
Received May 5, 2019, accepted May 28, 2019, date of publication June 4, 2019, date of current version June 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920776

Visual and User-Defined Smart Contract
Designing System Based on
Automatic Coding

DIANHUI MAO1,2, FAN WANG 1, YALEI WANG1, AND ZHIHAO HAO1,3
1Beijing Key Laboratory of Big Data Technology for Food Safety, College of Computer and Information Engineering, Beijing Technology and Business

University, Beijing 100048, China
2National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
3Pattern Analysis and Machine Intelligence Group, Department of Computer and Information Science, University of Macau, Macau 999078, China

Corresponding author: Fan Wang (wfan0601@163.com)

This work was supported in part by the National Social Science Fund of China under Grant 18BGL202, in part by the National Natural

Science Foundation of China Grant 61877002, in part by the Beijing Natural Science Foundation under Grant 4172013, in part by the

Social Science and Humanity on Young Fund of the Ministry of Education under Grant 17YJCZH127, and in part by Beijing Municipal

Commission of Education under Grant PXM2019 014213 000007.

ABSTRACT Smart contract applications based on Ethereum blockchain have been widely used in many

fields. They are developed by professional developers using specialized programming languages like

solidity. It requires high requirements on knowledge of the specialized field and the proficiency in contract

programming. Thus, it is hard for normal users to design a usable smart contract based on their own demands.

Most current studies about smart contracts focus on the security of coding while lack of friendly tools for

users to design the specialized templates of contracts coding. This paper provides a visual and user-defined

smart contract designing systems. It makes the development of domain-specific smart contracts simpler

and visualization for contract users. The system implements the domain-specific features extraction about

the crawled data sets of smart contract programs by TF-IDF and K-means++ clustering algorithm. Then,

it achieves the automatic generation of unified basic function codes by Char-RNN (improved by LSTM)

based on the domain-specific features. The system adopts Google Blockly and links the generated codes

with UI controls. Finally, it provides a set of specialized templates of basic functions for users to design

smart contracts by the friendly interface. It reduces the difficulty and costs of contract programming. The

paper offers a case study to design contracts by users. The designed contracts were validated on the existing

system to implement the food trading and traders’ credit evaluation. The experimental results show that the

designed smart contracts achieve good integration with the existing system and they can be deployed and

compiled successfully.

INDEX TERMS Smart contract, Char-RNN, LSTM, automatic coding.

I. INTRODUCTION

Decentralized cryptocurrencies such as Bitcoin [1] have

rapidly gained popularity in recent years. Blockchain [2] is

regarded as the underlying technique support and the fun-

dament of Bitcoin system. Smart contract [3] is just like a

piece of software or computer program in the blockchain

network and it is similar to a contract in the physical world.

Smart contracts are pre-written logic of the computer codes

by Turing-complete languages such as Solidity, Golang and

so on [4]. Then users can execute these programs ‘‘if this

The associate editor coordinating the review of this manuscript and
approving it for publication was Tao Zhang.

happens then do that’’, run and verified by participants to

ensure trustworthiness. As we all know, blockchains give

users distributed trustworthy storage. Smart contracts are

stored and replicated on the blockchains that inherit the

blockchains’ properties: Smart contracts remove reliance on

a third party when establishing business relations so that the

parties making an agreement can transact directly with each

other.

With the development of blockchain, smart contract appli-

cations [5] have been developed and researched in recent

years. And they are mainly used in two aspects: electronic

monetary transactions and other general applications for stor-

ing information. For example, Bogner et al. [6] developed

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

73131

https://orcid.org/0000-0002-6309-8805


D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

a smart contract application aiming to rent devices. The food

supply field applied the smart contracts to achieve food

trade [7], [8]. It decreases the costs of traders on the

food supply chain and provides a decentralized, untrust-

worthy, accountable and transparent architecture based on

blockchain technology. Other than applications listed above,

Al-Bassam et al. [9] built a system for identity management.

Ethereum [10] as one example of the decentralized plat-

forms that provides a container called Ethereum Virtual

Machine (EVM) to execute smart contracts. Being a permis-

sionless ledger [11], anybody is free to join the Ethereum

network, perform transactions and access the contract’s

source code. However, smart contracts which are executed on

the blockchain just like a tool of hackers for illegal benefits.

The numerous incidents on Ethereum blockchain [12] in

recent times prove this: The DAO (Distributed Autonomous

Organization), King of Ether, Rock Paper Scissors game,

Governmental, FirePonzi etc. Previous incidents show that

the security, privacy and normalization of smart contracts

must be focused during the process of contract codifying.

Aiming at these existing issues of smart contracts, Alharby

and Moorsel [13] introduced many researches on optimiza-

tion of smart contract codes. In these researches, for avoiding

code errors and security vulnerabilities of smart contracts,

some tools such as ‘‘SmartCheck’’ [14], ‘‘Oyente’’ [10],

‘‘Zeppelin’’ [15] and so on were developed to detect or tackle

codifying and security issues of smart contracts.

Through the analysis of these existing researches of smart

contracts, this paper offers other two main challenges about

the existing programming problems of smart contracts:

A. THE DESIGNABILITY OF CODING

As mentioned above, Solidity is a strict language for contract

coding. It has stringent coding requirements for contract

programming. And a lot of knowledge and proficiency in a

specialized field of smart contract are necessary for contract

designing. Contract designers have to figure out the code

logic in advance for designing or running the smart contract

of their own application. It not only overloads the develop-

ers’ works and leads to inefficiencies of coding, but also is

unfriendly for junior-level developers or non-developers such

as normal contract users to implement a usable smart contract

designing based on their own demands.

B. THE SPECIALIZED TEMPLATES OF BASIC FUNCTIONS

CODING BASED ON DOMAIN-SPECIFIC FEATURES

Smart contracts applications have been widely used in many

fields such as financial, medical, payment transactions and

so on. With the rapid development of smart contract appli-

cations, the number of contract codes on Ethereum plat-

form increases dramatically. However, the business logic and

requirements of smart contracts are significantly different

from each field. Therefore, the specialized templates of basic

functions based on domain-specific features are beneficial to

decrease the complexity of contract designing.While, there is

a lack of the domain-specific approach for contract designers

to implement the targeted contracts coding.

Concerning above two challenges, this paper provides an

innovative system named ‘‘Visual and User-defined Smart

Contract Designing System Based on Automatic Coding’’.

It provides users an easier, cost-effective and interactive

approach to design smart contracts (written by Solidity lan-

guage). The system not only reduces costs of developers

but also offers a designability way of contract coding for

junior-level developers or normal users. Firstly, the system

crawls the data sets of smart contract programs from an

Ethereum blockchain explorer. After that the system obtains

the domain-specific features about the crawled data sets by

TF-IDF and clustering algorithm. Then the system focused

on a specialized domain (such as the domain of trading) to

learn the features of contracts by Char-RNN [16]. Besides,

system adopts LSTM as the cell of recurrent neural network

to replace the basic RNN of Char-RNN for better perfor-

mance. And the unified and standardized basic function codes

of contracts are generated by improved Char-RNN model.

Eventually, the system offers a visual and interactive editor

based on Google Blockly for users to design the customized

smart contracts. Users design their contract programs based

on their own definition and requests by draggable UI controls

rather than writing code. The UI controls which show on the

editor page wire up the generated basic function codes. After

the process of designing is complete, the system provides the

functionality as ‘‘Save’’ for user-defined smart contract.

The contributions of this paper can be summarized in the

following four points:

1) The system implements a method to extract smart

contracts’ domain-specific features. Because of the

widespread of smart contracts, the system implements

the features extraction about the crawled collection

of smart contracts. The system adopts TF-IDF and

K-means++ clustering algorithm to extract the fea-

tures. And the crawled collection of smart contracts

is divided into different categories based on domain-

specific features.

2) The system implements an approach to automatically

generate the basic functions of specialized templates

for smart contract coding. Compared with the basic

RNN, LSTM supports time steps and it provides a way

to address the time-series prediction problem. LSTM

attaches great importance to content-based features

rather than local text information. Thus, the system

adopts LSTM [17] cell of recurrent neural network to

replace the basic RNN of Char-RNN model. The sys-

tem focuses on the domain-specific of smart contracts

and implements the automatic coding by improved

Char-RNN.With this method, the unified and standard-

ized basic function codes of smart contracts based on

the domain-specific features are generated.

3) The system offers a visual web interface for

users to implement the user-defined contract coding.

73132 VOLUME 7, 2019



D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

The system adopts Google Blockly and provides a

designability interface for users’ interactions. The gen-

erated codes by improved Char-RNN are embedded

into the UI controls on the visualized interface. And

users can design smart contracts based on their own

personalized requirements by dragging and dropping

these UI controls. This way of smart contract designing

reduces the difficulty in programming and save the time

for users.

4) This paper offers a case study to verify the effective-

ness of the designed contracts by the system for food

trading. This paper adopts the framework [18] named

‘‘Credit Evaluation System Based on Blockchain’’

which implemented the food trading and traders’ credit

evaluation on the blockchain network. And the result

presents that generated contract programs achieve a

good integration with the existing Credit Evaluation

System.
This paper is organized as follows: in section 2, the paper

focuses on the discussion of the system by introducing the

related work about contribution of other researchers on this

topic. In section 3, the workflow of the system is illus-

trated. It introduces the components of the system in details.

Section 4 provides an introduction of the implementation

of the system. And the results of the system are showed

in section 5. Section 6 presents the conclusions and future

directions of efforts about the system.

II. RELATED WORK

The purpose of this section is to provide a brief

overview of existing studies of smart contracts and mainly

focus on the studies of the contract programming prob-

lems during the smart contract application development

process.

Bitcoin [1] as a peer-to-peer electronic cash system was

proposed in 2009 by Nakamoto and quickly captured the

public’s attention and interest. With the development of this

cryptocurrency, blockchain [2], [3] regarded as the underly-

ing technique support and the fundament of Bitcoin rapidly

becomes one of the hot research topics in computer appli-

cation area. A huge number of emerging altcoins such as

Ripple [19] and Litecoin [20] accelerate the development

of blockchian. Additionally, several blockchain platforms

such as Ethereum and Hyperledger have been extended

to provide supports for blockchain applications by ‘‘smart

contracts’’ [4].

Smart contracts [5] are user-defined computer programs in

fact. A smart contract, also known as a cryptocontract, is an

automatable and enforceable agreement that directly controls

the transfer of digital currencies or assets between parties

under certain conditions. A smart contract not only defines

the rules and penalties related to an agreement in the same

way that a traditional contract does, but it can also automat-

ically enforce those obligations. Automatable by computer,

although some parts may require human input and control.

It is enforceable either by legal enforcement of rights and

obligations or via tamper-proof execution of computer code.

Ethereum [10], [11] is the most popular development plat-

form of blockchain. It provides the built-in fully-fledged

Turing-complete programming language such as Solidity

language that can be used to create ‘‘smart contracts’’ to

encode arbitrary state transition functions and create systems

for blockchain applications. A smart contract is executable

code that runs on the EVM [21], [22] to facilitate, execute

and enforce the terms of an agreement between untrusted

parties. It can trigger data reads and writes, do expensive

computations like using cryptographic primitives, make calls

(send messages) to other contracts, etc. For example, two

insurance companies, Atlas Insurance in Malta and Axa in

France, tested smart contracts in 2017. They had proto-

types that compensated airline customers if their flights were

delayed. Health systems use smart contracts to record and

safely transfer data. They can transfer patient data in a secure

way, allowing no access from third parties. For governments,

smart contracts running on the blockchain can make voting

systems completely trustless and much more secure. Smart

contracts have broad range of other applications [6], [7], such

as identity systems, decentralized file storage systems, etc.

In addition to storing users’ identities or file data, smart

contracts also can handle and transfer assets of considerable

value. They also can be applied in the token systems or

financial applications [8], [9]. They are usually used to pay

for transaction fees [23], [24]. All transactions that have ever

occurred in the Ethereum can be recorded in the blockchain

network. And compared to traditional applications, smart

contract applications do not rely on a trusted third party to

operate, resulting in low transaction costs.

However, smart contracts are ‘‘immutable’’. Once they

are deployed, their code is impossible to change, making

it impossible to fix any discovered bugs. According to a

study of smart contract issues by Alharby and Moorsel [13],

the challenges of smart contracts mainly focus on the four

aspects: codifying, security, privacy and performance issues,

a series of attacks which exploit the security vulnerabili-

ties of Ethereum smart contracts have happened in the past

time. For example, on 17th June 2016, hackers exploited

the programming loophole in the DAO and siphoned away

one-third of the DAO’s funds. That’s around 50 million

dollars. For avoiding attacks like DAO in the feature, it is

more important to ensure the security, privacy and normal-

ization of contract codifying. A lot of researches have been

studied on optimization of contract codes [12] and many

tools were developed. For instance, ‘‘SmartCheck’’ [14] is a

static code analyzer developed by SmartDec Security Team.

It runs analysis in Solidity source code and automatically

checks smart contracts for security vulnerabilities and bad

practices. Similarly, ‘‘Slither’’ also provides a static analysis

framework with detectors for many common Solidity issues.

‘‘Oyente’’ is a tool to analyze smart contract code and find

common vulnerabilities. And some auditing tools [15] such as

VOLUME 7, 2019 73133



D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

FIGURE 1. The architecture of the visual and user-defined smart contract designing system.

‘‘Solidified.io’’, ‘‘Zeppelin’’, ‘‘Token Market’’ and so on

aims to analyze the code for intended behavior, secu-

rity or Solidity construct usage. These researches identify

bugs in the system and checks whether the contracts operate

as intended. Besides, a group of researchers from the Univer-

sity of Stanford, together with Visa Research, have created

a mechanism to enhance the privacy in smart contracts from

the second largest crypto blockchain in the market, Ethereum.

A paper describing the mechanism was published on Stan-

ford University’s Applied Cryptography Group website in

February, 2019. However, these researches basically aimed

at security and privacy issues to normalize the codifying

process of smart contracts. As the most fundamental issue of

smart contract coding, there is a little focus on programming-

friendly. There are still many challenges in the development

of smart contract programming such as the designability of

contract coding and the specialized templates of contract

coding.

Different from previous works, this paper provides a visual

and user-defined smart contract designing system for users.

The system proposed in this paper decreases the costs for

entry-level developers on good programming of smart con-

tracts. And the system also offers a friendly and interac-

tive codes editor by graphical interface for non-developer

to design personalized contracts. The system embeds the

automatic generated basic function codes into UI controls that

decreasing the complexity of coding for users. They don’t

need to understand the code logic and they just design smart

contracts by draggingUI controls based on their own business

definitions and requests.

III. WORKFLOW OF THE SYSTEM

For users who are inexperience in smart contract program-

ing, the system of ‘‘Visual and User-defined Smart Contract

Designing System Based on Automatic Coding’’ makes it

possible for them to implement the smart contract designing.

The system provides an approach to generate unified and

standardized basic function codes of the contracts based on

the domain-specific features. The system also provides a set

of template controls by visualized and interactive way for

users to design the smart contract programs and link the

generated basic function codes with the UI controls. The

system serves users’ needs and offers a visualized system

with strong advantages that reduces the coding costs and

complexity.

This section introduces the basic architecture of the smart

contract designing system. And the following figure shows

the architecture of the system in details.

As shown in Fig. 1, the system includes three main parts:

Part A implements the domain features extraction of smart

contracts by TF-IDF and K-means++ clustering algorithm;

Part B implements the unified smart contract codes genera-

tion based on a specific domain feature such as the field of

trading. In this part, the basic function codes are generated

by improved Char-RNNmodel; Part C implements the visual

and user-defined smart contract designing byUI controls. The

details of each part are as follows:

A. PART A: DOMAIN FEATURES EXTRACTION

OF SMART CONTRACTS

Smart contracts have been widely used in many fields. The

system proposed in this paper aims at a specific field of con-

tract applications and implements the extraction of domain-

specific features of smart contract codes firstly. Then the

system classifies the crawled collection of smart contracts

based on domain-specific feature. Two steps of this part are

performed as follows.

73134 VOLUME 7, 2019



D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

1) Crawl the contract codes: This step firstly fetches the

verified smart contract programs (written by Solid-

ity language) as data collection from the Ethereum

Blockchain Explorer named Etherscan [25] by crawler

program. It provides the data set for extracting the

domain-specific features of smart contracts in next

step.

2) Extract Domain-specific Features and Classify the

contract codes: In above step, the collection of smart

contracts in various fields is crawled. Aiming at

widespread contracts, this step divided the crawled

collection of contract programs into different cate-

gories based on their domain-specific features. First,

the feature vectors of smart contracts are extracted

and weighted by TF-IDF method. Then, cluster the

extracted features and classify them into different cat-

egories by the clustering algorithm K-means++. For

example, the categories concern the contracts for trad-

ing (such as Token contract), or the contracts for voting,

lottery et al.

B. PART B: UNIFIED SMART CONTRACT

CODES GENERATION

From previous part, the system acquires the classification

results based on the domain-specific features of smart con-

tract collection. Among of the classified results, the system

chooses the contracts for trading field and implements the

unified contract codes generation in this paper. The system

offers a set of specialized templates of basic functions for

users to design the smart contracts more efficiently and easily.

First, the trading contract programs obtained in Part A are

regarded as the dataset. Then the dataset is trained by Char-

RNN algorithm. Meanwhile, the system adopts LSTM as

recurrent neural network to replace the basic RNN of Char-

RNNmodel. LSTM is beneficial to learn the domain-specific

features and provide a better performance for smart contract

codes generation. The improved Char-RNN model obtains

the domain-specific features of trading contracts by train-

ing dataset. Finally, improved Char-RNN model generates

the unified and standardized basic function codes of trading

contracts eventually. The generated codes of basic functions

include the basic function method (e.g., ‘‘transfer’’ function),

standard interface code (e.g., ‘‘ERC20’’ code) and basic con-

tract code (e.g., ‘‘SafeMath’’ contract code).

C. PART C: VISUAL AND USER-DEFINED SMART

CONTRACT CODES DESIGNING

When all steps in above two parts are completed, to facilitate

accessibility for users, the system provides a visual page edi-

tor to help users write smart contracts.. There are a set of UI

controls on the page. Users can drag and drop these controls

to design the business logic of smart contracts based on their

requirements quickly and easily. In addition, theseUI controls

wire up the generated basic function codes of the trading

contract. For example, if a user wants to design a smart

contract named ‘‘MyContract’’ for food trading, the user can

define his or her demands by dragging the UI controls on the

page. If the user chooses the control of ‘‘transfer’’, the code

of ‘‘transfer’’ function appears in the code-editor box on the

page. The system provides a good designability for users to

program the smart contracts. And it reduces the difficulty for

contract designing.

IV. IMPLEMENTATION OF THE SYSTEM

A. DOMAIN FEATURES EXTRACTION

OF SMART CONTRACTS

Ethereum [10], [11] is the most popular platform for devel-

oping the smart contract applications. As a distributed public

blockchain network, Ethereum is an open source platform

that making the source codes of smart contract applications

available. This open source environment greatly facilitates

the communication of developers and it promotes the devel-

opment of contract applications. Thus, the system adopts

Ethereum as the operation environment. And the system

fetches the smart contract programs as data sets from the

Ethereum blockchain explorer named Etherscan firstly. Then

the system implements the domain features extraction and

classification of crawled data sets based on the domain-

specific features (or Part A which is shown in Fig. 1). The

implementation process consists of two steps: crawl the con-

tract codes and extract domain-specific features (classify the

contract codes) respectively which is introduce in in details

in the following subsection.

1) CRAWL THE CONTRACT CODES

The huge numbers of data collection about smart contract

programs is necessary in this study of the system. While,

if the number of data set is not enough it will limit the

representation of the contract features. However, a publicly

smart contract program data set is not yet available. Thus,

to analysis the domain-specific features about different fields

of smart contracts better, the first step of the system crawls the

smart contract programs as data collection from Etherscan.

Etherscan [25] is a block explorer and analytics plat-

form for Ethereum, a decentralized smart contracts platform.

It hosts a collection of web-based tools for exploring the

public Ethereum network, based on the transactions that have

been confirmed on the Ethereum blockchain. As a blockchain

explorer, Etherscan can only provide and display informa-

tion on transactions that occur on the Ethereum blockchain.

It can’t process transactions and troubleshoot transaction fail-

ures. The entire flow for collecting the smart contract codes

by crawler program from Etherscan is illustrated in Fig. 2.

It starts from the first index page of smart contracts on the

web and the URL lists of contracts are founded. Then the

current index page jumps to the details page of smart contract

program. All programs of contracts are saved into the folders

until the last contract on the URL lists. And the same opera-

tion is executed repeatedly on the next page. Finally, the data

collection of smart contract programs is acquired.

VOLUME 7, 2019 73135



D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

FIGURE 2. The flow for crawling the smart contract codes.

2) EXTRACT DOMAIN-SPECIFIC FEATURES AND CLASSIFY

THE CONTRACTS

Smart contract applications are commonly used in diversified

fields. Different applications have different implementations

of smart contracts. Thus, features extraction is crucial for bet-

ter understanding the smart contract programs and designing

a contract with specialized domain feature. For crawled smart

contracts collection, this step aims to extract and classify

the smart contract programs based on their domain-specific

features. The method of contracts features extraction and

classification adopts TF-IDF and K-means++ algorithm in

the system.

TF-IDF [26] is often used as a weighting factor in

searches of information retrieval, text mining, and user mod-

eling [27], [28]. It is a statistical measure used to evaluate how

important a word is to a document in a collection or corpus.

The TF-IDF value increases proportionally to the number of

times a word appears in the document and is offset by the

number of documents in the corpus that contain the word,

which helps to adjust for the fact that some words appear

more frequently in general. TF-IDF is one of themost popular

term-weighting schemes that can be successfully used

for stop-words filtering in various subject fields, including

text summarization and classification. Typically, it is com-

posed by following two terms.

a: TF: TERM FREQUENCY, WHICH MEASURES HOW

FREQUENTLY A TERM OCCURS IN A DOCUMENT

Since every document is different in length, it is possible that

a termwould appearmuchmore times in long documents than

shorter ones. Thus, the term frequency is often divided by the

document length as a way of normalization.

TF(trading) = St/Sum (1)

FIGURE 3. The flow for extracting domain-specific features and classfying
the contracts.

In Equation (1), St represents the number of times term

‘‘trading’’ appears in a smart contract program, Sum is the

total number of terms in the contract.

b: IDF: INVERSE DOCUMENT FREQUENCY, WHICH

MEASURES HOW IMPORTANT A TERM IS

While computing TF, all terms are considered equally impor-

tant. However, it is known that certain terms, such as ‘‘pub-

lic’’, ‘‘return’’, and other words in the programs, may appear

a lot of times but have little importance. Thus, the frequent

terms need to be weighed down while scale up the rare ones,

by computing the following:

IDF(trading) = lg(Sum/Dt ) (2)

In Equation (2), Dt represents the number of smart con-

tracts with the specific term ‘‘trading’’ in it.

The crawled contract program can be regarded as the

text document. It contains the keyword for describing the

contract. For example, with above method, it can be exam-

ined how frequent certain words such as ‘‘trading’’ appear

in a contract and can determine what may be important to

this contract. As shown in Fig. 3, the ‘‘feature vectors’’

about the domain-specific of the trading contract are formed.

And the vectorization of above contract data collection is

implemented by training word vectors through Google’s open

source word2vec. Then, the feature vectors are weighted

according to the frequency and importance by TF-IDFmodel.

TF-IDF model gives a high weight to words that are used

frequently by trading contracts, but not used as frequently

overall.

K-means++ is a simple and fast clustering algorithm to

cluster and classify the unsupervised data. It plays an impor-

tant role in the research and analysis of a large number of

unlabeled data such as the crawled smart contract programs in

73136 VOLUME 7, 2019



D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

FIGURE 4. The workflow of the standard RNN.

the system. The implementation process of the K-means++

clustering algorithm is as follows:

1) Select the appropriate value of K by K-means++ algo-

rithm. It determines categories of the smart contract

programs based on the domain-specific features of

contracts.

2) Calculate the distance of each data with the cluster

centroid K and Locate the closest centroid of each

contract program.

3) Reculate and determine the centroid of each cluster.

4) Repeat steps 2) and 3) until the cluster centroid doesn’t

change again.

Ultimately, the system integrates the value of weighting

which is calculated by TF-IDF model into K-means++

clustering algorithm. Based on domain-specific features, the

system classifies the smart contracts into K categories.

B. UNIFIED SMART CONTRACT CODES GENERATION

Smart contract program consists of different function codes to

for user’s operation. For example, trading contract contain the

function methods such as ‘‘transfer’’, standard interface such

as ‘‘ERC20’’ for token, basic contract such as ‘‘SafeMath’’

for computation during the trading process. In order to make

the process of smart contract designing become easier and

more normalized for users. The system adopts improved

Char-RNN algorithm to generate the unified basic functions

of contracts based on the domain-specific features.

Recurrent Neural Networks (RNNs) [29], [30] work best

on sequence tasks. As shown in Fig. 4, RNN has a high-

dimensional hidden state with nonlinear dynamics that enable

them to remember and process past information powerfully.

The standard RNN is formalized as follows: Given a

sequence of input vectors (x1, · · · , xT ), the RNN computes

a sequence of hidden states (h1, · · · , hT ) and a sequence of

outputs (o1, · · · , oT )by iterating the following equations:

ht = tanh (Uxt +Wht−1 + bh) , t ∈ [1,T ] (3)

ot = Vht + bo (4)

In above equations, U, W, V is the weight matrix of each

gate shown in Fig. 4. U is the input-to-hidden weight matrix,

W is the hidden-to-hidden (or recurrent) weight matrix, V is

the hidden-to-output weight matrix, and the vectors bh and

bo are the biases of each gate. The parameters U, W, V and

b need to be trained.

Char-RNN is character-level language models. It uses

recurrent neural network aiming at the automatic generation

of temporal text [31]. It takes a huge chunk of text file as an

input and feeds it into the basic RNN algorithm that learns

to predict the next character in the sequence. After training

the basic RNN, it can generate text character by character

that looks stylistically similar to the original dataset. While,

the basic RNN face the increasingly difficult problems such

as vanishing gradient and exploding gradient. These problems

are bad for Char-RNN algorithm to retain information of text

file through the time steps and generate the text character.

Instead of the basic recurrent neural network in Char-RNN

model, the system applies the Long Short Term Memory

(LSTM) network [17] as the cell of RNN for better per-

formance to generate the basic functions of smart contract.

Compared with general RNN, LSTM can solve the issues of

vanishing gradient and exploding gradient about basic RNN.

In the hidden layer of a simple LSTM, it adds a cell state

except the hidden states. And LSTM network also adds three

gates (input gate, forget gate, output gate) to store information

for a certain period of time better. The mathematical theories

of the LSTM cell in hidden layer are as follows:

it = σ (Wi·[ht−1, x t ] + bi) (5)

ft = σ (Wf ·[ht−1, x t ] + bf ) (6)

ot = σ (Wo·[ht−1, x t ] + bo) (7)

In above equations, it, ft, and ot respectively represent

the input, forget and output feature matrix. σ is the sigmoid

function, W and b respectively represent the weight matrix

and bias

When the input word xt is given, the current cell state ct
and hidden state ht can be updated as follows:

gt = tanh(W c·[ht−1, x t ] + bc) (8)

ct = ft ⊙ ct−1+ it ⊙ gt (9)

ht = ot ⊙ tanh(ct ) (10)

In above equations, ⊙ represents the multiplication of

matrix elements, gt is the current information of the cell.

The improved Char-RNN model of the system adopts

two hidden layers of LSTM network to replace basic RNN.

The hidden layer of each LSTM consists of cell state ct and

hidden state ht. And the size of the state is 128. Besides,

the system set the maximum input size of LSTM is 3500 and

the learning rate is 0.05. As the flow shown in Fig. 5, among

of the classified smart contracts, the system uses the trading

contract dataset as input for improved Char-RNNmodel. And

it returns the generated basic functions (such as ‘‘transfer’’,

‘‘ERC20’’ ‘‘SafeMath’’ and so on) as output by improved

Char-RNN model.

C. USER-DEFINED SMART CONTRACT CODES DESIGNING

In the Part C, the system offers a visualized interface for

users to design smart contracts by UI controls. The inter-

active interface is based on Google Blockly [32] which is

VOLUME 7, 2019 73137



D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

FIGURE 5. The flow for Char-RNN (LSTM) model to generate the unified
and standardlized basic functions.

FIGURE 6. The demo of google blockly.

a web-based, visual programming editor shown in Fig. 6.

It reduces the difficulty and costs for users to program the

contracts.

Blocks shown in Fig. 6 are composed of three components:

1) Block definition object: Defines the look and behavior

of a function block, including the text, color, fields, and

connections.

2) Generator function: Generates the code string for the

function blocks. It is always written in JavaScript.

3) Blockly editor: Toolbox of the editor is used to show

the function blocks for users. Workspace of the editor

is used to implement the code generation for users by

adding the blocks into the workspace.

Based on the Google Blockly, many researchers focused

on the particular programming language such as C, Python,

PHP and so on to develop the programming editor by defining

the block object and generator function. The system in this

paper adopts the Ethereum blockchain as platform. Solidity is

the most popular programming language for developing the

Ethereum applications. Different from previous researches,

the system implements smart contract designing focused

on the language of Solidity based on Blockly. The sys-

tem also offers the programming-friendly web interface for

users.

In the system, Blockly is used to load blocks for web

interface in the form of UI controls. And on this basis,

the block object and generator function for smart contract

FIGURE 7. The block of the ‘‘transfer’’ function.

TABLE 1. Experimental environment.

codes are defined in the Part C via script files. The sys-

tem creates a set of new JavaScript files for basic function

codes about smart contracts. The basic function codes are

generated by improved Char-RNN as above mentioned for

trading contracts. These codes mainly contain three types

such as the basic functionmethod (e.g., ‘‘transferFrom’’ func-

tion), standard interface code (e.g., ‘‘ERC20’’ code) and basic

contract code (e.g., ‘‘SafeMath’’ contract code). For example,

Fig. 7 shows the snapshot for creating the block of ‘‘transfer’’

function. First, the new JavaScript file of ‘‘transfer’’ func-

tion needs to be included in the list of ‘‘script’’ tags in the

editor’s HTML file. And the look of the ‘‘transfer’’ function

is defined in the JavaScript file. Once defined, the block

can be referenced to the toolbox by the type name. Then, to

transform the block into code, the system needs to pair the

block with a generator function. Finally, users can design the

contract codes through the web interface by dragging the UI

controls of the ‘‘transfer’’ block. When the block is dragged

from the toolbox to the workspace, the listening event of the

generator is triggered. At the same time, the generator is asso-

ciated to the generated codes of ‘‘transfer’’ function. And the

function codes of ‘‘transfer’’ appear on the web interface for

users.

V. RESULTS

In this section, the experimental environment of the system is

introduced as follows. All components and functions of the

system are developed for Ethereum applications. The experi-

ment about crawler program for collecting smart contracts is

performed by Python and PyQuery. We designed an exper-

iment that used a crawler program written by Python and

PyQuery to collect smart contracts. And PyQuery is a jquery-

like library for python. The experiment about improved Char-

RNN model for generating the contract codes is performed

by Python 3.5. And it adopts Keras package with Tensorflow

backend as the structure. More details of the basic environ-

ment are given in Table 1.

73138 VOLUME 7, 2019



D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

TABLE 2. Experimental dataset.

A. RESULTS OF DOMAIN FEATURES EXTRACTION

OF SMART CONTRACTS

By performing the crawler program, the data collection

of 30837 smart contract programs is crawled from Etherscan.

The crawled contracts are written by Solidity language and

they had been verified by Etherscan. And the size of them is

between 1-745KB. The experiment preprocesses the dataset

and selects 7562 contracts whose size is between 3-5KB as

experimental data collection. Data preprocessing removes the

space, comments and stop words of the contract programs in

the dataset. The stop words are defined by Python program in

the experiment such as ‘‘string’’, ‘‘function’’, ‘‘public’’ and

so on.

Except for the dirty data, the domain features of 7540 con-

tracts are extracted and classified by TF-IDF and

K-means++. The size of the experimental data collection is

29.4MB. And the data collection of smart contracts is divided

into following categories such as voting contracts, lottery

contracts, evaluation contracts and trading contracts finally.

The number of smart contracts with different domain-specific

features is given in Table 2. The largest number of them is the

dataset of trading contracts.

B. RESULTS OF UNIFIED SMART CONTRACT

CODES GENERATION

Among of the categorized contract datasets in Table 2,

the system chooses trading contract dataset as the study

subject. It is a collection of 2532 smart contracts for trad-

ing on the blockchain network. The basic structure of

dataset’s source program contains function methods such as

‘‘transfer’’, standard interface such as ‘‘ERC20’’ for token,

basic contract such as ‘‘SafeMath’’ for computation during

the trading process. Then the experiment adopts improved

Char-RNN algorithm to learn and train the features of trad-

ing contract codes. Ultimately, it utilizes the trained deep

learning model to generate the basic functions of trading

contracts. The results of codes generation by improved Char-

RNNmodel mainly contain three types of the basic functions

written by Solidity language, as follows.

1) BASIC FUNCTION METHOD

The generation results of ‘‘basic function method’’ consist

of five functions for performing basic operations during the

process of trading.

1) The function of ‘‘transfer’’ allows the sender (i.e.

the person who called this function) to transfer the

FIGURE 8. The generation results of ‘‘transferFrom’’ function.

FIGURE 9. The generation results of ‘‘ERC20’’ interface.

number of his tokens to the account address of another

person.

2) The function of ‘‘transferFrom’’ allows a trading con-

tract transfers the number of tokens from a person’s

account address to another person’s account address.

This function is usually called by the contracts, not by

people.

3) The function of ‘‘approve’’ allows the spender to

spend approved number of tokens on your behalf.

4) The function of ‘‘balanceOf’’ returns the balance of the

specified address.

5) The function of ‘‘allowance’’ tells how many tokens

the owner has allowed the spender to spend.

Fig. 8 shows an example about the generation result

(‘‘transferFrom’’ function) of ‘‘basic function method’’.

2) STANDARD INTERFACE CODE

ERC20 is a standard for tokens. It is not the only token

standard, but it is the most popular one. It defines a com-

mon interface for smart contracts storing users’ balance of

fungible tokens, sometimes, referred to as a cryptocurrency.

Fig. 9 shows the generation result (‘‘ERC20’’ interface) of

‘‘standard interface code’’.

3) BASIC CONTRACT CODE

SafeMath is a solidity math library especially designed

to support safe math operations (for addition or subtrac-

tion). Safe means that it prevents overflow when working

with ‘‘uint’’. Fig. 10 shows the generation result (‘‘SafeMath’’

contract) of ‘‘basic contract code’’.

C. RESULTS OF SMART CONTRACT DESIGNING

In the experiment, the generated results by improved

Char-RNN mainly contain three types of the unified and

standardlized basic function codes for trading contract. For

example, they contain the basic functionmethod (e.g., ‘‘trans-

ferFrom’’ function), standard interface code (e.g., ‘‘ERC20’’

code) and basic contract code (e.g., ‘‘SafeMath’’ contract

code). To simplify the operation of users, these codes are

embedded into the UI controls by Google Blockly and the

system is integrated as a visualized page editor. Users can

VOLUME 7, 2019 73139



D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

FIGURE 10. The generation results of ‘‘SafeMath’’ contract.

FIGURE 11. The interface of the integrated system.

drag the code blocks and design their contracts by this editor.

This section introduces the interface of the entire designing

system and describes the operating process for designing the

smart contracts.

1) THE INTERFACE OF THE INTEGRATED SYSTEM

The system implements the user-defined smart contract

designing. And Fig. 11 shows this visualized page editor of

the system.

Users drag the UI controls or blocks and design the logic

of their own smart contracts. The code associated with the

corresponding controls appears in the code-editor box which

is marked by green boxes. After the contract designing is

complete, the contract program can be saved as a ‘‘.sol’’ file.

The following figure details the views of blocks which are

marked by red box in Fig. 11.

Fig. 12 presents a snippet of the system. It shows the drag-

gable block of ‘‘Basic Component’’. As shown in the yellow

box, it consists of the basic contract code like ‘‘SafeMath’’

and the standard interface code like ‘‘ERC20’’.

Fig. 13 presents the draggable block of ‘‘function’’. It con-

sists of a set of basic function methods such as ‘‘transfer’’

function, ‘‘transferFrom’’ function, ‘‘approve’’ function and

so on.

Above blocks of UI controls wire up the basic function

codes which are generated by improved Char-RNN model.

FIGURE 12. The UI controls for designing the basic contract and standard
interface.

FIGURE 13. The UI controls for designing the basic function method.

The codes that appear in the code-editor box are exactly the

generated codes in Part B by improved Char-RNN model.

2) CASE STUDY OF SMART CONTRACT DESIGNING

This section presents the process of smart contract designing

by the visualized page editor. And a case study of contract for

trading contract named ‘‘MyContract’’ is designed.

The designed contract ‘‘MyContract’’ defines the infor-

mation of food trading in details, such as the total trading

value, a series of operations for transactions and the agree-

ment with other traders. Considering the operations for food

transactions between traders, the designed contract includes

many basic functions. Among of these basic functions, for

instance, ‘‘transfer’’ function is add into the designed con-

tract by users for transferring money during trading, the

‘‘balanceOf’’ function is added for querying the balance of

traders, the ‘‘SafeMath’’ contract is added for safe math

operations during the transaction. Eventually, the designed

contract ‘‘MyContract’’ for food trading need to be executed

automatically and successfully on the Ethereum blockchain

network. Thus, this paper adopts the existing framework [18]

named ‘‘Credit Evaluation System Based on Blockchain’’ to

make sure the designed contract useable. This framework was

just proposed for executing food trading and supervising the

traders in food supply chain by smart contracts. The process

of contract designing by users is detailed below (Fig. 14

and Fig. 15).

73140 VOLUME 7, 2019



D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

FIGURE 14. The design process and result of basic functions.

FIGURE 15. The design process and result of ‘‘MyContract’’.

Step one, user drag the UI control named ‘‘SafeMath’’ and

‘‘ERC20’’ on the editor. The ‘‘SafeMath’’ control links to

the basic contract ‘‘SafeMath’’ generated by improved Char-

RNN model. And the ‘‘ERC20’’ control links to the gener-

ated codes of standard interface ‘‘ERC20’’. Fig. 14 gives the

code snippet of ‘‘SafeMath’’. It offers the unified arithmetic

function (such as add, subtract, multiply and divide) for

traders to perform the trading more normative.

Step two, a specialized template of ‘‘StandardToken’’ is

given at the bottom of the Fig. 14. This standard contract

‘‘StandardToken’’ inherits from the basic contract ‘‘Safe-

Math’’ and the standard interface ‘‘ERC20’’. Its member

functions use encapsulated calls to the base class members

to enforce type safety. For example, considering the process

of food trading, traders need to transfer money between their

accounts. To achieve this operation, the user needs to drag

the UI control about ‘‘transfer’’ function and drop it in the

control of ‘‘StandardToken’’. At the same time, the code

of ‘‘transfer’’ function appears in the code-editor box on

the right of the page editor. As showed just before Fig. 7,

the block of ‘‘transfer’’ function and the appeared code are

marked by blue boxes. In particular, the appeared code is the

basic function method of ‘‘transfer’’ generated by improved

Char-RNN. It is embedded into the corresponding block and

wires up to the graphical block ‘‘transfer’’.

In addition to the ‘‘transfer’’ function, users also can

add other basic function methods. Similarly, UI controls of

‘‘functions’’ (Fig. 13) offers a set of basic function methods

used for trading. For example, the controls of ‘‘approve’’,

‘‘transferFrom’’ and other functions all can be added into the

‘‘StandardToken’’ to meet the real needs of trading. And they

link to the respective codes of basic function methods that are

generated by improved Char-RNN.

Step three, after the standard contract ‘‘StandardToken’’ is

designed, user can realize the personalized contract ‘‘MyCon-

tract’’ through the inheritance of ‘‘StandardToken’’. The

instance of designed data all pass into ‘‘MyContract’’. Then

user can add new features or redefine the existing features

of contract by controls. For example, as shown in Fig. 15,

the contract’s name can be redefined as ‘‘FoodTrading’’ by

corresponding UI controls. It shows a direct statement about

the purpose of the trading contract. The program of ‘‘MyCon-

tract’’ is updated in the code-editor box. So far, the introduc-

tions of all of the functional components and designing steps

of food trading contract ‘‘MyContract’’ are completed.

The program of ‘‘MyContract’’ appeared in the code-

editor box can be saved as the file named ‘‘MyContract.sol’’.

For validating the usability of the designed smart con-

tracts, food trading contract ‘‘MyContract.sol’’ is deployed

and complied in the existing Credit Evaluation System.

Similarly, the system in this paper also can generate the

evaluation contract which can be adopted in the Credit

Evaluation System. The result presents that designed con-

tract is compiled and executed successfully and it achieves

a good integration with the existing Credit Evaluation

System.

VI. CONCLUSIONS

This paper provides a user-defined smart contract designing

system. It proposes a visual programming platform for users

so that they can interact with the platform and design their

smart contracts through the visualized interface. Users can

obtain the smart contract codes written by Solidity language

based on their definition and requests. In comparison with

existing methods, the system offers a unique approach to

code auto-generation. The system adopts improved Char-

RNN model to generate the unified and modular basic func-

tion codes of trading contracts and it embeds the generated

codes into the draggable UI blocks. One the one hand, the sys-

tem strengthens the designability for non-developer users like

domain experts and other contract participants who are not

good at performing code work. The system offers the nor-

malize templates of smart contracts for trading. Thus, these

normal users of smart contracts don’t need to understand

the specialized programming language (Solidity). Users just

need to design their smart contracts and meet their business

requirements by dragging the UI controls. When users drag

VOLUME 7, 2019 73141



D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

the function blocks together, the corresponding codes appear

in the visualized page editor. On the other hand, compared

with the manual programming, the system implements the

automatic coding. The system also provides a more efficient,

fast and easy way than traditional ways to design smart

contracts for professional developers. It greatly reduces the

difficulty in programming and save the time for contract

programming.

By validating the usability of the system, the designed con-

tracts by users have been done the usability tests on the Credit

Evaluation System. However, there are several limitations in

this article. Firstly, this paper focused heavily on the studies

for generating the trading contract codes. Thus, the trying for

code auto-generation ofmore domains needs to be explored in

further research. Secondly, this paper just validates the avail-

ability and usability of the generated smart contracts. It adopts

more commonly used and effective algorithms to implement

the automatic classification and coding of smart contracts.

Thus, formore exact and effective automatic generation, there

is a lot of room to improve the current algorithms used in the

system.

REFERENCES

[1] J. Bonneau, A.Miller, J. Clark, A. Narayanan, J. A. Kroll, and E.W. Felten,

‘‘SoK: Research perspectives and challenges for bitcoin and cryptocurren-

cies,’’ in Proc. Secur. Privacy, May 2015, pp. 104–121.

[2] Y. Yuan and F.-Y. Wang, ‘‘Blockchain and cryptocurrencies: Model, tech-

niques, and applications,’’ IEEE Trans. Syst. Man, Cybern., Syst., vol. 48,

no. 9, pp. 1421–1428, Sep. 2018.

[3] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, ‘‘Hawk:

The blockchain model of cryptography and privacy-preserving smart con-

tracts,’’ in Proc. Secur. Privacy, May 2016, pp. 839–858.

[4] C. K. Frantz and M. Nowostawski, ‘‘From institutions to code: Towards

automated generation of smart contracts,’’ in Proc. IEEE Int. Workshops

Found. Appl. Self Syst., Sep. 2016, pp. 210–215.

[5] M. Bartoletti and L. Pompianu, ‘‘An empirical analysis of smart contracts:

Platforms, applications, and design patterns,’’ in Proc. Int. Conf. Financial

Cryptogr. Data Secur., 2017, pp. 494–509.

[6] A. Bogner, M. Chanson, and A. Meeuw, ‘‘A decentralised sharing app

running a smart contract on the ethereum blockchain,’’ in Proc. 6th Int.

Conf. Internet Things, 2016, pp. 177–178.

[7] G. Peters, E. Panayi, and A. Chapelle, Trends in Crypto-Currencies and

Blockchain Technologies: A Monetary Theory and Regulation Perspec-

tive, vol. 3. New York, NY, USA: Social Science Electronic Publishing,

vol. 2015.

[8] R. Adams, G. Parry, P. Godsiff, and P. Ward, ‘‘The future of money and

further applications of the blockchain,’’ Strategic Change., vol. 26, no. 5,

pp. 417–422, 2017.

[9] M.Al-Bassam, ‘‘SCPKI: A smart contract-based PKI and identity system,’’

in Proc. ACM Workshop Blockchain, Cryptocurrencies Contracts (BCC),

2017, pp. 35–40.

[10] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making smart

contracts smarter,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur.,

2016, pp. 254–269.

[11] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,

‘‘Untangling blockchain: A data processing view of blockchain sys-

tems,’’ IEEE Trans. Knowl. Data Eng., vol. 30, no. 7, pp. 1366–1385,

Jul. 2018.

[12] N. Atzei, M. Bartoletti, T. Cimoli, ‘‘A survey of attacks on Ethereum smart

contracts,’’ in Proc. Int. Conf. Princ. Secur. Trust, 2017, pp. 1–24.

[13] M. Alharby and A. van Moorsel, ‘‘Blockchain based smart contracts:

A systematic mapping study,’’ in Proc. Int. Conf. Artif. Intell. Soft Comput.,

2017, pp. 125–140.

[14] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,

E. Marchenko, and Y. Alexandrov, ‘‘SmartCheck: Static analysis of

Ethereum smart contracts,’’ in Proc. IEEE/ACM 1st Int. Workshop Emerg.

Trends Softw. Eng. Blockchain (WETSEB), May/Jun. 2018, pp. 9–16.

[15] B. K. Mohanta, S. S. Panda, and D. Jena, ‘‘An overview of smart contract

and use cases in blockchain technology,’’ in Proc. 9th Int. Conf. Comput.,

Commun. Netw. Technol. (ICCCNT), Jul. 2018, pp. 1–4.

[16] W. Ling, I. Trancoso, C. Dyer, and A. W. Black, ‘‘Character-based neu-

ral machine translation,’’ 2015, arXiv:1511.04586. [Online]. Available:

https://arxiv.org/abs/1511.04586

[17] A. Mikami, ‘‘Long short-term memory recurrent neural network architec-

tures for generating music and Japanese lyrics,’’ Ph.D. dissertation, Boston

College, Newton, MA, USA, 2016.

[18] D. Mao, F. Wang, Z. Hao, and H. Li, ‘‘Credit evaluation system based on

blockchain for multiple stakeholders in the food supply chain,’’ in Int. J.

Environ. Res. Public Health, vol. 15, no. 8, p. 1627, 2018.

[19] P. Moreno-Sanchez, M. B. Zafar, and A. Kate, ‘‘Listening to whispers

of ripple: Linking wallets and deanonymizing transactions in the

ripple network,’’ in Proc. Privacy Enhanching Technol., 2016,

pp. 436–453.

[20] A. B. Ayed and M. B. Belhajji, ‘‘The blockchain technology: Applications

and threats,’’ Int. J. Hyperconnect. Internet Things., vol. 1, no. 2, pp. 1–11,

2017.

[21] S. Omohundro, ‘‘Cryptocurrencies, smart contracts, and artificial intelli-

gence,’’ AI Matters, vol. 1, no. 2, pp. 19–21, 2014.

[22] K. Christidis and M. Devetsikiotis, ‘‘Blockchains and smart contracts for

the Internet of Things,’’ IEEE Access, vol. 4, pp. 2292–2303, 2016.

[23] K. Gkillas and P. Katsiampa, ‘‘An application of extreme value theory to

cryptocurrencies,’’ Econ. Lett., vol. 164, pp. 109–111, Mar. 2018.

[24] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, ‘‘Zether: Towards pri-

vacy in a smart contract world,’’ Cryptology ePrint Archive, Tech. Rep.

2019/191, 2019. [Online]. Available: https://eprint.iacr.org/2019/191

[25] D. Mohanty, ‘‘Deploying smart contracts,’’ in Ethereum for Architects and

Developers. Berkeley, CA, USA: Apress, 2018, pp. 105–138.

[26] H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok, ‘‘Interpreting

TF-IDF term weights as making relevance decisions,’’ ACM Trans. Inf.

Syst., vol. 26, no. 3, pp. 55–59, 2008.

[27] P. Niu and D. G. Huang, ‘‘TF-IDF and rules based automatic extraction of

Chinese keywords,’’ J. Chin. Comput. Syst., vol. 37, no. 4, pp. 711–715,

2016.

[28] T. Shouzhong and H. Minlie, ‘‘Mining microblog user interests based on

TextRank with TF-IDF factor,’’ J. China Univ. Posts Telecommun., vol. 23,

no. 5, pp. 44–50, 2016.

[29] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’Neural

Netw., vol. 61, pp. 85–117, Jan. 2015.

[30] A. Graves. (2012). Supervised Sequence Labelling With Recurrent Neural

Networks. [Online]. Available: http://books.google.com/books

[31] Z. C. Lipton, S. Vikram, and J. McAuley, ‘‘Capturing meaning in

product reviews with character-level generative text models,’’ 2015,

arXiv:1511.03683. [Online]. Available: https://arxiv.org/abs/1511.03683

[32] I. Culic, A. Radovici, and L. M. Vasilescu, ‘‘Auto-generating Google

Blockly visual programming elements for peripheral hardware,’’ in Proc.

RoEduNet Int. Conf.-Netw. Educ. Res., Sep. 2015, pp. 94–98.

DIANHUI MAO was born in 1979. He received

the degree from the Huazhong University of Sci-

ence and Technology. He is currently an Asso-

ciate Professor with the College of Computer and

Information Engineering, Beijing Technology and

Business University. He is a Distinguished Expert

with the Global Blockchain Industry Research

Institute, China Mobile Communications Federa-

tion. He has a wealth of experience in the applica-

tion studies of blockchain and AI. In recent years,

he has presided over and participated in projects including the National

Social Sciences Fund Project, the Humanities and Social Science Fund

Project of the Ministry of Education, and various types of enterprise cus-

tomization systems. He has published over 20 papers. He has received the

Leading Talent of Enterprise Innovation and Entrepreneurship Award in

Jiangsu, China. He is also a member of Think Tank Committee, All-China

Federation of Industry and Commerce (ACFIC).

73142 VOLUME 7, 2019



D. Mao et al.: Visual and User-Defined Smart Contract Designing System Based on Automatic Coding

FAN WANG was born in 1994. She received the

M.S. degree in computer engineering from the

College of Computer and Information Engineer-

ing, Beijing Technology and Business University.

She is currently involved in the integration and the

development of blockchain technology and deep

learning technology. She holds one patent about

blockchain. She has already published one paper

for conducting research on food safety supervi-

sion and management according to blockchain and

smart contracts.

YALEI WANG was born in 1993. He is currently

pursuing the degree in computer engineering with

the College of Computer and Information Engi-

neering, Beijing Technology and Business Univer-

sity. He is currently involved in the integration and

the development of blockchain technology, and

deep learning technology for food safety supervi-

sion and management.

ZHIHAO HAO was born in 1997. He received the

bachelor’s degree in computer science and tech-

nology from the College of Computer and

Information Engineering, Beijing Technology and

Business University. He will pursue the master’s

degree with the Pattern Analysis and Machine

Intelligence Group, Department of Computer

and Information Science, University of Macau.

He is currently involved in the applications of

blockchain technology. He holds one patent about

blockchain. He has already published two papers for conducting research on

blockchain and smart contracts applications.

VOLUME 7, 2019 73143


	INTRODUCTION
	THE DESIGNABILITY OF CODING
	THE SPECIALIZED TEMPLATES OF BASIC FUNCTIONS CODING BASED ON DOMAIN-SPECIFIC FEATURES

	RELATED WORK
	WORKFLOW OF THE SYSTEM
	PART A: DOMAIN FEATURES EXTRACTION OF SMART CONTRACTS
	PART B: UNIFIED SMART CONTRACT CODES GENERATION
	PART C: VISUAL AND USER-DEFINED SMART CONTRACT CODES DESIGNING

	IMPLEMENTATION OF THE SYSTEM
	DOMAIN FEATURES EXTRACTION OF SMART CONTRACTS
	CRAWL THE CONTRACT CODES
	EXTRACT DOMAIN-SPECIFIC FEATURES AND CLASSIFY THE CONTRACTS

	UNIFIED SMART CONTRACT CODES GENERATION
	USER-DEFINED SMART CONTRACT CODES DESIGNING

	RESULTS
	RESULTS OF DOMAIN FEATURES EXTRACTION OF SMART CONTRACTS
	RESULTS OF UNIFIED SMART CONTRACT CODES GENERATION
	BASIC FUNCTION METHOD
	STANDARD INTERFACE CODE
	BASIC CONTRACT CODE

	RESULTS OF SMART CONTRACT DESIGNING
	THE INTERFACE OF THE INTEGRATED SYSTEM
	CASE STUDY OF SMART CONTRACT DESIGNING


	CONCLUSIONS
	REFERENCES
	Biographies
	DIANHUI MAO
	FAN WANG
	YALEI WANG
	ZHIHAO HAO


