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Abstract

Research on material perception has received an increasing amount of attention recently. Clearly,

both the visual and the haptic sense play important roles in the perception of materials, yet it is still

unclear how both senses compare in material perception tasks. Here, we set out to investigate the de-

gree of correspondence between the visual and the haptic representations of different materials. We

asked participants to both categorize and rate 84 different materials for several material properties.

In the haptic case, participants were blindfolded and asked to assess the materials based on haptic

exploration. In the visual condition, participants assessed the stimuli based on their visual impres-

sions only. While categorization performance was less consistent in the haptic condition than in the

visual one, ratings correlated highly between the visual and the haptic modality. PCA revealed that all

material samples were similarly organized within the perceptual space in both modalities. Moreover,

in both senses the first two principal components were dominated by hardness and roughness. These

are two material features that are fundamental for the haptic sense. We conclude that although the

haptic sense seems to be crucial for material perception, the information it can gather alone might not

be quite fine-grained and rich enough for perfect material recognition.
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1. Introduction

Material perception is inherently multimodal in nature. Touching objects in

order to discover what they feel like is a very natural thing to do. When we

want to judge the ripeness of a fruit we not only look at it but also feel very
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tempted to touch it. Humans seem to be rather good at making judgments

about material classes (Sharan et al., 2009; Wiebel et al., 2013) or material

properties (Fleming et al., 2013). But what kind of information do the senses

provide? How is each modality’s information processed and stored, and how

is information exchanged and integrated between senses to form a common

percept?

Whereas a great deal of research has been conducted to investigate both

uni- and bimodal shape perception, the perception of materials and material

qualities has only recently received more attention in vision research (Buck-

ingham et al., 2009; Cant and Goodale, 2011; Fleming et al., 2003; Ged et

al., 2010; Giesel and Gegenfurtner, 2010; Hiramatsu et al., 2011; Kim and

Anderson, 2010; Liu et al., 2010; Motoyoshi, 2010; Motoyoshi et al., 2007;

Olkkonen and Brainard, 2010; Olkkonen et al., 2010). In this study we want

to shed light on the sensory interplay between the visual and the haptic spaces

underlying material perception.

In a recent study investigating visuo-haptic shape perception, Gaissert et al.

(2010) showed that the visual and haptic perceptual representations for three-

dimensional shapes are highly similar. They used artificial shell-like stimuli,

which they modulated systematically along three shape dimensions: distance

between aperture and tip, number of convolutions, and symmetry. Participants’

similarity judgments reflected the underlying parameter space both via visual

and haptic exploration of the stimuli. This indicates a close link between visual

and haptic shape processing. In further experiments, they strengthened these

findings by showing that their results generalize to natural stimuli (shells)

(Gaissert & Wallraven, 2012). Furthermore, they could show that these highly

similar perceptual spaces give rise to very similar categorization behavior in

both modalities (Gaissert et al., 2011).

These results indicate that shapes are represented at a multimodal level in

the brain. This is strengthened by the brain imaging literature. Several studies

could show that there are brain regions which get activated both by visual and

haptic exploration of objects (for a review, see Amedi et al., 2005). Especially

LOtv, a subregion of LOC, seems to respond in a very similar fashion to both

visually and haptically presented shapes and might have bimodal geometric

representations (Amedi et al., 2002).

So far, no comparable convergence of visual and haptic representations has

been described for materials and surfaces of objects. A study investigating bi-

modal perception of surface texture with fMRI failed to find clear evidence

for a region where both visual and haptic material information might be en-

coded (Stilla and Sathian, 2008). There are no psychophysical studies that

have compared the general dimensionality of both visual and haptic perception

of objects’ surfaces and materials in a systematic and comprehensive fashion.

Most studies have focused either on a single modality or considered a lim-
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ited range of material qualities. Here we set out to examine both the visual and

haptic representations with a large and identical stimulus set and across a wide

range of material qualities.

The majority of studies on bimodal surface perception have investigated

roughness. For example, a comparison between the visual and the haptic sense

was reported by Bergmann Tiest and Kappers (2007). They used a large set of

different material samples characterized through different physical roughness

measures (industrial roughness standards and spectral densities at different

spatial scales). In separate haptic and visual conditions, participants were

asked to rank the samples according to perceived roughness. Participants’ or-

dering matched physical roughness rather well, and importantly, both haptic

and visual orderings corresponded about equally to the physical measures.

A few studies have looked at the general dimensionality of the spaces un-

derlying visual material (texture) perception in order to identify a generic

texture space. Rao and Lohse (1996) asked participants to rate images from

the Brodatz database (Brodatz, 1966) on several Likert scales. By means

of multidimensional scaling (MDS) they found three underlying dimensions

of the perceptual space: repetitiveness, contrast/directionality, and complex-

ity/coarseness. In a subsequent study, Bhushan et al. (1997) sought to estab-

lish a representation of words describing textures. They confirmed the three-

dimensional structure identified in their previous study, establishing a close

correspondence between the texture word space and the visual texture space.

More studies have been conducted in the haptic than in the visual domain.

Hollins et al. (1993) had their participants sort different haptically presented

materials into groups according to similarity. Using MDS, they identified

roughness and hardness as the dimensions underlying haptic judgments. In

a further experiment, Hollins et al. (2000) identified slipperiness as a third di-

mension, present only in a subgroup of participants. Using a set of car seat

fabrics to investigate haptic dimensions of material perception, Picard et al.

(2003) found their data to be represented best by four dimensions, namely

harshness, thickness, relief, and hardness.

A comprehensive account of studies on the haptic dimensionality of tex-

tures/materials was recently given by Okamoto et al. (2013). They summa-

rized a variety of studies and tentatively suggest five dimensions of haptic

texture perception: macro roughness, fine roughness, coldness, hardness, and

friction. However, not all studies report the same dimensions, as these strongly

depend on experimental and methodological factors. This illustrates the prob-

lem of comparing results from different studies using different methods and

different stimuli. Accordingly, it is difficult to gain knowledge about com-

monalities between the visual and the haptic perceptual spaces for materials

by comparing separate visual and haptic studies.
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In this experiment, we seek to overcome these limitations of previous stud-

ies and determine the degree of correspondence between both senses in a

systematic fashion using the same set of stimuli and the same procedure for

both modalities. Importantly, we also decided to investigate a wide variety

of material qualities in order to form a differentiated overview of visual and

haptic material perception. We pose the question if the perceptual space that

underlies material perception is the same for haptic and visual judgments. In

addition, we want to gain insight into the aptitude of the two senses for the

perception of various material qualities. The roles of the visual modality and

the haptic modality in material perception have previously been characterized

as both overlapping and complementary (e.g. Whitaker et al., 2008). There-

fore, we do not assume that there exists (like it has been suggested for shape

perception (Gaissert et al., 2010)) a bisensory representational level of both

modalities for the perception of materials. The question we ask is rather: what

is the degree of correspondence between both senses?

2. General Methods

2.1. Stimuli

Our stimuli consisted of 84 different material samples (14 × 14 cm in size) that

were mounted onto pieces of 12 mm thick medium density fiberboard (MDF)

of the same size by means of glue or double-sided adhesive tape. Flexible

materials were only in the corners glued to the MDF in order to retain their

flexibility.

We used stimuli from seven general material categories for the experiment:

plastic, paper, fabric, fur and leather, stone, metal and wood. The materials

spanned a wide range of different samples in order to represent the large va-

riety of material appearances we encounter in everyday life. Examples of our

stimuli can be seen in Fig. 1.

2.2. Material Properties

The material properties that we asked our participants to assess were chosen to

represent a wide variety of material qualities as well as both visual and haptic

features of materials. Participants were asked to rate each material property

on a 7-point Likert scale. The following ten qualities were assessed, with the

following definitions.

2.2.1. Glossiness

How glossy or matte does the material appear to you? Low values indicate the

material is matte and shows no or very little reflections; high values indicate a

shiny, reflective appearance.
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Figure 1. Example images taken from our seven material categories. Top row, from left to right:

metal, stone, leather, fur. Bottom row, from left to right: fabric, paper, plastic, and wood. This

figure is published in colour in the online version.

2.2.2. Colorfulness

How colorful or pale does the material appear to you? Low values indicate a

greyish, monochrome appearance; high values indicate a colorful appearance,

which could be either a saturated single color, or several colors.

2.2.3. Roughness

How rough or smooth does the material appear to you? Low values indicate

that the surface feels smooth; high values indicate that it feels rough.

2.2.4. Orderliness

How ordered or chaotic does the material appear to you? Low values indi-

cate that the material’s surface shows no regularities but rather is random or

chaotic. High values mean that the surface has an ordered, regular structure.

2.2.5. Hardness

How hard or soft does the material appear to you? How much force would

be required to change the shape of the material? Low values indicate that the

surface feels soft; little force is required to change the shape of the material.

High values indicate that it feels hard and cannot easily be deformed.

2.2.6. Warmth

How warm or cold does the material appear to you? Low values indicate that

the material feels warm or body temperature; high values indicate that the

material feels cold to the touch.
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2.2.7. Elasticity

How elastic or stiff does the material appear to you? Low values indicate that

the material is not elastic. It is either stiff or its form remains changed after de-

formation. High values indicate the material is very elastic. After deformation,

it will return to its original form.

2.2.8. Friction

How high does the friction of the material appear to you? Low values indicate

that the material has low friction and is slippery. High values indicated that

you feel a lot of friction when touching the material.

2.2.9. Three-Dimensionality

How three-dimensional does the material’s surface appear to you? Low values

indicate that the surface is flat, high values indicate that the surface has a three-

dimensional structure.

2.2.10. Texture

How textured/patterned or homogeneous/uniform is the material’s surface?

Low values indicate that the surface is uniform, high values indicate that the

material has a pattern or texture.

2.3. Participants

12 participants (all university students, mean age 27.4 years, eight female, four

male) performed the rating task. 10 other participants (all university students

or employees, mean age 24.2 years, six female, four male) participated in the

categorization task. All participants had normal or corrected to normal visual

acuity, and all but one were right-handed. They received financial compensa-

tion for their participation in the experiment. In the rating experiment, half of

the participants started with the haptic condition of the rating, the other half

started with the visual condition. In the categorization task, five participants

performed the visual task and five the haptic task.

2.4. Procedure

Participants were seated in front of a table with a pedestal on which the ma-

terial samples were mounted. At the beginning of each block the participant

was given a written description of the material quality and the rating scale.

The participants were encouraged to ask questions to ensure their understand-

ing of the material property and rating scale. The order of blocks, i.e. material

qualities, was randomized for each participant. The order of stimuli was ran-

domized within one modality (visual or haptic) and within a single participant

and remained the same in each block of one modality. We decided against

presenting a stimulus and asking for all 10 material properties one after each

other because we wanted our participants to concentrate on a single material

property at a time, thus increasing the consistency of the judgments.
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At the end of each trial, the participant would verbally give his/her response

to the experimenters; this was entered it into a Matlab GUI.

2.4.1. Haptic Condition

Participants were blindfolded and wore earphones over which we presented

auditory broadband noise during the trials. The auditory noise served two pur-

poses: first, to prevent the participant from hearing the sound of their hand

exploring the material, and second, to signal the start and the end of the ex-

ploration. During each trial, the participant’s task was to assess the stimulus

for the perceptual quality of the current block. As soon as the correct mate-

rial stimulus had been placed onto the pedestal by one of the experimenters,

the other experimenter started the auditory noise, which signaled the begin-

ning of the manual exploration to the participant. Participants were allowed to

freely explore the materials with their right hand but we asked them to neither

scratch nor knock onto the materials and not to explore the edges of the mate-

rial samples. One of the experimenters was always nearby and made sure that

participants would follow our instructions. After 13 s the mean frequency of

the auditory broadband noise became higher, which signaled the participant

to withdraw his/her hand from the stimulus, and stopped completely after an-

other two seconds. The participant would verbally give a response, which was

entered into a Matlab GUI by one of the experimenters.

2.4.2. Visual Condition

In this condition, the stimulus pedestal was placed in a box which was open

in the front, in the back, and on top (from the participants’ point of view).

The front and the back of the box could be closed by means of curtains. At

the beginning of each trial, a stimulus was placed on the pedestal within the

box, and both curtains were closed. Then a gong signaled the beginning of a

trial. After the gong, the participant was allowed to open the curtain in front

of him/her and look at the stimulus. We paid attention that the stimuli were

always at approximately the same distance from the participant. We also told

the participant to sit still during the trial and minimize head movements. Af-

ter 10 s, a higher pitched gong sounded, and the participant had to close the

curtain and give his/her response verbally.

Data were collected during daylight conditions. Light entered the room

through a window directly behind the participant.

2.5. Categorization Tasks

2.5.1. Categories

As mentioned before, we used stimuli from seven general material categories

for the experiment: plastic, paper, fabric, fur and leather, stone, metal and

wood. Here we examined how participants would perform in assigning the

stimuli to these distinct material classes using only the haptic or only the visual
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sense. We asked participants to choose one of these seven material categories

for each stimulus. These categories reflect the everyday use of material cat-

egory words. They are also based on physical and chemical properties and

manufacturing processes.

2.5.2. Haptic Categorization of Materials

In the haptic categorization task, participants were presented with each stim-

ulus in a randomized order. Participants had 13 s to explore the stimulus in

the same manner as in the rating task. They were shown the list of stimulus

categories beforehand and were asked to remember them. In each trial they

had to verbally assign the stimulus to one of the given material classes.

2.5.3. Visual Categorization of Materials

In the visual categorization task, participants viewed each stimulus for 10 s.

Again, stimuli were randomized. The exploration procedure was the same as

for the rating task. In each trial they were asked to assign the stimulus to

one of the material classes the participant had been told at the start of the

categorization task.

3. Results

3.1. Visual and Haptic Material Property Ratings

3.1.1. Correlations Between Participants

We asked participants to rate our material stimuli on a variety of material prop-

erties in order to determine the relationship between the visual and the haptic

sense in the perception of materials.

To assess the degree of correspondence between the two senses, we first

analyzed to what extent participants gave similar ratings in the two tasks. We

calculated correlation coefficients between participants across materials and

material properties to gain a broad overview of the consistency between ob-

servers. Data for the visual and the haptic modality can be seen in Fig. 2. The

range of correlations appears similar within each modality. In general, correla-

tions were quite high, mostly between 0.6 and 0.75, indicating that participants

do have similar concepts of the dimensions they had to assess. This indicates

that property ratings do generalize to a large degree across observers.

3.1.2. Correlations Between Material Properties

Given that participants seemed to agree quite well on the assessment of the dif-

ferent material qualities, we wanted to look at how much the different qualities

are related to each other across materials and samples. We were particularly

interested in the correspondence between the visual and the haptic sense. Cor-

relation matrices for both modalities are shown in Fig. 3.
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Figure 2. Histogram of the correlation coefficients between all 12 participants across all mate-

rials and dimensions tested. Data for the visual and the haptic modality are shown on the left

and the right side, respectively. Each histogram consists of 66 correlation coefficients. For both

modalities all of these correlations are highly significant (p < 0.001).

Figure 3. Correlation matrices between material properties across the different material classes

and participants. Ratings on each property dimension were averaged over all 12 participants for

each stimulus separately. The left side shows data for the visual modality, the right side shows

data for the haptic modality. Significant correlations are indicated by a dot. White numbers in-

dicate negative correlation coefficients, black numbers indicate positive correlation coefficients.

At first sight, the two patterns of results look very similar. Correlation co-

efficients ranged between r = −0.76 and r = 0.95 in the visual modality and

between r = −0.80 and r = 0.95 in the haptic modality. Overall, the corre-

lation patterns seem intuitively plausible. The highest correlations were ob-

served between hardness and elasticity in both modalities. Both hardness and
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Figure 4. Correlation matrices for the different material classes, calculated across material prop-

erties and participants. Ratings for each stimulus on each property dimension were averaged

across observers. The left side shows data for the visual modality, the right side shows data

for the haptic modality. Significant correlations are indicated by a dot. White numbers indicate

negative correlation coefficients, black numbers indicate positive correlation coefficients.

elasticity also correlated highly with temperature. Other very high correlations

we found were between roughness, friction, texture and three-dimensionality.

3.1.3. Correlations Between Materials

We were also interested in how the different material categories were associ-

ated with each other (see Fig. 4). Again, results were highly intuitive in both

modalities. Correlations ranged between r = −0.51 and r = 0.63 in the vi-

sual modality and between r = −0.55 and r = 0.62 in the haptic modality.

The correlation matrices look rather similar in both modalities. Stone, metal

and wood are in general negatively correlated with fabric and leather and fur,

while being positively correlated with each other. Paper and plastic seem to

be less correlated with other materials; they mainly correlate with each other.

This could be due to the fact that both of these material categories consisted

of rather heterogeneous samples.

3.1.4. Visual and Haptic Representations

We performed a principal component analysis over the mean property ratings

(z-scored) for all material samples in both modalities (Fig. 5). This allowed

us to see how the material samples were represented in a subjective material

property space. The scree plots for both PCAs indicate that the data are repre-

sented best by two or three components (Fig. 6). For reasons of simplicity and

clarity we plot only two dimensions for each modality in the following figures.

The first principal component explained 35.8% of the variance in the visual

modality. In the haptic modality 41.7% of the variance was explained by the
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Figure 5. Representation of the different material classes based on the visual and haptic material

property ratings within a two-dimensional PCA space. PCAs were performed based on the z-

standardized property ratings for each stimulus averaged across participants.

Figure 6. Scree plots of the PCAs we performed on the visual and haptic material ratings.

first factor. By looking at the factor loadings (Table 1), we can see that the first

principal component is best described by the properties roughness, friction and

three-dimensionality. Interestingly, this is true for both modalities, indicating

a high degree of correspondence between the first principal components in

the two modalities. Furthermore, in both modalities, there is no clear division

of material classes along this axis. This can be attributed to the fact that we

tried to cover a large variety of surface appearances in our material collec-

tion. Therefore, roughness seems to be an important dimension for organizing

material surfaces but is relatively independent of material classes.

The second principal component explained 28.3% and 29.1% of the vari-

ance for the visual and the haptic modality, respectively. It separates quite

nicely between hard and soft materials. In both modalities stone, metal and

wood (in this order) form a cluster opposed to plastic, paper, leather and fur,

and fabric. Accordingly, for the second principal component, highest factor
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Table 1.

Factor loadings for the first three principal components revealed by the two PCAs in the visual

and in the haptic modality

Visual modality Haptic modality

PCA 1 PCA 2 PCA 3 PCA 1 PCA 2 PCA 3

Glossiness −0.245 0.174 0.672 −0.317 0.064 0.568

Colorfulness −0.027 −0.239 0.499 0.006 −0.405 0.426

Roughness 0.476 0.123 0.006 0.407 0.274 0.075

Hardness −0.079 0.561 0.056 −0.269 0.465 0.073

Elasticity −0.021 0.548 0.195 −0.252 0.461 0.167

Temperature 0.186 −0.486 0.232 0.299 −0.375 0.122

Friction 0.491 0.026 0.140 0.403 0.227 0.131

Orderliness −0.256 −0.063 0.236 −0.304 0.013 0.404

3D 0.450 0.030 0.325 0.393 0.205 0.331

Texture 0.404 0.202 −0.152 0.316 0.305 0.390

loadings were found for hardness and elasticity. In the visual modality tem-

perature also showed a particularly high factor loading on this component,

while in the haptic modality colorfulness loaded on this factor.

The third principal component also showed a high correspondence between

the two senses with highest factor loadings for glossiness and colorfulness. It

accounted for 11.8% of the explained variance in the haptic modality and for

11.7% in the visual modality. Overall, the picture in both modalities seemed

very similar, leading to the conclusion that the material samples used here can

be represented in congruent material property spaces.

3.1.5. Comparison of the Visual and Haptic Material Representations

In a next step we compared the visual and haptic representations of our ma-

terial samples in a more direct manner. We correlated the property ratings

for each material sample between the visual and the haptic modalities, see

Fig. 7. All correlations were highly significant, ranging between r = 0.40 (tex-

ture) and r = 0.83 (hardness). Lowest correlations were found for texture and

colorfulness, probably because those properties are better accessible to the vi-

sual modality, while in the haptic condition participants had to rely mainly

on (comparatively unreliable) learned associations. The highest correlations

were found for hardness and elasticity. Even though these seem to be primar-

ily haptic qualities, the associations between certain material categories and

their inherent properties of being rather hard or soft must have been as effi-

cient in the visual modality as the haptic assessment. In sum, the overall high

correlations between material quality ratings in the two modalities confirm

the notion of a very tight correspondence between the visual and the haptic

material space.
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Figure 7. Correlations between the property ratings of each material sample in the visual and

the haptic condition for each material quality. Correlations for each material property were cal-

culated on the ratings given to each stimulus by each participant in both modalities. Significant

correlations are indicated by an asterisk (p � 0.001).

Figure 8. Procrustes analysis between the visual and the remapped haptic data. Lines indicate

the distance between the stimulus locations in the visual space and the remapped haptic space.

We performed procrustes analyses on the visual and haptic spaces revealed

by PCA to directly compare the two sensory representations. A procrustes

analysis aims at mapping two representations onto each other as closely as

possible by using linear transformations only. In Fig. 8 the best solution for

our two datasets (visual and haptic) is shown on a per-stimulus basis. Figure 9

depicts the procrustes solution for the centers of the seven material categories.

The procrustes analyses show very similar representations of the visual and

haptic data in the two dimensional PCA space. In addition, these illustrations

again show that in both modalities similar material classes group together. The

three hard materials wood, stone and metal form a cluster, while the soft ones

such as fabric, leather and fur, paper, and plastic form another group.
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Figure 9. Procrustes analysis between the material category cluster centers of the PCA solutions

for the visual (filled symbols) and the remapped haptic (open symbols) data. This figure is

published in colour in the online version.

3.1.6. Order Effects

The high agreement between the visual and haptic assessment of our ma-

terial samples brings up the question whether some of the correspondences

can be explained by memory effects. After all, the same set of participants

completed both conditions. Half of the participants started with the visual con-

dition, while the other half of the participants started with the haptic condition.

For example, participants who started visually might have been able to rely on

memory strategies during the haptic assessment of the different material sam-

ples. To control for this issue, we split our dataset according to the order in

which participants performed our rating. We then mapped data from the two

halves of the rating procedure onto each other, comparing half a haptic dataset

with the respective visual dataset (Fig. 10).

In the first procrustes analysis we mapped the haptic data from those six par-

ticipants who started with the haptic ratings onto data from those who started

with the visual ratings, that is, we compared visual and haptic data from the

first halves of the rating procedure with each other. In the second procrustes

analysis we compared visual and haptic data from the second halves of the

rating procedure with each other by mapping the haptic data from those six

participants who had started visually onto the visual data from those partici-

pants who had started haptically. If the order in which participants gave their

ratings had played a role, we would expect larger differences in the first pro-

crustes analysis than in the second one.

There is a nearly perfect overlap of the two representations in both analy-

ses, indicating that the order of tasks did not affect our results. However, to

investigate whether there were order effects for single material properties, we

additionally examined the mean inter-participant correlations for each prop-
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Figure 10. Procrustes analyses of the PCAs derived from all participants’ data from the first

half (six participants’ visual data and six participants’ haptic data) and the second half of the

rating procedure (six participants’ haptic data [open symbols] and six participants’ visual data

[filled symbols]). This figure is published in colour in the online version.

Figure 11. Mean correlation coefficients for each property rated visually. Data are aggregated

across material samples and split in two groups: Participants that started with the visual modality

(black) and participants that started with the haptic modality (grey).

erty for participants that started with the haptic modality and participants that

started with the visual modality. It could be that for ‘unimodal’ properties

such as color or temperature a learning effect is observed over the course of

the rating sessions. Mean inter-participant correlation coefficients were calcu-

lated for haptic ratings and visual ratings, see Figs 11 and 12. We inspected

the difference between the mean correlations for each property between the

two modalities and between the two groups of participants. Mean values were

similar for both types of ratings except for colorfulness where mean inter-

participant correlations for haptic color ratings were substantially smaller than

for visual color ratings. This only reflects the higher difficulty of the haptic

colorfulness ratings compared to the visual ones. To test for memory effects

the crucial comparison would be the one between the two groups of partici-
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Figure 12. Mean correlation coefficients for each property rated haptically. Data are aggre-

gated across material samples and split into two groups: Participants that started with the haptic

modality (black) and participants that started with the visual modality (grey).

pants (visual first and haptic first) within one modality. In general, differences

between the groups were rather small, supporting the notion that memory ef-

fects over the course of the rating cannot account for the high overlap of visual

and haptic ratings. For colorfulness, a small effect of the experimental order

could be observed in the haptic ratings. In this case, participants might have

benefitted from having visually assessed the stimuli before doing the haptic

ratings. For friction, visual inter-participant correlations were higher when

participants started visually whereas haptic correlations were higher when par-

ticipants started haptically. Here, having already completed the task in another

modality seemed to lower observers’ consistency.

3.2. Categorization

Seeing that material categories grouped nicely in the PCA space, we wanted to

assess participants’ performance in assigning the stimuli to these categories.

In addition to the rating task, we therefore asked participants to categorize or

identify our 84 material stimuli based on either visual or haptic information

alone.

3.2.1. Haptic Categorization

On average, 66% of the 84 stimuli were consistently assigned to their material

class. We found substantial differences between material classes; see Fig. 13

(left column). Lowest consistencies were found for metal, stone and paper.

In particular, metal stimuli were very often assigned to the plastic category.

Highest consistency was achieved in the categorization of wood, and leather

Figure 13. Categorization and classification results for the haptic modality: the plots in the

left column show the categorization data collapsed across five observers as well as the mean

categorization accuracy for each material class separately. The plots in the right column show

the classifications of the machine learning algorithm based on participants’ property ratings of

our stimuli.
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Figure 14. Sensitivity measures (d ′) for visual and haptic categorization. Small symbols rep-

resent a single participant’s d ′, large symbols represent the mean d ′ of five participants. Sig-

nificant differences between the visual and the haptic condition are indicated by an asterisk

(p � 0.05, Bonferroni corrected).

and fur. Materials which had similar surface properties were confused most of-

ten. Metal, paper and plastic often have smooth uniform surfaces, while fabric

for instance showed much more distinctive surface properties and was mainly

confused with leather and fur.

3.2.2. Comparison with Visual Categorization

On average, participants categorized 90% of the stimuli into their predefined

categories. Thus, in contrast to the haptic categorization task, participants

showed higher agreement when visually assigning each stimulus to its ma-

terial category.

In order to compare the visual and the haptic performances, we calculated

participants’ sensitivity indices (d ′) in both conditions (Fig. 14). For paper,

stone, metal and wood, sensitivity measures significantly differed between

participants who completed the task haptically and those who completed it

visually (two sample t-test, p � 0.05, Bonferroni corrected).

3.2.3. Classification of Material Categories

We compared the visual and haptic material categorization behavior of our

five participants to the classification results a linear classifier would achieve

based on the material property ratings in each modality. As a limitation of the

following results, it should be mentioned that the performance of a classifier

partly depends on the chosen classification algorithm. Therefore these results

must be interpreted with some caution. We applied a naïve Bayesian classifier

to our 84 material samples with a leave-one-out cross-validation. This was im-

plemented in Matlab using the ‘classify’-function (The MathWorks Inc., 2007,

Natick, MA, USA). The function essentially performs a linear discriminant

analysis with a diagonal covariance matrix. In leave-one-out cross-validation,

the classifier is run several times, each time a different stimulus is withheld

from the training set. After training, the classifier is tested on that stimulus.
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Specifically, the classifier was run 84 times. Each single observation (i.e. each

stimulus) was used once as the test sample, while all other observations were

used as training samples. As features, the classifier was given the ten differ-

ent material property ratings (averaged across participants) for each stimulus.

This was done for each modality separately. In the visual modality, the clas-

sifier achieved an accuracy of 71% (58.3% plastic; 58.3% paper; 50% fabric;

58.3% leather and fur; 83.3% stone; 91.7% metal; 100% wood). In the haptic

modality, the classifier achieved an accuracy of 58% (16.7% plastic; 33.3%

paper; 58.3% fabric; 41.7% leather and fur; 83.3% stone; 83.3% metal; 91.7%

wood) (see Fig. 13, right column). Given that we performed a 7-way classifica-

tion (i.e. chance performance would be at 14.3%), classification performance

is relatively high. The difference in categorization performance between the

two modalities which we observed in the categorization results is captured to

a certain extent in the outcome of the classification analysis. The visual ratings

seem to contain somewhat more information about material class membership

than the haptic ratings. However, the pattern of category-wise misclassifica-

tions does not entirely match the pattern of our participants’ categorizations.

This is particularly evident for stone and metal stimuli which usually were

correctly labeled by our classifier, whereas our participants’ performance for

those stimuli was among the most inconsistent of the different material cate-

gories. Plastic stimuli, on the other hand, were categorized rather consistently

by our observers whereas the classifier seemed to have more difficulties with

this rather diverse category.

3.2.4. Classification of Participants’ Categorizations

To examine our participants’ haptic categorization more closely, we also ap-

plied a classifier to participants’ categorization data. Specifically, we again

applied a classifier to the property ratings, this time trying to predict each in-

dividual participant’s categorizations instead of the actual categories. (We ex-

cluded one participant (of five) from this analysis because he/she categorized

no stimulus as metal.) The classifier’s mean (averaged across participants) ac-

curacy was 57.4% (SD = 7.7%). In order to get an idea of which properties

are informative about category membership and may be used by participants to

form a decision in the categorization task, we looked at the classifier weights.

These indicate how much each property contributes to the boundary equa-

tion, i.e. the weight the classifier gave each material property when forming

its decision. For both the classifier predicting the actual categories as well

as the classifier predicting participants’ categorizations, the highest weights

were found for elasticity, hardness, and temperature (see Fig. 15). These three

material properties are also those that project highest on the second princi-

pal component. As mentioned before, while the first principal component only

shows within-category variance, the second component shows inter-category
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Figure 15. Feature weights for the classification of four participants’ categorizations (averaged

across participants) and ‘true’ categories.

variance. Thus, this component contains information about material categories

and so it would make sense for participants to make use of it when categorizing

materials.

4. Discussion

We intended to compare visual and haptic judgments of material qualities. Our

results show that participants are able to reliably retrieve similar information

about various material qualities from a wide variety of stimulus samples —

both within the visual and the haptic modality. This is impressive since the in-

formation that is available to these two senses differs substantially. It indicates

that vision and haptics resort to congruent perceptual representations. Partici-

pants were highly consistent in their judgments, which demonstrates that they

relied to a large degree on very similar underlying representations of material

qualities.

4.1. Order Effects

The fact that we found virtually no effects of the order of conditions (visual

and haptic) indicates that the correspondence we observed for visual and hap-

tic exploration of the material stimuli is not the result of mere learning or

familiarity with the particular stimulus set. Participants who started with the

visual ratings did not achieve the highly similar haptic ratings by learning all

of our stimuli by heart in the first condition and then identifying (and pic-

turing) the stimuli in the second (i.e. haptic) condition. This could be a good

strategy, especially for ‘unimodal’ properties (e.g. colorfulness) and it is likely

participants used this strategy in a few trials. However, the procrustes analyses

we performed on the unimodal property spaces between participants starting

with the visual ratings and participants starting with the haptic ratings show
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that participants’ representations are highly similar, irrespective of the order

of conditions. To look more closely into this, we computed the mean inter-

participant correlations for our property ratings separately for participants who

completed those ratings in the first and the second half of the experiment (see

Figs 11 and 12). If learning during the course of our experiment had played a

role, we would expect the inter-participant correlations of participants doing

the haptic ratings in the second half of the sessions to be higher for primar-

ily visual properties because they have previously seen all stimuli. For visual

ratings we would expect the same effect for primarily haptic properties. How-

ever, we did not find a clear relationship in the inter-participant correlations

between properties and rating order in our data. We conclude that memory ef-

fects over the course of the rating sessions do not seem to play a dominant role

in our data and their interpretation.

However, we assume that long-term learned associations played an impor-

tant role in how participants solved the task. For some judgments, participants

were even forced to rely on them. For example, for assessing the temperature

of our stimuli visually, participants might have relied on either their represen-

tation of the stimulus in memory, or heuristics. Such a heuristic could be that

they rated the quality based on the probability of the co-occurrence of two dif-

ferent qualities (e.g. “this feels smooth so it is more likely to be glossy”) or the

probability of this quality for the material category they perceived (e.g.: “This

looks like stone so it is likely to be colder than most of the other stimuli.”).

These associations might stem from actual knowledge about physical proper-

ties of materials (e.g. metal has a better thermal conductivity than fabric or

paper, therefore it is likely to be colder to the touch), but it is more likely to be

based on learning over the whole lifespan. Most of the times we have touched

metal or stone, we have experienced them to feel cool. Recent studies have

suggested that humans often tend to make use of heuristics when perceiving

our surroundings rather than knowledge about actual physical properties of

objects (Fleming, 2012).

The strength of these associations is somewhat reflected in our inter-

participant correlations. These were lower for haptic colorfulness ratings com-

pared to visual colorfulness ratings. Although we have learned an association

between materials and their probability of colorfulness, we do not have a per-

fect proxy for inferring colorfulness haptically. Some of these proxies can

be quite precise, though. Visual temperature inter-participant correlations, for

example, are only slightly lower than haptic ones. We obviously have rather

accurate visual knowledge about how warm or cool a material will feel.

In line with this assumption, Fleming et al. (2013) were able to show that

associations about different materials are rather consistent across participants,

even when they have to rely solely on memory and stored knowledge. In ad-
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dition, they showed that this semantic representation closely resembles the

representation of visually presented material images.

4.2. PCA Dimensions

The PCAs we conducted on the ratings yielded very similar solutions for

both modalities and revealed the same material clusters. One dimension dis-

tinguished between categories, and a second dimension showed substantial

within-category variance. The dimensions of the two-dimensional PCA solu-

tions might be interpreted as ‘hardness/softness’ and ‘roughness/smoothness’,

respectively. Whereas hardness is a material quality in the proper sense and

therefore mostly similar across a category, roughness is more of a surface fea-

ture that can strongly be influenced by the manufacturing process (e.g. stone

can be natural [i.e. rough] or polished [i.e. smooth]).

The factor we have now called ‘roughness’ has the highest loadings from

friction, roughness and three-dimensionality both in the visual and the haptic

PCA. The properties that load highest on the second factor (‘hardness’) are

the material qualities hardness and elasticity. The third highest load is temper-

ature for the visual and colorfulness for the haptic PCA. This seems curious

since these two properties are not directly accessible in the respective modal-

ity. We cannot sense temperature visually; neither can we sense colorfulness

haptically. Thus, ratings along these dimensions must have been highly influ-

enced by learned associations with hardness and elasticity. Hard materials like

metal and stone are often cold to the touch and less colorful than soft materi-

als like fabric. The fact that these properties received such high factor loadings

might indicate that observers used very similar and simple heuristics to assess

these properties, like coupling the evaluation of that quality to another quality.

This is reflected in their contribution to the second largest principal compo-

nent.

It should be noted that the substantial within-category variance of one of

the components means that participants did not base their judgments solely on

material categories. Participants could have used this as a heuristic to solve the

task quickly and easily (e.g. this is paper so it is likely to be smooth). However,

even in the visual condition, where categorization performance is very consis-

tent, participants differentiated between individual samples of one category.

Also note that the factor loadings are very consistent between the two modali-

ties. That seems striking because the two dimensions (roughness and hardness)

are generally considered very prominent in haptic perception, and previous

haptic studies on the space underlying material perception have rather consis-

tently found these two dimensions (Okamoto et al., 2013). Does this mean that

the haptic modality is in some sense dominant over the visual one? Of course,

PCA solutions on data that are collected using the semantic differential method

do rather heavily depend on both stimuli and rating scales. We did, however,
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take care in using a large collection of stimuli and a variety of both visual and

haptic material properties. The high correlations between visual and haptic as-

sessments of properties that load on the factors roughness, friction, hardness

and elasticity show that both hardness and roughness can be assessed very reli-

ably with both senses (Bergmann Tiest and Kappers, 2007). Importantly, these

two properties provide important information about how to interact with stim-

uli in our environment. Since we used real material samples (as opposed to

photographs or Brodatz textures in previous visual studies about surface rep-

resentation), environmental meaning and thereby haptic features of the stimuli

were emphasized in our setting. As a matter of fact, in the visual condition,

participants sometimes reported that they felt compelled to touch the mate-

rials. This affordance of material stimuli strengthens the importance of the

haptic sense in material perception. Therefore, we do not think of the haptic

sense as the dominant one in material perception but rather that it provides

very important information in the everyday interaction with materials.

4.3. Vision and Haptics in Material Perception: Redundant and

Complementary

As mentioned earlier, a very close correspondence between both modalities

was established by studies examining object shape perception. However, the

relationship between these two modalities remained unclear for the perception

of objects’ surfaces and materials. Sensory mechanisms put constraints on our

perception of the world. Whereas vision’s parallel nature allows it to process

objects fast and globally, haptic processing is sequential, slow, relies on mem-

ory components and only acts in a very confined region of space. This implies

consequences for the processing of materials. The answer to the question of

the relationship between the visual and the haptic sense in material perception

strongly depends on the examined material qualities. Some material qualities

are best accessible to vision: color, for example, cannot possibly be felt. For

others, however, the haptic modality has an advantage: softness, for example,

is not directly accessible to the visual modality. In order to judge softness vi-

sually, one has to rely on learned associations and knowledge. Other qualities,

like roughness, are very salient for the haptic sense but there are also image

statistics that correlate with roughness and allow us to infer a surface’s rough-

ness by vision quite well (Bergmann Tiest and Kappers, 2007, but see Ho et

al., 2006). In a review, Whitaker et al. (2008) characterized the relationship

between the visual and haptic modality in surface perception as “independent,

but complementary”. The visual sense seems to be more suited for the per-

ception of macrogeometric object properties, while microgeometric properties

can be better assessed by the haptic sense.

Therefore, for material perception, the haptic modality might play a more

important role than for shape perception. While the visual system clearly dom-
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inates in bimodal integration tasks for shape perception, this seems not to be

the case for material perception. For example, studies with parametrically var-

ied textured objects have shown that letting participants explore stimuli hap-

tically increases the salience of surface features as opposed to shape features

(Cooke et al., 2007). Lederman and Abbott (1981) could show that introducing

a visuo-haptic discrepancy about the roughness of a stimulus led to an equal

weighting of information from both senses.

In our PCA data and correlation matrices, we found the visual and the haptic

assessments to be largely congruent. However, we also observed some reveal-

ing differences. For example, judgments on colorfulness and texture (clearly

visual properties) correlate to a much smaller extent than, for example, three-

dimensionality. As mentioned before, while visual and haptic judgments of

materials are to a large extent redundant, some qualities can be assessed best

by only one sense. The notion that the visual and haptic senses on the one hand

provide redundant information for many tasks but also complement each other

sometimes seems evident in our daily behavior: we do not necessarily need

to touch every material to gain information about it. When we see a wooden

board we can identify it as such with ease. However, when we are shopping

for furniture and want to distinguish between a shelf made from real wood

and one from imitated wood, we probably will have to touch it in order to

make this fine distinction. Thus, to make fine-grained distinctions and resolve

ambiguities, it is helpful to use both senses.

To answer the question what roles the two senses play in their collaborative

assessment of materials, we can also resort to the results of the categorization

task. The haptic sense may be apt to make very fine judgments about some

specific material properties but categorization of materials seems to be less

consistent with haptic information alone than with visual information alone.

This indicates that vision allows a better integration of material features. Fewer

features might be available in haptic exploration, which can lead to confusions

between similar categories (e.g. plastic and metal). However, our PCA results

show that the basic representation of features is quite similar even when hap-

tics and vision are tested alone.

One could consider this as a contradiction within our data: while partici-

pants’ haptic assessment of material qualities is quite similar to their visual

assessment, haptic categorization performance is less consistent. However, at

closer inspection, this is not unexpected. After all, in real life, we rarely cate-

gorize materials based on haptic information alone. Even though participants

are well able to retrieve all these individual material properties when forced

to, they either do not use this information for categorization purposes or this

information is alone not quite rich enough to support highly consistent catego-

rization performance. This is, to a certain degree, reflected in the performance

of the classifier we applied to the rating data. The seven-way classifier ap-
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plied to the visual rating data predicted the material categories of our samples

with a higher accuracy than the classifier applied to the haptic property rat-

ings. The visual ratings, therefore, seem to contain more information about the

material categories our samples belong to than the haptic ratings. However,

as already mentioned in the results section, the pattern of misclassifications

differed between the classifier and human participants — they demonstrated

different biases. Whereas human participants did not consistently recognize

paper, stone and metal in the haptic categorization task, the haptic classifier

performed worst for plastic, paper, fabric, and leather and fur. We assume

that a crucial factor for this is the within-category variance. Humans can deal

with such variance because they know about various appearances of material

classes (e.g. they know that fabric can range from silk to carpet, or that plas-

tic can range from bubble wrap to vulcanized rubber), the classifier, however,

can only deal with rather homogeneous categories, like stone, metal, or wood,

where the test sample is likely to be similar to the training samples.

Another important aspect is that haptic categorization performance was

most likely somewhat degraded compared to natural conditions because we

masked all auditory information that would have been helpful in identifying

the materials. When assessing materials, it is rather common to scratch or

knock onto their surfaces. Even when we do nothing but stroke the surface lat-

erally, we very often hear sounds that might be informative about the material.

It is very likely that this information is inextricably linked to haptic exploration

and very helpful for the perception and identification of materials in everyday

live.

4.4. Conclusion

We have found a very close correspondence between the representations of

material qualities in the visual and the haptic sense. Participants are surpris-

ingly consistent in judging a variety of material qualities unimodally, even for

qualities that are not typically associated with the respective modality. The

analysis of the inferred visual and haptic representations suggests that these

are closely linked.
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