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Abstract

Omnidirectional video (ODV) enables viewers to look at every direction from a fixed point and provides a much more 

immersive experience than traditional 2D video. Assessing the video quality is important for delivering ODV to the end-

user with the best possible quality. For this goal, two aspects of ODV should be considered. The first is the spherical nature 

of ODV and the related projection distortions when the ODV is stored in a planar format. The second is the interactive 

look-around consumption nature of ODV. Related to this aspect, visual attention, that identifies the regions that attract the 

viewer’s attention, is important for ODV quality assessment. Considering these aspects, in this paper, we study in particular 

objective full-reference quality assessment for ODV. To this end, we propose a quality assessment framework based on the 

spherical Voronoi diagram and visual attention. In this framework, a given ODV is subdivided into multiple planar patches 

with low projection distortions using the spherical Voronoi diagram. Afterwards, each planar patch is analyzed separately 

by a quality metric for traditional 2D video, obtaining a quality score for each patch. Then, the patch scores are combined 

based on visual attention into a final quality score. To validate the proposed framework, we create a dataset of ODVs with 

scaling and compression distortions, and conduct subjective experiments in order to gather the subjective quality scores and 

the visual attention data for our ODV dataset. The evaluation of the proposed framework based on our dataset shows that 

both the use of the spherical Voronoi diagram and visual attention are crucial for achieving state-of-the-art performance.

Keywords Quality assessment · Omnidirectional video · 360° video · VR video · Spherical Voronoi diagram · Visual 

attention · Scaling distortion · Compression distortion

Introduction

Omnidirectional video (ODV), also known as 360° or VR 

video, can be conceived as a spherical video where the view-

ers are placed at its center, allowing them to look at every 

direction. ODV is ideally viewed with a head-mounted dis-

play (HMD) that shows only the content in the direction 

where the viewer is looking at. In contrast to traditional 2D 

video, this emerging media type provides higher immersive 

and interactive viewing experience. Thanks to its immersive 

nature, ODV can be used in different applications such as 

entertainment [1, 2], communication [3], health-care [4], 

and education [5].

Compared to traditional 2D video, ODV introduces new 

technical challenges especially for storage and transmission 

[3]. For example, due to the large field of view of ODV [6], 

higher video resolution is necessary, and consequently, also 

higher memory requirements are demanded. For the devel-

opment and evaluation of new solutions to these technical 
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challenges, like new compression and streaming approaches 

[3], subjective and in particular objective quality assessment 

methods are necessary to ensure a high quality of experi-

ence (QoE) [7]. There are already quality metrics for ODV 

like [8–13], but these metrics have limited correlation with 

the subjective quality scores. Thus, in order to improve the 

quality estimation performance, in this paper we propose a 

new quality estimation framework.

Quality assessment for ODV requires to consider its 

unique aspects. First, ODV is spherical in nature, but it is 

stored and transmitted in planar formats to be compatible 

with the existing video delivery pipelines. Different projec-

tion techniques can be used to map the spherical content to 

the 2D plane [14], such as equirectangular projection (ERP) 

and cubemap projection (CMP). These projections inevita-

bly introduce distortions which must be taken into account 

to accurately estimate the video quality [15]. Second, HMDs 

allow the viewer to freely look around a scene [16], but they 

show only a part of the video, called viewport. In [11], it 

was found that less than 65% of ODV area is viewed by the 

viewers and consequently only such a partial region deter-

mines the perceived quality. Therefore, it is important to 

consider the viewing behavior while exploring ODV with an 

HMD [17–19], and to identify in particular the ODV regions 

that attract the visual attention [1, 16, 20–22] and are con-

sequently viewed with high probability. Various previous 

research works emphasize the importance of visual attention 

in quality assessment [15, 23], and existing studies show that 

visual attention improves the performance of quality assess-

ment [11–13, 24, 25].

In this paper, we propose an objective full-reference 

quality assessment framework that takes into account the 

spherical nature of ODV and its viewing characteristics. 

The framework first subdivides the ODV into planar patches 

using the spherical Voronoi diagram [26, 27]. These pla-

nar patches are characterized by low projection distortions, 

and we call them planar Voronoi patches. Afterwards, the 

framework applies a quality metric for traditional 2D video 

to each planar Voronoi patch, obtaining a quality score for 

each patch. To further consider the viewing characteristics 

of ODV, the proposed framework integrates visual attention 

by multiplying each patch score with a weight that accounts 

for the probability of the patch being viewed. Finally, the 

framework averages the weighted patch scores obtaining the 

final ODV quality score. The results show that both the ODV 

subdivision into planar Voronoi patches and the integration 

of visual attention improve the performance of ODV quality 

assessment.

This paper extends in several ways the contributions of 

our previous conference paper [28], where the original Voro-

noi-based framework without visual attention was initially 

proposed. These additional contributions are as follows:

• We integrate visual attention into the original Voronoi-

based quality assessment framework;

• We extend the ODV quality dataset introduced in our 

previous study with 45 new distorted videos. In total, we 

create an ODV quality dataset of 120 distorted ODVs 

with scaling and compression distortions from eight 

undistorted reference ODVs, and we conduct a second 

subjective experiment in order to gather the subjective 

quality scores and the viewport trajectories for the new 

ODVs;

• We perform an extensive analysis of the parameters of 

the proposed quality assessment framework, such as the 

number and angular resolution of the planar Voronoi 

patches, the visual attention estimation method, and the 

temporal pooling of the frame scores;

• We perform a comparative analysis with existing quality 

metrics.

Our new dataset and the code of the proposed framework 

are made publicly available with this paper.1 We expect that 

the developed framework and the established dataset will be 

beneficial for future research in ODV quality assessment, 

compression, and streaming.

The rest of this paper is organized as follows. Sec-

tion “Related work” discusses the related work on both sub-

jective and objective ODV quality assessment. Then, Sec-

tion “Proposed quality assessment framework” describes 

the proposed quality assessment framework. The details of 

our extended ODV dataset and the related subjective exper-

iments are explained in Section “Dataset and subjective 

experiments”. Based on the proposed dataset, Section “Anal-

ysis and evaluation” presents the study of the framework 

parameter space and the extensive comparative analysis with 

several existing quality metrics. Finally, Section “Conclu-

sion” concludes the paper.

Related work

Although there are many studies about subjective and objec-

tive ODV quality assessment, in the following, we outline 

only those that are most related to our work together with 

their limitations. For a comprehensive overview of recent 

research in the field, we recommend the overview paper of 

Li et al. [29].

1 https ://v-sense .scss.tcd.ie/resea rch/voron oi-based -objec tive-metri 

cs/.

https://v-sense.scss.tcd.ie/research/voronoi-based-objective-metrics/
https://v-sense.scss.tcd.ie/research/voronoi-based-objective-metrics/
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Subjective quality assessment

Creating datasets and gathering subjective quality scores 

are fundamental requirements to understand the perceived 

quality of distorted omnidirectional images [23] and vid-

eos [11, 30–32]. For this purpose, Li et al.[11] conducted a 

subjective experiment to establish an ODV quality dataset. 

Their dataset contains subjective scores for 600 compressed 

ODVs across 221 participants. Eye and head movement 

data were also gathered during the subjective experiment. 

Another recent work [30] established a dataset that contains 

subjective quality scores of 30 participants across 50 differ-

ent ODVs compressed with the HEVC/H.265 video cod-

ing standard [33]. In this work, the optimal resolution of 

ODVs displayed by the HMD was used in order to reduce 

the sampling distortions when extracting the viewport from 

the ODV. Furthermore, Singla et al.[31] and Schatz et al.[32] 

conducted subjective experiments to assess the perceived 

quality of ODV streaming.

At the time of writing this paper, most of the existing 

studies related to quality assessment, e.g., [15, 30, 34–36], 

consider only compression distortions of ODVs with low 

spatial resolution due to the computational complexity of 

ODV rendering. However, hardware for the rendering of 

8K ODV is now on the market, providing higher quality of 

experience. Thus, in this paper, we extend our ODV data-

set established in [28], which is based on the typical visual 

distortions in adaptive streaming systems, namely, compres-

sion and scaling distortions, applied to uncompressed ODVs 

with 8K resolution. We also organize a second subjective 

experiment to collect the subjective scores together with the 

viewport trajectories for the new ODVs.

Objective quality assessment

Many quality metrics developed for ODV are the extended 

versions of the traditional PSNR metric. Sun et al.[8], for 

instance, developed the weighted spherical PSNR metric 

(WS-PSNR) with weights that consider the projection dis-

tortions of the pixels in the planar format. The Craster para-

bolic projection PSNR metric (CPP-PSNR) [9] computes 

the PSNR in the Craster parabolic projection characterized 

by low projection distortions. Furthermore, the Spherical 

PSNR metric (S-PSNR) [10] estimates the PSNR for uni-

formly sampled points on the sphere. This quality metric has 

two different variants, namely, S-PSNR-NN and S-PSNR-

I. When sampling pixels, they use the nearest neighbor or 

bicubic interpolation, respectively.

Subjective quality studies reported various findings 

about the PSNR-based quality metrics for ODV. On one 

hand, Zhang et al.[30] and Sun et al.[15] recently reported 

that the existing PSNR-based quality metrics for ODV 

have superior performance than the traditional PSNR. On 

the other hand, Tran et al.[35] claimed that the traditional 

PSNR is the most appropriate metric for quality evaluation 

in ODV communication. Furthermore, Upenik et al.[37] 

showed that the existing PSNR-based quality metrics for 

ODV do not have high correlation with subjective scores. 

A similar conclusion was reached in another study [34].

In addition to the PSNR-based metrics, the structure 

similarity index metric (SSIM) was also extended to ODV 

by Chen et al.[38] based on weights that take into account 

the projection distortions. Moreover, two recent studies 

[28, 36] investigated the performance of the video mul-

timethod assessment fusion metric (VMAF) [39] applied 

to ODV, which is a metric for traditional 2D video devel-

oped to evaluate the distortions introduced by the adaptive 

streaming systems (i.e., compression and scaling distor-

tions), and characterized by high correlation with subjec-

tive scores [40–42]. The work in [36] created a dataset 

of ODVs in ERP compressed using constant quantiza-

tion parameters, and showed that VMAF can be used as a 

metric also for ODVs without modifications. Differently, 

in our previous work [28], we showed based on an ODV 

dataset with compression and scaling distortions, that 

the performance of VMAF can be improved using planar 

Voronoi patches.

In our previous work [28], we did not only study 

VMAF, but we developed a new objective quality assess-

ment framework for ODV based on planar Voronoi 

patches. With our framework existing quality metrics for 

traditional 2D video (e.g., VMAF) can be applied to ODV 

based on planar Voronoi patches achieving high correla-

tion with subjective scores. However, in our framework we 

did not consider visual attention.

Visual attention in objective quality assessment

As already shown in [15, 23], visual attention is crucial 

when evaluating the quality of ODV. Similarly, Li  et 

al.[11] showed that the incorporation of head and eye 

movement data in objective quality assessment, more spe-

cifically in PSNR, increases the quality prediction per-

formance. Upenik et al.[12] also proposed to incorporate 

visual attention in PSNR for ODV quality assessment. Fur-

thermore, Ozcinar et al.[13] developed a quality metric 

based on PSNR that considers visual attention and pro-

jection distortions, with the aim of ODV streaming opti-

mization. However, these works [11–13] that use visual 

attention are based on PSNR, which does not correlate 

well with subjective scores. Differently, in this paper, we 

develop a new quality assessment framework, which works 

with visual attention and robust quality metrics for tradi-

tional 2D video.
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Proposed quality assessment framework

This section introduces the proposed framework for objec-

tive full-reference quality assessment based first on pla-

nar Voronoi patches obtained with the spherical Voronoi 

diagram [26], and second on visual attention. Initially, we 

introduce the planar Voronoi patches, and then we describe 

the original Voronoi-based framework presented in [28] 

and the new proposed Voronoi-based framework inte-

grated with visual attention.

Planar Voronoi patches

For the extraction of M planar Voronoi patches from a 

given ODV, the spherical Voronoi diagram [26] of M 

evenly distributed points on the sphere [27] is computed 

as illustrated in Fig. 1a, b. The M evenly distributed points 

�
k
=

(

X
k
, Y

k
, Z

k

)

 on the sphere, where k ∈ [0, M − 1] , are 
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The spherical Voronoi diagram defines for each input 

point �
k
 the spherical patch �

k
 on the surface of the sphere 

�
S
 that contains all the points that are closer to �

k
 than to 

any of the other input points �
l
:

where d
S
(�,�

k
) is the spherical distance between the point 

� and the point �
k
 , i.e., the length of the shortest path on the 

surface of the sphere connecting these two points. Notice 

that by using evenly distributed points �
k
 on the sphere, 

we guarantee that the spherical Voronoi patches �
k
 have 

approximately equal size.

After the computation of the spherical Voronoi diagram, 

for each spherical Voronoi patch �
k
 a planar Voronoi patch 

�
′

k
 is extracted from the ODV, as illustrated in Fig. 1c. This 

operation is obtained by first positioning the plane of the 

planar patch � ′

k
 on the centroid of the spherical patch �

k
 , 

tangent to the sphere. The points on the sphere and the pla-

nar patch � ′

k
 are related by central projection, and the pixels 

of � ′

k
 are computed by sampling the ODV in ERP using 

bilinear interpolation. The angular resolution of each planar 

Voronoi patch � ′

k
 is defined by the pixels per visual angle, a 

parameter that is kept constant for each patch.

Original Voronoi‑based quality framework

The quality framework presented in this section extends 

full-reference metrics for traditional 2D video to ODV. 

The extended metrics for ODV are called VI-METRIC, 

where VI stands for Voronoi, and METRIC ∈ { PSNR , 

SSIM, MS-SSIM, VMAF,…} is a full-reference metric for 

traditional 2D video. Since we are dealing with full-refer-

ence quality assessment, the inputs of the framework are 

a distorted (e.g., compressed) ODV and the corresponding 

undistorted reference ODV. Initially, the quality framework 
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S
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Fig. 1  Figures of the proposed Voronoi-based quality assessment framework, showing patch extraction and patch metric score calculation
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extracts M planar Voronoi patches � ′

k
 from the distorted 

ODV and other M from the reference ODV. Then, a full-

reference metric for traditional 2D video is applied to the 

planar Voronoi patches � ′

k
 of the distorted and reference 

ODV, obtaining M patch scores �
k
 as illustrated in Fig. 1d. 

In our study, we apply the following full-reference metrics: 

PSNR, SSIM [43], MS-SSIM [44], and VMAF [39]. Since 

these metrics take rectangular video frames as input, we 

modified the first three of them, so that they can deal with 

any patch shape. For VMAF we took the bounding box of 

the patch as input, as it is not straightforward to modify 

VMAF for different patch shapes. In the end, the final ODV 

quality score is obtained by computing the arithmetic mean 

of the patch scores �
k
 as follows:

Proposed Voronoi‑based framework integrated 
with visual attention

When viewing an ODV with an HMD, only a part of the 

ODV, the so-called viewport, is visible, and usually different 

viewers tend to look only at particular regions that attract 

their visual attention. Since different parts of an ODV can be 

of different quality, it is important during quality assessment 

to give more weight to the regions that attract the visual 

attention, i.e., the regions that are most likely to be viewed. 

A way to represent these regions is the visual attention map, 

which defines for each pixel of the ODV the probability of 

being viewed.

To take visual perception into consideration for ODV 

quality assessment, we now propose to integrate visual 

attention into the original Voronoi-based framework, and 

refer to its metrics as VI-VA-METRIC, where VA stands 

for visual attention. Different methods can be used for the 

computation of visual attention maps. We investigate the 

effects of different visual attention estimation methods in 

Section “Investigation of applying different visual attention 

(7)VI-METRIC =

∑M−1

k=0
�

k

M
.

estimation methods”. Figure 2 shows a sample visual atten-

tion map generated using Kent method [22].

For the computation of the VI-VA-METRICs, first a qual-

ity score for each video frame of the distorted ODV is com-

puted based on visual attention, and then the frame scores 

are pooled into a final quality score. For the computation of 

the frame scores, initially M planar Voronoi patches � ′

k
 are 

extracted from each frame i of the distorted and reference 

ODV. Then, a full-reference metric for traditional 2D video 

is applied to the planar Voronoi patches � ′

k
 of each frame i, 

obtaining M patch scores �
i,k

 for each frame. At this point, 

the visual attention map �
i
 of each frame i of the distorted 

ODV is estimated. Then, M planar Voronoi patches � ′

k
 are 

extracted from each visual attention map �
i
 , and the sums 

�
i,k

 of the visual attention pixel values inside each patch � ′

k
 

of each map �
i
 are computed. The sum �

i,k
 is related to the 

probability of patch � ′

k
 of frame i being viewed. Next, the 

frame scores T
i
 are obtained through a weighted average of 

the patch scores �
i,k

 using the visual attention sums �
i,k

 as 

weights according to the following equation:

In the last step, the frame scores T
i
 are combined using a 

pooling approach P obtaining the final video score:

where N is the number of frames. Different pooling 

approaches P can be applied, like the arithmetic and har-

monic mean, the median, the minimum, etc. In this study, 

we analyze the following metrics obtained with the frame-

work: VI-VA-PSNR, VI-VA-SSIM, VI-VA-MS-SSIM, and 

VI-VA-VMAF.

Figure 2 shows the patch scores obtained by applying 

VMAF to 20 Voronoi patches, the visual attention map 

computed by the Kent distribution method [22] from the 

viewport trajectories obtained in our subjective experiments, 

and the visual attention patch weights �
i,k

 corresponding to 

20 Voronoi patches. As can be seen in the figure, different 

(8)T
i
=

∑M−1

k=0
�

i,k�i,k

∑M−1

k=0
�

i,k

.

(9)VI-VA-METRIC = P(T0, T1,… , T
N−1),

Fig. 2  Visualization of the VMAF patch scores, visual attention map, and the visual attention patch weights �
i,k

 . Please refer to the color bars 

beside the figures for the used color code
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regions of the ODV can have noticeably different qualities, 

and also clearly different visual attention values. For this 

reason, we integrate visual attention in our proposed quality 

assessment framework in a way to give more importance to 

patches that attract visual attention.

Dataset and subjective experiments

In this section, we introduce our dataset, and we describe the 

technical details of the two subjective experiments that we 

conducted in order to collect the subjective quality scores 

and the viewport trajectories for our dataset. This section 

terminates with the analysis of the collected subjective data.

Omnidirectional video quality dataset

Considering a streaming application scenario, we built our 

dataset using ODVs with different spatial resolutions and 

different compression levels. For our dataset and subjec-

tive experiments, we first selected a total of nine uncom-

pressed reference ODVs in YUV420p format of 10 sec. 

length, 8K × 4K ERP resolution, and with different charac-

teristics. These ODVs were selected from the videos of the 

joint video exploration team of ITU-T VCEG and ISO/IEC 

MPEG [45–47]. The selected videos are Basketball, Dancing, 

Gaslamp, Harbor, JamSession, KiteFlite, SkateboardTrick, 

Train, and Trolley. Sample frames of these videos are shown 

in Fig. 3. Basketball, Dancing, Harbor, JamSession, KiteFlite 

were rated in the first subjective experiment already reported 

in [28], and Gaslamp, SkateboardTrick, Trolley were rated in 

the second experiment reported here. The Train sequence was 

used only as training material in both experiments.

After the selection of the nine reference ODVs, they 

were downsampled to three different resolutions in ERP for-

mat: 8128 × 4064 , 3600 × 1800 , and 2032 × 1016 . For the 

downsampling, we used the bicubic scaling algorithm of the 

FFmpeg software (ver. 4.0.3-1 18.04). Next, the ODVs were 

compressed with the HEVC/H.265 video coding standard [33]. 

For this, we used the libx265 codec (ver. 2.9) [48] in FFmpeg 

[49] with the video buffering verifier method to set the tar-

get bitrates. As this database is created to understand possible 

cases which might be encountered in an adaptive streaming 

scenario, to ensure constant bitrate, each ODV was compressed 

using two-pass encoding with 150 percent constrained vari-

able bitrate configuration, following the recommendations of 

streaming providers [50]. We also defined the buffer size dur-

ing encoding to limit the output bitrate to twice the maximum 

bitrate for handling large bitrate spikes. To avoid any possible 

impact of the unknown resampling algorithm used by the video 

player, we upsampled the decoded ODVs to 8128 × 4064 reso-

lution using the bicubic scaling algorithm of FFmpeg. For the 

downsampling and compression of the reference ODVs, we 

used the following FFmpeg commands:

Fig. 3  Sample frames of the nine reference ODVs used in the subjective experiments. The top five ODVs were rated in the first subjective exper-

iment [28], and the bottom left three ODVs were rated in the second subjective experiment. Train was used for the experiment training
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where

• iVideoFn: filename of input video,

• iVideoRes: resolution of input video,

• iVideoFormat: format of input video (in our case 

yuv420p),

• iVideoFramerate: framerate of input video,

• iVideoFrames: number of frames of input video,

• oVideoFn: filename of output video,

• oVideoRes: resolution of output video,

• oVideoBitRate: target bitrate of output video in Kbps,

• oVideoMaxRate: maximum bitrate in Kbps (in our case 

1.5 × oVideoBitRate),

• oVideoBufSize: buffer size in Kbps (in our case 

2 × oVideoMaxRate).

To ensure that the distorted ODVs within the database are 

uniformly distributed across different quality levels, five 

different target bitrates were selected independently for 

each reference ODV in a pilot test with three experts using 

HTC Vive HMD. For this pilot test, before encoding, the 

reference ODVs were resized to the resolution 3600 × 1800 , 

which was found to be the optimal ODV resolution for 

HTC Vive HMD by Zhang et al.[30], after their calculation 

considering the HMD’s display resolution and its field of 

view. The ODVs were then encoded with different bitrates 

∈ {500, 1000, 2000, 5000, 7000, 10000, 13000, 15000} Kbps, 

and among them five different bitrates were selected in 

the pilot test to correspond to five different quality levels, 

namely, “bad”, “poor”, “fair”, “good”, and “excellent”, 

which are reported in Table 1.

Subjective experiments

This section describes the technical details of the two sub-

jective experiments that we organized. Their main charac-

teristics are shown in Table 2.

Experiment setup

The subjective experiments were conducted in a dedicated 

experiment room equipped with an HTC Vive HMD, which 

was used to present the stimuli to the viewers. Participants 

were seated in a swivel chair and allowed to turn freely. To 

ensure that the participants could vote without removing 

the HMD, we used the Virtual Desktop application. Virtual 

Desktop is an ODV player and an application that enables 

the users to watch and interact with the desktop using the 

HMD and VR controllers. Using this application and the 

open-source MATLAB GUI presented in [51, 52], partici-

pants were able to vote each stimulus. Additionally, with 

a special application, the viewport trajectories were also 

recorded during the presentation of each stimulus for the 

computation of the visual attention maps.

Methodology

The modified-absolute category rating (M-ACR) [53] meth-

odology was chosen for our subjective experiments in order 

to lengthen the exposure to the stimuli, since in this method-

ology each stimulus is presented twice with a short mid-gray 

screen (in our case a three second long one) between the two 

presentations. The reference sequences were also included in 

the subjective experiments as hidden references. That is, the 

participants were not told of reference sequences, and they 

voted the hidden references as any other stimulus.

The subjective quality scores for all the videos were col-

lected in two experiments with different ODVs and partici-

pants. The first experiment, which was presented in [28], 

comprised of two sessions of 30 minutes, one hour in total. 

The second experiment had only one session of 30 minutes. 

At the beginning of both experiments, there was a train-

ing phase when the Train video sequence with five differ-

ent quality levels was displayed. After the training phase, 

the experiment ODVs were randomly displayed, and the 

quality scores were assigned by the participants based on 

a continuous grading scale in the range [0,100], with 100 

corresponding to the best score, as recommended in ITU-R 

BT.500-13 [54].

Table 1  Bitrates (in Kbps) for the selected ODVs

ODV BR1 BR2 BR3 BR4 BR5

Basketball 500 1000 2000 5000 13000

Dancing

Harbor 500 1000 2000 7000 13000

JamSession

Gaslamp

SkateboardTrick

Trolley

KiteFlite 500 1000 5000 7000 13000

Table 2  Statistics of the stimuli and the participants in the subjective 

quality assessment experiments

Subjective 

Experiment

# of Stimuli # of 

Partici-

pants

Min – Mean – Max 

Age

Ratio of 

women 

(%)

First [28] 75 + 5 Ref 24 22 – 29.7 – 38 16

Second 45 + 3 Ref 23 25 – 31.6— 42 26
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Participants

24 participants, 20 males and four females, took part in 

the first experiment. These participants were aged between 

22 and 38 years with an average of 29.7 years. 23 partici-

pants, 17 males and six females, took part in the second 

experiment. These participants were aged between 25 and 

42 years with an average of 31.6 years. The gathered quality 

scores were screened for outliers using the outlier detec-

tion method recommended in ITU-R BT.500-13 [54]. Three 

outliers in the first experiment and two outliers in the sec-

ond experiment were found and removed. All participants 

were screened for visual acuity and found to have normal or 

corrected-to-normal vision.

Subjective quality analysis

To represent the subjective quality of each stimulus, dif-

ferential mean opinion scores (DMOS) [55] are calculated 

by applying the standard approach described in [56]. First, 

the difference scores are computed as: dij = sr
ij
− sij , where 

sij and sr
ij
 are the raw subjective score assigned by partici-

pant i to the distorted ODV j and the raw subjective score 

assigned to the corresponding hidden reference ODV, 

respectively. These difference scores dij are converted to 

z-scores as follows: zij = (dij − �i)∕�i , where �
i
 and �

i
 are 

the mean and standard deviation of the raw scores assigned 

by the participant i. Then, the z-scores are linearly rescaled 

in the interval [0,100] as follows: z�
ij
= 100(zij + 3)∕6 . The 

rescaling is based on the assumption that the z-scores zij 

are normally distributed with mean equal to zero and 

standard deviation equal to one, which means, that 99% of 

the z-scores zij are in the interval [-3,3], and consequently 

99% of the rescaled z-scores z′
ij
 are in the interval [0,100]. 

The final DMOS value of ODV j is then obtained by aver-

aging the rescaled z-scores z′
ij
 of the K participants exclud-

ing the outliers as follows:

Small DMOS values indicate that the distorted stimulus is 

closer to the reference, and hence small DMOS is better. 

Figure 4 shows the DMOS values of the ODVs included in 

the experiments. As expected, we can notice that there is 

an inverse relationship between DMOS and bitrate. From 

the plots we can also see that the ODVs with highest spatial 

resolution have the worst quality (highest DMOS) for low 

bitrate and the best quality for high bitrate. This shows that 

the 8128 × 4064 ODVs are coarsely compressed at the low 

bitrates due to the high number of pixels present. As the 

bitrate increases, the perceived quality for these videos gets 

better. Conversely, the perceived quality of the 2032 × 1016 

ODVs becomes the worst at high bitrates, due to the scaling 

distortions [3].

Visual attention analysis

Table 3 shows the comparison between the visual atten-

tion maps of the reference ODVs and the corresponding 

ODVs with resolution 8128 × 4064 and encoded at the five 

bitrates reported in Table 1. For the comparison, first uni-

formly distributed points on the sphere are sampled from 

the visual attention maps, and then the Pearson’s linear 

correlation coefficient (PLCC) and the Kullback–Leibler 

divergence (KLD) are applied to the sampled points [18]. 

Large PLCC values and small KLD values correspond to 

high similarity. As can be noticed from Table 3, the visual 

attention maps of the reference and corresponding dis-

torted ODVs can be different, especially for the smallest 

bitrate BR1. This can also be noticed in Fig. 5, where the 

visual attention maps of the JamSession reference ODV 

and the corresponding encoded ODVs at the smallest and 

largest bitrates with resolution 8128 × 4064 are shown. In 

Table 3, there is also the average of the PLCC and KLD 

(10)DMOS j =
1

K

K
∑

i=1

z�
ij
.

Table 3  Pearson’s linear 

correlation coefficient 

(PLCC) and Kullback-Leibler 

divergence (KLD) computed 

between the visual attention 

maps of the reference ODVs 

and the corresponding ODVs 

with resolution 8128 × 4064 

and encoded at the five bitrates 

reported in Table 1

ODV BR1 BR2 BR3 BR4 BR5

PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD

Basketball 0.8914 0.5939 0.9134 0.6394 0.8838 0.7101 0.9019 0.8640 0.9195 0.6801

Dancing 0.6410 1.3625 0.6911 1.0891 0.7226 1.2005 0.7841 0.7137 0.7205 1.0115

Harbor 0.7316 0.7843 0.7134 0.6718 0.8341 0.4486 0.8348 0.5310 0.8536 0.4550

JamSession 0.5781 1.4356 0.8312 0.7140 0.7313 0.8753 0.8640 0.5990 0.8457 0.4435

KiteFlite 0.7273 0.8362 0.8136 1.0684 0.8486 0.5353 0.8352 0.6136 0.8557 0.5614

Gaslamp 0.7769 0.8339 0.7981 0.6213 0.8457 0.4773 0.8739 0.5137 0.8421 0.6517

SkateboardTrick 0.8705 0.7316 0.8713 1.0611 0.9413 0.4834 0.8901 0.5517 0.8976 0.3951

Trolley 0.8586 0.8713 0.7891 0.9610 0.8232 0.8207 0.8945 0.5879 0.9162 0.5906

Average 0.7594 0.9312 0.8026 0.8533 0.8288 0.6939 0.8598 0.6218 0.8564 0.5986
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Fig. 4  Bitrate vs. DMOS plots of each ODV used in the subjective experiments. The vertical bars show 95% confidence intervals

Fig. 5  Comparison of the visual attention maps of the JamSession reference ODV in (a) and two corresponding encoded ODVs in (b) and (c). 

See the color bar in (d) for the used color code
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values for each bitrate. It can be seen that by increasing the 

bitrate the average PLCC increases while the average KLD 

decreases. Based on these observations and to ensure the 

most accurate results, in our framework we use, for each 

undistorted and distorted ODV, the corresponding visual 

attention map and not only the visual attention maps of the 

undistorted ODVs.

Analysis and evaluation

In this section, we first determine the optimal parameter 

values of the proposed framework, and then we compare 

the metrics of the proposed framework with existing qual-

ity metrics. With this aim, we use our ODV dataset with 

the gathered subjective quality scores presented in Sec-

tion “Dataset and subjective experiments”, and we analyze 

the correlation between the metric scores and the subjec-

tive scores. For the correlation analysis, we first convert 

the metric scores into the subjective scores by fitting a 

logistic function. We use the logistic function proposed in 

[57], and defined as follows:

where s′ is the predicted subjective score of the metric score 

s, and �1,…,4 are the parameters that are estimated during the 

(11)s
�
=

�1 − �2

1 + e
−

S−�3

‖�4‖

+ �2,

fitting. Here, the subjective score predicted by the logistic 

function is the reversed DMOS (i.e., subtracted from 100).

To evaluate how well the logistic function predicts the 

subjective scores, i.e., how well the metric estimates the sub-

jective quality, the following measures are applied to the 

real and predicted subjective scores: Pearson’s linear cor-

relation coefficient (PLCC), Spearman’s rank ordered cor-

relation coefficient (SROCC), root mean squared prediction 

error (RMSE), and mean absolute prediction error (MAE). 

PLCC and SROCC measure the prediction accuracy and the 

monotonicity, respectively. The larger they are, the more 

accurate and monotonic the prediction is. For RMSE and 

MAE, the smaller they are, the better the prediction is.

To visualize the relationship between the metric and 

subjective scores, sample plots are shown in Fig. 6 for 

the metrics SSIM and VMAF applied to the ERP format 

( SSIM
ERP

 and VMAF
ERP

 ), and in the original and proposed 

Voronoi-based quality assessment framework. In these plots, 

the increase of the correlation between the metric scores 

and DMOS is noticeable for the VI-METRICs and the VI-

VA-METRICs compared to the metrics calculated in ERP 

format.

Selection of optimal parameter values 
for the proposed framework

In this section, we fine-tune the proposed framework by 

determining the optimal parameter values.

Fig. 6  Metric versus subjective score plots with the fitted logistic functions. Red points indicate the data points, and blue lines indicate the logis-

tic functions
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Estimation of the optimal angular resolution and number 

of planar Voronoi patches

We first analyze the two main parameters of the original and 

proposed frameworks that have an impact on the accuracy 

of the quality estimation, namely, the angular resolution and 

the number of the planar Voronoi patches.

For the Voronoi-based metrics obtained with the origi-

nal and proposed framework, i.e., VI-METRICs and VI-

VA-METRICs, Table 4 shows PLCC and SROCC based on 

different parameter values. Three angular resolutions are 

investigated, namely {10, 15, 20} pix/deg, which are close 

to the resolution of the HTC Vive HMD used in our subjec-

tive experiments. Moreover, we also consider three different 

numbers of planar Voronoi patches, that is, M = {10, 15, 20}. 

For the estimation of the visual attention maps of the VI-VA-

METRICs, we use the Kent method [22].

As can be seen in the table, the reduction of the patch 

resolution improves the performance of the Voronoi-based 

metrics in most of the cases. For the other cases, the per-

formance remains almost constant. On the other hand, 

increasing the number of patches seems to positively influ-

ence the performance of the Voronoi-based metrics almost 

always, except for VI-PSNR and VI-VA-PSNR. This can 

be explained by the reduction of the projection distortions 

when the number of patches increases and consequently 

the patch size decreases. For the VI-VA-METRICs that use 

visual attention, the improvement of the performance can 

also be explained by the fact that with more patches the 

visual attention weights �
i,k

 are localized to smaller regions 

and consequently more accurate.

As a result of this analysis, we select 10 pix/deg and 

20 patches ( M = 20 ) as the optimal parameter values for 

our proposed framework. We use these two parameters 

for the rest of this paper. Please note that although we 

select these optimal parameter values, independently of 

the studied parameter values, the Voronoi-based metrics 

are characterized by a better performance than the perfor-

mance of the corresponding original metrics for traditional 

2D video applied to the ERP and CMP formats, as shown 

later in Table 7.

Table 4  PLCC and SROCC of 

the Voronoi-based metrics with 

different angular resolutions 

and numbers of patches. The 

best performance values for 

each resolution (i.e., each row) 

are in bold, while the best 

performance values among all 

the metrics are in italics

Metrics Resolutions 10 patches 15 patches 20 patches

PLCC SROCC PLCC SROCC PLCC SROCC

VI-PSNR 10 pix/deg 0.8700 0.8584 0.8775 0.8634 0.8676 0.8551

15 pix/deg 0.8700 0.8584 0.8775 0.8636 0.8675 0.8553

20 pix/deg 0.8700 0.8584 0.8775 0.8634 0.8676 0.8553

VI-SSIM 10 pix/deg 0.8757 0.8667 0.8821 0.8763 0.8823 0.8763

15 pix/deg 0.8423 0.8301 0.8509 0.8411 0.8516 0.8414

20 pix/deg 0.8132 0.7995 0.8227 0.8072 0.8237 0.8079

VI-MS-SSIM 10 pix/deg 0.9468 0.9432 0.9488 0.9446 0.9486 0.9450

15 pix/deg 0.9385 0.9361 0.9411 0.9381 0.9409 0.9398

20 pix/deg 0.9314 0.9260 0.9343 0.9303 0.9339 0.9291

VI-VMAF 10 pix/deg 0.9634 0.9553 0.9615 0.9529 0.9646 0.9581

15 pix/deg 0.9532 0.9444 0.9544 0.9470 0.9581 0.9497

20 pix/deg 0.9387 0.9288 0.9435 0.9363 0.9476 0.9401

VI-VA-PSNR 10 pix/deg 0.8977 0.8812 0.8760 0.8563 0.8876 0.8712

15 pix/deg 0.8977 0.8817 0.8760 0.8564 0.8876 0.8708

20 pix/deg 0.8977 0.8817 0.8760 0.8564 0.8876 0.8707

VI-VA-SSIM 10 pix/deg 0.8947 0.8848 0.8921 0.8832 0.9106 0.9007

15 pix/deg 0.8633 0.8510 0.8537 0.8426 0.8777 0.8663

20 pix/deg 0.8353 0.8214 0.8188 0.8136 0.8463 0.8323

VI-VA-MS-SSIM 10 pix/deg 0.9563 0.9505 0.9628 0.9581 0.9676 0.9635

15 pix/deg 0.9501 0.9438 0.9552 0.9506 0.9627 0.9573

20 pix/deg 0.9445 0.9371 0.9482 0.9424 0.9572 0.9517

VI-VA-VMAF 10 pix/deg 0.9661 0.9589 0.9738 0.9667 0.9773 0.9717

15 pix/deg 0.9580 0.9491 0.9678 0.9599 0.9723 0.9658

20 pix/deg 0.9444 0.9349 0.9553 0.9482 0.9623 0.9564



 Quality and User Experience             (2020) 5:4 

1 3

    4  Page 12 of 17

Investigation of applying di�erent visual attention 

estimation methods

The proposed quality framework can make use of different 

visual attention estimation methods, as the visual attention 

weights �
i,k

 can be computed from any visual attention map 

generated by different algorithms. Here, we investigate the 

effect of three different visual attention methods on VI-VA-

METRIC performance, namely, Kent distribution method 

[22], uniform viewport method, and equator-bias method. 

The first of the three estimation methods is based on Kent 

distribution, which is a Gaussian distribution defined on 

the surface of a unit sphere, as explained in [22]. With this 

method, we compute the visual attention maps using the 

viewport trajectories gathered in our subjective experiments 

and the default parameters proposed in [22]. For the second 

method, we also use viewport trajectories. In this method, 

each point of the viewport trajectories is replaced with a 

uniform viewport that is projected to ERP. The final visual 

attention map is obtained as the summation of the projected 

viewports. The last method does not require the viewport 

trajectories. Instead, it computes the visual attention map 

as a vertical bias from the equator defined by the Gaussian 

curve centered on the equator. Figure 7 shows the visual 

attention maps obtained with these three methods based on 

five discrete viewport positions.

Table 5 shows the performance of the Voronoi-based met-

rics integrated with visual attention. As can be noticed, both 

the Kent distribution method [22] and the uniform viewport 

method are able to improve the performance of the Voronoi-

based metrics. On the other hand, the equator-bias method is 

capable to improve VI-PSNR and VI-SSIM, while the perfor-

mance values of VI-MS-SSIM and VI-VMAF remain almost 

constant. In conclusion, these results show that adding a char-

acterization of the actual parts of the ODV that are likely 

watched improves the performance of the Voronoi-based 

metrics. As can be seen from the table, the metrics of the pro-

posed framework achieve the best performance when apply-

ing the Kent distribution method. Since this method is the 

most plausible and similar to the human eye-tracking results 

[21], it is expected to perform better than the other methods. 

Therefore, we use the visual attention maps estimated by the 

Kent distribution method in the rest of this paper.

Fig. 7  Visual attention maps computed with different methods using as input five different viewport positions

Table 5  Performance evaluation of the Voronoi-based metrics inte-

grated with visual attention estimated with three methods. The best 

performance values are in bold

Metrics Vis. Att. PLCC SROCC RMSE MAE

VI-PSNR – 0.8676 0.8551 7.5743 5.8377

VI-VA-PSNR Equator-bias 0.8781 0.8628 7.2995 5.5508

VI-VA-PSNR Uniform 0.8774 0.8585 7.4141 5.7168

VI-VA-PSNR Kent 0.8876 0.8712 7.1818 5.5072

VI-SSIM – 0.8823 0.8763 7.1172 5.2867

VI-VA-SSIM Equator-bias 0.8879 0.8850 6.9454 5.1687

VI-VA-SSIM Uniform 0.8981 0.8929 6.8103 5.0647

VI-VA-SSIM Kent 0.9106 0.9007 6.4345 4.8097

VI-MS-SSIM – 0.9486 0.9450 4.8743 3.8475

VI-VA-MS-SSIM Equator-bias 0.9486 0.9450 4.8790 3.8343

VI-VA-MS-SSIM Uniform 0.9634 0.9583 4.1350 3.3506

VI-VA-MS-SSIM Kent 0.9676 0.9635 3.8982 3.1526

VI-VMAF – 0.9646 0.9581 4.2096 3.1548

VI-VA-VMAF Equator-bias 0.9650 0.9576 4.1959 3.1393

VI-VA-VMAF Uniform 0.9749 0.9671 3.5602 2.7569

VI-VA-VMAF Kent 0.9773 0.9717 3.3753 2.5948

Table 6  Comparison of different temporal pooling methods for the 

combination of the frame scores applied in VI-VA-VMAF

Pooling PLCC SROCC RMSE MAE

Mean 0.9773 0.9717 3.3753 2.5948

Harmonic Mean 0.9775 0.9718 3.3681 2.5911

Min 0.9753 0.9705 3.4920 2.6887

Median 0.9761 0.9715 3.4093 2.6275

5th Percentile 0.9759 0.9708 3.4489 2.6437

10th Percentile 0.9776 0.9711 3.3636 2.5776

20th Percentile 0.9764 0.9714 3.3866 2.6041
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Investigation of di�erent temporal pooling methods 

of the frame scores

Since the selection of the temporal pooling method P for the 

combination of the frame scores T
i
 (see Eq. 9) might affect 

the overall performance, in this paper, we also investigate its 

effect. For this purpose, motivated by the pooling methods 

which are used in VMAF code [58], we evaluate the follow-

ing ones: mean, harmonic mean, min, median, 5th percen-

tile, 10th percentile, and 20th percentile. Table 6 shows the 

performance of VI-VA-VMAF with these pooling methods. 

As can be noticed, the performance is not influenced too 

much by the choice of the pooling method. Therefore, in the 

rest of the paper, we consider only the mean pooling method.

Comparison with existing metrics

This section evaluates the performance of the Voronoi-based 

metrics and existing well-known metrics used in ODV qual-

ity assessment studies. Four of the existing metrics that we 

evaluate were developed for traditional 2D image/video 

quality assessment: PSNR, SSIM [43], MS-SSIM [44], and 

VMAF [39]. These metrics were applied to ODVs in two 

different formats, namely, ERP and CMP, and to distinguish 

them we use a subscript, e.g. PSNR
ERP

 and PSNR
CMP

 . 

Moreover, we analyze extra four metrics which were spe-

cifically designed for ODV: S-PSNR-I [10], S-PSNR-NN 

[10], WS-PSNR [8], and CPP-PSNR [9]. The implementa-

tion used in our evaluation for PSNR, SSIM, and MS-SSIM 

is the one provided by the Video Quality Measurement Tool 

[59]; for VMAF we used the code provided by its develop-

ers [58]; while for S-PSNR-I, S-PSNR-NN, WS-PSNR, and 

CPP-PSNR, we used the 360Lib standard software [60].

Table 7 shows the performance evaluation of the selected 

existing metrics and our Voronoi-based metrics. By looking 

at the results, we can notice a slightly higher correlation 

between the subjective and metric scores when the metrics 

PSNR, SSIM, and VMAF are applied to the CMP format 

instead of the ERP format. The reason of this could be the 

lower projection distortions of CMP compared to ERP. We 

also observe that the performance of the PSNR-based met-

rics developed for ODV is better than the performance of 

the traditional PSNR. Furthermore, among all the evalu-

ated metrics in Table 7, SSIM is characterized by the worst 

performance, even worse than PSNR. The reason might be 

that the inevitable projection distortions negatively affect 

the performance of SSIM, as some regions are stretched to 

much bigger areas (especially the top and bottom parts of 

ERP). Therefore, SSIM scores could be dominated by these 

regions, and this could cause SSIM to have lower correlation 

with subjective scores than PSNR, even though, for tradi-

tional 2D video, SSIM is much closer to human perception 

than PSNR. On the other hand, among the selected existing 

metrics that are not Voronoi-based, MS-SSIM and VMAF 

have the best performance. This is not unexpected, since 

these metrics, which have state-of-the-art performance for 

traditional 2D video [42], consider scaling and compression 

distortions that characterize our dataset. Between these two 

metrics, MS-SSIM is slightly better than VMAF for both 

projection formats. The reason can be explained with the fact 

that VMAF was neither modeled for 8K nor ODV.

The results also show that when the metrics are applied 

to planar Voronoi patches instead of the ERP and CMP for-

mats, they achieve a better performance. This is expected 

because of the lower projection distortions of the planar 

Voronoi patches compared to ERP and CMP, and because 

of the similar angular resolutions of the patches and the 

HMD viewport. Moreover, as already noticed before, the 

Voronoi-based metrics integrated with visual attention (i.e., 

VI-VA-METRICs) achieve better performance than the 

corresponding ones without visual attention (i.e., VI-MET-

RICs). The best performing metric among all compared is 

VI-VA-VMAF followed by VI-VA-MS-SSIM.

In addition to the numerical results, a statistical significance 

analysis of the difference between PLCC, SROCC, and RMSE 

of the quality metrics was conducted according ITU-T Rec-

ommendation P.1401 [61]. Figure 8 illustrates the statistical 

significance analysis of the evaluated metrics in Table 7. The 

Table 7  Performance evaluation of the selected existing metrics and 

our Voronoi-based metrics together with two projection formats, 

namely ERP and CMP. The best performance values are in bold

Metrics PLCC SROCC RMSE MAE

PSNR
ERP

0.8408 0.8237 8.2326 6.3169

PSNR
CMP

0.8480 0.8323 8.0419 6.2085

S-PSNR-I 0.8580 0.8438 7.8207 5.9715

S-PSNR-NN 0.8584 0.8433 7.8066 5.9648

WS-PSNR 0.8582 0.8430 7.8107 5.9772

CPP-PSNR 0.8579 0.8439 7.8200 5.9779

SSIM
ERP

0.7659 0.7551 9.7734 7.7396

SSIM
CMP

0.7701 0.7546 9.6583 7.6036

MS-SSIM
ERP

0.9224 0.9160 5.8232 4.4205

MS-SSIM
CMP

0.9132 0.9081 6.1422 4.7378

VMAF
ERP

0.8978 0.8864 6.7433 5.3631

VMAF
CMP

0.9063 0.8945 6.5630 5.2229

VI-PSNR 0.8676 0.8551 7.5743 5.8377

VI-SSIM 0.8823 0.8763 7.1172 5.2867

VI-MS-SSIM 0.9486 0.9450 4.8743 3.8475

VI-VMAF 0.9646 0.9581 4.2096 3.1548

VI-VA-PSNR 0.8876 0.8712 7.1818 5.5072

VI-VA-SSIM 0.9106 0.9007 6.4345 4.8097

VI-VA-MS-SSIM 0.9676 0.9635 3.8982 3.1526

VI-VA-VMAF 0.9773 0.9717 3.3753 2.5948



 Quality and User Experience             (2020) 5:4 

1 3

    4  Page 14 of 17

vertical bars show that there is no statistically significant differ-

ence between the metrics aligned with the same bar. As can be 

noticed in Fig. 8, the first four best quality metrics are statisti-

cally equivalent. The significance analysis results also show 

that the addition of visual attention might not always yield a 

statistically significant difference. Nevertheless, the numerical 

results show that integrating visual attention improved the met-

ric performance in all the cases, as we can also see in Table 4.

To further evaluate the Voronoi-based metrics in a dif-

ferent condition and analyze the effect of different spatial 

Fig. 8  Statistical significance 

analysis of the difference 

between PLCC, SROCC, and 

RMSE of the quality metrics, 

obtained according to ITU-T 

Recommendation P.1401 [61]. 

There is statistically significant 

equivalence between two qual-

ity metrics, only if there is a 

vertical bar aligned with them; 

e.g., there is a statistically sig-

nificant difference between VI-

VA-VMAF and MS-SSIM
ERP

 

in terms of PCC, SROCC, and 

RMSE

PLCC

VI-VA-VMAF

VI-VA-MS-SSIM

VI-VMAF

VI-MS-SSIM

MS-SSIMERP

MS-SSIMCMP

VI-VA-SSIM

VMAFCMP

VMAFERP

VI-VA-PSNR

VI-SSIM

VI-PSNR

S-PSNR-NN

WS-PSNR

S-PSNR-I

CPP-PSNR

PSNRCMP

PSNRERP

SSIMCMP

SSIMERP

SROCC

VI-VA-VMAF

VI-VA-MS-SSIM

VI-VMAF

VI-MS-SSIM

MS-SSIMERP

MS-SSIMCMP

VI-VA-SSIM

VMAFCMP

VMAFERP

VI-SSIM

VI-VA-PSNR

VI-PSNR

CPP-PSNR

S-PSNR-I

S-PSNR-NN

WS-PSNR

PSNRCMP

PSNRERP

SSIMERP

SSIMCMP

RMSE

VI-VA-VMAF

VI-VA-MS-SSIM

VI-VMAF

VI-MS-SSIM

MS-SSIMERP

MS-SSIMCMP

VI-VA-SSIM

VMAFCMP

VMAFERP

VI-SSIM

VI-VA-PSNR

VI-PSNR

S-PSNR-NN

WS-PSNR

CPP-PSNR

S-PSNR-I

PSNRCMP

PSNRERP

SSIMCMP

SSIMERP

Table 8  PLCC and SROCC of 

the evaluated metrics computed 

separately for the resolutions 

2K, 4K, and 8K. The best 

performance values for each 

resolution are in bold

2K 4K 8K

Metrics PLCC SROCC PLCC SROCC PLCC SROCC

PSNR
ERP

0.7388 0.6139 0.8360 0.8343 0.9202 0.9183

PSNR
CMP

0.7517 0.6203 0.8431 0.8450 0.9221 0.9163

S-PSNR-I 0.7634 0.6469 0.8568 0.8615 0.9304 0.9228

S-PSNR-NN 0.7649 0.6433 0.8570 0.8574 0.9300 0.9227

WS-PSNR 0.7650 0.6366 0.8570 0.8574 0.9299 0.9230

CPP-PSNR 0.7638 0.6432 0.8567 0.8615 0.9302 0.9230

SSIM
ERP

0.6996 0.5570 0.7703 0.7951 0.8600 0.8482

SSIM
CMP

0.7011 0.5591 0.7714 0.7878 0.8565 0.8484

MS-SSIM
ERP

0.8841 0.7992 0.9150 0.9351 0.9652 0.9478

MS-SSIM
CMP

0.8673 0.7824 0.9071 0.9276 0.9583 0.9446

VMAF
ERP

0.9202 0.8735 0.9203 0.9071 0.9515 0.9240

VMAF
CMP

0.9226 0.8790 0.9309 0.9156 0.9567 0.9285

VI-PSNR 0.7640 0.6321 0.8660 0.8769 0.9358 0.9247

VI-SSIM 0.8346 0.7109 0.8794 0.9060 0.9367 0.9249

VI-MS-SSIM 0.8642 0.8807 0.8140 0.9437 0.9767 0.9557

VI-VMAF 0.9627 0.9287 0.9577 0.9458 0.9789 0.9500

VI-VA-PSNR 0.7960 0.6644 0.9050 0.9006 0.9451 0.9321

VI-VA-SSIM 0.8434 0.7326 0.9200 0.9321 0.9593 0.9392

VI-VA-MS-SSIM 0.9529 0.9105 0.8332 0.9674 0.9829 0.9634

VI-VA-VMAF 0.9762 0.9493 0.9737 0.9625 0.9862 0.9593
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resolutions of the ODVs, we calculate the correlation coef-

ficients separately for each spatial resolution of our data-

set (i.e., 2K, 4K, and 8K). The results of this analysis are 

shown in Table 8. It is interesting to notice that for most of 

the selected existing and Voronoi-based metrics the corre-

lations PLCC and SROCC improve when the resolution is 

increased. This can be attributed to scaling distortions (blur) 

present at 2K and 4K resolutions. Assuming that most of 

the metrics were developed mainly for compression distor-

tions and/or noise, the presence of scaling distortions could 

decrease the correlation between DMOS and metric scores 

in the cases of 2K and 4K. Nevertheless, we notice again that 

the integration of visual attention increases the performance 

of the Voronoi-based metrics.

Regardless of the case, the integration of visual attention 

(i.e., VI-VA-METRICs) improves the Voronoi-based metrics 

(i.e., VI-METRICs) in every situation. These improvements 

can be seen not only in Table 7 but also in Tables 5 and 8 . 

This consistent improvement shows that the proposed inte-

gration of visual attention is an important factor to consider 

in the objective ODV quality assessment, and it needs to be 

taken into account to increase the metric performance.

Limitations of the proposed framework and future 
improvements

As discussed in the previous subsection, the proposed frame-

work integrated with visual attention achieves state-of-the-

art performance. Nevertheless, it has also limitations that we 

plan to tackle in future work.

First, the current framework only considers visual atten-

tion maps generated using the viewport trajectories collected 

from the participants of a subjective experiment. In practice, 

this type of data is not available, as it is not possible to find 

the viewport trajectories for new content without conduct-

ing a subjective experiment first. Instead, automatic sali-

ency estimation algorithms [62] might be used for most of 

the practical cases. Nevertheless, the integration of the said 

automatic saliency estimation methods and the performance 

analysis in this case remain as future work.

Second, in our study and in particular in our dataset, 

we have considered only the typical artifacts introduced 

by the encoding pipeline of the adaptive streaming sys-

tems, i.e., compression and scaling distortions. However, 

the end-to-end ODV distribution pipeline can introduce 

other visual artifacts [63, 64], such as artifacts introduced 

during capturing (e.g., noise and motion blur), stitching 

artifacts (e.g., visible seams and missing information), 

blending artifacts (e.g., ghosting and exposure difference), 

and warping artifacts. The perceptual impact of the other 

visual artifacts can be investigated and integrated into our 

proposed framework.

Third, with the current unoptimized code, the computa-

tion of VI-VA-VMAF requires considerable computational 

resources. For an 8K ODV with 300 frames, the computa-

tion of VI-VA-VMAF with 20 patches and with 10 pix/deg 

patch resolution takes about three minutes using a PC with 

a 4GHz Intel Core i7-6700K processor. Moreover, VI-VA-

VMAF requires as input also a visual attention map for each 

frame. On a machine with two Intel Xeon Gold 6134 proces-

sors, the parallel computation of 400 × 800 visual attention 

maps using the code of the Kent method provided in [22] 

takes about nine seconds per map.

Conclusion

This paper presented a framework for objective ODV quality 

assessment that takes into account the spherical nature of 

ODV and the ODV viewing characteristics. The proposed 

framework is based on the subdivision of ODV into planar 

Voronoi patches with low projection distortions obtained 

with the spherical Voronoi diagram. Furthermore, it also 

exploits visual attention to identify the regions that are con-

sumed by the viewer with high probability, which have a big 

influence on the perception of the video quality. For the eval-

uation of the framework, our previously established ODV 

dataset was extended in this study, creating a dataset with 

a total of 120 distorted videos from 8 undistorted reference 

videos. Subjective scores and viewport trajectories for the 

new ODVs were also collected in a subjective experiment.

In the evaluation of the framework, first the framework 

parameter space was analyzed. This analysis showed how 

planar Voronoi patches and visual attention are important 

to achieve high correlation between subjective and metric 

scores. Moreover, the framework was also compared with 

exiting metrics, and this showed that our framework can 

achieve state-of-the-art performance.

As future work, we plan to further explore the visual 

attention methods for ODV that do not require viewport tra-

jectories. We also intend to extend our framework to distor-

tions different from the ones considered here, i.e., compres-

sion and scaling distortions.
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