
Visual-based simultaneous localization and mapping and global positioning system correction

for geo-localization of a mobile robot

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Meas. Sci. Technol. 22 124003

(http://iopscience.iop.org/0957-0233/22/12/124003)

Download details:

IP Address: 89.202.245.164

The article was downloaded on 21/06/2012 at 13:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0957-0233/22/12
http://iopscience.iop.org/0957-0233
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY

Meas. Sci. Technol. 22 (2011) 124003 (9pp) doi:10.1088/0957-0233/22/12/124003

Visual-based simultaneous localization
and mapping and global positioning
system correction for geo-localization of a
mobile robot

Sid Ahmed Berrabah1,2, Hichem Sahli2 and Yvan Baudoin1

1 Royal Military Academy of Belgium (RMA), Av. de la Renaissance 30, B1000 Brussels, Belgium
2 Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium

E-mail: sidahmed.berrabah@rma.ac.be

Received 15 February 2011, in final form 10 August 2011

Published 15 November 2011

Online at stacks.iop.org/MST/22/124003

Abstract
This paper introduces an approach combining visual-based simultaneous localization and

mapping (V-SLAM) and global positioning system (GPS) correction for accurate multi-sensor

localization of an outdoor mobile robot in geo-referenced maps. The proposed framework

combines two extended Kalman filters (EKF); the first one, referred to as the integration filter,

is dedicated to the improvement of the GPS localization based on data from an inertial

navigation system and wheels’ encoders. The second EKF implements the V-SLAM process.

The linear and angular velocities in the dynamic model of the V-SLAM EKF filter are given by

the GPS/INS/Encoders integration filter. On the other hand, the output of the V-SLAM EKF

filter is used to update the dynamics estimation in the integration filter and therefore the

geo-referenced localization. This solution increases the accuracy and the robustness of the

positioning during GPS outage and allows SLAM in less featured environments.

Keywords: geo-localization, simultaneous localization and mapping

(Some figures in this article are in colour only in the electronic version)

1. Introduction

To be able to navigate in its environment, a mobile robot

is required to infer its current position in relation to the

outside world using onboard sensory readings. For outdoor

applications, the global positioning system (GPS) could be

used to compute the robot’s position in a geo-referenced map

of the environment. However, it is well known that GPS

systems are subject to several sources of errors, among them,

ionosphere and troposphere delays, signal multi-path, number

of visible satellites, satellite geometry/shading, etc. A typical

GPS receiver, for civil applications, provides 6–12 m accuracy,

depending on the number of available satellites. This accuracy

can be reduced to 1 m when using a differential GPS (DGPS)

system which employs a second receiver at a fixed location to

compute corrections to the GPS satellite measurements.

Several solutions have been proposed in the literature to

increase the accuracy of GPS localization by integrating data

from other sensors. In particular, inertial navigation systems

(INS) [1–3] and/or wheel encoders [4, 5] have often been

used. This integration usually makes use of a Kalman filter

(KF). Based on an error model of the different navigation

system parameters, a KF solution may be capable of providing

a reliable estimate of the position, velocity and attitude

components of the moving platform [6]. Such a solution for

the integration of GPS and INS has been successfully used in

practice. However, the accuracy of these systems decreases

drastically during long outage of the GPS receiver.

On the other hand, for local navigation in unknown

outdoor environments, simultaneous localization and mapping

(SLAM) techniques have been developed allowing robots to

build up a map of their environment while at the same time

keeping a track of their current location [8, 11].
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Combining GPS and SLAM has also been addressed in

the literature. Lee et al [23] used the GPS and digital road map

information as prior constraints to aid their SLAM algorithm

in data association and loop closure. A similar idea was

introduced in [24], where the authors built a stereo camera-

based topological/metric hierarchical SLAM for vehicle

localization in urban environments. When available, the data

from GPS are fused with the visual estimation using a Kalman

filter. Yang et al [26] developed a SLAM-aided GPS/INS

navigation system. In their algorithm, if the GPS information

is available, the SLAM-aided system works in the way of

INS/GPS, and at the same time, online building and updating

the landmark-based map using INS/GPS solution. If the GPS

data are not available, the generated map is used to constrain

the INS errors. In [26], Asmar introduced the VisSLAM

approach combining vision and INS using an EKF filter.

In this study, we propose a different multi-sensor-

based framework combining visual SLAM and integrated

GPS/INS/Encoders filtering for outdoor robot localization.

The filters are combined in a feedback loop. Compared to

[24–26], the proposed method corrects the GPS measurement

(using the SLAM output and INS and encoders data) before

using it to localize the built map and the SLAM estimation is

helped by the integration filter.

The following sections give a detailed description of the

proposed framework and discuss the obtained results for each

part of the algorithm.

2. Global algorithm

In this work, the used robot is the ‘ROBUDEM’ robot

(figure 1), equipped with a camera, a GPS, an INS and wheel

encoders. We define a local global coordinate system G

(figure 1) formed from a plane tangent to the Earth’s

surface and fixed to a specific location with known geodetic

coordinates (in our case, it is supposed to be the initial robot

position for a null initialization of the covariance matrix in

the SLAM process, see section 4). The X axis points toward

the east, the Y axis points toward the north and the Z axis

points vertically upward. We also define an inertial coordinate

frame L related to the INS sensor, a coordinate system C for

the camera and a platform (robot) frame R (figure 1). The

axes of these frames are parallel with the XY plane parallel to

the ground and the X axis points toward the robot direction.

The Z axis points vertically upward. For geo-localization, a

conventional coordinate frame called ‘Earth-centered Earth-

fixed (ECEF or ECF)’ is used. This frame has its origin

at the center of the Earth (figure 1). The X axis passes

through the equator at the prime meridian. The Z axis passes

through the North Pole. The Y axis can be determined by

the right-hand rule to be passing through the equator at 90◦

longitude. The geodetic coordinates expressed in terms of

latitude �, longitude Ŵ and altitude � can be converted into

ECEF coordinates (xE, yE, zE) using the following formulas:

xE = ג) + �) cos(�) cos(Ŵ)

yE = ג) + �) cos(�) sin(Ŵ) (1)

zE = 1)ג) − e2) + �) sin(�),

Figure 1. The ROBUDEM robot and coordinate frames.

where ג = a/
√

(1 − e2 sin2(�)) is the distance from the

surface to the Z axis along the ellipsoid normal. a and

e2 are the semi-major axis and the square of the first

numerical eccentricity of the ellipsoid, respectively (a =

6356 752.3142 m and e2 = 6.694 379 990 14 × 10−3).

The conversion of the coordinates of a location

(xE, yE, zE) in the ECEF frame to the coordinates

(xG, yG, zG) in the local global coordinate G fixed to a

location O with geodetic coordinates (�,Ŵ,�) and the ECEF

coordinates (xE
O , yE

O , zE
O) is computed by

⎡

⎣

xG

yG

zG

⎤

⎦ =

⎡

⎣

−s(ŴO) c(ŴO) 0

−s(�O)c(ŴO) −s(�O)s(ŴO) c(�O)

c(�O)c(ŴO) c(�O)s(ŴO) s(�O)

⎤

⎦

×

⎡

⎢

⎣

xE − xE
O

yE − yE
O

zE − zE
O

⎤

⎥

⎦
, (2)

where c(·) and s(·) stand for cos(·) and sin(·), respectively.

In our application all measurements and computations are

transformed into the G coordinate system. For simplicity, the

subscript G is omitted in the following.
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The state vector of the robot xr is defined with the 3D

position vector r = (xr , yr , zr) in the world frame coordinates

and the robot’s orientations yaw, roll and pitch (ωr , θr , ϕr ):

xr =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

xr

yr

zr

ωr

θr

ϕr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The dynamic model or motion model is the relationship

between the robot’s past state, xt−1
r , and its current state, xt

r ,

given a control input ut :

xt
r = f

(

xt−1
r , ut , vt

)

, (3)

where f is a function representing the mobility, kinematics

and dynamics of the robot (transition function) and v is a

random vector describing the unmodeled aspects of the vehicle

(process noise such as wheel sleep or odometry error).

The system dynamic model of the robot, considering the

control u as identity, is given by

xt
r =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x t
r

y t
r

zt
r

ωt
r

θ t
r

ϕt
r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x t−1
r + (vt−1 + V ) cos

(

ωt−1
r

)

	t

y t−1
r + (vt−1 + V ) sin

(

ωt−1
r

)

	t

zt−1
r

ωt−1
r +

(

ω̇t−1
r + 


)

	t

θ t−1
r

ϕt−1
r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4)

where v and ω̇ are the linear and the angular velocities,

respectively, and V and 
 are the Gaussian distributed

perturbations to the robot’s linear and angular velocity,

respectively.

Figure 2 illustrates the proposed framework for robot

localization, where two extended Kalman filters (EKF) are

combined in a feedback loop. The first EKF, referred to as

integration EKF (EKF-I), is dedicated to the improvement

of the GPS localization based on data from an inertial

navigation system (INS) and wheels’ encoders. The second

EKF implements the V-SLAM process. Both EKFs exchange

motion parameters for better localization.

The built V-SLAM algorithm uses an EKF to represent

a visual feature-based map. The linear ν and angular ω̇

velocities in the dynamic model of the V-SLAM algorithm

are given by the GPS/INS/Encoders integration process. On

the other hand, the output of the V-SLAM is used to update

the dynamics estimation in the EKF-I, and therefore the geo-

referenced localization.

The proposed solution will allow increasing accuracy and

robustness of the positioning during GPS outage as well as

using fewer features for the V-SLAM.

3. GPS/INS/Encoders integration

The GPS measurements are called pseudo-ranges (instead of

ranges) since the estimated times of transmission are corrupted

Figure 2. The proposed framework for robot localization.

by different biases. The positioning equations for ns satellites

in sight at time instant t can be defined as

r t
i =

√

(

Xt
i − x t

r

)2
+

(

Y t
i − y t

r

)2
+

(

Zt
i

)2
+ bt + wt

i (5)

for i = 1, . . . , ns , where r t
i is the pseudo-range between the

GPS receiver and the ith satellite, [Xt
i , Y

t
i , Z

t
i ]

T is the position

of the ith satellite, bt is the GPS receiver clock offset in

meters, wt
i is the measurement error and [xr , yr ] is the vehicle

position to be estimated (the vehicle altitude is zr = 0 in our

application).

The GPS clock offset dynamic model is defined by

ḃt = d t + ν t
b, ḋ t = ν t

d (6)

where ν t
b and ν t

d are the noise on GPS measurements.

The inertial navigation system (INS) is a self-contained

navigation technique in which measurements provided by

accelerometers and gyroscopes are used to track the position

and orientation of the robot relative to a known starting

point, orientation and velocity. INS typically contains

three orthogonal rate-gyroscopes and three orthogonal

accelerometers, measuring angular velocity and linear

acceleration, respectively.

Usually, INS can only provide an accurate solution for a

short period of time. As the acceleration is integrated twice to

obtain the position, any error in the acceleration measurement

will also be integrated and will cause a bias on the estimated

velocity and a continuous drift on the position estimate by the

INS.

The accelerometers deliver a nongravitational

acceleration (also referred to as the specific force f R)

and the gyrometers measure the rotation rate of the sensor

cluster 
LG in order to keep track of the vehicle orientation.
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The differential equations relating the measured quantities

to the dynamics are defined as follows:

v̇EG = RRGf R + gG − (
EG + 2
LE)vE − (
LE)2pG, (7)

where RRG is the rotation matrix from the R frame to the local

geographic frame W , 
LE is the rotation rate from the L frame

to the E frame, 
EG is the rotation rate from the E frame to

the G frame, vE is the velocity relative to the E frame and gG

is the gravitational acceleration.

The location pG of the vehicle in the G frame is given by

ṗG =

(

�̇r

Ŵ̇r

)

=

⎛

⎜

⎜

⎝

1

R�

0

0
1

RŴ cos(�)

⎞

⎟

⎟

⎠

, (8)

where �r and Ŵr are the latitude and longitude of the vehicle,

R� is the Earth’s radius of curvature in the meridian and RŴ

is the transverse radius.

The state model describing the INS error dynamics can be

obtained by linearizing equations (7) and (8) around the INS

estimation (see [22] for more details):

δṗG = S(
EG) ∧ δpG + δv̇EG

δv̇EG = S(δρ) ∧ f R − S(
EG + 2
LE) ∧ δvEG

+ δgG − S(δ
EG + 2
LE) ∧ vEG

δρ̇ = −δ
LE − S(
LG) ∧ δρ + RRGδ
LE, (9)

where S(·) is the skew-symmetric matrix and ∧ denotes the

cross product.

The linear speed v and the yaw rate (angular velocity) ω̇

of the vehicle at time t can be computed based on the wheel

encoders as follows:

v =
αt

rRr + αt
l Rl

2

ω̇ =
αt

rRr + αt
l Rl

Lrl

,

(10)

where αt
r and αt

l are the angular velocities of the right and left

rear wheels, respectively, and Rr and Rl their corresponding

radii. Lrl is the distance between rear wheels.

The EKF-I filter prediction is done using equation (9) to

estimate the state vector composed of the vehicle position xr ,

the linear and angular velocities, and the GPS bias term

xEKF-I = [xr , p
G, v, ω̇, b, d]T .

For the update of the filter, the linear and angular velocities

are estimated as an average between the sensor measurements

and the V-SLAM estimations (as described in the following

section).

4. Visual SLAM for localization

4.1. Visual SLAM formulation

The SLAM problem is tackled as a stochastic problem and

it has been addressed with approaches based on Bayesian

filtering. The most well-known Bayesian filters for treating the

SLAM problem are (i) the extended Kalman filter (EKF) [7–9]

where the belief is represented by a Gaussian distribution, and

Figure 3. Features detected in a scene with moving objects.

(ii) the particle filters [10, 11] where the belief is represented by

multiple values (particles). Whenever a landmark is observed

by the robot’s on-board sensors, the system determines

whether it has been already registered and updates the filter.

Usually the features used in vision-based localization

algorithms are salient and distinctive objects are detected

from images. Typical features might include regions, edges,

object contours, corners, etc. In our work, the map features

are obtained using the SIFT feature detector [12]. These

features are invariant to image scale, rotation and change in

illumination [13].

To deal with the problem of SLAM in dynamic scenes

with a moving object, we use a previously developed motion

segmentation algorithm [14] to remove outlier features which

are associated with moving objects. In other words, the

detected features which correspond to the moving parts in

the scene are not considered in the built map. The approach in

[14] uses a Gaussian mixture model background subtraction

approach to detect the moving objects’ mask and a Markov

random field framework to optimize the detected masks based

on the space and time dependences that moving objects impose

on a frame pixel. The algorithm starts by estimating and

compensating the camera motion. In another paper, we will

show how we exploit the estimated 3D motion in the SLAM

process for the 2D camera motion compensation. For more

details, the reader is referred to [14].

To deal with the reliability of the detected and tracked

features, we use a bounding box around the moving objects

(figure 3), and the newly detected features should be

detected and matched in at least j consecutive frames

(in our application, j = 5) before being added to the

features’ map.

Features are represented in the system state vector by their

3D location in the local world coordinate system G:

mi = (m1,i,m2,i,m3,i)
T .

The observation model of the EKF-SLAM is given by

zt =
[

zt
1, z

t
2

]T
= h(mt ) + wt , (11)

where zt is the observation vector at time t and h is the

observation model. The vector zt
i is an observation at instant t

of the ith landmark location mt
i relative to the robot’s location

4
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xt
r . Using a perspective projection, the observation model in

the robot coordinate system is obtained as follows:

zt
i = h

(

mt
i

)

=

⎡

⎢

⎢

⎢

⎢

⎣

ox + f
mt

1,i

R

mt
3,i

R

oy + f
mt

2,i

R

mt
3,i

R

⎤

⎥

⎥

⎥

⎥

⎦

, (12)

where ox and oy are the image center coordinates and f is the

focal length of the camera.

mR
i =

(

mR
1,i,m

R
2,i,m

R
3,i

)T
are the coordinates of the

feature i in the robot coordinate frame R. They are related

to mi by

mR
i =

⎛

⎝

cos(ωr) − sin(ωr) 0

sin(ωr) cos(ωr) 0

0 0 1

⎞

⎠

⎛

⎝

mt
1,i − xr

mt
2,i − yr

mt
3,i − h

⎞

⎠, (13)

where h is the height of the camera.

In EKF-based SLAM approaches, the environment is

represented by a stochastic map M = (x, P), where x is the

estimated state vector, consisting of the nr states representing

the robot, xt
r , and the n states describing the observed

landmarks, mt
i , i = 1, . . . , n, and P is the estimated covariance

matrix, where all the correlations between the elements of the

state vector are defined:

xt =

⎡

⎢

⎢

⎢

⎣

xt
r

mt
1

...

mt
n

⎤

⎥

⎥

⎥

⎦

Pt =

⎡

⎢

⎢

⎢

⎣

Pt
rr Pt

r1 · · · Pt
rn

Pt
1r Pt

11 · · · Pt
1n

...
...

. . . · · ·

Pt
nr Pt

n1 · · · Pt
nn

⎤

⎥

⎥

⎥

⎦

. (14)

The sub-matrices Pt
rr , Pt

ri and Pt
ii are, respectively, the robot to

robot, robot to feature, and feature to feature covariances. The

sub-matrices Pt
ij are the feature to feature cross-correlations.

x and P will change in dimension as features are added or

deleted from the map.

The extended Kalman filter consists of two steps:

(a) The prediction step (equations (15)), which estimates the

system state according to the state transition function

f (equation (4)) and the covariance matrix P to reflect

the increase in uncertainty in the state due to noise

Q (unmodeled aspects of the system). The linear

v and the angular ω̇ velocities are estimated by the

GPS/INS/Encoder integration KEF filter:

xt |t−1 =

⎡

⎢

⎣

f(xt−1|t−1
r , u = 0)

mt−1|t−1
1

...

⎤

⎥

⎦
,

Pt |t−1 = FPt−1|t−1F T + Qt−1 (15)

where F = ∂f
∂x

|xt−1|t−1 = diag
(

∂f
∂xr

|xt−1|t−1
r

, I
)

is the Jacobian

of f with respect to the state vector x and Q is the process

noise covariance.

Considering a constant velocity model for the smooth

camera motion:

∂f

∂xr

∣

∣

∣

∣

x
t−1|t−1
r

=

⎡

⎣

1 0 − sin
(

ωt−1
r

)

(vt−1 + V )	t

0 1 cos
(

ωt−1
r

)

(vt−1 + V )	t

0 0 1

⎤

⎦.

(16)

(b) The update step uses the current measurement to

improve the estimated state, and therefore the uncertainty

represented by P is reduced:

xt |t = xt |t−1 + Wtεt

Pt |t = Pt |t−1 − WtStWt T ,
(17)

where

Wt = Pt |t−1HT (St )−1

St = HPt |t−1H + Ut

ε = zt − h(xt |t−1).

(18)

Q and U are block-diagonal matrices (obtained

empirically) defining the error covariance matrices

characterizing the noise in the model and the observations,

respectively. H is the Jacobian of the measurement model

h with respect to the state vector. A measurement of

feature mi is not related to the measurement of any other

feature so

∂hi

∂x
=

[

∂hi

∂xr

0 · · ·
∂hi

∂mi

0 · · ·

]

,

where hi is the measurement model for the ith feature.

4.2. Initialization

Several approaches have been proposed for the estimation of

the initial state of the EKF-SLAM. Deans [15] combined

Kalman filter and bundle adjustment in filter initialization,

obtaining accurate results at the expense of increasing filter

complexity. In [8], Davison uses an A4 piece of paper as a

landmark to recover the metric information of the scene. Then,

whenever a scene feature is observed, a set of depth hypotheses

are made along its direction. In subsequent steps, the same

feature is seen from different positions reducing the number of

hypotheses and leading to accurate landmark pose estimation.

Solà et al [16] proposed a 3D bearing-only SLAM algorithm

based on EKF filters, in which each feature is represented by

a sum of Gaussians.

In our application, to estimate the 3D position of the

detected features, we use an approach based on epipolar

geometry. This geometry represents the geometric relationship

between multiple viewpoints of a rigid body and it depends

on the internal parameters and relative positions of the

camera. The essence of the epipolar geometry is illustrated in

figure 4 [24].

The fundamental matrix F (a 3 × 3 matrix of

rank 2) encapsulates this intrinsic geometry. It describes the

relationship between matching points: if a landmark M̃ is

imaged as m in the first view, and m′ in the second, then

the image points satisfy the relation mT Fm′ = 0 called the

5
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Figure 4. Illustration of the epipolar geometry.

epipolar constraint. m lies on the epipolar line Fm′ and so the

two rays back-projected from image points m and m′ lie in a

common epipolar plane. Since they lie in the same plane, they

will intersect at one point. This point is the reconstructed 3D

scene point M.

Analytically, the depth of the 3D point corresponding to

x and x ′ can be calculated by the following equation:

z =
(e × m)(m × m′)

‖ m × m′ ‖2
(19)

where e is the epipole at the first view satisfying the relation

Fe = 0.

The fundamental matrix F is independent of scene

structure and can be computed from correspondences of

imaged scene points, without requiring knowledge of the

cameras’ internal parameters or relative pose. Given a set

of n pairs of image correspondences (mj , m′
j ), j = 1, . . . , n,

we compute the rotation matrix R between the two views and

translation vector t such that the epipolar error (equation (20))

is minimized. For the minimization, we use the random sample

Cconsensus (RANSAC) algorithm [21]:

min
F

n
∑

j=1

m′
jFmj . (20)

4.3. Feature matching

At step t, the onboard sensor obtains a set of measurements

zt
i (i = 1, . . . , k) of k environment features. Feature

matching corresponds to data association, also known as the

correspondence problem, which consists in determining the

origin of each measurement, in terms of the map features mj ,

j = 1, . . . , n. In our implementation, the measurement zt
i can

be considered corresponding to the feature j if the following

equation is satisfied:

D2 = D2
ij + D2

desc + D2
epi < th (21)

where D2
ij is the Mahalanobis distance between the new

detected feature i and the map features j , D2
desc is the Euclidean

distance between the descriptor vectors of the features i and j ,

and D2
epi is the distance of the feature i from the epipolar line

induced by the feature j .

Figure 5 illustrates the effectiveness and accuracy of the

proposed approach for feature matching given by equation (21)

(figure 5(c)), compared to other techniques using matching

(a)

(b)

(c)

Figure 5. SIFT feature matching. (a) Feature matching based on the
Mahalanobis distance with consistency hypothesis. (b) Feature
matching based on the Euclidean distance between feature
descriptors. (c) Feature matching based on equation (21).

based on Mahalanobis distance with consistency hypothesis

(figure 5(a)) and matching based on Euclidean distance

between feature descriptors (figure 5(b)).

4.4. SLAM in large-scale areas

One of the problems of the current state-of-the-art SLAM

approaches and particularly vision-based approaches is

mapping large-scale areas. Relevant shortcomings of this

problem are, on the one hand, the computational burden,

which limits the applicability of the EKF-based SLAM in

large-scale real time applications and, on the other hand, the

use of linearized solutions which compromises the consistency

of the estimation process. The computational complexity

of the EKF stems from the fact that the covariance matrix

P represents every pairwise correlation between the state

variables. Incorporating an observation of a single feature

will necessarily have an effect on every other state variable.

This makes the EKF computationally infeasible for SLAM in

large environment.

Methods like network coupled feature maps [17],

sequential map joining [18] and the constrained local submap

filter (CRSF) [19] have been proposed to solve the problem

of SLAM in large spaces by breaking the global map into

submaps. This leads to a sparser description of the correlations

between map elements. When the robot moves out of one

6
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submap, it either creates a new submap or relocates itself in a

previously defined submap. By limiting the size of the local

map, this operation is constant time per step. Local maps are

joined periodically into a global absolute map in an O(N2)

step. Each approach reduces the computational requirement

of incorporating an observation to constant time. However,

these computational gains come at the cost of slowing down

the overall rate of convergence.

The constrained relative submap filter [19] proposes to

maintain the local map structure. Each map contains links to

other neighboring maps, forming a tree structure (where loops

cannot be represented). The method converges by revisiting

the local maps and updating the links through correlations. On

the other side, in the hierarchical SLAM [20], the links between

local maps form an adjacency graph. This method allows us

to reduce the computational time and memory requirements

and to obtain accurate metric maps of large environments in

real time.

To solve the problem of SLAM in large spaces, in our

study, we propose a procedure to break the global map

into submaps by building a global representation of the

environment based on several size-limited local maps built

using the previously described approach. The global map is

a set of robot positions where new local maps started (i.e. the

base references of the local maps). The base frame for the

global map is the robot position at instant t0.

Each local map is built as follows: at a given instant tk ,

a new map is initialized using the current vehicle location,

xtk
r , as the base reference Bk = xtk

r , k = 0, 1, . . . being

the local map order. Then, the vehicle performs a limited

motion acquiring sensor information about the Li neighboring

environment features.

The kth local map is defined by

Mk = (xk, Pk),

where xk is the state vector in the base reference Bk of the Lk

detected features and Pk is their covariance matrix estimated

in Bk .

The decision to start building a new local map at an instant

tk is based on two criteria: the number of features in the current

local map and the scene cut detection result. The instant tk
is called a key instant. In our application, we defined two

thresholds for the number of features in the local maps: a lower

T h− and a higher T h+ threshold. A key instant is selected if

the number of features nk in the current local map k is bigger

than the lower threshold and a scene cut has been detected or

the number of features has reached the higher threshold. This

allows keeping reasonable dimensions of the local maps and

avoiding building too small maps.

Formally, the global map is defined as

M
B
G =

(

x̄0
r , x̄1

r , x̄2
r , . . .

)

,

where x̄k
r are the robot coordinates in B0, where it decides to

build the local map Mk at instant tk:
(

x̄k
r

1

)

= Tk→0.

(

xk
r

1

)

(22)

t0 = 0 and x̄0
r = x̄t0

r = (0, 0, 0).

Figure 6. Closing the loop.

The transformation matrix Tk→0 is obtained by successive

transformations:

Tk→0 = T1→0.T2→1 . . . Tk→k−1, (23)

where Ti→i−1 = (R|t) is the transformation matrix

corresponding to the rotation R and translation t between Bi

and Bi−1:

Ti→i−1 =

⎛

⎜

⎜

⎜

⎝

cos
(

ωti
r

)

− sin
(

ωti
r

)

0 x ti
r

sin
(

ωti
r

)

cos
(

ωti
r

)

0 y ti
r

0 0 1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

. (24)

For feature matching at instant t, the robot uses the local map

with the closest base frame to its current location:

arg min
i

(

x̄k
r − x̄t

r

)

, (25)

where x̄t
r is the robot position at instant t in B0.

The local maps are considered as nodes in a topological

representation. Based on its current position, the robot selects

the local map on which the feature matching will be done. If

a matching is detected the two local maps are fused in one

local map. Since the relative reference frames of both maps

are known, the main goal of the algorithm is to transform one

of the maps and its features into the reference system of the

other one:

Mi+j = (xi+j , Pi+j ), (26)

where xi+j and Pi+j represent the state vector and the

covariance resultant of the fusion of the maps Mi and Mj

in the reference frame of the map Mi .

5. Experimental results

Figure 6 shows an example for the detection of loops using

the SLAM process. In this example, the robot wanders twice

across a defined path (real path drawn in red in the figure).

At the first round, the position error exceeds 5 m and the

uncertainty around the robot position reaches 6.2 m (cyan

ellipses in the figure). After loop detection, the uncertainty is

7
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Figure 7. Robot position errors and the corresponding 2σ variance
bounds.

Figure 8. Robot localization in the case of GPS outage.

reduced. During the second round, the position error is limited

to a maximum of 1 m and the uncertainty to a maximum of

2 m (magenta ellipses in the figure) before the detection of the

closure of the loop.

Figure 7 represents the robot position error and its

corresponding 2σ variance bounds obtained by the proposed

algorithm. Position errors are plotted as x and y distances of

the robot location.

The proposed framework has been tested in real

environments. Different GPS outages were simulated and

analyzed. Figure 8 illustrates an example where the GPS

signal was lost for 30 s. The black curve shows that the GPS

localization error is 3.6 m. The dashed blue curve shows

that even if the integration of GPS, INS and wheels encoders

data reduces the error on the robot position to less than 1 m,

it is not reliable during the GPS outage where the error

grows continuously, while the proposed framework combining

GPS/INS/Encoders localization and visual SLAM localization

remains stable even during the GPS outage (red curve).

Figure 9 shows an example of the robot localization in a

real environment. The blue/light curve represents the obtained

robot path using the proposed algorithm, and the red/dark

curve is the GPS data. The initial GPS position is the mean of

the GPS measurements during a few minutes of initialization.

Figure 9(b) represents the built local maps. Each local map

(a)

(b)

Figure 9. Robot localization in a real environment. (a) Robot path
superimposed on a geo referenced map. (b) The built local maps.

is represented by a different color. In this experiment, the

maximum number of features in the local maps is fixed to 60

features.

6. Conclusion

In this paper, we presented an algorithm for robot localization

in georeferenced images. The proposed algorithm combines

two localization techniques, one based on a GPS/INS/Wheel

encoders integration approach and the other based on a visual

SLAM approach.

The obtained results are interesting and for a future work

we want to constrain the feature matching for the closure of

the loop based on global positioning and study the influence

of the GPS outage on the closing of the loop.
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