the data set of the moving objects into our visual
analytics tool (step (1)). After that, we pick a similarity measure, used to construct the
delay space, and an alignment method, which drives the structure of the computed
matching (step (2)).

Upon that, we analyze the characteristics of the matching in the delay space and the
trajectory visualization (step (3)) by navigating through the edges of the matching.

A matching enables an interactive, local analysis of delays by sliding through the

edges of the matching. The main interaction component is the slider between the
trajectory visualization and the distance plot, which browses the edges of the matching
(not the time points), see Figure 6.

Figure 6. Screen shot of the tool, showing the delay space, the trajectory and matching visualization
with an enlarged section of it, the distance plot, and the delay plot. Ahead/behind behavior is
visualized by a glyph.
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A delay space is depicted in Figure 7(b). Trajectory B is on the y-axis and trajectory R

on the x-axis. The values are shown by a linear heated body color scale, see e.g.,
Munzner (2014), and the matching is visualized as a green path through the delay
space. Diagonal line segments correspond to simultaneous movement of both objects,
horizontal line segments correspond to movement of the object in R and stationary

behavior in B, and vertical line segments correspond to movement in B and stationary
behavior in R. In the delay space, see Figure 6, a cursor points to the currently selected
edge of the matching – indices of the pair of points on the axes – accompanied by a

glyph to encode that trajectory B, symbolized by the blue triangle, is behind trajectory R
– the red square (see Figure 6 for an enlargement). This stacking is swapped if trajectory
B is ahead, and, if no delay occurs, both symbols appear side-by-side.

A monotonous matching has a nice property that has been used to simplify the
visualization: in the matching, situations in which one point of one trajectory (the actor)
is matched with several points of another trajectory (the reactor) occur often. This
corresponds to an interaction pattern with a delayed response. These edges can be

bundled into a single patch to avoid visual clutter. We color the patches to show the
source, the actor, and the relevance of the corresponding reaction events.

An example visualization for two short trajectories, B and R, is shown in Figure 7(a).

Trajectory B is below R, and reaction events of B and R are associated with the colors
blue and red, respectively. Both moving entities start at the bottom of the plane,
progress in the same direction, approach each other, split into almost opposite direc-

tions and finally move in the same direction but at a large distance. The matching is
based on the directional distance. At the beginning, there is almost no interaction, since
both move along. The gray patch indicates a delayed response by R, where one point of

B is matched to the first two points of R. As the moving objects approach each other, the
structure of the patches becomes different. Within the red patch, the color changes from
gray to red indicating that R increases the delay to B. The blue patch expresses that B
reduces the delay to R until the delay vanishes (the color becomes gray).

The trajectory visualization, in Figure 6, provides an overview of all interactions over
both trajectories in translucent colors. The selected edge and its direct surroundings in

Figure 7. Visualizations for a matching based on the directional distance similarity measure. (a)
Trajectories and a corresponding matching. (b) The delay space and a matching.
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the focus area are shown in saturated colors. The delay is visualized by glyphs: a circle

for the actor and a red square or blue triangle for the reactor (the same visual encoding
as in the delay space visualization). If no delay is observable, both points are depicted as
circles.

As soon as we perceive the overall structure of the patches within the matching and

its delay space as unfruitful, we refine the alignment method and/or the similarity
measure (step (4)) such that we obtain a new delay space and a novel matching. For
this new setting, we apply steps (2) to (4) until we are satisfied with the overall structure

of the matching.
Eventually, we identify interaction events by browsing the edges of the matching

(step (5)) in more detail. The aim is to find consecutive episodes in both trajectories that

correspond to high interaction. By tracing the patches in the form of action–reaction
patterns in the trajectory visualization and rapid color changes in the delay space
visualization, we are able to read off the time stamps for those events in the delay
space visualization.

Additionally, the distance and delay plot, see Figure 6, help to detect action–reaction
patterns, which globally look as depicted in Figure 1, since significant changes in the
progression of delays are related to changes in the interaction between the moving

objects. The distance and delay plot show progression of distance and delay over time,
respectively. The cursors help to read off exact values at the left side of the plots. The
distances are also color-coded on a heated body color scale, and the delays are plotted

in the colors of the trajectory.

5. Experiments

To evaluate our approach, we applied it on three data sets. First, we analyze the

interaction among the two ultimate Frisbee players (Long and Nelson 2013). On this
data set we compute global delays with our FFT-based approach on subsamples
(episodes) to determine how well these episodes are correlated. Upon this, we analyze

the covering performance between the attacker and the defender locally with our
matching-based visual analytics tool.

The second data set is a pair of homing pigeons in collective flight (Pettit et al. 2013).

We are interested here in extracting interactive movement episodes by applying our
visual analytics tool to a 2D projection of the moving pigeons.

On the third data set, a flock of homing pigeons (Santos et al. 2014b), we selected
three trajectories from the flock to analyze the interaction within a matching among

these three moving objects. We compare the triplet matching with the pairwise match-
ings on the three pigeons.

5.1. Analysis of the global delay on ultimate Frisbee data

The trajectories in the ultimate Frisbee data set from Long and Nelson (2013) describe
the movements of a defender, trajectory B, covering an attacker, trajectory R, who tries
to get a pass. The defender wants to intercept or dissuade passes from being completed.

The defender’s movement is a reaction to the attacker. In this scenario, the delay could
be used as a metric to evaluate the performance of the covering between the players.
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The trajectories were simultaneously recorded with a sampling rate of 5 Hz, and each

trajectory consists of 276 GPS locations. The duration of the recording is 60 s. Some
missing locations occurred when the players were stationary. To resolve this issue, we
interpolated the trajectories linearly over time for those missing locations. This inter-
polated data set with 300 locations per trajectory has been used in our analysis.

Long and Nelson (2013) proposed a global measure for dynamic interaction to
determine whether there exists a substantial amount of interaction between the players.
It is derived from the values from local dynamic interaction events. We compute a

related measure, the global delay by using our FFT-based approach (see Section 3).
We analyze the global interaction using displacements, since displacements are

sensitive to the time shifts that are used for finding the global delay. This also allows

us to evaluate the performance of approximations for displacements from Section 3.2.
The main goal is to decide whether the trajectories have a substantial amount of

interaction or not. To accomplish a distinction of interactive and noninteractive beha-
vior, we selected subranges of the Frisbee data, such that we can perceive the difference

in the global correlation among the trajectories. In Figure 8, the displacements of the
two players are plotted over time. The selected subranges are indicated in saturated
colors. We use the displacement measure with α = 1 throughout in this section. We first

compare the global delay between B1 and R1, then we compute the global delay
between B1 and R2. To overlay the displacements, we shift the time stamps of R2
onto B1 by – 30 s on each point of R2.

The set of trajectories B1 and R1, which we analyze for the global delay, are
temporally aligned, and they consist of a significant amount of interaction within the
first 20 s (Long and Nelson 2013). In Figure 9(a) the correlation of displacements

between B1 and R1 are computed for all possible time shifts and plotted as a black
line. It is observable that the highest correlation is at 0 s, which is the global delay under
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Figure 8. Displacements of ultimate Frisbee data. The selected subranges are indicated in saturated
colors. The displacements for the subrange B1 from trajectory B are blue. The values for the
subranges R1 and R2 from trajectory R are red and orange.
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the displacement similarity measure. Since either one or the other trajectory has been

time-shifted for an alignment in the global delay, the plots for the global delay are
asymmetrical. We also ran our FFT-based approach to approximate the displacements
globally. The results are shown in Figure 9(a) for two values of β as dashed lines (β = 0.0
and β = 0.15). It is observable that these values yield good approximations. However,

there are some deviations at the boundaries of the time-shifting. The best approxima-
tion of displacements is when our FFT approach has a β between 0.0 and 0.15.

In the second set of trajectories B1 and R2 from Figure 8, we compare trajectories

which are not temporally aligned. In order to compute a global delay between them, the
time stamps of R2 have been shifted by –30 s. The correlation of the displacements
between B1 and R2 is plotted in Figure 9(b) as a black line. There is not a remarkable

correlation observable, and the maximum delay, the global delay, is not at 0 s. Our FFT
approximations of the displacements, with β = 0.0 and β = 0.15, yield oscillating values
(dashed lines). The correlations values are below the displacements, and we omitted

negative values in the plot.

5.2. Analysis of delays on ultimate Frisbee data

In team sports, such as ultimate Frisbee, players engage in bursts of movement which
may be characterized by different movement patterns. Therefore, a local analysis is more

informative than a global analysis for the ultimate Frisbee data set (Long and Nelson
2013). Multiple episodes of different levels of interactions occur over time in this data
set. Our aim is to segregate these segments into episodes of high and low interaction.

To detect interaction events in our matching-based visual analytics tool, we need to
choose a similarity measure (see Section 2) for the delay space that captures the move-
ment pattern in a visual salient manner (step (2) in Section 4.3) and an alignment
method (see Section 4.2). In Figure 10(a–d), matchings have been computed for a

reaction pattern of the defender B to the attacker R (step (4)). We used, as Long and
Nelson (2013), an α = 1 in the dynamic interaction measure. The loop and its adjustment
between the players afterwards are captured clearly in matchings based on the
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Figure 9. Displacements and our FFT-based approximations on subranges from ultimate Frisbee
data. (a) Similarity of displacements between trajectories B1 and R1. (b) Similarity of displacements
between trajectories B1 and R2.
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Euclidean distance and the directional distance. As alignment method we first use an
LCFM.

We opt for analyzing the ultimate Frisbee data set under the directional distance,

since this delay space is sensitive to direction-based and spatial properties. Within the
episodes 0–25 s and 36–45 s, both players have a low distance, meaning a high
interaction. This is consistent with the findings of Long and Nelson (2013). Our measures

detect an additional episode of interaction: Within the interval 45–57 s, a turn by R is
followed by a reaction of B, see Figure 10.

The progression of the distance over time, see Figure 11(a), follows the structure of an

action-reaction pattern, discussed in the previous section. In the delay plot, this event
can also be seen in the form of a significant change of the local delay, see Figure 11(b).
Long and Nelson (2013) analyzed the covering performance by the dynamic interaction

measure on pairs of points with the same time stamp, which is why our notion of delay
therefore does not occur in their analysis.

Next we performed the same analysis but with different alignment methods, speci-
fically DTW and EDR. We computed matchings on the two trajectories using DTW and

EDR. These algorithms have the same running time of O(n2) as computing an LCFM. In
the dynamic programs for DTW and EDR, we maintained predecessor graphs to

Figure 10. Matchings under different similarity measures to detect a loop pattern in the ultimate
Frisbee data: (a) based on the Euclidean distance measure, (b) based on the similarity of headings,
(c) based on the dynamic interaction similarity measure, and (d) based on the directional distance
similarity measure. (a) highlights it as an interaction event. For (b) in the delay space, only the
adjustment of the defender B towards the attacker R is found, since it highlights the loop pattern
partially as two patches. Using the dynamic interaction measure in the delay space (c) yields three
patches, but the adjustments of the defender after the loop are not captured as separate events. (a)
and (d) highlight the loop as an interaction event by a blue patch followed some smaller patches
during the adjustments within the reaction of the defender B.

Figure 11. Distance and delay plot for matching in Figure 10(d) follows the structure of an action–
reaction pattern with delayed response. (a) The distance plot within a reaction. (b) The delay plot
shows a significant rise at the point where the defender reacts as a loop movement.
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construct a matching and not only compute the distance value. The original definition of
EDR uses an epsilon on the absolute difference on each dimension of a pair of points.

However, we used an ε threshold on the actual distance norm used in the delay space to
match a pair of points.

In Figure 12, we computed matchings in the delay space using the Euclidean distance

for the loop pattern of the ultimate Frisbee data. The horizontal stripe in the matchings
of all the three methods corresponds to the reaction movement of the defender. All
methods capture the loop. EDR recognizes the loop premature with respect to other

methods over time. The progression of the matching curve in DTW and EDR are some-
how similar. However, an LCFM consists of more vertical segments in the matching than
DTW and EDR. Hence the LCFM has more bends to move through regions with low
distances in the delay space, whereas the matchings based on DTW and EDR tend to

stay shorter in this area of low distances.
The threshold parameter ε to match a pair of points influences heavily the structure of a

matching based on EDR. A relatively large or low value forces the matching to prefer

diagonal movements in the delay space. A preanalysis of distribution of the distances that
may occur in a possible matching need to be conducted in order to spot a suitable ε value,
since a relatively large or low value for ε forces the matching to prefer diagonal movements

even when there are vertical or horizontal movements with lower distances possible to take.
Hence, EDR suffers from spotting an appropriate ε before computing a matching, whereas
other techniques give better results without a need of a parameter at all.

5.3. Analysis of delays on pigeon data

We analyzed first the global delay to confirm that the trajectories are correlated (results

not included), and then applied our matching-based approach on a segment of paired
homing pigeon flight trajectories collected as part of a larger pairwise data set by Pettit

Figure 12. Delay spaces for the loop pattern in the ultimate Frisbee data in a log scaling using the
Euclidean distance: (a) shows a Fréchet matching. The matching in (b) is based on dynamic time
warping. In (c) a matching has been computed on the edit distance for real sequences with an
ε = 1.6 on the delay space. (a) stays longer in low distances after the horizontal stripe, within the
reaction event, than (b) and (c).
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et al. (2013). The time span of the data is 140 s using a sampling rate of 5 Hz. The

trajectories have not been tuned or optimized. Pigeon B flies a distance 1.62 km at an
average speed of 16.75 ± 5.02 ms–1 to land 634 m from its start point, and pigeon R flies
1.33 km at an average speed of 15.36 ± 4.92 ms–1 to land a distance 572 m from its start
point. In this analysis we used directional distance in combination with LCFM.

An overview visualization is shown in Figure 13 for a selected event, where pigeon R
reacts to the movement of pigeon B. The reaction of pigeon R is a transition from a right

Figure 13. Visualization of pigeon trajectories and corresponding delay space based on the direc-
tional distance similarity measure. (a) The delay space. (b) The focus area. (c) The trajectories and
their corresponding matching. (d) The distance plot. (e) The delay plot.
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turn to a left turn. This event is visible as a large blue patch in Figure 13(b). In the delay

space, see Figure 13(a), this movement pattern is indicated by the horizontal segment
within the matching. Due to the adjustment of pigeon R to the movement of pigeon B
as a reaction, there is a decline in the distance, see Figure 13(d). The delay still increases
at this point until the maximum delay is reached within the reaction movement of

pigeon R, see Figure 13(e). The movements of the pigeons and its matching visualization
are outlined in Figure 13(c), and only the surroundings of the selected edge are in the
focus of the visualization.

Within 0–12 s and 20–66 s, the pigeons have low directional distance, indicating high
interaction, as can be seen in both the distance plot and delay plot (see Figure 13). The
delay plot indicates that the leadership switches between these two episodes. The

directional distance then increases, but from 95 s to 106 s and starting from 120 s, the
pigeons have high interaction again. Between 106 s and 120 s, one pigeon makes a loop
while the other progresses in a straight line.

To evaluate these findings informally with those from another technique, we

applied the time-ordering approach by Giuggioli et al. (2015) on the pigeon data set,
see Figure 14. For this approach we have focused on the velocity cross-correlation to
identify and classify copying patterns in direction. The optimal movement episodes,

based on a directional separation, are similar to the episodes detected by our
approach. For computational convenience the maximum allowed delays were capped
at 4.5 s.

Figure 14. Delay plot for the time-ordering approach. The white contour lines are a threshold for
motion that is sufficiently aligned to represent interaction. The black segments are the optimal
interaction intervals representing the best delayed interaction that can be extracted using this
method. Both positive and negative delays are detected within this method as well.
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The episodes 0–18 s, 20–65 s, and 120–130 s are consistent with those from our

approach. At around 105 s and 118 s, two short movement episodes of interactive
behavior have been found. They capture the beginning and the end of the loop pattern,
but it is not detected as a whole. The deviations are probably due to the delay
parameters of the time-ordering approach, since in our matching-based approach

quite large delays (max. 9.6 s) occur at around 120 s.
When compared to the time-ordering procedure the present approach has various

advantages. It does not require a presmoothing of the data set, and it can be extended

beyond pairwise analysis.

5.4. Analysis of delays on a triplet of pigeons

Our approach focused so far on the analysis of interaction on two trajectories. However,
it is common in applications to track several moving object as a collective movement,

such as a flock or a group. A procedure to analyze the interaction among more than two
trajectories simultaneously is in fact very much in need.

There are two reasons why a pairwise procedure on more than two trajectories is
likely to fail: one is practical and the other methodological. The practical aspect is that

the computational cost increases very rapidly if one accounts for all possible pairs of
trajectories. The methodological problem is due to potential inconsistencies in identify-
ing the correct sequence of events. To explain it, let us consider the example of three

simultaneously moving objects, A, B, and C. Suppose that a pairwise procedure between
A and B and between A and C indicates, respectively, that B reacts to A with a (positive)
delay τBA, and that C reacts to A with a (positive) delay τCA > τBA. If τBA is quite different

from τCA, the pairwise analysis between B and C most likely will extract a delay τCB > 0,
consistent with the fact that individual C has responded to individual A later than
individual B. But if the pairwise delays extracted are small, then it is not ensured that

τCB > 0. To avoid these issues, one ought to extract delay for all individuals at once.
To do so, we extend our approach to compute a matching on three simultaneously

moving objects, and we compare how the triplet analysis differs from a pairwise analysis
and how well a triplet matching captures action–reaction patterns on a local scale.

We use a data set of a flock of 10 pigeons from Santos et al. (2014b), which has been
made available on Movebank (Santos et al. 2014a). It consists of simultaneously recorded
GPS data using a sampling rate of 4 Hz. The pigeons have been tracked for several trips.

All pigeons from the flock are likely to interact with each of the others, since they are
socially familiar to each other (Santos et al. 2014b). The transitive, pairwise comparison
of the pigeons in Santos et al. (2014b) has shown results with significant repeatability,

such that we can validate the pairwise matchings with that one obtained directly from
the triple.

We have selected three trajectories, pigeon M, S, and U, corresponding to different
roles within the flock. Pigeon M has high rank for leadership, and pigeons S and U have

low negative leadership rank within the flock. Pigeons S and U are likely to show
follower behavior. Santos et al. (2014b) explain that leadership has a stable role within
a flock across different flights.

A pairwise matching between pigeon M and S is shown in Figure 6. It captures a
circular movement, wherein the distances between the pigeons vary, and changes in
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position, heading, and turns occur. Within the beginning of a flight, there are many

adjustments among the pigeons to the collective movement of the flock, which is why
we use a sample of 200 points from flight 5 from time stamps 800 to 999, whereas flight
5 consists of 3845 time-stamped points in total.

To measure similarity between a triple of points, we used the maximum of the

pairwise Euclidean distance (see Section 2) in our methods, LCFM and DTW, to compute
a triplet matching. For the pairwise analysis, we used the Euclidean distance on the
selected pair of trajectories.

We projected the triplet matching into our visual analytics tool by showing only the
coordinates of the selected pair and leaving out the values of the nonselected trajectory.
An LCFM on a triplet results in a similar matching as a pairwise computation on the

three trajectories separately. This can be seen in Figure 15. A pairwise matching is
visualized as a blue curve in the delay space and the projected triplet matching in green.

The triplet matching on the pair (S, U) coincides with the LCFM on that pair of
trajectories. The S-shape of the delay space is due to a sharp turn by S within the

circular, anticlockwise movement of the flock. The longest leash is from the pair (S, U),
since this projection (see Figure 15) of the triple matching moves through a short
segment within the S-turn in the brightest color of all three projections. Hereby it

contains the largest Euclidean distance of the triplet matching. The longest leash
gives the pairs (M, S) and (M, U) slack for their edges within the triplet matching. This
fact is likely to explain why the pairwise projections deviate by having horizontal stripes

in the triplet matching. However, these projections still avoid large values in the delay
space.

To evaluate this LCFM on a triple of trajectories, we have computed a triplet matching

based on DTW. Figure 16 shows the projections in green and beneath it the LCFM on

Figure 15. Delay spaces, in a logarithmic scale, for projections of a Fréchet matching on three
pigeons. The projections are in green, and the pairwise LCFM is in blue beneath it. (a) shows the
matchings for the pair (M, U). The matchings in (b) are between pigeons M and S. In (c) the
matchings are shown for the pair (S, U). The Fréchet distance is from (c), where the largest distances
within the triplet are obtained, since the color in the delay space is there the brightest in all
projections of the triplet.
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the selected pair in blue. The projections for the pairs (M, U) and (S, U) follow the
progression of the pairwise LCFM. The triplet matching on the pair (M, S) clearly deviates

from the LCFM, since it prefers diagonal movement in the delay space. This can be
explained by the fact that DTW optimizes the squared sum of Euclidean distances. As a
result, it prefers to minimize large distance values. The pairs (M, U) and (S, U) preserve a

significantly large distance with respect to (M, S).
Overall the matchings between triplets provide results similar to those obtained by

pairwise matchings. Although in general such equality may not be ensured as we
explained earlier, for this data set it holds true independently of the alignment method

used (DTW or LCFM).

6. Conclusions

We proposed a new approach to analyze interaction events between the two trajec-
tories. First, we determine with our FFT-based approach whether there is any interaction

between the trajectories. Upon that, we apply our main technique on the data set, a
versatile visual analytics tool which enables time delays to be incorporated in interaction
movement analysis.

Delayed responses play a key role in detecting interaction events in movement data on

a global and local scale. These events are modeled within the so-called delay space,
wherein we compute a matching between the moving objects. The purpose of our
methodology is to gain insight into action–reaction patterns by analyzing those matchings.

Our visual analytics approach uses multiple coordinated views to explore the movement
data interactively. The edges of the matching are visualized as colored patches to convey the

Figure 16. Delay spaces, in a logarithmic scale, for projections of a triplet matching on pigeons
based on DTW. The projections are in green, and the pairwise LCFM is in blue beneath it. (a) shows
the matchings for the pair (M, U). The matchings in (b) are between pigeons M and S. In (c) the
matchings are shown for the pair (S, U). The maximum distance value for the triplet matching is
obtained from (c), since the distance values within the S-movement of the matching have the
brightest color in the delay space, i.e., the largest values.
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structure of the interaction events. The relevance of the movement pattern is determined by

the delay among the moving entities, which is used as a color saturation for the patches.
The experiments show that the structure of a matching provides important insights

into action–reaction patterns in the movement data. The computation of a matching
relies on the alignment method. We evaluated various types of state-of-the-art methods

to compute a matching. All of them are supported in our visual analytics tool. In general,
DTW and LCFM gave good results in our experiments. If the movement of trajectories is
relatively aligned, then DTW and LCFM yielded both good results. However, LCFM gives

better alignments as soon as delayed responses appear within the movement data, since
DTW tends to prefer diagonal movements in the delay space.

We surveyed various interaction measures in our tool as well, which combine move-

ment vectors, distance norm, or headings of the trajectories. By combining the Euclidean
distance norm and the difference in the headings, we introduced the novel premetric,
the directional distance. In our experiments using the directional distance yields large
patches, e.g., in the loop movement of the ultimate Frisbee data set, with respect to

other similarity measures, capturing action–reaction relationships better as visible
colored patches in the visual analytics tool.

The concept of a delay space and a matching can be generalized to more than two

trajectories. We showed this on a triplet of trajectories. In the experiments, the results on
the triplet were consistent with those from a pairwise analysis. They did not provide
additional insights to our data sets, however.

Visualizing the delay space and matching between simultaneously moving objects is
challenging, since the delay space then has at least three dimensions. Our delay space
visualization is limited to support only two trajectories as x- and y-axes. Therefore, a

novel technique needs to be developed to visualize a matching on more than two
trajectories. Beyond the examples presented in our experiments, our methods are widely
applicable to analysis of individual human movement in a crowd, prey–predator inter-
action, wilding mating behavior, and sports analysis.
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