
Research Article

Visual and Visual-Inertial SLAM: State of the Art, Classification,
and Experimental Benchmarking

Myriam Servières ,1,2,3 Valérie Renaudin ,3,4 Alexis Dupuis,1,3 and Nicolas Antigny1,3,4

1Centrale Nantes, Nantes 44321, France
2AAU-CRENAU, ENSA, Nantes, France
3IRSTV, Nantes 44321, France
4AME-GEOLOC, IFSTTAR, Univ. Gustave Eiffel, Bouguenais 44344, France

Correspondence should be addressed to Myriam Servières; myriam.servieres@ec-nantes.fr

Received 11 December 2019; Revised 1 December 2020; Accepted 9 January 2021; Published 25 February 2021

Academic Editor: Stelios M. Potirakis

Copyright © 2021 Myriam Servières et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Simultaneous Localization and Mapping is now widely adopted by many applications, and researchers have produced very dense
literature on this topic. With the advent of smart devices, embedding cameras, inertial measurement units, visual SLAM (vSLAM),
and visual-inertial SLAM (viSLAM) are enabling novel general public applications. In this context, this paper conducts a review of
popular SLAM approaches with a focus on vSLAM/viSLAM, both at fundamental and experimental levels. It starts with a
structured overview of existing vSLAM and viSLAM designs and continues with a new classification of a dozen main state-of-
the-art methods. A chronological survey of viSLAM’s development highlights the historical milestones and presents more recent
methods into a classification. Finally, the performance of vSLAM is experimentally assessed for the use case of pedestrian pose
estimation with a handheld device in urban environments. The performance of five open-source methods Vins-Mono, ROVIO,
ORB-SLAM2, DSO, and LSD-SLAM is compared using the EuRoC MAV dataset and a new visual-inertial dataset
corresponding to urban pedestrian navigation. A detailed analysis of the computation results identifies the strengths and
weaknesses for each method. Globally, ORB-SLAM2 appears to be the most promising algorithm to address the challenges of
urban pedestrian navigation, tested with two datasets.

1. Introduction

The Simultaneous Localization and Mapping (SLAM) prob-
lem has been one of the most active research subjects since
its formulation in the 1980s [1, 2]. SLAM’s goal is to obtain
a global and consistent estimate of a device’s path while
reconstructing a map of the surrounding environment. The
coupling between these two tasks, initially considered as the
core issue, was soon discovered to be the real strength of
SLAM methods. This duality has also encouraged its diversi-
fication. By dosing the importance given to mapping or to
localization, SLAM has been pushed away from the sole
robotics field and became a reference to solve problems of
many different natures: from micro aerial vehicles [3] to aug-
mented reality (AR) on a smartphone [4, 5].

Higher expectations were added to the existing SLAM
algorithm (real-time, cheap sensors) leading to a new
research field on SLAM. Visual SLAM (vSLAM) using solely
cameras and visual-inertial SLAM (viSLAM) using inertial
measurement units (IMUs) give a good illustration of these
new SLAM strategies. vSLAM has probably attracted most
of the research over the last decades. Cameras capture
numerous data about the observed environment that can be
extracted and used for SLAM processing. These cameras
are also among the cheapest sensors. Their presence on most
of the smart devices today supports the ongoing development
of novel applications that target the general public.

Because there exist many different SLAM methods tar-
geting different objectives, comparing them is not easy.
Choosing the best-suited method for a specific application

Hindawi
Journal of Sensors
Volume 2021, Article ID 2054828, 26 pages
https://doi.org/10.1155/2021/2054828

https://orcid.org/0000-0001-5749-1590
https://orcid.org/0000-0003-4535-5406
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2054828


requires a good knowledge of the ins and outs of SLAM as
well as a global understanding of state-of-the-art SLAM strat-
egies. The performance of a method depends on the applica-
tion context and the challenges to be addressed. Globally,
SLAM tends to be wrongly considered as an almighty tech-
nology but real-life implementation raises many issues in
terms of computational limitations, noise mitigation, or even
user-friendliness. This is only a selection of the difficulties to
overcome.

This paper is aimed at classifying existing vSLAM and
viSLAM methods. The proposed transverse classification is
based on technical and application-oriented criteria. The
review of SLAM methods continues with a historical presen-
tation of vSLAM and viSLAM development. The analysis is
completed by running five selected state-of-the-art SLAM
methods, which have been chosen to represent the diversity
of existing SLAM designs, on two different datasets. These
methods best address the use case of pedestrian pose estima-
tion in the urban environment. This experimental bench-
mark is conducted on a renowned public dataset EuRoC [6]
and completed with a new visual-inertial dataset, which has
been recorded with smart devices held in hand by a pedes-
trian in the city center of Nantes in France (IRSTV dataset).

The main motivation supporting this review and bench-
mark is to assess vSLAM and viSLAMmethods in the specific
context of pedestrian mobility in the city with augmented
reality (AR) used along the journey. Its outcomes should ease
the choice of the most suitable methods to estimate the pose
of a handheld smart device in this context. Pedestrians’ hands
are performing 6DoF motions. Looking for popular bench-
marking datasets, it was found that these movements are
similar to those of micro air vehicles. The paper starts with
a classification of the methods derived from the literature
according to their characteristics and their robustness to
various scenarios (Section 6) to select a dataset. The closest
ones to the pedestrian mobility requirements and context
were chosen for comparison with the newly introduced
IRSTV pedestrian dataset (Section 7).

Section 2 lists existing surveys and benchmarks of SLAM
methods with different approaches than the one adopted in
this work. Section 3 describes the first level of SLAM
algorithms’ design: hardware and general software choices.
Section 4 describes the general architecture of the vSLAM
algorithm. It identifies and details four constitutive “blocks.”
Section 5 gives an overview of the SLAM history, which is
divided into three ages. Section 6 presents a new classification
of vSLAM and viSLAM methods. Finally, Section 7 presents
the conducted experimental benchmark based on the EuRoC
and IRSTV dataset. A detailed analysis of the SLAM results
over the selected dataset completes this section.

2. Existing Surveys and Benchmarks

Several survey papers present a snapshot of the state of
research on SLAM at a given time. Various papers present
other experimental benchmarks. They inform about the
performance of the most famous SLAM methods on the
given dataset. This section lists some of these papers to con-
duct a theoretical benchmark. They are also listed to support

the comparison of the experimental benchmark, conducted
in Section 7, with other state-of-the-art assessments.

2.1. Survey Papers. An interesting and complete, albeit a little
old, review on the vSLAM algorithm can be found in [7]. In
[8], the authors introduce some of the main differences
between state-of-the-art SLAM methods as well as the most
famous algorithms in vSLAM, with a very useful introduc-
tion to viSLAM. However, as a survey, it mainly provides
high-level explanations on the subject. An overview limited
to visual odometry and visual SLAM can be found in [9].
Two founding papers to understand the origin of SLAM
research are in [10, 11]. They also mainly concentrate on
visual odometry with a subpart on viSLAM. The 2006 papers
by Durrant-Whyte and Bailey [12, 13] provide rich tutorials
on viSLAM. They contain educational and detailed presenta-
tions of the mathematical formulation of the SLAM problem
but are lacking an updated presentation of recent vSLAM.
The paper by Cadena et al. [14] can be considered as a hand-
book in the field of viSLAM. A recent review [15] lists and
classifies filtered-based and optimization-based viSLAM
algorithms and compares them using the EuRoc dataset. It
is found that none of these papers provides a complete pre-
sentation of the subject, i.e., from technical and historical
trivia to actual performance comparison. Therefore, the work
presented in this paper intends to facilitate the comparison of
new research works with SLAM and to assist future research
in pose estimation. State of the art presents the main vSLAM
methods to explain the impact of design and hardware
choices on the performance. The vSLAM/viSLAM classifica-
tion provides both an overview and a comparison of the
diversity of the many existing implementations. Moreover,
the classification that is subsequently proposed in Section 6
groups together characteristics that are partially found in
other reviews but not necessarily presented all together.

2.2. Benchmarks. A first benchmark [16] focuses on RGB-D
SLAM only. Another benchmark [3], dedicated to visual-
inertial methods, evaluates tightly coupled Visual Inertial
Odometry (VIO) and viSLAM methods on multiple plat-
forms to simulate real-life applications with flying drones.
The tests are only performed on the EuRoC dataset (i.e.,
medium indoor environment). It provides one of the most
complete benchmarks on viSLAM algorithms by comparing
the accuracy, memory and CPU usage, and computation
time of six state-of-the-art algorithms. The S-MSCKF paper
[17] compares some viSLAM methods as well. vSLAM
methods are often tested on the new college [18], TUMmon-
ocular [19], or TUM RGB-D dataset [16] that do not include
inertial data. This dataset cannot be used to compare the
latest viSLAM methods.

3. Hardware and General Design Choices

SLAM and visual odometry (VO) are often synonyms in the
literature because they are both potential choices to solve
similar problems, but they target different objectives. VO
focuses on estimating the path of a camera in real time. It is
done sequentially, each time a new frame is captured. VO

2 Journal of Sensors



provides only local/relative estimates, and the path is refined
online with windowed optimization. On the contrary, SLAM
provides a global and consistent estimate of a device’s path.
The detection of loop closure reduces the drift in both the
map and the trajectory estimates by performing bundle
adjustment (BA). To simplify, VO and vSLAM act similarly
until closing a loop. VO is often used as a building block
for vSLAM, which also borrows 3D reconstruction methods
from Structure from Motion (SfM) approaches.

Pure VO and vSLAM are both conceivable in applica-
tions where building an accurate map is not required.

3.1. Hardware for Visual SLAM. Classically, vSLAM uses
three hardware types: monocular cameras, stereo cameras,
and RGB-D cameras. viSLAM has drawn increased interest
recently because IMU and cameras have complementary
features. Cameras are accurate in slow motion and provide
a rich source of information, but they suffer from limited out-
put rates, causing scale ambiguity in monocular setups and
possibly a lack of robustness in case of motion blur or illumi-
nation changes, for example. On the other hand, IMUs are
robust to environmental changes with high sampling rates,
but they provide only proprioceptive measurement and suf-
fer from sensors’ biases that degrade the acceleration and
angular velocity records. With the advent of smart devices
embedding both an IMU and a camera, many applications
oriented towards the general public adopt viSLAM algo-
rithms. They are a promising alternative that combines
multiple sources to increase the tracking quality [20].

3.2. Filter-Based and Keyframe-Based Approaches. As shown
in Figure 1, vSLAM methods use two main designs. The first
design corresponds to filter-based solutions, which are simi-
lar to those that were first used to solve the SLAM problem.
This category contains the following:

(i) Extended Kalman filter- (EKF-) based algorithms
such as MonoSLAM [21]

(ii) Particle filter-based methods such as FastSLAM and
its monocular SLAM alternative [22, 23]

(iii) Multistate constraint Kalman filter- (MSCKF-)
based methods such as MSCKF 2.0 [24] or SMSCKF
[17]

Classically, filter-based approaches estimate both the
camera’s pose and the landmarks’ positions in a state vector,
which is a potential source of scalability inefficiency. MSCKF
by Mourikis and Roumeliotis [25] and recent EKF-based
VIO solutions, such as ROVIO [26], use a restrictive culling
of landmarks to only keep the most recently detected features
in the state vector. This local approach to the problem is
common for pure visual odometry methods (VO or VIO).
It is also possible to keep the 3D features extracted from the
state vector in a static map. This map is considered static
since it remains unaltered throughout the SLAM process.
The mapping is performed after the localization instead of
simultaneously.

The second design utilizes parallel methods derived from
PTAM [27]. These methods are based on keyframes. The
features are parameterized with respect to a keyframe
enabling to run in parallel different SLAM tasks on multiple
threads. Keyframe-based approaches are also sometimes
called “optimization-based” approaches. One of their main
advantages regarding performance is that they use a global
optimization process bundle adjustment (BA) instead of
letting a filter manage the map and poses. Global optimiza-
tion leads to an improved accuracy thanks to their ability to
correct drift effects. However, they are computationally
expensive, which is why they were mostly used offline before
PTAM [27] introduced the possibility to parallelize the
various SLAM’s tasks. Just like filter-based methods have
evolved into windowed methods to improve computational
efficiency and scalability, keyframe-based optimization can
only be done on a window of keyframes. Keyframes can also
be arranged in graphs. Depending on their design, it is possi-
ble to use different criteria to define the windows, instead of
using a simple temporal window of the n last keyframes.
Optimizations differ also depending on optimization criteria.
Pose graph optimization (or motion-only BA) focuses on the
poses between keyframes whereas structure-only BA opti-
mizes only the map and BA manages both the map and
poses. However, it should be noted that vSLAM methods
can also combine various types of optimization designs:
e.g., global BA on loop closure and local pose graph optimi-
zation at every new keyframe. As summed up in Figure 1,
the choice of design is often driven by a compromise between
accuracy and speed.

4. Classical Structure of the vSLAM Algorithm

Four main blocks (Figure 2) describe the overall operation of
any vSLAM algorithm. They are the following:

(i) Input search: finding the required information in the
sensor measurements

(ii) Pose tracking: determining the current camera pose
from the new perceptions

(iii) Mapping: adding a landmark to the map

(iv) Loop closing: producing a proper map and drift-free
localization

They are detailed in the following subsections.

Filter-based,

incremental,

single-thread 

Parallel,

multithread,

keyframe-based

Windowed optimization Global optimizationMSCKF, EKF, RBPF

Accuracy

Computational speed

Figure 1: Main design choices for the current vSLAM algorithm.

3Journal of Sensors



4.1. Input Search. When dealing with cameras, the data con-
tained in frames must first be extracted. Some methods use
the pixel intensity to match different frames: they are called
direct methods. In this case, the mapped elements can be
pixel maps, i.e., the frame is relocated in the 3Dmap and each
pixel is given its corresponding depth (Section 4.3). Other
methods extract features (points in the zone of interest of
the image, i.e., easily recognizable, or, alternatively, lines or
curve segments) in each frame and use geometric constraints
for matching. Feature extraction is a well-known field of
computer vision. Feature descriptors often use intensity
gradients to detect zones of interest. In this case, the mapped
elements can be 3D poses of features. Famous descriptors
include Harris [28], SURF [29], SIFT [30], FAST [31], and
ORB [32]. The choice is usually driven by a trade-off between
robustness and computational efficiency. These last methods
are called indirect or feature based.

Whereas the choice between direct and indirect is linked
to the input space, the choice between dense and sparse maps
depends on the output space. The built map is classified from
sparse to dense. Sparse maps only contain a cloud of sparse
features (i.e., only a small selected subset of the pixels in an
image frame) and are typical of vSLAM methods focusing
on the correctness of the trajectory. Dense methods use all
frames’ information (i.e., most or all of the pixel information
in each received frame) to reconstruct maps with as much as
possible environmental data. Semidense methods are in
between. They are dense methods where only specific zones
of interest (high-density gradients: edges, corners, …) are
mapped. The four input/output combinations that can be
imagined based on this analysis all have pros and cons.
Table 1 sums the possible combinations giving an example
of algorithms that use them.

The choice between direct and indirect is still debated.
Feature descriptors are robust to image noise. Recent descrip-
tors can be robust or even invariant to geometric distortions,
e.g., due to rolling shutter, automatic exposure changes, and
lens vignetting. Direct methods allow using all the information
contained in every frame. They avoid the extraction of features
and gather map data more quickly. When using a basic
camera, such as a webcam or a smartphone, an indirect
method will be preferred for its robustness. However, with
well-parametrized global shutter cameras, direct methods

may be preferred. Dense methods produce more interesting
3D reconstructions of the environment, but they often require
heavy parallelization on a high-end GPU.

Indirect/sparse methods are the most common methods.
They extract features in frames and add them as 3D points
for mapping once their coordinates are determined. Direct/-
dense (or semidense) methods are pretty common too.
Observed pixels are represented by a 3D point in the image
frame, constituting a depth map of all pixels. To keep the
internal coherence observed in each frame during the
mapping, geometric priors are added. They constrain the
positions of points, seen from the same frame, using assump-
tions on the geometry of the scene. Direct/sparse methods are
rather uncommon and use photometric error minimization
without a priori data to keep the correlations between
geometry parameters lighter and optimization less time-
consuming as in DSO [33]. Indirect/dense methods are rare
and do not use feature descriptors. Instead, they compute
geometric errors as a deviation from the observed optical
flow field in the frame.

4.2. Pose Tracking. The pose tracking block comprises the
visual odometry parts. Depending on whether the feature
correspondences in two successive frames are in 2D or 3D,
there are three different ways to perform visual odometry [11].

(i) 2D-2D alignment: the feature matching is done
directly between 2D features detected on successive
frames. This is the common solution for pure VO
methods

(ii) 2D-3D (sometimes called 2.5D) alignment: the pose
of the camera is estimated given a set of n 3D points
in the world (mapped points from the precedent
frames) and their corresponding 2D projections in
the new frame. This problem is known as Perspec-
tive-n-Points. Monocular pureVOmethods can only
use 2.5D alignment by keeping a pool of n frames,
triangulating features on the fly, and reusing the
3D poses of these triangulated points before they
are culled out by new incoming data. On the
contrary, vSLAM benefits from a complete map of
landmarks to choose from for reprojection, so 2.5D
alignment is commonly used in vSLAM

(iii) 3D-3D alignment: with stereo cameras, it is possible
to directly determine the 3D position of a newly
detected feature, so 3D-3D alignment can be

Input search:

Direct/indirect input
Dense/sparse output

(i)
(ii)

Loop-closure:

Detect: bag-of-words…
Close: bundle-adjustment

(i)
(ii)

Pose tracking:

Geometric (2D-2D, 2D-3D)

Photometric (direct image

alignment) 
Iterative closest point

(i)

(ii)

(iii)

Mapping:

Points parametrization
(HP, AHP, IDP) 
Backprojected rays
Occupancy mapping

(i)

(ii)
(iii)

Figure 2: The four main blocks of a vSLAM algorithm, associated
with related keywords.

Table 1: Illustration of algorithms classified according to their input
and output methods for the first vSLAM block.

vSLAM Dense Sparse

Direct
DTAM [34] DSO [33]

LSD-SLAM [35] ROVIO [26]

Indirect Optical flow vSLAM [36]

MonoSLAM [21]

PTAM [27]

ORB-SLAM [37]

4 Journal of Sensors



considered too. However, 3D feature position esti-
mation generally yield uncertainties bigger than
3D-2D reprojection errors, which is why this
method is rarely used

For monocular EKF-SLAM, the reprojection of mapped
points is used for the correction phase [38]. MSCKF follows
the detected features along a “path,” constituted of every
detection of the feature from its first detection to the moment
it gets out of sight. Then, it performs Gauss-Newton minimi-
zation using all features whose path is complete [24]. For
parallel methods, VO can be done between every frame while
map reprojection can be used to improve the accuracy of a
new keyframe’s pose estimate. The prerequisite to calculating
the new camera pose is to match features between the current
frame and a previous one. “Bottom-up” approaches (trying to
match features by testing all possibilities) have been replaced
by much more efficient “top-down” methods since 2003
MonoSLAM [21]. The basic idea is to compute uncertainty
ellipses around the previous frame’s features in which a new
observation of that feature is supposed to be and to restrict
the search space in this ellipse on the new frame. Tracing this
ellipse requires some assumptions on the camera movement
between the two frames, for instance, CVCAV motion model
(Constant Velocity, Constant Angular Velocity) [21]. The
solution can usually be found by determining the transforma-
tion that minimizes the reprojection error of the triangulated
points in each image. With 2D-3D alignment, we search for
the transformation that minimizes the reprojection error of
the 3D landmarks into the new 2D frame.

2D-2D alignment with features can be done with geometric
parameters by computing the essential matrix with epipolar
geometry (5-point or 8-point algorithms) and decomposing it
into a translation vector t and a rotation matrix R (using a
singular value decomposition) that form the frame-to-frame
transformation T. In direct methods, given a point p, whose

pixel coordinates are x in the image I1 and x′ in I2, x′ðT, xÞ
being the function of the motion T, the true motion T

∗ should

minimize the photometric difference I1ðxÞ − I2ðx′Þ. Therefore,
the best estimate for T∗ is found by minimizing the overall
photometric difference in the image, which is a sum of pixel-
wise photometric errors (potentially weighted in certain
regions, e.g., with high gradients). This is called Direct Image
Alignment (DIA) and is the equivalent of 2D-2D alignment
for direct methods.

When dealing with a dense model, the tracking is gener-
ally done with Iterative Closest Point (ICP) [39–41] using the
current frame’s depth map and the 3D dense model. Note
that tracking based on dense model reprojection can benefit
from predictive capabilities improving robustness to occlu-
sion, as well as robust handling of motion blur for instance.

4.3. Mapping. The mapping block refers to the actions
required to fully initialize a newly detected feature’s position
so that it can be situated in the 3D reconstruction of the envi-
ronment, i.e., the map. Indeed, in the pose tracking section,
we assumed the existence of 3D positioned landmarks on
our map. However, a monocular camera cannot determine
the depth of a feature using only one observation but it needs

several frames. Similar to camera trajectory, we may want to
estimate the uncertainty of the positions of the landmarks to
refine them after their initialization or to include them in
global optimization. It is also interesting to use landmarks,
which are only “partially initialized,” since they already hold
some information, such as in PTAM [27]. Direct methods do
not map features per se, but they map each pixel of the
captured frame (pixel depth maps).

The mapping block can be described with the 3D land-
mark parameterization. Cartesian coordinates (XYZ) can
be used, but this choice results in severely non-Gaussian
probability density functions and it degrades both the accu-
racy and consistency. Alternatively, homogeneous point
(HP), anchored homogeneous point (AHP), and inverse-
depth parameterization (IDP) suppress nonlinearity and
shorten the initialization’s period [42].

As stated in [42], the IDP encodes the inverse-distance
point p by a vector of dimension 6 that contains the Euclid-
ean optical center at the initialization time corresponding
to the “anchor point” p0 = ðx0, y0, z0Þ, the elevation and
azimuth angles, which define the direction of the initial
optical ray ðϵ, αÞ and the inverse ρ of the Euclidean distance
d from p0 to the 3D point p. IDP points could be parameter-

ized with direct encoding of the optical ray’s direction with a
vector V = ðu, v,wÞ and the distance ρ = kvk/d, avoiding the
need for nonlinear transformations with the angles ðε, αÞ.
This corresponds to an AHP parameterization (7 parame-
ters). HP is similar to AHP but does not need an anchor
point; instead, the origin of the camera is used, leading to
only 4 parameters V and ρ. Assuming that the uncertainties
on the camera position are small, similar results are obtained
with this parameterization. The study in [42] details these
parameterizations and gives a benchmark of their impact
on EKF-SLAM results.

Triangulated 3D points are determined by intersecting
back-projected rays from 2D image correspondences of at
least two frames. In reality, they never really intersect, which
leads to an uncertainty region in the landmark’s position. It is
possible to reduce this uncertainty by two means. Either
more observations can be used or rays from more distant
views can improve the positioning. Ideally, the rays should
intersect at 90° angle to reach a small uncertainty circle
instead of a stretched ellipse. One may skip frames until the
average uncertainty of the 3D points’ positions decreases
below a given threshold to mitigate this issue. The selected
frames usually correspond to keyframes. Also, note that
distant points are more difficult to map accurately.

The mapping process is a bit different for direct methods
such as DTAM [34]. The goal is to turn the captured frames
into “depth maps” by assigning a depth value to every pixel. It
is again based on multiple-view reconstruction. For each
pixel in a keyframe, a pixel ray is traced, which corresponds
to the range of possible depths for that pixel. A pool of all
frames overlapping with this keyframe is used to “observe”
the pixel rays. An energy function minimization, such as L1
norms sum of photometric errors and prior data for spatial
regularization, estimates the real pixel depth. The mapping
process is more direct for RGB-D vSLAM methods since

5Journal of Sensors



the depth is directly sensed. The depth map is input in each
frame. The 3D model of the environment is then elaborated
by fusing all depth maps. This can be done either naively
by overlapping the scans or by performing fusion methods
such as occupancy mapping.

A lot of SLAM methods map the scene with a sparse
representation that corresponds to features detected in the
environment. Dense maps are more common with stereo
and RGB-D camera or laser scanning. A recent work [43]
creates a dense map modeling of the dense structure as a
Euclidean signed distance field.

4.4. Loop Closure. The loop closure is the backbone of SLAM.
It removes the drift accumulated since the last loop closure by
reconnecting the pose of a previously visited place with the
current pose. Optimization and incremental methods are
more successful than particle- and Kalman-based filters
because they propagate backward the loop closure data over
the trajectory estimate. A keyframe graph is classically used
to correct the poses using bundle adjustment (BA) in parallel
methods. In [44], the authors synthesize BA’s techniques for
vSLAM methods and give in an appendix a historical over-
view of the main developments in bundle adjustment.
State-of-the-art SLAM systems are commonly used [45] to
solve nonlinear least squares problems or [46] to optimize
graph-based nonlinear error functions in BA. But these
systems use a few of the last measurements to estimate the
pose in real time. To use previous optimizations and reduce
computation, incremental solvers, such as [47], solve a non-
linear estimation problem in a real-time approach. They
update the estimated model of the environment every time
a new measurement is added using the sparse structure of
the underlying factor graph.

Loop closing is a two-step process. Firstly, it starts with
the loop detection, also called place recognition. The place
recognition process can be used to solve the problem of track
loss recovery, generally by using the loop closing thread.
Most of the methods use a bag-of-word approach to compare
new keyframes with a database of previously acquired views.
“Bag-of-word” refers to the set of descriptors that identifies
patches in images as in the DBoW2 method proposed by
[48] based on FAST [31] and a slightly modified version of
BRIEF features [49]. A catalog search of similar words

between the frame and the database is extremely quick and
efficient. Once a potential similarity is found, multiple verifi-
cation steps verify if it corresponds to a loop. Secondly, the
loop closure corrects the map and poses. The transformation
between the two views is computed and 3D points are fused.
The computations needed to close the loop are then distrib-
uted along the entire pose graph and the map using (local)
BA. The loop closing process can be computationally heavy.
It is generally done in a dedicated thread.

5. Historical Review of vSLAM Methods

Figure 3 shows the chronology of vSLAM’s development that
comprises three ages. The first age, labeled here the “classical
age,” focuses on solving the SLAM problem. Several mathe-
matical formulations were proposed, and SLAM was effec-
tively applied for the first time. During the “second age,” the
focus of SLAM research moved to vision-based approaches.
Several vSLAM designs were proposed and new hardware,
such as GPU, RGB-D cameras, and stereo cameras, were inte-
grated into the process. This “age of vSLAM” concurs with
what [14] refers to as the “algorithmic analysis” age of SLAM.
Fundamental properties of vSLAM were studied, such as
convergence and consistency. vSLAM became central in the
development of SLAM methods. The “third age” is dedicated
to improving the robustness of vSLAM. The goal was to
improve vSLAM reliability to support the increasing number
of real-life applications (e.g., drones). In particular, this “third
age” introduced viSLAM approaches.

5.1. The Classical Age. The recent history of localization
started with the introduction of the Kalman filter in 1960
[50], extended to nonlinear systems byMaybeck in 1979 with
the extended Kalman filter (EKF) [51]. The SLAM problem
was formulated in the 1980s [1, 2, 52] and proved convergent
in 1995 [53]. During this period, a few SLAM approaches
were formulated, mainly with laser telemeters, odometry cal-
culated from different sources and implemented with EKF,
such as the one proposed as early as 1988 by Smith et al.
(the EKF-SLAM [38]). The use of a monocular camera was
very rare until 2003 when Davison et al. proposed Mono-
SLAM [21]. They implemented it using only one webcam, a
generic computer, and without odometry measurements. It

2003 MonoSLAM

vSLAM

Others

�e SLAM problem

1960 kalm
an �lter

2002 FastS
LAM

1988 EKF-SLAM

1979 EKF

2007: PTAM

viSLAM

2013 MSCKF

‘’ Classical age ’’
Filter based solutions
EKF and FastSLAM

Algorithmic-analysis age
ORB-SLAM and LSD-SLAM

Towards robustness
IMU integration

Figure 3: Overview of vSLAM history with milestones and the three ages: from the SLAM problem to vSLAM, vSLAM algorithmic
development, and the emergence of viSLAM.

6 Journal of Sensors



was the first real-time SLAM method using a single low-cost
visual sensor. Mapping and localization were performed in
3D, and the SLAM was based on an EKF. To deal with the
problem of initializing new points, Davison et al. proposed a
newmethod based on a particle filter to reduce the uncertainty
on field depth for newly detected visual landmarks. Mono-
SLAM paved the way for what will be known as vSLAM.

Every EKF-SLAM, even the famous MonoSLAM, suffered
from complexity, quadratic in the number of mapped features.
Many attempts were made to mitigate the problem, especially
by dividing the map into parts and using only the active sub-
map during the optimization process. None of them provided
a satisfactory consistency versus computational cost compro-
mise. In 2002, a Rao-Blackwellized particle filter was used
instead of an EKF in the FastSLAM proposed by Montemerlo
et al. [23]. This method effectively reduced the complexity of
logarithmic scaling, with a successful transposition into mon-
ocular vSLAM, i.e., scalable monocular SLAM by Eade and
Drummond in 2006 [22].

5.2. The Golden Age of vSLAM. Even the smallest complexity
of FastSLAM methods severely limited SLAM applications,
especially vSLAM that captures a lot of features. The biggest
breakthrough in vSLAM was the introduction of keyframe-
based solutions with Parallel Tracking andMapping (PTAM)
by Klein et al. in 2007 [27]. Among other improvements, this
new approach enabled task parallelization, better use of
global optimization, a reduced tracking drift, and more
importantly a new way of storing features with free scalabil-
ity. Almost every vSLAM algorithm is based on PTAM’s
concept, nowadays.

vSLAM became increasingly reliable with the integration
of efficient loop closure methods, global optimization, and
memory management based on keyframes and culling, with
processes performed in real time thanks to the multithread
parallelization. Consequently, new design and hardware
choices could be proposed broadening SLAM possibilities.
The development of vSLAM driven by use case requirements
became possible. Main vSLAM implementations proposed
during this period are detailed in Section 6.

5.3. The Third Age: Improving the Robustness. During the
third age, vSLAM continued to evolve, especially to improve
robustness targeting specific scenarios. The coupling of cam-
eras and IMUs (viSLAM) became an important research
topic. In the early 2010s, loose coupling of IMU data in exist-
ing vSLAM methods was considered [54]. But hybridization
filters rapidly evolved to the design of “tightly coupled”
visual-inertial methods, which are now very popular for
systems equipped with IMU and camera. An important
improvement in tightly coupled viSLAM is the 2007 MSCKF
(multistate constraint Kalman filter) by Mourikis and Rou-
meliotis [25], improved with MSCKF 2.0 in 2013 [24] that
introduced a new version of the Kalman filter that combines
observations overtime in one exteroceptive update. Other
remarkable methods were also created. Among them is the
use of lines instead of point features to avoid motion blur-
related issues, which is still used since PTAM. Other works
use RGB-D camera and filter the data associated with moving

objects before applying the SLAM algorithm to improve
robustness [55, 56]. Other approaches mitigate the dynamic
problem using an optical flow-based approach to detect and
discard dynamic features [57]. A new field of research, com-
bining SLAM and deep learning techniques, is emerging on
this topic. Deep learning techniques detect moving objects
and support ORB-SLAM2 algorithms to construct an accu-
rate map and localize moving robots in a dynamic environ-
ment [58]. In [59], the authors use semantic segmentation
and RGB-D camera for the same purpose. Rosinol et al.
and Yang et al. [60, 61] publish recent works using semantic
segmentation and SLAM algorithm.

When it is possible to revisit several times the same place,
the MapLab [62] work allows merging different maps of
different sessions at a large scale. The output map can be used
from one session to another.

Perhaps one of the most interesting recent trends is the
use of event cameras, i.e., bioinspired cameras, to avoid the
effect of motion blur. Because the use of event cameras is still
very recent, it is not included in our classification. However,
results published in 2018 by Rosinol et al. about Ultimate
SLAM [63] mixing the use of an event-based camera and
visual-inertial odometry seem very promising and eager to
open up new possibilities for vSLAM.

A recent work [64] optimizing both local and global
bundle adjustments gives promising results that can be used
in the viSLAM algorithm to improve global consistency.

6. Proposed Classification of Methods

Several approaches drive our classification’s work. Section 6.1
groups vSLAM methods based on their inputs. Section 6.2
groups viSLAM methods based on the level of coupling.
Finally, Section 6.3 compares the main v/viSLAM methods
according to the hardware requirements, the algorithm types,
and the implementation features. It is completed by a cross-
analysis of the v/viSLAM performance depending on the
application requirements.

6.1. Classification of vSLAM Methods. vSLAM methods
belong to three categories depending on the nature of the
input: feature based, direct, and RGB-D based, as introduced
in Section 4. Because RGB-D-based methods involve specific
hardware, it is considered as a whole category. Figure 4 shows
the classification result with a selection of some of the main
identified methods.

6.1.1. Feature-Based Methods. The monocular EKF-SLAM
MonoSLAM [21] and the particle filter scalable monocular
SLAM [22], i.e., monocular FastSLAM, belong to the
feature-based methods. The breakthrough Parallel Tracking
and Mapping (PTAM) [27] belongs to the same category.
Several adaptations of PTAM were proposed. The use of
edgelet features was, for example, introduced in [65].
Another important method is the ORB-SLAM [37].

6.1.2. Direct Methods. The first important direct method is
the Dense Tracking and Mapping (DTAM) [34] from 2011.
It was a pioneer of dense monocular vSLAM methods and
adapted for smartphones in 2015 with the MobileFusion

7Journal of Sensors



[66]. A more recent method, from 2016, is the Direct Sparse
Odometry (DSO) [33]: a visual odometry method that pro-
poses direct input treatment but sparse mapping for lighter
processing. Another major vSLAM method is the Semidirect
Visual Odometry (SVO) in 2013 and 2017 [67] that com-
bines the advantages of both direct and indirect input
searches in a VO framework. Large-scale direct monocular
SLAM (LSD-SLAM) in 2014 [35] is one of the first methods
that uses semidense mapping to address large environments.

6.1.3. RGB-D Methods. RGB-D methods include also several
main algorithms. In 2011, the KinectFusion [68] was aimed
at building a clean and accurate 3D reconstruction of an envi-
ronment using the Microsoft Kinect. Dense vSLAM [69], from
2013, focuses on accurate localization taking advantage of
dense maps. The ElasticFusion [70], in 2015, is a “map-
centric” method that focuses more on the geometric accuracy
of the built 3Dmodel than on the construction of a pose graph.

6.2. Classification of viSLAM Methods. Direct and indirect
features could be used to classify viSLAM methods. Other
reviews have also classified viSLAM methods depending on
whether they are filter- or optimization-based methods
[15]. But most major viSLAM methods are actually feature-
based methods and viSLAM mainly deals with hybridization
issues. Therefore, the classification shown in Figure 5 is based

on the coupling level of the visual and inertial data. We
differentiate two levels: loose and tight coupling.

6.2.1. Loose Coupling. Loosely coupled methods process the
IMU and image measurements separately and use both infor-
mation to track the pose. Weiss et al. [54] process images to
compute VO between consecutive poses and subsequently
fuse the latter with inertial measurements. IMU measure-
ments can also be filtered to estimate rotations that are fused
in an image-based estimation algorithm. Loosely coupled
visual-inertial odometry method is one part of the global
multisensor fusion (magnetometers, pressure altimeters,
GPS receiver, laser scanners, …) addressed by [71] in 2014.
Although the interest for visual-inertial systems is quite
recent, works on loosely coupled IMU-camera fusion started
already in the early 2000s. SOFT-SLAM algorithm [72] is a
loosely coupled viSLAM method that in fact uses IMU data
to reduce computation time when available. It builds in real
time a dense map and runs on a MAV.

6.2.2. Tight Coupling. Instead of fusing the outputs of vision-
and inertial-based algorithms, tightly coupled methods fuse
directly visual and inertial raw data to improve accuracy
and robustness. The MSCKF [25] and MSCKF 2.0 [24], both
robust and very light, belong to this category, along with
ROVIO [26], which is an EKF-based direct VIO method.

Feature–based
methods

Direct methods

M
onoSL

A
M

PTA
M

PTA
M

 o
n

m
obile

 p
hones

M
onoc. 

Fas
tS

LA
M

RGB-D
methods Kin

ec
tF

usio
n

D
en

se
 v

SL
A

M

Ela
sti

cF
usio

n

2013 2014 2015 20162003 2006 2007 2009 2011

O
RB-S

LA
M

D
TA

M
SV

O
D

SOLSD
-S

LA
M

M
obile

Fusio
n

Figure 4: Chronological classification of the main vSLAM methods.

Loosely coupled 
“R

ea
l-t

im
e

onboar
d V

I s
ta

te

es
tim

at
io

n”

“M
ulti

-s
en

so
r

fu
sio

n”

SO
FT-S

LA
M

Kim
er

a

V
IN

S-
M

ono

S-
M

SC
KF

V
IO

RB

O
KV

IS

RO
V

IO

M
SC

KF (2
00

7)

M
SC

KF 2
.0

ST
CM

-S
LA

M

Tightly coupled 

2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 5: Chronological classification of main visual-inertial SLAM methods.

8 Journal of Sensors



Open Keyframe-Based Visual Inertial System (OKVIS) [73]
and S-MSCKF [17] are famous stereo VIO methods, while
Vins-Mono [74] is a real viSLAM and not just a VIOmethod.
Kimera [60] is also based on a VIO method but it also
includes a pose graph optimizer, in different threads, for global
trajectory estimation, a 3Dmesh reconstructionmodule, and a
3D metric-semantic reconstruction module. VIORB [75] is
based on ORB-SLAM [76]. Its front-end extracts feature with
ORB while its back-end runs graph optimization. But its main
interest lies in a new IMU initialization method that first
estimates the gyroscope’s bias, approximates the scale and
the gravity (without considering accelerometer bias), and then
estimates the accelerometer bias (with scale and gravity direc-
tion refinement) and finally the velocity vector. It includes
global optimization and loop closure in parallel methods.

Most of the recent viSLAM methods are tightly coupled [15],
as the one presented by [77] that uses forward and backward
optical flow to tack image features.

6.3. Comparison of vSLAM and viSLAM from the Usage Point
of View. Main v/viSLAM methods are compared in Table 2
according to the hardware requirements, the algorithm types,
and the implementation features. Table 3 presents the state-
of-the-art performance of each method for five key features
describing the nature of common use cases. Table 3 has been
compiled by reading the cited publications and using the
criteria below to classify their performance evaluation results.

(i) Lifelong experiment feature assesses how the
method deals with lifelong experiments. Even in

Table 2: Comparative classification of main vSLAM and viSLAMmethods. The algorithms adapted to pedestrian navigation applications are
presented in bold.

Algorithm map gestion
Hardware requirements Approach

Input
treatment

Localis./Mapping
Memory
loop

Monoc. Stereo Depth IMU Filter Optim. Direct Indir.
2D-
2D

3D-
2D

IMU closure

MonoSLAM [21] X X Sparse X X

Monocular FastSLAM [22] X X Sparse X X

PTAM [27] X X Sparse X X

PTAM with edgelets [65] X X Sparse X X

PTAM with DWO [79] X X Sparse X X X

Stereo PTAM [78] X X Sparse X X X X

CD-SLAM [80] X X Sparse X X X

ORB-SLAM [37] X X Sparse X X X X X

ORB-SLAM2 [76] X (X) (X) X Sparse X X X X X

Edge-SLAM [81] X X Sparse X X X X

DTAM [34] X X Dense X (X) X

MobileFusion [66] X (X) X Dense X X (X) X

Semidense visual odom. [5] X X Semidense X X X

LSD-SLAM [35] X X Semidense X X X

Semidirect VO (SVO) [67] X X Sparse X X X X X

Direct sparse odom. (DSO)
[33]

X X Sparse X X X

KinectFusion [68] X X Dense X X

Kintinuous [82] (X) X X Dense X X X

DVO SLAM [69] X X X Dense X X X

ElasticFusion [70] X X X Dense X X X X

MSCKF [25] X X X None X X X X

MSCKF 2.0 [45] X X X None X X X X

ROVIO [26] X (X) X X None X X X X X

OKVIS [73] (X) X X X Sparse X X X X X

S-MSCKF [17] X X X None X X X X

Vins-Mono [74] X X X Sparse X X X X X

Kimera [60] (X) X X X X Dense X X X X X X

SOFT-SLAM [72] X (X) X Dense X X X (X) X X

STCM-SLAM [77] X X X Sparse X X X X X

VIORB [75] X X X Sparse X X X X X

9Journal of Sensors



small environments, vSLAM continuously gathers
new keyframes, which means lifelong experiments
may lead to an increasing number of keyframes
and mapped features. Defining a good keyframe
selection policy and memory management methods
is important

(ii) Large-scale environment feature judges the ability
of themethod to scale to large environments (i.e., more
features accumulated andmore distant landmarks). To
assess this aspect, important criteria are drift mitiga-
tion, efficient global optimization (e.g., choice of key-
frames and type of keyframe graph), and efficient
place recognition and loop closure frameworks

(iii) Low-textured environments correspond to surfaces
with few textures such as large walls that can be a
problem, especially for feature extraction. Methods
with the best performance facing low-textured spaces
may use special features like edges and additional
hardware for localization (IMU) or, even better, for
mapping (depth sensors of RGB-D methods)

(iv) Outdoor environments: this type of environment
adds difficulties such as light changes. The use of
depth sensors, good feature descriptors, or simply
robust place recognition methods (to correct errors
by closing loops) is relevant for outdoor spaces.
The analysis is also based on the outcome of outdoor
tests for each algorithm

(v) Movement: robustness to the motion blur induced
by high-speed movements when dealing with cam-

eras is important to choose the right method for
the right application. Methods using a dense map
or edge features are generally more robust. However,
visual-inertial systems are found to be more robust,
as discussed earlier in Section 4

Other methods are added to complete the v/viSLAM classi-
fication performed earlier. Two interesting PTAM-derived
algorithms are the stereo version of PTAM [78] and the
Double-Windowed Optimization (DWO) [79] framework.
CD-SLAM [80] was the first attempt to extend PTAM’s princi-
ples to large-scale indirect vSLAM in a more robust approach.
Some of CD-SLAM’s features inspired the popular ORB-
SLAM. The latter combines the most efficient vSLAM features
(bimodel initialization, efficient keyframe and map point
culling, ORB features, and bag-of-word loop closure) as well
as the “essential graph” of keyframes. ORB-SLAM2 [76] adapts
ORB-SLAM for stereo and RGB-D cameras. Edge-SLAM [81]
is a recent attempt to build a robust vSLAM with edges as fea-
tures. The direct method “semidense visual odometry” [5] and
Kintinuous [82] are also included. The first one focuses on the
application of semidense vSLAM for augmented reality using a
smartphone. The last one is an extension of the KinectFusion
algorithm for larger-scale environments.

7. Experimental Benchmark

Using the classification in Section 6, fivemain algorithms were
selected for the experimental benchmark: DSO [33], LSD-
SLAM [35], ORB-SLAM2 [76], and two viSLAM methods:
ROVIO [26] and Vins-Mono [74]. They can all be considered

Table 3: Indications on the robustness to various scenarios of the most famous vSLAM methods.

Algorithm
Recommended usages

Objectives
Lifelong exp. Large envir. Low textured

Outdoor
(light, outliers)

Robust to mov.

MonoSLAM [21] − − − − − Pose estimation in robotics

PTAM [27] − − − − ∼ A.R. in small workspaces

ORB-SLAM2 [76] + + ∼ + + Robust large path tracking

Edge-SLAM [81] ∼ + + + + Low-textured environments

DTAM [34] −? − ∼ ∼ + Robustness to motion blur

MobileFusion [66] + − − − − 3D object modeling on phone

LSD-SLAM [35] ∼ + − + ∼ Semidense trajectory estimation

SVO [67] + ∼ + + + Fast, consistent, semidirect method

DSO [33] + ∼ + + + Direct and sparse VO method

KinectFusion [68] + − + + ∼ 3D modeling with the Kinect

ElasticFusion [70] − − + ∼ ∼ Map-centric vSLAM

S-MSCKF [17] + ∼ ∼ ∼ + Rapid and consistent Kalman filter

ROVIO [26] + ∼ − ∼ ∼ Robust VIO for UAVs

OKVIS [73] + + ∼ + + Robust stereo VIO for UAVs

Vins-Mono [74] + + ∼ + + Full viSLAM method

Kimera [60] + ∼ + ∼ + VIO+3D semantic-metric mesh

VIORB [75] + + ∼ + + VI method based on ORB-SLAM

For each difficulty, we consider the method to be either robust (+), to have potential difficulties (∼), or to not be recommended at all (−). This does not reflect the
overall accuracy of the method or the robustness of the initialization procedure.

10 Journal of Sensors



as reference methods in their categories. They embody the
variety of existing designs and are theoretically suited for our
use case. They are presented in bold in Table 2. Based on
our classification, we choose the viSLAM algorithms ROVIO
and Vins-Mono for the pedestrian context. They were also
considered by [3] as the most accurate and robust algorithms
across all platforms and datasets, and ROVIO is considered as
a good compromise. Chen et al. [15] also consider Vins-Mono
as the algorithm with the best accuracy among the viSLAM
algorithms under test.

Not only were these algorithms selected based on their
importance in the field but also on the requirements of the
use case of interest: pedestrian’s pose estimation with a hand-
held device in urban environments. Selected methods should
target accurate pose estimation in a challenging context and
be available in open source. No restriction linked to compu-
tational difficulties was applied for this benchmark. Global
robustness to many perturbations is expected as we seek an
implementation on a handheld device, such as a smartphone.
We only selected methods that work with a monocular cam-
era and IMU for the viSLAM part. Pedestrian applications
mean that the user’s behavior has to be considered. The
movement of a handheld camera can be shaky, and fast
uneven motion will occur. In terms of user requirements,
we preferred methods that did not require a very specific
manual initialization. As most of the pedestrian applications
are being outdoors (e.g., in urban environments), the selected
algorithms must handle large-scale scenarios, long experi-
ments (several minutes to an hour), and light changes.
Kimera [60] and VIORB [75] could have been added to this
benchmark considering their assessment in the above classi-
fication. But even if Kimera aims at running with monocular
camera, one part of the code (the loop closure detection)
requires a stereo camera at the moment. As for VIORB, the
authors have not publicly distributed their code.

7.1. Experiments and Dataset Features. The following
features were adopted for the experimental setup, data acqui-
sition, and analysis. They are specific to our use case.

(i) Hardware (handheld device): forward-facing mon-
ocular camera with rolling shutter and IMU
recording

(ii) Pose estimation: our main focus is the online
correctness of the current pose, not the overall accu-
racy of the reconstructed path

(iii) Outdoor scenarios: illumination changes, the
variability of the scale of the observed scene

(iv) Pedestrian: few changes in overall velocity (and low
mean velocity) but a shaky camera. Accelerations
follow a specific back and forth movement on each
axis due to the walking pace

(v) Large trajectories: it expands from a few to no loop
closure

(vi) Urban environments: moving objects, potential
moments with badly textured elements observed
(sky, wall, etc.)

(vii) General public: user-friendliness is expected (no
specific manual initialization, no need to adjust
parameters to each scenario)

The EuRoCMAV dataset [6], including inertial data, was
chosen for the overall comparison of all five methods. Other
IMU+vision datasets could have been considered to extend
our experimental assessment. In [83], an indoor/outdoor
dataset is described but its ground truth accuracy is only
15 cm as compared to the 1mm with the EuRoc dataset.
The dataset presented in [84] is recorded by aMAV in Zurich
urban space. The ground truth of the MAV displacement is
postprocessed using Pix4D photogrammetry mapping
instead of being surveyed by an external localization system
(e.g., a motion capture system) as it is in the EuRoc dataset.
The dataset presented in [85] is another interesting candidate
with good accuracy and higher test sequence variability than
EuRoc. We choose EuRoc since its broad adoption in other
reviews eased the comparison of our results with other stud-
ies. We will consider other datasets in future work. Interested
readers can find other datasets referenced in [15, 83–85].

EuRoc comprises various scenarios of drone flight in the
same environment and six degrees of freedom ground truth.
We choose to focus only on three scenarios among the 11
available. They correspond to different characteristics,
detailed in Table 4, which are all interesting to assess the per-
formance of the selected algorithms. Let us note that the
drone flight movements show similarities with those of a
handheld camera, contrary to the car-embedded cameras of
the KITTI dataset [86], whose 10Hz sampling frequency is
not sufficient to track rapid movements. The amplitude of
hand movement is often underestimated. Movements are
more important than those of the arm naturally synchro-
nized with the walking gait. The handheld device is turned
over and raised to explore the environment. This is why we
can compare it to the drone dynamics. The selected methods
were also tested on a new dataset called “IRSTV” collected by
a pedestrian walking with a handheld device along the urban

Table 4: Datasets chosen for our benchmarking.

Dataset Difficulty Characteristics

Machine Hall 01 Easy Low velocity, well textured, good illumination, 80.6m (182 s)

Machine Hall 03 Medium High velocity, well textured, good illumination, 130.9m (132 s)

Machine Hall 05 Difficult High velocity, poorly textured, bad illumination, 97.6m (111 s)

IRSTV Difficult
Low velocity, well textured and poorly textured part, illumination changes

(outdoor and indoor parts), 466m (390 s)

11Journal of Sensors



path, shown in Figure 6, along with the hardware setup. It
corresponds to a 466m walking path in both indoor and
bright outdoor spaces. It comprises images with scenes at
different scales: streets, open spaces, and rooms. It also
contains observations of glass-covered buildings that reflect
the environment, which classically fails visual odometry. No
specific motion for dynamic initialization was imposed at
the beginning of the acquisition.

The hardware setup comprises a Garmin camera and a
dedicated platform named ULISS [87] (Figure 6). The cam-
era is the “VIRB 30 Ultra” with a fixed focal length, a 60Hz
frame rate, and a 1920 × 1080 pixel resolution corresponding
to a standard resolution of smartphone’s acquisition. ULISS
comprises a triaxis inertial measurement unit and a triaxis
magnetometer sampled at 200Hz, a barometer, a high-
sensitivity GPS receiver, and an antenna. These low-cost
sensors are classically embedded in mobile devices. This
hardware setup gives access to raw data without prefiltering
often embedded in mobile devices. ULISS and the camera
data are precisely synchronized using timestamps from the
GPS receivers embedded in both devices. The reference
system for indoor/outdoor pedestrian navigation, PERSY
[88], was attached to the foot. It provides the ground truth

for the pedestrian’s scenario with 0.3% horizontal position-
ing accuracy of the cumulative walking distance. It is shown
in green in Figure 6.

The benchmarking is conducted on a 2.60GHz Intel
Core i7-6700HQ CPU. Our Linux environment is in a virtual
machine (Oracle VirtualBox 5.2.12). We allowed all four
cores with 100% allocated resources and 5GB of RAM usage.
All algorithms are tested in Ubuntu 16.04. When ROS was
required, we used ROS kinetic with a catkin workspace. The
next section presents a detailed analysis of the chosen algo-
rithms on the selected dataset and assesses the most suitable
for our case.

7.2. Experimental Assessment Methodology. We ran the tests
on the two previously presented datasets starting with EuRoc
dataset. All results are averaged on five runs to account for
random outlier mitigation parts. In Tables 5 and 6, we pro-
vide the mean values of the Relative Positioning Error
(RPE) and the Absolute Positioning Error (APE) for each
method on each dataset. APE and RPE wre obtained with
obtained with evo package github.com/MichaelGrupp/evo.
APE is the Euclidean distance between the estimated position
(2D or 3D) and the true position whereas RPE is the

600

500

400

800 900

Xn (m)

Y
n
 (

m
)

1000

(a) (b)

Figure 6: (a) IRSTV dataset path and (b) experimental setup.

Table 5: Relative pose error for each tested method on each dataset, averaged on five runs.

RPE (cm)
Vins-Mono ORB-SLAM2 DSO ROVIO LSD-SLAM

RMSE (σRMSE) RMSE (σRMSE) RMSE (σRMSE) RMSE (σRMSE) RMSE (σRMSE)

MH 01 (easy) 2.99 (1.8%) 3.14 (0.9%) 2.98 (0.6%) 9.98 (0.6%) 6.32 (9.2%)

MH 03 (medium) 3.70 (0.8%) 3.19 (1.0%) 3.68 (2.4%) 8.89 (0.0%) —

MH 05 (difficult) 3.85 (0.9%) 3.73 (0.5%) 3.49 (0.4%) 16.0 (0.0%) 17.9 (9.9%)

12 Journal of Sensors



T
a
b
l
e
6:
A
b
so
lu
te
p
o
se

er
ro
r
fo
r
ea
ch

te
st
ed

m
et
h
o
d
o
n
ea
ch

d
at
as
et
,
av
er
ag
ed

o
n
fi
ve

ru
n
s.

A
P
E
in

cm

V
in
s-
M
o
n
o

O
R
B
-S
L
A
M
2

D
SO

R
O
V
IO

L
SD

-S
L
A
M

R
M
SE

� σ
M
a
x

R
M
SE

� σ
M
a
x

R
M
SE

� σ
M
a
x

R
M
SE

� σ
M
a
x

R
M
SE

� σ
M
a
x

(σ
R
M
SE

)
(σ
R
M
SE

)
(σ
R
M
SE

)
(σ
R
M
SE

)
(σ
R
M
SE

)

M
H

01
8.
46

(1
1.
50
%
)

3.
79

20
.3

4.
3
(1
.2
9%

)
2.
00

7.
93

7.
57

(2
.4
7%

)
3.
54

16
.2
8

30
.4
(0
.9
0%

)
15
.0
8

96
.9
6

11
.7
6
(1
2.
45
%
)

8.
27

89
.9
2

M
H

03
9.
51

(7
.4
5%

)
4.
71

25
.2
5

3.
89

(2
.6
8%

)
1.
71

9.
47

10
.0
5
(7
.7
0%

)
4.
71

23
.9
0

39
.2
5
(0
.0
0%

)
16
.4
4

78
.0
3

—
—

—

M
H

05
17
.3
9
(2
.7
1%

)
7.
51

32
.0
1

5.
31

(3
.2
1%

)
2.
19

11
.8
9

13
.8
7
(4
.2
1%

)
5.
51

24
.3
0

10
5.
45

(0
.0
9%

)
49
.4
1

22
3.
36

10
1
(1
2.
1%

)
59
.3

72
2

IR
ST

V
69
5

36
7

23
95

64
9

39
6

16
57

11
16

89
7

51
88

R
es
u
lt
s
in

it
a
li
cs
in
d
ic
at
e
th
at

th
e
al
go
ri
th
m

fa
il
ed

o
n
so
m
e
o
f
th
e
fi
ve

ru
n
s
b
y
lo
si
n
g
tr
ac
k
.T

h
e
n
u
m
b
er
s
ar
e
th
u
s
av
er
ag
e
o
n
th
e
o
th
er

ru
n
s.
T
h
e
n
u
m
b
er
s
in

p
ar
en
th
es
es

ar
e
th
e
st
an
d
ar
d
d
ev
ia
ti
o
n
o
f
th
e
R
M
SE

(w
h
ic
h
is
av
er
ag
ed

o
n
fi
ve

ru
n
s)
.R

es
u
lt
s
o
n
IR
ST

V
’s
d
at
as
et
ar
e
fu
rt
h
er
ex
p
la
in
ed

in
th
e
re
su
lt
an
al
ys
is
o
f
ea
ch

co
n
ce
rn
ed

m
et
h
o
d
.N

o
n
e
o
f
th
e
m
et
h
o
d
s
re
co
n
st
ru
ct
ed

th
e
fu
ll
IR
ST

V
p
at
h
b
u
t
o
n
ly
so
m
e
p
ar
ts
o
f
it
:

D
SO

29
2.
75

m
,
O
R
B
-S
L
A
M
2
59
6.
80

m
,
an
d
V
in
s-
M
o
n
o
21
2.
83

m
.
A
P
E
w
as

o
b
ta
in
ed

w
it
h
ev
o
p
ac
k
ag
e
gi
th
u
b
.c
o
m
/M

ic
h
ae
lG
ru
p
p
/e
vo
.

13Journal of Sensors



1.0

0.8

0.6

0.4

0.2

0.0C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.00 0.02 0.04

X error distribution (m)

XYZ error distributions: ORB_SLAM2

0.06 0.08 0.10

0.00

0.00 0.01 0.02

Z error distribution (m)

0.03 0.04

MH_01_easy

MH_03_medium

MH_05_di�cult

0.02 0.04

Y error distribution (m)

0.06 0.08 0.10

Figure 7: ORB-SLAM2: cumulative error distributions alongside each axis of the position on EuRoC MH01, MH03, and MH05.

10

0

7.5

5.0

2.5

0.0

–2.5

0.5

1.0

0.0

–0.5

0 20

Data_camoframe

ORB-SLAM2_results

40 60

t (s)

z
 (

m
)

y
 (

m
)

x
 (

m
)

80 100 120

5

Figure 8: ORB-SLAM2: trajectory plots showing moments where parts of the tracked trajectory are not estimated (at the end). The example is
for one run on EuRoC MH03.

14 Journal of Sensors



Euclidean distance between consecutive position estimates
(2D or 3D).We computed the average values of the root mean

square error (RMSE), of the standard deviation (�σ), and of the
maximal error (max) as constancy indicators. The APE is
calculated after Sim (3) Umeyama alignment for all methods
[89]. The RPE is calculated as a drift: translation or rotation
error per meter. This local accuracy is independent of the
number of keyframes and allows to compare VO and vSLAM.

RPE assesses the drifting error part by checking the cor-
rectness of the pose-pose transforms. For instance, a good
RPE and a bad APE may indicate a bad drift correction. It
may come from an inefficient loop closure framework and/or
bad initialization knowing that initialization is one of the
weaknesses of SLAM [20]. It can also mean that major
“singular” errors are likely to happen locally and are not
corrected. In this case, the max RPE should be much bigger
than the RMSE RPE.

Using the provided timestamps, we compared the real
position with the estimated position to compute APE. They
are computed in 3D for the EuRoc dataset but only in 2D
for the IRSTV dataset since PERSY only provides the ground

truth of the pedestrian’s path in the horizontal plane. The
cumulative APE distribution functions (CDF) are plotted
for global accuracy and stability assessment of the tested
algorithms. The errors are computed in the local navigation
frame defined by the x and y axes forming the local horizon-
tal plane and the z axis pointing upward. To simulate real-life
applications where no human intervention is needed between
various tasks in diverse environments, the parameters needed
to run the computation were fixed for all runs.

We also evaluated the performance on the five features,
pertinent for the use case (Section 7.1), as well as the stability
(whether or not the results are likely to change for a given
scenario from one run to another), the overall quality of the
pose estimation, and the ability to estimate the true scale
without postprocessing. For this last point, we simply deter-
mined the relative error over the total length of the trajectory
between the results and the ground truth.

escale =
lengthresult‐traj − lengthgroundtruth

�

�

�

�

�

�

lengthgroundtruth
: ð1Þ

1.0

XYZ error distributions: Vins-Mono

x error distribution (m)

y error distribution (m)

z error distribution (m)

0.8

0.6

0.4

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.00 0.05 0.10 0.15 0.20

MH_01_easy

MH_03_medium

MH_05_di�cult

0.25

0.00

0.00 0.05 0.10 0.15 0.20 0.25

0.05 0.10 0.15 0.20 0.25 0.30

Figure 9: Vins-Mono: cumulative error distributions alongside each axis of the position on EuRoC MH01, MH03, and MH05.

15Journal of Sensors



7.3. Detailed Analysis. The analysis starts with monocular
ORB-SLAM2, Vins-Mono, and DSO giving the best RPE
and APE on the three EuRoc. It continues with LSD-SLAM
and ROVIO providing less good results and failing on the
IRSTV dataset.

7.3.1. ORB-SLAM2 Result Analysis. Globally, ORB-SLAM2
provides the best RPE RMSE. It outperforms DSO and
Vins-Mono in terms of APE, both at the RMSE and the max-

imum errors. This highlights its efficiency to correct the drift-
ing effect. Figure 7 shows the CDF of the positioning error for
the 3 EuRoc. We observe a very good constancy with the low-
est σ of this benchmark and the best predictability after
ROVIO with the lowest RMSE’s standard deviation. ORB-
SLAM2 gives noticeable constancy with a max APE/RMSE
ratio of around 2, the lowest σ/RMSE ratio of this bench-
mark. Apart from ROVIO, it gives the best predictability with
the lowest RMSE’s standard deviation.

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y

1.0

0.8

0.6

0.4

0.2

0.0
C

u
m

u
la

ti
ve

 p
ro

b
ab

il
it

y
C

u
m

u
la

ti
ve

 p
ro

b
ab

il
it

y

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.00

0.00

0.00

MH_01_easy

MH_03_medium

MH_05_di�cult

0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.05 0.10

y error distribution (m)

z error distribution (m)

0.15 0.20 0.25

0.05 0.10

XYZ error distribution: DSO

x error distribution (m)

0.15 0.20 0.25

Figure 10: DSO: cumulative error distributions alongside each axis of the position on EuRoC MH01, MH03, and MH05.

Figure 11: Trajectories effectively traveled on IRSTV dataset. From left to right: DSO (292.75m), ORB-SLAM2 (596.80m), and Vins-Mono
(212.83m).

16 Journal of Sensors



MH01 and MH03 results are similar illustrating good
robustness to movement. The almost undisturbed RPE and
APE for MH05, as compared to MH01 and MH03, seem to
indicate robustness to lack of texture. However, this is only
due to ORB-SLAM2’s ability to relocalize and close loops,
detailed in Section 7.4 where ORB-SLAM2 was tested with-
out loop closures. The VO base of ORB-SLAM2 is actually
very sensitive to MH05 parts where texture is missing.
IRSTV’s results show that ORB-SLAM2 can perfectly handle
large difficult environments. Despite the lack of loops, it out-
puts rather precise results with a 1.1% APE RMSE error over
the traveled distance. No failure due to the environment or
initialization issued was observed.

To conclude, ORB-SLAM2 is found to be consistent and
robust in the various tested scenarios (including very large
scales) and has very reliable optimization and loop closing
frameworks. It performs at least as great as other state-of-
the-art methods including Vins-Mono despite using only
the visual information of a high-speed visual-inertial dataset.
Its visual odometry base is very sensitive to lacking texture,
but loop closure and relocalization allow to correct the trajec-
tory. However, let us notice that ORB-SLAM2 has a very
restrictive keyframe-culling policy, which means that it also
outputs fewer poses. This obviously improves the output
compared to what is truly estimated. It also means that the

results sometimes give several seconds without any pose out-
put because no new keyframe was captured during this time
(or it was later culled out) as seen in Figure 8. This can be
avoided by turning down the severity of the keyframe man-
agement parameters in the code. Results with disabled loop
closure are displayed in Section 7.4.

7.3.2. Vins-Mono Result Analysis. Vins-Mono RPE RMSE is
among the best of our benchmark. Vins-Mono APE results
are the second best as well (along with DSO and behind
ORB-SLAM2). Its APE max/RMSE ratio is of 2 to 3, and its
overall consistency (σ, max) is comparable to DSO’s. How-

ever, we obtained less predictable results in MH01 (σRMSE
of 11.5%), showing that high speed can actually be beneficial
for Vins-Mono’s robustness. The shapes of the CDF error
plots (Figure 9) also indicate that there are still a few singular
errors that deteriorate the overall results.

The most noticeable result of Vins-Mono is the high
accuracy of the real scale estimation. escale values are 2.7%
on MH01, 2.8% on MH03, and 0.9% on MH05. RPE and
APE are not really affected in MH03 by the increased move-
ment. MH05 results are great too when compared to MH01
or MH03, which indicates robustness to lack of texture.

Tests on the IRSTV dataset output an APE RMSE of 3.3%
of the traveled distance, which is a satisfying result for most

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.0

0.0

MH_01_easy

0.20.1 0.3 0.4 0.5 0.6

0.2 0.4 0.6 0.8 1.0

0.1 0.2 0.3

XYZ error distribution: LSD-SLAM

x error distribution (m)

y error distribution (m)

z error distribution (m)

0.4 0.5 0.6

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

Figure 12: LSD-SLAM: cumulative error distributions alongside each axis of the position on EuRoC MH01.

17Journal of Sensors



pedestrian localization applications. However, Vins-Mono
struggles a lot with the initialization, probably due to the
absence of a specific initialization phase at the beginning of
the acquisition, contrary to EuRoC. It can generally initialize
when motion with sufficient parallax is detected. However,
the quality of the IMU acceleration bias estimated at this
moment is uncertain, which greatly impacts the accuracy
and robustness of the results. We also found out that glass
door reflections were repetitively the cause of failures. Fur-
thermore, the real-scale estimation on the IRSTV dataset is
far less precise than in the close environment of EuRoC
(around 43% of error!). Nonetheless, we believe these results
to be improvable. Adding specific motion for dynamic ini-
tialization at the beginning of the dataset would probably
have improved the results and robustness.

Globally, Vins-Mono is found to be robust to the difficul-
ties in the presented scenarios, and its great RPE RMSE is
promising for lifelong experiments. Although ORB-SLAM2’s
results are still overall better, the real benefit of Vins-Mono
is its ability to accurately estimate the real scale. Consequently,
the results can easily be interpreted online as real-world poses
on a given map for instance. However, results on the IRSTV
dataset show that it can be difficult to meet the requirements
in terms of hardware to get the best out of Vins-Mono or that

specific user movement might be needed to correctly initialize
the IMU bias.

7.3.3. DSO Result Analysis.Along with Vins-Mono and ORB-
SLAM2, the DSOmethod outputs the best RPE RMSE results
of all tested methods. Being a pure VO method, its accuracy
only depends on the quality of the odometry. DSO’s results
are also noticeable for their regularity with APE �σ and max
errors comparable to Vins-Mono’s.

DSO is found to be robust to movement since MH03
results are comparable to those of MH01 and robust to lack
of texture with MH05 results comparable to those of MH01.
Even though DSO is pure visual odometry, its overall results
are the second best of our benchmark and are promising for
large-scale environments (low RPE RMSE), although
Figure 10 shows that the error scale with the length of the tra-
jectory rather than anything else (cf. Table 4). Compared to
the other two best methods of our benchmark, DSO also has
the advantage of obtaining this accuracy on its live pose esti-
mation and not only on the trajectory reconstruction.

DSO correctly estimates the path and reconstructs the
environment for the IRSTV dataset. The scale estimation fails
when the camera moves from a street to a large place with a
trajectory estimated with two different scales. We only

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.00

0.0

MH_01_easy

MH_03_medium

MH_05_di�cult

0.1 0.2

z error distribution (m)

0.3 0.4 0.5

0.25 0.50 0.75 1.00 1.25 1.50 1.75

0.5 1.0

x error distribution (m)

y error distribution (m)

XYZ error distributions: ROVIO

1.5 2.0

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

Figure 13: ROVIO: cumulative error distributions alongside each axis of the position on EuRoC MH01, MH03, and MH05.

18 Journal of Sensors



considered the second part of the trajectory for the APE error
estimation since it is the only part well reconstructed by the
three methods (Figure 11). With a 3.8% APE RMSE over
the traveled distance, the results are less precise results than
those of ORB-SLAM2 and Vins-Mono. Let us notice that
DSO did not face difficulty to initialize, contrary to Vins-
Mono cf. Section 7.3.2. The lower accuracy, as well as the
scale estimation issue, can be explained by the use of a rolling
shutter camera, whereas direct methods perform better with
global shutters.

Overall, DSO is precise, consistent, and robust in various
environments. The reconstructed semidense map gives an
easily readable representation of the observed surroundings.
Seeing how great it adapts to various scenarios, the only real
weakness of DSO in terms of results is its pure VO nature. It
performs great even at very large scale and with difficult envi-
ronments, but we came across a bad scale-estimation issue. It
could be interesting to couple it with a loop closure frame-
work to turn it into a true SLAM method. Also note that
DSO requires GPU acceleration, which means that it is not
easily adaptable to a wide range of applications.

7.3.4. LSD-SLAM Result Analysis. As far as we know, there
are no public tests of LSD-SLAM on EuRoC available. Its
package is the oldest of all the algorithms tested here, so we

are not refuting the possibility that an adaptation to EuRoC
is possible (for instance the Stereo version [90] might be bet-
ter performing here. (The open-source github project neither
seems to be maintained anymore, nor to be upgraded to
recent Ubuntu and ROS versions.) However, by using the
regular package, parameters, and recommendations accessi-
ble today, we managed to run LSD-SLAM on MH03 and
MH05. Despite encouraging results on MH01 (Figure 12),
its robustness to movement and maybe lack of texture was
not sufficient to produce decent results for MH03 and
MH05. Also, the tracking failed before the end for every
MH03 run we made and on three out of five runs on
MH05. Note that to better support the initialization of
LSD-SLAM, we cut off the beginning of the dataset, where
the drone moves erratically, to initialize its IMU parameters.

Observing the very random behavior obtained on the
multiple runs, it seems clear that LSD-SLAM’s failure here
is due to bad initialization. Most probably, the LSD-SLAM
results do not reflect the real abilities of this method in ideal
conditions. This result highlights the fact that methods
requiring specific attention during initialization are less
suited for many applications where such care cannot be
brought. The need for specific user intervention and control
are critical elements to consider when choosing a SLAM
method. With the current settings and initialization process,

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

DSO

LSD_SLAM

ORB_SLAM2

ROVIO

Vins-Mono

0.20.1 0.3 0.4 0.5 0.6

0.4

x error distribution (m)

y error distribution (m)

z error distribution (m)

XYZ error distributions: MH_01_easy

0.6 0.8

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

Figure 14: Comparison of position error distributions alongside each axis on EuRoC MH01.

19Journal of Sensors



LSD-SLAM was found to be not robust enough for scenarios
similar to those presented in EuRoC Machine Hall.

7.3.5. ROVIO Result Analysis. Looking at the dataset MH01
and MH03, among all methods, ROVIO outputs the worst
RPE RMSE. The cumulative error distribution plots, shown
in Figure 13), show that 80% of the positioning errors for
MH01 and MH03 are below 25 cm along the x axis, 20 cm
along the y axis, and 15 cm along the z axis. Globally, the
approach is still accurate with, for example, the maximal
errors along the y axis for MH01 and MH03, with 40 cm
and 80 cm, respectively. Overall, it gives one of the worst
APE (LSD-SLAM failures apart), with an APE RMSE 3 to
20 times worse than the other methods, and an APE max 3
to 12 times worse. All ROVIO runs give the same results on
a dataset; there are no stochastic parameters.

The general scale estimation is good enough for real-scale
trajectory estimation. escale values equal 4.9% for MH01, 4.7%
for MH03, and 12.8% for MH05. It seems robust to move-
ment since the performance is not especially altered in
MH03 as compared to MH01 (see the APE and RPE). How-
ever, the very bad results on MH05 show that it is surpris-

ingly (since it is VIO) badly affected by the passages in
textureless environments. Regarding large scales, the lack of
precision combined with the pure VIO nature may lead to very
imprecise results. However, pure VO, like ROVIO, displays an
advantage regarding memory management for lifelong experi-
ments, since it works with a window of keyframes only.

To conclude on ROVIO, it is found to be less precise than
other methods. It is only a pure VIO without loop closure
and global optimization. It remains an interesting VIO
method for online control of drones, for example, or any
application that focuses more on local pose estimation than
the correctness of the reconstructed trajectory with respect
to a reference ground truth. Its predictability is interesting
for repetitive tasks and known scenarios. However, texture-
less environments seem to introduce serious issues and the
lack of consistency in the results is problematic for applica-
tions that require to continuously assess the precision.
ROVIO failed on the IRSTV dataset.

7.4. Comparative Analysis and Conclusion regarding
Pedestrian Urban Navigation with Handheld Sensors. Com-
parative pose estimation results for all the tested methods

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.0

DSO

ORB_SLAM2

ROVIO

Vins-Mono

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.1 0.30.2 0.4

0.0 0.1 0.2 0.3

XYZ error distributions: MH_03_medium

x error distribution (m)

y error distribution (m)

z error distribution (m)

0.4 0.5 0.6 0.7

Figure 15: Comparison of position error distributions alongside each axis on EuRoC MH03.

20 Journal of Sensors



are shown in Figures 14–16. As for rotation estimation only,
all methods perform relatively good without any distinctive
difference. We observe a small tendency to drift in ROVIO’s
yaw estimation. It is illustrated with the rotation estimation
for MH03 in Figure 17.

Due to the potential lack of loop and our focus on the
correctness of live pose estimation, a strong VO or VIO base
is needed. Therefore, we added the results for Vins-Mono
[74] and ORB-SLAM2 [76] without loop closure in
Table 7. A real-scale estimation capability is also needed,
as it would greatly ease the development of solutions for
online applications.

Table 7 shows that ORB-SLAM2 rarely uses loop closure
on the EuRoC tested since the results on MH01 and MH03
are almost the same. However, it uses it at a larger scale to
correct drift. In MH05, the passage in the dark introduces a
large positioning uncertainty, which means that the trajec-
tory is drifting from there until the end. If no loop closure
is possible, the result completely depends on how bad the
pose estimation was during the textureless part. Here, the
APE RMSE results range from 14 cm up to 3.7m. Vins-
Mono seems to use loop closure more often for the same
since its absence doubles the errors. However, thanks to the
IMU integration, the error is bounded and more predictable.

Choosing ORB-SLAM2 for its more precise results may be a
dangerous bet if loop closure is difficult to perform in the
considered environment. The reason is that its results are
heavily impacted by a problem in pose estimation due to a
momentary lack of texture.

Finally, the computation on the IRSTV dataset finds
ORB-SLAM2 to be the most robust approach. It handles
urban space difficulties (glass reflections, scale changes, and
pedestrian motion) and even indoor-to-outdoor transitions
since illumination changes do not cause major ORB-
SLAM2 failure as in MH05 without loop closure. In conclu-
sion, DSO, Vins-Mono, and ORB-SLAM2 are all suitable
choices for our use case, i.e., pedestrian urban navigation
with handheld sensors. The choice also depends on the type
of hardware available: GPU+global shutter for DSO, tightly
synchronized IMU, and camera for Vins-Mono. With the
high-end hardware, DSO might be preferred for urban envi-
ronments with severely textureless places, while Vins-Mono
can offer more realistic scale estimation without further
manipulation (when properly initialized). However, when
considering user-friendliness (i.e., easy initialization), easi-
ness to set up, hardware and computational power require-
ments, and global robustness and accuracy, ORB-SLAM2
comes at a first choice for our use case.

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0
C

u
m

u
la

ti
ve

 p
ro

b
ab

il
it

y 1.0

0.8

0.6

0.4

0.2

0.0

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

0.0

DSO

ORB_SLAM2

ROVIO

Vins-Mono

0.1 0.2 0.3 0.4 0.5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

0.0 0.5 1.0

XYZ errors distributions: MH_05_di�cult

x error distribution (m)

y error distribution (m)

z error distribution (m)

1.5 2.0

Figure 16: Comparison of position error distributions alongside each axis on EuRoC MH05.

21Journal of Sensors



8. Conclusion

We conducted a review of important SLAM approaches and
detailed the core notions of vSLAM and viSLAM along with
the different existing designs. We linked this theoretical sur-
vey with a historical overview to identify the main milestones
in SLAM evolution divided into three main periods. Finally,
we classified some of the most famous methods comparing
their main design characteristics, their objectives, and their

expected robustness in various scenarios using five key
features describing the nature of common use cases. Our
experimental benchmark focuses on pedestrian pose estima-
tion with a handheld device in urban environments. It
emphasizes three reliable SLAM methods: Vins-Mono,
DSO, and ORB-SLAM2. Overall, ORB-SLAM2 provides the
best performance. However, for applications where real-
scale estimation is needed online, an additional framework
is required. Such a framework could tackle the lack of loop
on very large trajectories that are frequent in pedestrian
applications. For example, correcting the pose using known
recognized urban locations such as bike stations or bus stops
is an interesting solution [91]. It seems interesting to extend
the experimental benchmark of vSLAM to test the robustness
of existing methods to the five key features used to describe
common use cases. It would support assessing these key fea-
tures specifically (e.g., manually introduce illumination
changes in the frames) but also enlarge the assessment on
other specific use cases for general and detailed analysis.
The work in [3] is one example of it that unfortunately tests
only viSLAM methods.

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

0

DSO

ORB_SLAM2

ROVIO

Vins-Mono

1 2 3 4 5 6

0.0

0.0 0.5 1.0 1.5 2.0 2.5

0.5 1.0

Roll error distribution (degree)

Pitch error distribution (degree)

Yaw error distribution (degree)

1.5 2.0

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 1.0

0.8

0.6

0.4

0.2

0.0

RPY errors distributions: MH_05_difficult

Figure 17: Comparison of rotation error distributions alongside each axis on EuRoC MH05.

Table 7: Vins-Mono and ORB-SLAM2: APE RMSE results on
EuRoC with loop closure disabled. Results with loop closure
enabled are recalled in brackets [].

APE RMSE (cm) Vins-Mono no loop ORB-SLAM2 no loop

Machine Hall 01 15.3 (0.4%) [8.46] 4.62 (1.4%) [4.38]

Machine Hall 03 19.4 (0.1%) [9.51] 3.90 (0.7%) [3.89]

Machine Hall 05 29.3 (0.1%) [17.39] 165 (54%) [5.31]

22 Journal of Sensors



Our use case is located in a dynamic environment. Con-
sequently, it is interesting to use the new semantic SLAM
algorithms to differentiate fixed and mobile elements and to
assist the process with the environmental features, such as
planes [61]. Two other types of information can be added
to future work. First, approaches merging maps after several
passages in the same area suggest using preexisting maps of
the urban space. Indeed, 3D maps are increasingly enriched
and distributed, although their update rate remains problem-
atic. Second, we intend to concentrate on better modeling the
pattern of individual walking gait to support pedestrian
applications and precise urban positioning.

Data Availability

The data used in this article are from the EuRoC dataset
from [8] available at https://projects.asl.ethz.ch/datasets/
doku.php?id=kmavvisualinertialdatasets. The IRSTV data-
set is provided as supplementary material following the same
formatting as EuRoC dataset. Available data are as follows:
visual-inertial sensor unit–images (VIRB 30 Ultra, 20Hz)–
MEMS IMU (VN300 (VectorNav), 200Hz)–ground truth
STIM300 (Sensonor) in 2D and calibration with (i) camera
intrinsics and (ii) camera-IMU extrinsic. They can be down-
loaded here: 10.5281/zenodo.4415641.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was funded by IRSTV, IFSTTAR, and ECN.

Supplementary Materials

The IRSTV dataset is provided as supplementary material.
(Supplementary Materials)

References

[1] J. J. Leonard and H. F. Durrant-Whyte, “Simultaneous map
building and localization for an autonomous mobile robot,”
in Proceedings IROS '91:IEEE/RSJ International Workshop on
Intelligent Robots and Systems '91, pp. 1442–1447, Osaka,
Japan, November 1991.

[2] R. C. Smith and P. Cheeseman, “On the representation and
estimation of spatial uncertainty,” The International Journal
of Robotics Research, vol. 5, no. 4, pp. 56–68, 2016.

[3] J. Delmerico and D. Scaramuzza, “A benchmark comparison
of monocular visual-inertial odometry algorithms for flying
robots,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA),, pp. 2502–2509, Brisbane, QLD, Aus-
tralia, May 2018.

[4] P. Li, T. Qin, B. Hu, F. Zhu, and S. Shen, “Monocular visual-
inertial state estimation for mobile augmented reality,” in
2017 IEEE International Symposium onMixed and Augmented
Reality (ISMAR), pp. 11–21, Nantes, France, October 2017.

[5] T. Schöps, J. Engel, and D. Cremers, “Semi-dense visual odo-
metry for AR on a smartphone,” in 2014 IEEE International

Symposium on Mixed and Augmented Reality (ISMAR),
pp. 145–150, Munich, Germany, September 2014.

[6] M. Burri, J. Nikolic, P. Gohl et al., “The EuRoC micro aerial
vehicle datasets,” The International Journal of Robotics
Research, vol. 35, no. 10, pp. 1157–1163, 2016.

[7] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rend’on-Man-
cha, “Visual simultaneous localization andmapping: a survey,”
Artificial Intelligence Review, vol. 43, no. 1, pp. 55–81, 2012.

[8] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algo-
rithms: a survey from 2010 to 2016,” IPSJ Transactions on
Computer Vision and Applications, vol. 9, pp. 1–11, 2017.

[9] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An over-
view to visual odometry and visual SLAM: applications to
mobile robotics,” Intelligent Industrial Systems, vol. 1, no. 4,
pp. 289–311, 2015.

[10] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tuto-
rial],” IEEE Robotics Automation Magazine, vol. 18, no. 4,
pp. 80–92, 2011.

[11] F. Fraundorfer and D. Scaramuzza, “Visual odometry: part II:
matching, robustness, optimization, and applications,” IEEE
Robotics Automation Magazine, vol. 19, no. 2, pp. 78–90, 2012.

[12] T. Bailey and H. Durrant-Whyte, “Simultaneous localization
and mapping (SLAM): part ii,” IEEE Robotics Automation
Magazine, vol. 13, no. 3, pp. 108–117, 2006.

[13] H. Durrant-Whyte and T. Bailey, “Simultaneous localization
and mapping: part I,” IEEE Robotics Automation Magazine,
vol. 13, no. 2, pp. 99–110, 2006.

[14] C. Cadena, L. Carlone, H. Carrillo et al., “Past, present, and
future of simultaneous localization and mapping: toward the
robust-perception age,” IEEE Transactions on Robotics,
vol. 32, no. 6, pp. 1309–1332, 2016.

[15] C. Chen, H. Zhu, M. Li, and S. You, “A review of visual-inertial
simultaneous localization and mapping from filtering-based
and optimization-based perspectives,” Robotics, vol. 7, no. 3,
pp. 1–20, 2018.

[16] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers, “A benchmark for the evaluation of RGB-D
SLAM systems,” in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 573–580, Vilamoura,
Portugal, October 2012.

[17] K. Sun, K. Mohta, B. Pfrommer et al., “Robust stereo visual
inertial odometry for fast autonomous flight,” IEEE Robotics
and Automation Letters, vol. 3, no. 2, pp. 965–972, 2018.

[18] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman,
“The new college vision and laser data set,” The International
Journal of Robotics Research, vol. 28, no. 5, pp. 595–599, 2009.

[19] J. Engel, V. Usenko, and D. Cremers, “A photometrically cali-
brated benchmark for monocular visual odometry,” 2016,
https://arxiv.org/abs/1607.02555.

[20] K. Kim, M. Billinghurst, G. Bruder, H. B. L. Duh, and G. F.
Welch, “Revisiting trends in augmented reality research: a
review of the 2nd decade of ISMAR (20082017),” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 24,
no. 11, pp. 2947–2962, 2018.

[21] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Mono-
SLAM: real-time single camera SLAM,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 29, no. 6,
pp. 1052–1067, 2007.

[22] E. Eade and T. Drummond, “Scalable monocular SLAM,” in
2006 IEEE Computer Society Conference on Computer Vision

23Journal of Sensors

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://doi.org/10.5281/zenodo.4415641
http://downloads.hindawi.com/journals/js/2021/2054828.f1.docx
https://arxiv.org/abs/1607.02555


and Pattern Recognition - Volume 1 (CVPR'06), vol. 1, pp. 469–
476, New York, NY, USA, USA, June 2006.

[23] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fas-
tSLAM: a factored solution to the simultaneous localization
and mapping problem,” in In Proceedings of the AAAI
National Conference on Artificial Intelligence, pp. 593–598,
2002.

[24] M. Li and A. I. Mourikis, “High-precision, consistent EKF-
based visual-inertial odometry,” The International Journal of
Robotics Research, vol. 32, no. 6, pp. 690–711, 2013.

[25] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint
Kalman filter for vision-aided inertial navigation,” in Proceed-
ings 2007 IEEE International Conference on Robotics and Auto-
mation, pp. 3565–3572, Roma, Italy, April 2007.

[26] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust
visual inertial odometry using a direct EKF-based approach,”
in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 298–304, Hamburg, Germany,
September 2015.

[27] G. Klein and D. Murray, “Parallel tracking and mapping for
small AR workspaces,” in 2007 6th IEEE and ACM Interna-
tional Symposium on Mixed and Augmented Reality,
pp. 225–234, Nara, Japan, November 2007.

[28] C. Harris and M. Stephens, “A combined corner and edge
detection,” in Proceedings of The Fourth Alvey Vision Confer-
ence, pp. 147–151, University of Manchester, 1988.

[29] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: speeded up
robust featuresSpringer,” in Computer Vision – ECCV 2006,
A. Leonardis, H. Bischof, and A. Pinz, Eds., pp. 404–417, Ber-
lin, Heidelberg, 2006.

[30] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[31] E. Rosten and T. Drummond, “Machine learning for high-
speed corner detection,” in Computer Vision – ECCV 2006.
ECCV 2006. Lecture Notes in Computer Science, vol 3951, A.
Leonardis, H. Bischof, and A. Pinz, Eds., pp. 430–443,
Springer, Berlin, Heidelberg, 2006.

[32] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an
efficient alternative to SIFT or SURF,” in 2011 International
Conference on Computer Vision, pp. 2564–2571, Barcelona,
Spain, November 2011.

[33] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,”
2016, https://arxiv.org/abs/1607.02565.

[34] R. A. Newcombe, S. Lovegrove, and A. J. Davison, “DTAM:
dense tracking and mapping in real-time,” in 2011 Interna-
tional Conference on Computer Vision, pp. 2320–2327, Barce-
lona, Spain, November 2011.

[35] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: large-scale
direct monocular SLAM,” in Computer Vision – ECCV 2014.
ECCV 2014, vol. 8690 of Lecture Notes in Computer Science,
Springer, Cham.

[36] P. F. Alcantarilla, J. J. Yebes, J. Almaz’an, and L. M. Bergasa, “On
combining visual SLAM and dense scene flow to increase the
robustness of localization and mapping in dynamic environ-
ments,” in 2012 IEEE International Conference on Robotics and
Automation, pp. 1290–1297, Saint Paul, MN, USA, May 2012.

[37] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-
SLAM: a versatile and accurate monocular SLAM system,”
IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163,
2015.

[38] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for
uncertain spatial relationships,” in Proceedings of the 4th Inter-
national Symposium on Robotics Research, pp. 467–474, Cam-
bridge, MA, USA, 1988.

[39] P. J. Besl and N. D. McKay, “A method for registration of 3-D
shapes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, pp. 239–256, 1992.

[40] Y. Chen and G. Medioni, “Object modeling by registration of
multiple range images,” in Proceedings 1991 IEEE Interna-
tional Conference on Robotics and Automation, vol. 3,
pp. 2724–2729, Sacramento, CA, USA, April 1991.

[41] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP
algorithm,” in Proceedings Third International Conference on
3-D Digital Imaging and Modeling, pp. 145–152, Quebec City,
Quebec, Canada, May-June 2001.

[42] J. Sola, “Consistency of the monocular EKF-SLAM algorithm
for three different landmark parametrizations,” in 2010 IEEE
International Conference on Robotics and Automation,
pp. 3513–3518, Anchorage, AK, USA, May 2010.

[43] H. Huang, Y. Sun, H. Ye, andM. Liu, “Metric monocular local-
ization using signed distance fields,” in 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pp. 1195–1201, Macau, China, November 2019.

[44] B. Triggs, P. Mclauchlan, R. Hartley et al., “Bundle adjustment,
a modern synthesis,” in Vision Algorithms: Theory and Prac-
tice. IWVA 1999. Lecture Notes in Computer Science, vol
1883, B. Triggs, A. Zisserman, and R. Szeliski, Eds., Springer,
Berlin, Heidelberg, 2010.

[45] S. Agarwal K. Mierle et al., “Ceres solver,” http://ceres-solver
.org.

[46] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and
W. Burgard, “G2o: a general framework for graph optimiza-
tion,” in 2011 IEEE International Conference on Robotics and
Automation, pp. 3607–3613, Shanghai, China, May 2011.

[47] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “ISAM2: incremental smoothing and mapping
using the Bayes tree,” International Journal of Robotics
Research, vol. 31, no. 2, pp. 216–235, 2012.

[48] D. Gálvez-López and J. D. Tardos, “Bags of binary words for
fast place recognition in image sequences,” IEEE Transactions
on Robotics, vol. 28, no. 5, pp. 1188–1197, 2012.

[49] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: binary
robust independent elementary features,” in Computer Vision
– ECCV 2010. ECCV 2010, K. Daniilidis, P. Maragos, and N.
Paragios, Eds., vol. 6314 of Lecture Notes in Computer Sci-
ence, Springer, Berlin, Heidelberg, 2010.

[50] R. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME - Journal of Basic Engi-
neering, vol. 82, no. 1, pp. 35–45, 1960.

[51] P. S. Maybeck and G. M. Siouris, “Stochastic models, estima-
tion, and control, volume I,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 10, no. 5, pp. 282–282, 1980.

[52] H. F. Durrant-Whyte, “Uncertain geometry in robotics,” IEEE
Journal on Robotics and Automation, vol. 4, no. 1, pp. 23–31,
1988.

[53] H. Durrant-Whyte, D. Rye, and E. Nebot, “Localization of
autonomous guided vehicles,” in Robotics Research, G. Giralt
and G. Hirzinger, Eds., pp. 613–625, Springer, London, 1996.

[54] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart,
“Real-time onboard visual-inertial state estimation and self-
calibration of MAVs in unknown environments,” in 2012 IEEE

24 Journal of Sensors

https://arxiv.org/abs/1607.02565
http://ceres-solver.org
http://ceres-solver.org


International Conference on Robotics and Automation,
pp. 957–964, Saint Paul, MN, USA, May 2012.

[55] Y. Sun, M. Liu, andM. Q. H. Meng, “Improving RGB-D SLAM
in dynamic environments: a motion removal approach,”
Robotics and Autonomous Systems, vol. 89, pp. 110–122, 2017.

[56] Y. Sun, M. Liu, and M. Q. H. Meng, “Motion removal for reli-
able RGB-D SLAM in dynamic environments,” Robotics and
Autonomous Systems, vol. 108, pp. 115–128, 2018.

[57] J. Cheng, Y. Sun, and M. Q. H. Meng, “Improving monocular
visual SLAM in dynamic environments: an optical-flow-based
approach,” Advanced Robotics, vol. 33, no. 12, pp. 576–589,
2019.

[58] L. Xiao, J. Wang, X. Qiu, R. Zheng, and X. Zou, “Dynamic-
SLAM: semantic monocular visual localization and mapping
based on deep learning in dynamic environment,” Robotics
and Autonomous Systems, vol. 117, pp. 1–16, 2019.

[59] M. Henein, J. Zhang, R. Mahony, and V. Ila, “Dynamic SLAM:
the need for speed,” 2020, http://arxiv.org/abs/2002.08584.

[60] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an
open-source library for real-time metric-semantic localization
and mapping,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA),, Paris, France, May 2020.

[61] S. Yang, S. Yu, M. Kaess, and S. Scherer, “Pop-up SLAM:
semantic monocular plane SLAM for low-texture environ-
ments,” in 2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 1222–1229, Daejeon,
South Korea, November 2016.

[62] T. Schneider, M. Dymczyk, M. Fehr et al., “Maplab: an open
framework for research in visual-inertial mapping and locali-
zation,” IEEE Robotics and Automation Letters, vol. 3, no. 3,
pp. 1418–1425, 2018.

[63] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza,
“Ultimate SLAM? Combining events, images, and IMU for
robust visual SLAM in HDR and high-speed scenarios,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 994–1001,
2018.

[64] H. Liu, M. Chen, G. Zhang, H. Bao, and Y. Bao, “ICE-BA:
incremental, consistent and efficient bundle adjustment for
visual-inertial SLAM,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recogni-
tion, pp. 1974–1982, Salt Lake City, UT, USA, June 2018.

[65] G. Klein and D. W. Murray, “Improving the agility of
keyframe-based SLAM,” in Computer Vision – ECCV 2008.
ECCV 2008. Lecture Notes in Computer Science, vol 5303, D.
Forsyth, P. Torr, and A. Zisserman, Eds., Springer, Berlin, Hei-
delberg, 2008.

[66] P. Ondrúška, P. Kohli, and S. Izadi, “Mobilefusion: real-time
volumetric surface reconstruction and dense tracking on
mobile phones,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 21, no. 11, pp. 1251–1258, 2015.

[67] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and
D. Scaramuzza, “SVO: semidirect visual odometry for monoc-
ular and multicamera systems,” IEEE Transactions on Robot-
ics, vol. 33, no. 2, pp. 249–265, 2017.

[68] R. A. Newcombe, S. Izadi, O. Hilliges et al., “Kinectfusion: real-
time dense surface mapping and tracking,” in 2011 10th IEEE
International Symposium on Mixed and Augmented Reality,
pp. 127–136, Basel, Switzerland, October 2011.

[69] C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM for
RGB-D cameras,” in 2013 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 2100–2106, Tokyo,
Japan, November 2013.

[70] T.Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and
A. J. Davison, Elasticfusion: Dense SLAM without a Pose
Graph, Robotics: Science and Systems, 2015.

[71] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Multi-
sensor fusion for robust autonomous flight in indoor and out-
door environments with a rotorcraft MAV,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 4974–4981, Hong Kong, China, May 2014.

[72] I. Cvišić, J. Ćesić, I. Marković, and I. Petrović, “SOFT-SLAM:
computationally efficient stereo visual simultaneous localiza-
tion and mapping for autonomous unmanned aerial vehicles,”
Journal of Field Robotics, vol. 35, 2017.

[73] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear
optimization,” The International Journal of Robotics Research,
vol. 34, no. 3, pp. 314–334, 2015.

[74] T. Qin, P. Li, and S. Shen, “VINS-mono: a robust and versatile
monocular visualinertial state estimator,” IEEE Transactions
on Robotics, vol. 34, no. 4, pp. 1004–1020, 2017.

[75] R. Mur-Artal and J. D. Tardos, “Visual-inertial monocular
SLAM with map reuse,” IEEE Robotics and Automation Let-
ters, vol. 2, no. 2, pp. 796–803, 2017.

[76] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source
SLAM system for monocular, stereo and RGB-D cameras,”
IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262,
2016.

[77] C. Chen, H. Zhu, L. Wang, and Y. Liu, “A stereo visual-inertial
SLAM approach for indoor mobile robots in unknown envi-
ronments without occlusions,” IEEE Access, vol. 7,
pp. 185408–185421, 2019.

[78] B. Clipp, J. Lim, J. M. Frahm, and M. Pollefeys, “Parallel, real-
time visual SLAM,” in 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3961–3968, Taipei, Tai-
wan, October 2010.

[79] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige,
“Double window optimisation for constant time visual
SLAM,” in 2011 International Conference on Computer Vision,
pp. 2352–2359, Barcelona, Spain, November 2011.

[80] K. Pirker, M. Rüther, and H. Bischof, “CD SLAM - continuous
localization and mapping in a dynamic world,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3990–3997, San Francisco, CA, USA, September
2011.

[81] S. Maity, A. Saha, and B. Bhowmick, “Edge SLAM: edge points
based monocular visual SLAM,” in 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW),
pp. 2408–2417, Venice, Italy, October 2017.

[82] T. Whelan, M. Kaess, M. F. Fallon, H. Johannsson, J. J. Leon-
ard, and J. McDonald, “Kintinuous: spatially extended kinect-
fusion,” CSAIL Technical Reports, 2012.

[83] B. Pfrommer, N. Sanket, K. Daniilidis, and J. Cleveland,
“PennCOSYVIO: a challenging visual inertial odometry
benchmark,” in 2017 IEEE International Conference on Robot-
ics and Automation (ICRA), pp. 3847–3854, Singapore, Singa-
pore, May-June 2017.

[84] A. L. Majdik, C. Till, and D. Scaramuzza, “The Zurich urban
micro aerial vehicle dataset,” The International Journal of
Robotics Research, vol. 36, no. 3, pp. 269–273, 2017.

25Journal of Sensors

http://arxiv.org/abs/2002.08584


[85] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stuckler, and
D. Cremers, “The TUM VI benchmark for evaluating visual-
inertial odometry,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 1680–1687,
Madrid, Spain, October 2018.

[86] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autono-
mous driving? The KITTI vision benchmark suite,” in 2012
IEEE Conference on Computer Vision and Pattern Recognition,
Providence, RI, USA, June 2012.

[87] M. Ortiz, M. De Sousa, and V. Renaudin, “A new PDR naviga-
tion device for challenging urban environments,” Journal of
Sensors, vol. 2017, 11 pages, 2017.

[88] J. Le Scornec, M. Ortiz, and V. Renaudin, “Foot-mounted
pedestrian navigation reference with tightly coupled GNSS
carrier phases, inertial and magnetic data,” in 2017 Interna-
tional Conference on Indoor Positioning and Indoor Navigation
(IPIN), Sapporo, Japan, September 2017.

[89] S. Umeyama, “Least-squares estimation of transformation
parameters between two point patterns,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 13, no. 4,
pp. 376–380, 1991.

[90] J. Engel, J. Stuckler, and D. Cremers, “Large-scale direct SLAM
with stereo cameras,” in 2015 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 1935–
1942, Hamburg, Germany, September 2015.

[91] N. Antigny, M. Servieres, and V. Renaudin, “Fusion of 3D GIS,
vision, inertial and magnetic data for improved urban pedes-
trian navigation and augmented reality applications,” Naviga-
tion: Journal of The Institute of Navigation, vol. 65, no. 3,
pp. 431–447, 2018.

26 Journal of Sensors


	Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking
	1. Introduction
	2. Existing Surveys and Benchmarks
	2.1. Survey Papers
	2.2. Benchmarks

	3. Hardware and General Design Choices
	3.1. Hardware for Visual SLAM
	3.2. Filter-Based and Keyframe-Based Approaches

	4. Classical Structure of the vSLAM Algorithm
	4.1. Input Search
	4.2. Pose Tracking
	4.3. Mapping
	4.4. Loop Closure

	5. Historical Review of vSLAM Methods
	5.1. The Classical Age
	5.2. The Golden Age of vSLAM
	5.3. The Third Age: Improving the Robustness

	6. Proposed Classification of Methods
	6.1. Classification of vSLAM Methods
	6.1.1. Feature-Based Methods
	6.1.2. Direct Methods
	6.1.3. RGB-D Methods

	6.2. Classification of viSLAM Methods
	6.2.1. Loose Coupling
	6.2.2. Tight Coupling

	6.3. Comparison of vSLAM and viSLAM from the Usage Point of View

	7. Experimental Benchmark
	7.1. Experiments and Dataset Features
	7.2. Experimental Assessment Methodology
	7.3. Detailed Analysis
	7.3.1. ORB-SLAM2 Result Analysis
	7.3.2. Vins-Mono Result Analysis
	7.3.3. DSO Result Analysis
	7.3.4. LSD-SLAM Result Analysis
	7.3.5. ROVIO Result Analysis

	7.4. Comparative Analysis and Conclusion regarding Pedestrian Urban Navigation with Handheld Sensors

	8. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments
	Supplementary Materials

