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Visual Appearance Analysis of Forest Scenes for Monocular SLAM

James Garforth1 and Barbara Webb1

Abstract— Monocular simultaneous localisation and mapping
(SLAM) is a cheap and energy efficient way to enable Un-
manned Aerial Vehicles (UAVs) to safely navigate managed
forests and gather data crucial for monitoring tree health.
SLAM research, however, has mostly been conducted in struc-
tured human environments, and as such is poorly adapted to
unstructured forests. In this paper, we compare the perfor-
mance of state of the art monocular SLAM systems on forest
data and use visual appearance statistics to characterise the
differences between forests and other environments, including
a photorealistic simulated forest. We find that SLAM systems
struggle with all but the most straightforward forest terrain and
identify key attributes (lighting changes and in-scene motion)
which distinguish forest scenes from “classic” urban datasets.
These differences offer an insight into what makes forests
harder to map and open the way for targeted improvements. We
also demonstrate that even simulations that look impressive to
the human eye can fail to properly reflect the difficult attributes
of the environment they simulate, and provide suggestions for
more closely mimicking natural scenes.

I. INTRODUCTION

This paper looks at the problem of performing visual

Simultaneous Localisation and Mapping (SLAM) in unstruc-

tured natural environments (such as forests), rather than the

structured man-made environments (such as offices and city

streets) that play host to the majority of SLAM research

[1], [2], [3]. Our target application is forestry, where data

gathering to assess tree health could be greatly enhanced

in efficiency, scale and accuracy if robots could navigate

within forests. Unmanned aerial vehicles (UAVs) have the

agility to traverse uneven or vegetation-cluttered terrain and

inspect trees at any height, but in this scenario might not be

able to carry many sensors, so our focus is on monocular

SLAM. There are a number of reasons to expect that SLAM

may be difficult in forests. Global Positioning System (GPS)

data tends to be unreliable under canopy cover. Vegetation is

locally dynamic due to wind and patchy light, yet has high

global similarity that could lead to substantial aliasing. The

ability of state of the art SLAM algorithms to deal with such

conditions is largely untested. Our main contributions are:

• Qualitative analysis of the performance of monocular

SLAM algorithms in forest environments.

• Characterisation of fundamental visual differences be-

tween forests and more traditionally mapped environ-

ments (e.g. offices) using scene statistics.

• Assessment of photorealistic simulation as a ground-

truthing environment for developing SLAM algorithms.

*This work was supported by the Edinburgh Centre for Robotics and the
Engineering and Physical Sciences Research Council.

1James Garforth and Barbara Webb are with the School of Informatics,
University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, United
Kingdom. {james.garforth,b.webb}@ed.ac.uk

Fig. 1: Our photorealistic simulated forest (Left) and a region

of real forest from our Hillwood dataset (Right).

II. BACKGROUND

A. Mapping Forests

Forest management is greatly aided by accurate measure-

ment of trees, but below the canopy, few survey methods

have been successfully automated. Humans with measuring

tapes are still the standard method for collecting tree trunk

diameter data, for example. Scanning lasers have been used

to gather higher quality data but still require humans to walk

the area to be mapped, carrying heavy equipment instead of a

tape. This approach also requires substantial post-processing

of point clouds. In [4] points are clustered into individual

trees; aligned to an existing map, fine tuned by ICP, and

diameters at a fixed height extracted. Pierzchala et al.[5]

improve the performance of offline laser maps in forests with

loop closure techniques from SLAM.

Miettinen et al.[6] developed a real-time laser-based sys-

tem, mounted on a mobile platform, but found it very difficult

to match individual trees in all but the sparsest managed

forests. Ohman et al.[7] added cameras to this system, as the

visual appearance of bark on tree trunks makes them easier

to differentiate. They use a phase congruency edge detector

to deal better with low contrast images, but were still unable

to obtain usable levels of accuracy and processing speed.

The depth camera of Google’s Tango device has been

shown to provide sufficiently accurate reconstruction of

forest scenes[8], but only on a small scale.

B. Monocular SLAM

A key advance in the field of monocular SLAM was

Klein and Murray’s Parallel Tracking and Mapping (PTAM)

[9], which has been successfully used on UAVs [10], [11].

PTAM, as with most monocular SLAM systems after it, is

a “keyframe” based method. Instead of storing sensor data

from every single camera frame, PTAM selects a smaller

set of frames that it judges most representative, and builds

the map from these. Mapping only needs to occur when

keyframes are added, so can be run in a separate thread from

camera motion tracking, improving real-time performance.



“ORB-SLAM”[1] adds faster feature comparison and

greater view invariance to PTAM by using ORB features[12],

extracted once and used for the tracking, mapping and loop

closure subsystems. Instead of extracting features, “direct”

SLAM methods, e.g. “LSD-SLAM”[13], use a metric to sub-

select useful pixels and perform alignment between images

by minimizing photometric error. The volume of pixels used

varies from selecting all of them (“Dense” methods like

DTAM[14]) through to sparsely selected pixels in methods

like “SVO”[15] and “DSO”[16]. Yang et al.[17] note that

direct methods are more robust than feature-based when

scenes have low texture and provide a more complete recon-

struction due to their use of more image information, but are

vulnerable to camera properties and rapid lighting changes.

Recently, ORB-SLAM has been used on a Bebop UAV

[18] for monitoring crops in plantations, combined with GPS

and Inertial Measurement Unit (IMU) data for navigation.

Smolyanskiy et al.[19] use DSO for obstacle detection on

a UAV performing autonomous trail following in forests.

Though neither addresses the full complexity of forest sur-

vey, they indicate that ORB-SLAM and DSO are good

starting points for experimentation.

C. Adapting SLAM to Environment Properties

The application of monocular SLAM in forests may re-

quire adaptation of the algorithms to the characteristics of

the visual environment. Previous researchers have looked

at methods for basic classification of visual environments

to support switching between SLAM methods [20] [21]. In

more directly relevant work, Saeedi et al.[22] perform “De-

sign Space Exploration”, searching through the parameter

space of a SLAM algorithm for a desired trade-off between

accuracy and efficiency, given a high level description of the

environment. They use Kullback-Leibler (KL) divergence, an

information theoretic measure of how different two distribu-

tions (in this case, intensity histograms) are from one another,

and posit that this one statistic neatly encompasses the

variation of structure and motion within the scene. Research

into the adaptation of animal vision to natural environments

[23], [24] suggests additional relevant ‘scene statistics’ might

be luminance, contrast and colour distributions. In particular,

lighting-related effects are well known to impact SLAM[25],

with potential solutions explored in [26] and [27].

III. METHODS

A. Methodological Issues

We wish to evaluate the performance of mapping algo-

rithms in a forest environment, but several issues make

this difficult to do rigorously. Evaluation of the accuracy

of pose estimation requires a ground truth pose, usually

obtained from accurate external sensors, such as a calibrated

camera rig or, outdoors, GPS. Forest canopy cover, however,

interferes with GPS signals. Placement of some other form

of tracking sensors at ground level in a large area of interest

is costly, and if visible would inadvertently provide beacons

that influence the performance of the systems we want to

test. Evaluating 3D reconstruction also requires ground truth,

usually obtained either by working in an environment of

known, rigid structure, or by using a more complex but

comprehensive mapping solution than the one being as-

sessed (for example a high powered laser scanner). However,

mapping of large natural environments with such scanning

systems remains a difficult problem[28] and as such does not

guarantee an error free ground truth.

An alternative method for achieving pose and reconstruc-

tion ground truths is to perform experiments in a simulated

environment where both are known perfectly. Simulation

would also provide much greater control over key factors

expected to affect performance, such as lighting and wind,

allowing for comparison of different conditions. The trade-

off is the possibility that a simulated forest does not properly

capture the traits that make real forests challenging, and that

improvements developed in simulation will not transfer to

real world applications.

B. Datasets

We put together a selection of video datasets (summarised

in Table I), including forest environments, structured urban

environments and simulations, which would allow us to

assess mapping algorithms and compare visual properties.

The datasets come in a number of formats, such as video

files, folders of individual frames or in the “rosbag” format

used by the Robot Operating System[29].

The first of our forest data is from the SFU Moun-

tain Dataset[30] (henceforth simply SFU), recorded from a

wheeled robot driving a forested mountain road in a variety

of weather and lighting conditions. We use only the “Dry”

conditions to avoid our results also reflecting the effects of

weather. Partway through each video, the vehicle moves from

open road to a canopy-covered dirt track. As we are primarily

interested in how the latter scenario differs from the former,

we split the video at this point, forming “SFU Road” and

“SFU Forest”. We use the left of the vehicle’s two forward

facing cameras as a single video stream.

We also recorded our own forest videos, referred to here

as Hillwood. This dataset contains videos recorded from two

low cost UAV platforms (Parrot’s AR.Drone and Bebop)

and these are analysed separately. Hillwood provides more

complex camera motion than SFU, as the camera takes

winding routes and retraces the same area. It also contains

sequences away from any path, over and around vegetation,

to test performance of SLAM in the absence of any clear

man-made structure such as a track.

We chose two “classic” datasets to represent the more

structured environments typically used for testing SLAM

applications: the TUM Monocular dataset[31], recorded on

a hand held camera; and KITTI[32], recorded from a car

on city streets. We further sample from TUM Monocular

to make two datasets: one indoor (offices) and one outdoor

(urban). For purpose of comparison, we also include Bebop

Indoor, an office video recorded on the same platform as

Hillwood Bebop.

Additionally, we recorded a simulated dataset utilising

the Unreal Engine and a set of photorealistic forest assets



created for film and video game rendering[33], manually

flying the virtual camera through it. Although in principle

this should resemble the Hillwood data (a drone travelling

through unstructured forest) we note that in practice this

produced much smoother motion than a real UAV.

C. SLAM System Comparison

We selected four state of the art monocular SLAM systems

for comparison: (1) ORBSLAM2[1], a sparse feature-based

method, (2) LSD-SLAM[13] and (3) DSO[16], which are

both direct methods and (4) SVO[15], which is semi-direct,

using direct methods for tracking and then using features

later in its pipeline. We intended to also include OKVIS [34],

but our chosen datasets do not provide the required inertial

measurements or calibration data. We intended to assess the

benefits of visual inertial SLAM in future.

The selected systems were all calibrated for and run on

the Hillwood and SFU datasets to assess their performance

on forest data. Demonstration of these systems on indoor and

outdoor scenes can be found in their original papers.

D. Visual Appearance Metrics

Forest environments could have some global visual prop-

erties that differ from structured environments and thus set

a challenge for visual SLAM. To assess this, we use these

statistics to compare the datasets:

1) Lighting changes as we expect that the effect of

the forest canopy will be frequent large switches between

bright sunlight and shadow. We measure both luminance and

contrast. Luminance is defined as the average intensity value

of a frame. We use Root Mean Squared Contrast, defined

as the standard deviation of luminance in a frame, divided

by the mean. Change is recorded as the difference between

each subsequent pair of frames for each of these statistics.

2) Kullback-Leibler divergence of intensity histograms,

as an approximation of scene structure and motion[22]. We

expect that the heavily deformable nature of forests (leaves,

grasses etc.) leads to a large amount of motion in the scene

with even a small amount of wind. KL Divergence for

intensity images is calculated as in [22].

DKL(It ‖ It−1) =

256∑

t=0

It(u) log
It(u)

It−1(u)

Where It and It−1 indicate the normalised intensity his-

tograms (256 bins) of the frames.

3) Variance of the Laplacian approximates the frequency

and strength of edges within the image. In this way it can give

us information about two traits of our datasets: firstly, how in

focus the images are (as excessive camera motion will cause

blurring) and secondly how complex the textures in the scene

are. Implemented using OpenCV’s Laplacian function, we

also rescale all images to the same size (320x240) beforehand

as image size effects the result.

We also looked at two “secondary” statistics, which help to

exclude non-environment specific attributes of datasets from

being the major factors in our results:

1) Features Matches are used as a simplified measure

of the ease of tracking features for visual SLAM in the

absence of ground truth data for our datasets. SIFT features

are extracted and matches sought between subsequent pairs

of frames (100 features per frame). We use a brute force

matcher, then a ratio test to decide which matches to accept.

2) Reprojected Similarity estimates frame to frame over-

lap in order rule out the possibility that large differences in

the primary statistics are due to large camera motions. The

similarity is calculated as the Mean Squared Error of two

subsequent frames after using feature matches to reproject

them into the same frame of reference.

These measures were implemented in Python using

OpenCV. We calculate all of the change statistics for sub-

sequent pairs of frames, sampling the datasets at the same

frame rate (10fps) to account for the expectation that a

camera sampling faster will see smaller changes between

frames. Our pipeline converts images to intensity (grey) and

normalises before it calculates the statistics. It is also worth

noting that we skip the first 30 frames of each video because

in some datasets these contain artefacts from the camera’s

auto-calibration which can skew the results.

IV. RESULTS

A. SLAM System Performance

We tested four SLAM methods on the forest datasets:

Hillwood AR, Hillwood Bebop and SFU Forest. The only

fully tracked real sequences were obtained using either

ORBSLAM2 or DSO on the SFU ”dry” video (see Figure

2b). When run on Hillwood data, ORBSLAM2 and DSO

achieved tracking for a small portion of the video (less than

1 minute), resulting in very small sections of map that we

could not confirm the quality of by eye. LSD-SLAM and

SVO fail to start tracking on any of the forest videos, either

producing no map or one in which features are distributed

with no recognisable structure.

For both ORBSLAM2 and DSO, the tracked pose drifts

in scale over time, as is most notable from the misalignment

of the outbound and inbound tracks. This is not unexpected

from monocular SLAM systems, but the fact that neither

system manages to recognise previously visited locations

and correct the drift demonstrates a failure of their re-

spective place recognition mechanisms. We note that the

demonstrated tracking from these two systems shows there

is no specific advantage in this environment for feature-

based (ORBSLAM2) vs. direct (DSO) methods. Looking at

the point clouds produced by the two systems in Figure

2c, however, we can see that the larger volume of data

afforded by DSO’s direct method does provide a more

detailed reconstruction.

The failure of two of our four evaluated systems to

even initialise pose tracking on any of the tested datasets

demonstrates the difficulty of forest environments for even

short term mapping. The two systems that were able to

maintain tracking only did so on the SFU Forest video, and

only if we substantially increased the number of features

extracted per image (on ORBSLAM2 we use 3000 vs. the



TABLE I: A summary of the datasets reviewed, with video count, frame rate, resolution and a representative example frame.

Name Hillwood AR Hillwood Bebop SFU Forest SFU Road Bebop Indoor TUM Indoor TUM Outdoor KITTI Unreal

Count 3 1 1 1 1 10 6 10 5

FPS 15 30 30 30 30 50 30 10 30

Res 320x240 1920x1080 752x480 752x480 1920x1080 1280x1024 1280x1024 1241x376 640x480

Eg.

(a) GPS data provides
rough ground truth but is
inaccurate under canopy.

(b) Top-down views exhibiting the recovered route.
Both track the outbound route well, but suffer scale
drift on the return route, which for ORBSLAM2
appears shorter and for DSO stacks frames together.

(c) Horizontal views exhibiting the level of recon-
struction. DSO’s denser map recovers notably more
structure.

Fig. 2: The full tracks and point clouds as produced by ORBSLAM2 (white background) and DSO (black background) on

the forest video where they are most successful (SFU forest under dry conditions).

default 1000), suggesting that in this environment a large

number of candidate features need to be extracted at each

frame in order to ensure sufficient crossover between frames

for matching.

The successful SFU video represents an easy use case for

monocular SLAM, as the camera is mounted to a slowly

moving ground vehicle and experiences very little roll, pitch

or even yaw and all viewpoint changes happen gradually.

The vehicle also sticks to a clear, well-defined dirt path,

and observation of the point cloud produced by ORBSLAM2

especially (Figure 2b) seems to suggest that the ground here

is providing the majority of the tracked features. We note that

ORBSLAM2 and DSO also did not appear to find tracking

difficult on Unreal data, but as we discuss in the next section

these videos are perhaps failing to reflect the difficulties of

forest scenes, so they were not compared extensively.

In Hillwood videos, where all algorithms struggle, the

camera was mounted on a UAV which follows a less straight-

forward route with more rotational motion in all axes. But

tracking failures occur even on relatively straight sections,

suggesting camera motion is not the only factor causing

problems. Notably, these videos contain a lot less clear

ground than SFU, instead often travelling over vegetation

or fallen leaves. The UAV also frequently flies near to and

between trees, leading to regular occlusions of parts of the

scene, while the ground robot in SFU usually keeps enough

distance from trees that this effect would be greatly reduced.

B. Visual Appearance Comparison

In the previous section we found that all the SLAM

systems tested failed on the more challenging forest data, yet

they have previously been established as effective systems

in more typical scenarios such as indoor mapping and city

roads. Hence, we did an initial investigation of whether there

are any general differences in the scene statistics of these

different scenarios (see methods).

1) Lighting Changes: Luminance (Figure 3a) and contrast

(Figure 3b) changes do appear to differentiate between the

forest datasets (Hillwood, SFU Forest) and most of the

classic ones (TUM). The median differences for luminance

and contrast are higher in the forest videos, irrespective of

the platform they were recorded from, and the distribution

is also larger, reflecting a tendency of these datasets towards

both generally larger lighting changes over time and larger

sudden lighting changes. KITTI is the only non forest dataset

to see a similar distribution of lighting changes, but it is also

the only dataset where the camera is travelling faster than

walking speed. This large speed difference could account

for the large visual appearance changes between frames.

When comparing Hillwood Bebop and Bebop Indoor the

camera parameters are identical but the results differ, each

following the general trend for the other datasets in their

respective environment. Likewise, when we compare SFU

Forest and SFU Road, where possible complicating factors

such as time of day or camera motion and parameters are

ruled out, we still see major lighting differences, supporting

the possibility that the forest canopy is responsible for the

lighting variability.

The Unreal dataset demonstrates the lowest median and

the tightest distribution of values for luminance and contrast

changes, likely caused by the simulator’s lighting model.

Even though the simulation is lit by directional lighting from

an artificial sun, it also has ambient lighting. As a result,

the areas of the simulated forest that are in shadow still

appear relatively well lit, meaning the camera is less likely

to experience large swings from light to dark as it transitions

between direct sunlight and shadow.

2) Kullback-Leibler Divergence: It is clear from the KL

divergence results (Figure 3c) that the datasets in forested

areas (including SFU Road, which is lined with trees) are less



predictable frame to frame than classic environment datasets

are. The difference between the two SFU datasets indicates

that going off road and under canopy with the same platform

markedly reduces the predictability further. All of this goes to

support the idea that vegetation has a notable impact on how

much scenes change over time, perhaps due to the amount of

small-scale motion (e.g. of leaves) they introduce. The higher

KLD values for the Bebop Hillwood data suggest that this is

not the only factor, however. The other videos mostly travel

forwards along a path, while the Bebop goes back and forth

over one area, so it is very likely that the large amount of

rotational motion by the Bebop also contributes to the KL

divergence being considerably higher.

The very low KL divergence seen in the Unreal simulated

data implies a high predictability of each frame given the

previous one. It is not obvious to the human eye that this

environment contains any less motion or complex structure

than the real forest, in a way that would account for less

predictability. We suspect that the difference may be in the

camera model. The simulated camera does not suffer from

any noise and applies considerable blurring, both of which

serve to improve the similarity between subsequent images.

3) Variance of the Laplacian: The results for the variance

of the Laplacian correlate well with the observed complexity

in the datasets, such that the texture-heavy natural scenes

sit at one end of the spectrum and indoor scenes (with

flat textureless regions like walls) are at the other. A po-

tential limitation of this measure is demonstrated by SFU

Road, however, as the prominence of a large featureless

sky throughout this video is the cause of its low median

variance (confirmed by rerunning the pipeline with the top

half of the video cropped). It is interesting to note that the

high texture datasets are the ones that are more difficult

for visual SLAM, as this typically benefits from textured

scenes for feature extraction. It is likely that this visual

complexity overwhelms feature extraction and matching and

would explain why getting ORBSLAM2 to work required us

to increase the number of candidate features extracted.

There is little evidence in these results to suggest that

blur (which would reduce the variance) is a problem in any

of the real world data, as the datasets at most risk should

have been those with a less stable camera (such as Hillwood,

which reports the highest variances). The low variance for the

simulated Unreal data, is likely caused by the game engine

adding too much motion blur, anti-aliasing, or using a limited

colour palette.

4) Feature Matches: The distinction between forest and

classic datasets is less clear with respect to the percentage

of good frame to frame feature matches, but there does still

appear to be some trend. Both Hillwood datasets and SFU

Forest achieve fewer median successful matches between

frames, as well as having lower minimum matches. These

results would imply that it is indeed harder to extract and

continue to track features reliably from forest scenes than

urban ones.

Similarly to the results with lighting changes, it makes

sense that KITTI’s lower results here would be caused by

(a) Luminance changes between subsequent frames. Higher me-
dian and maximum changes for the three datasets under forest
canopy on the left, but lower for the simulated Unreal forest.

(b) Contrast changes between subsequent frames. Higher median
and maximum changes for the three datasets under forest canopy
on the left, but lower for the simulated Unreal forest.

(c) Kullback-Leibler divergence between subsequent frames.
Higher median and maximum changes for the four vegetation
heavy datasets on the left, but not for the simulated Unreal forest.

(d) Variance of the Laplacian for all frames. The higher variance
for outdoor (especially forested) datasets suggests the presence
of more and stronger edges/texture.

Fig. 3: Our primary statistics characterise differences be-

tween video datasets gathered in forest and urban environ-

ments.



the camera moving further between frames.

SFU Road achieves consistently high matches. As the

skyline is always visible in this data, and has been shown

to be useful for navigation[35], it is expected that this is

providing a large number of reliable features. To test this, we

reran the pipeline with the top half of each image removed,

and found that the results for SFU Road did indeed become

more like the other datasets.

Notably, this statistic is also the only one of those tested

where the Unreal data does not stand out significantly from

the real forest scenes.

5) Reprojected Similarity: After using matched features

to reproject subsequent pairs of images into the same frame

of reference, we see very little difference between most of

the datasets. Seeing similar levels of overlap between frames

in these datasets helps reject the idea that the other results

reported here (primarily for KLD) could be caused by signif-

icant rotational or translational motion specific to the forest

datasets, rather than an attribute of the environment. KITTI

displays a much higher error after reprojection, as expected

for a dataset where the camera is moving significantly faster

and overlap would be expected to be smaller. SFU Road and

our simulation, however, have notably lower errors than other

datasets despite not being notably slower. The explanation

is likely similar to IV-B.3 in that the sky, or the game

engine’s limited colour palette, result in self-similarity across

the environment.

(a) Frame to frame SIFT feature matches, after ratio test, out
of 100. Less reliable matching for forest datasets supports our
observations of poor SLAM performance.

(b) Frame to frame overlap, as measured by Mean Squared Error
after reprojection of each frame into the next. There is no notable
difference between the overlap of frames in forest and non forest
datasets.

Fig. 4: Secondary statistics, used as support for other claims

rather than to directly characterise environments.

V. CONCLUSION AND FUTURE WORK

In this paper we evaluated the performance of state

of the art monocular SLAM in forests. Such unstructured

natural environments have not been traditionally considered

in SLAM evaluations, despite the high potential for robot

applications in this domain. We found that even with tuning

of the parameters, only two systems (ORBSLAM2 and DSO)

successfully ran, and only on the easiest of our test cases:

a slow and steady ground robot travelling along a clear

path in a forest. In most cases, systems failed to produce

a usable map. These tests identify the unsuitability of any

existing solutions for off the shelf use in this domain. One

particular problem area observed is loop closure, which we

hope to address with place recognition Convolutional Neural

Networks in future work.

Improving the performance of existing systems requires

an understanding of how the forest environment differs from

the standard use-cases. We performed statistical analyses of

forest and non-forest data and found some key differences.

Lighting (represented by luminance and contrast) changes

over time distinguish forests from offices and roads and

are likely caused by the gaps and movement of the canopy

leading to frequent variation in the amount of sunlight illu-

minating the scene. In-scene motion (represented by entropy

measure KL divergence) is also notably higher in forest

scenes, likely due to the presence of wind and flexible

vegetation. This suggests that the key developments needed

(to extend ORBSLAM or DSO which worked in the simpler

case, or in new SLAM algorithms) are methods to deal more

robustly with lighting and scene dynamics. These are already

active areas of interest but gain additional motivation from

our analysis.

We also investigated the use of highly realistic game

engine based simulation as an alternative to real world

data when testing an improved SLAM system for natural

environments. We note that such a simulation would be

useful in a number of ways, providing ground truth data

that is hard to match in the real world and also allowing

fine tuned control over the exact variables (light and motion)

that we want to control for. We issue a warning, however,

against abandoning real world data too quickly, as our scene

statistics mark out the simulated forest as more different in

appearance from real forests than urban environments are.

Finally, rigorous evaluation of SLAM systems for forests

requires more complete test data than simply video. If a

solution can be found to ground-truthing in real forests,

perhaps by careful synchronisation with lidar data, then this

can be used to create a new forest dataset. Alternatively,

improvements can be made to our existing simulation, for

example through the addition of realistic sensor models, and

our statistical approach can be used to establish if a greater

resemblance to real forest data has been achieved.
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