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Abstract We describe an automated system for
detecting, localising, clustering and ranking visual

changes on tunnel surfaces. The system is designed to
provide assistance to expert human inspectors carry-
ing out structural health monitoring and maintenance

on ageing tunnel networks. A three-dimensional tunnel

surface model is first recovered from a set of reference

images using Structure from Motion techniques. New

images are localised accurately within the model and

changes are detected versus the reference images and
model geometry. We formulate the problem of detect-
ing changes probabilistically and evaluate the use of

different feature maps and a novel geometric prior to

achieve invariance to noise and nuisance sources such as

parallax and lighting changes. A clustering and ranking

method is proposed which efficiently presents detected

changes and further improves the inspection efficiency.

System performance is assessed on a real data set col-

lected using a low-cost prototype capture device and

labelled with ground-truth. Results demonstrate that
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our system is a step towards higher frequency visual

inspection at a reduced cost.
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Fig. 1 Illustration of the system. (a) Hardware for data
capture; (b) changes detected in new images by localising
within a reconstructed reference model; (c) sample output:
detected changes are clustered by appearance and ranked
within each cluster according to a user-defined importance
measure.
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1 Introduction

Efficiently monitoring the structural health of large-

scale tunnel infrastructure is a socially important chal-

lenge. Tunnel infrastructure is commonly located in ur-

ban areas and provides essential functions to society

such as transport, electricity and communications. As
urban populations grow, tunnels are often worked be-
yond their original design specifications for both func-
tion and lifespan, and hence face a growing risk of struc-

tural failure.

A critical requirement for effective structural health

monitoring is the early detection of any visual changes

in the tunnel surface, such as leakages, cracks and corro-

sion. Early detection allows early intervention, keeping

the cost of remedial measures low and reducing the risk
of unexpected failure. Detecting such changes is often
the work of human inspectors, but given the sometimes

adverse working environments and the extensive cover-

age areas, this is a costly and time-consuming process

and is subject to human error. More recently, digital

camera and laser technology have been used to cap-

ture data to improve the efficiency of visual inspec-
tion [16, 20], but systems remain expensive and routine
inspections are typically conducted only once every few

years.

We present a vision-based change detection system

which is a step towards low-cost, high-frequency mon-
itoring. The system’s goal is to automatically detect,
localise, cluster and rank visual changes on tunnel sur-
faces in newly acquired images. The system automates

the time-consuming process of visual defect discovery,

reducing the workload and increasing the effectiveness

of expert human inspectors.

This article is an extended version of the conference

paper [17]. Section 2 describes the main contributions

of the paper in the context of related literature. Sec-
tion 3 details the theory behind the change detection
framework. Section 4 provides an extended description

of the complete system and its constituent components.

Section 5 describes practical experiments performed, in-

cluding new results on pixel-level accuracy and on the

clustering and ranking of changes. Section 6 concludes

with a description of the system’s limitations and areas
for future work.

2 Related work

The main contributions of this work are twofold. Firstly,

we describe a low-cost means of collecting and organ-

ising large-scale visual datasets of tunnel linings. Sec-

ondly, we devise a framework for change detection on

newly captured, unregistered images. These two contri-

butions are further described below, in the context of
related literature.

Data acquisition and reconstruction. Existing au-
tomated approaches for tunnel surface inspection tend

to make use of more expensive or bespoke visual

capture systems such as laser scanners [16] or cali-

brated laser/camera hybrids [10]. While the use of high-

precision depth sensors can enable more accurate and

robust geometry estimation than can be achieved from

images alone, the increased cost of the sensors makes

the systems less economical in situations where such

high precision is not necessary.

Alternative approaches using only CCD sensors,

such as [19, 20, 25], avoid dealing with geometric in-

formation by assuming an annular 2D world. Such sys-

tems rely on accurate camera positioning to maintain a

constant distance to the tunnel surface. The approach

in [6] describes a means of overcoming this by inferring

geometric information from the images, but the use of

this information is limited to quantifying the scale of

cracks rather than to facilitate comparison with previ-

ous images.

We opt for a fixed but otherwise unconstrained ar-

ray of synchronised, overlapping, consumer-grade dig-

ital cameras (fig. 1(a)). The low cost of the capture

device allows for the possibility of assigning one or sev-

eral devices to monitor individual tunnels continuously,

rather than using a single expensive device to mon-

itor many tunnels sporadically as is common. From

the captured image set, we use Structure from Mo-

tion (SfM) techniques [15] to recover 3D geometry, and
model the tunnel surface by locally fitting quadric sur-
faces to the resulting point cloud [2]. A 3D wire-frame
surface model, texture-mapped with captured images,

is shown in fig. 1(b).

Change detection. Change detection in 2D images

is a well-studied problem, particularly in the fields of

remote sensing, video surveillance and medical imag-

ing [9, 12]. Systems exist for similar applications to

ours, such as pattern-matching for concrete crack de-
tection or road surface condition monitoring [16, 20].
However, the detection of general changes on tunnel

surfaces does not seem well explored, despite its impor-

tance. We identify the three main challenges and related

work from the computer vision literature:

i. Query image registration. Accurate registration is

an essential prerequisite for changes to be detected

without a large number of false positives. In re-

mote sensing, the standard means of registration



Visual Change Detection on Tunnel Linings 3

is by coarse localisation via GPS, then feature-

matching and homography estimation (assuming

a planar world geometry). In the tunnel environ-

ment, GPS is unavailable and the presence of 3D

relief necessitates a geometric model. Recent tech-

niques have adopted voxel-based [11, 18] and mesh-

based [4] geometric models for 3D change detec-

tion in cluttered scenes with many occlusions. The
geometric change detection system in [14] adopts
a probabilistic rather than deterministic geomet-

ric representation, citing the difficulty of producing

sufficiently accurate deterministic models in many

realistic scenarios e.g. due to the limited variety of

camera poses or insufficient textures. The tunnel

environment in our scenario is in general unclut-

tered and well-defined, and as we are specifically

interested in detecting visual changes on its sur-

face, we opt for a simple, scalable, local quadric

surface model. The benefit of such an approach is

that surfaces can still be recovered with sufficient

accuracy for fine-grained change detection even in

areas with little texture, given a suitable model.

ii. Nuisance variability. Fig. 2 illustrates some typ-

ical sources of nuisance variability in the tunnel

environment. One source of false changes between

the registered images is image parallax from un-

modelled geometry, such as textureless cables and

poorly-lit panel anchor holes. This can be avoided
by explicitly modelling all geometry [4, 18], how-
ever this is challenging in areas of poor texture or
limited visibility. Instead, since the tunnel surface

is our main concern, we circumvent the problem

using a nuisance mask, in the style of [13], which

downweights regions of the change image depend-

ing on their adherence to the fitted surface model.
A further source of nuisance variability is illumi-
nation, amplified by the enclosed and poorly lit
nature of the tunnel environment. In surveillance

applications, background modelling is used to mit-

igate this variability, but is not feasible with lim-

ited temporal information. We investigate single

image colour-normalisation and colour-constancy
techniques such as Multi-Scale Retinex (MSR) [7],
to counter both high and low frequency illumina-

tion variability.

iii. Many modes of relevant changes. Many existing

systems for large-scale infrastructure monitoring
focus on pattern matching to detect specific fea-

tures such as cracks in concrete [6, 20, 24, 25]. Our

main concern is to capture all visual outliers which

are not accounted for by understood modes of nui-

sance variability. Unlike all of the mentioned ap-

proaches, we aim to do so by statistical comparison

against previous images rather than by creating a

set of heuristics for performing detection of an ex-
plicit type of change such as a crack. Clustering
the outliers that we detect based on their appear-
ance establishes groups of features such as cracks or

leaks, as illustrated in fig. 1(c), but without enforc-
ing any prior knowledge on what types of changes
we detect.

3 Theory

We denote the query image by Iq, a function Dq → R
3

which maps pixels from location x in the query image

domain Dq to RGB values Iq(x). The set of matching

images is given by {Imi }i=1,...,M . This is the set of im-

ages taken at a previous time instance which have non-

zero intersection with the query image. The matching

images are registered to the query camera viewpoint

such that Dm
i ⊂ Dq for i = 1, . . . ,M .

We are interested in obtaining a change map C :

Dq → {0, 1}, which maps a location to 1 in case of
a change and 0 otherwise. The goal is to achieve in-

variance to nuisance variability as described above and

return a change map of only the relevant changes for

pixel-level or image-level classification.

3.1 Change detection

We first consider the case of estimating a single change

map Ci from the query image Iq and one of the match-

ing images Imi from the database:

p(Ci | I
q, Imi ) =

1

Z
L(Iq | Imi , Ci) p(I

m
i |Ci) p(Ci) (1)

∝ L(Iq | Imi , Ci) p(Ci), (2)

where the normalising constant Z and the matching

image prior p(Imi |Ci) are disregarded as they are con-

stant with respect to the query image. This leaves a

likelihood term L(Iq | Imi , Ci) and a prior term p(Ci)
for the probability of change at any given pixel. In our

experiments we set this prior to a constant value, but

in a working system it might be varied depending on

the location of the image pixel within the tunnel. This

would allow a user to bias the system to detect changes

with more sensitivity in areas of structural importance

(such as where the tunnel passes nearby other critical
infrastructure).

We define a distance function d between the query

and the matching image, and the likelihood term is
then expressed as the distribution of values of d given
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Fig. 2 Sources of nuisance variability. From left to right: new query image with no relevant change; warped matching
image from database; absolute difference image, with brighter areas indicating larger changes. All differences observed in this
final image are caused by nuisance variability rather than relevant change. Such nuisances include low frequency contrast
changes across the tunnel lining, hard shadows around off-lining geometry and glare from specular surfaces. They are caused
here by the changes in camera position and lighting.

Table 1 Subset of distance functions examined.

Feature Dist. Formula/Reference

RGB L2 (R,G,B)
Chromaticity L2 (R,G,B)/R + G + B

Gray-world L2 (R/R̄,G/Ḡ,B/B̄)
Multi-scale Retinex L2 See [7]
Dense SIFT Angle See [8, 21]

Grayscale NCC 1
n

∑

x,y

(cq
x,y

−c̄q)(cm
x,y

−c̄m)

σcqσcm

Grayscale dist. Regression
error

|cmx,y − g(cqx,y)|, see [5]

whether or not a change has occurred at a particular

location:

Ld(I
q | Imi , Ci)=

{

exp
(

−d(Iq | Imi )/σ2
)

if Ci=0

U(d) if Ci=1
, (3)

where U(d) is a uniform distribution over the range of

values of d. The smoothing constant σ is set as the

mean value of d over the whole query image set. Each

matching image, Imi , provides information for changes

to be identified in its areas of overlap with Iq.

3.2 Choices for distance function

The distance function, d, maps corresponding query

and matching image pixels into a feature space and

returns a value, d(Iq | Imi ), using some distance met-

ric. A good choice of function is one that detects

relevant changes, yet is invariant to changes due to

nuisance variables. Table 1 details a subset of the

functions that we examined. These include: colour-
normalisation techniques such as chromaticity and
gray-world; colour-constancy techniques such as Multi-
Scale Retinex (MSR); a spatial histogram of gradients

technique in the form of dense Scale Invariant Fea-

ture Transform (SIFT); a measure of textural similarity

in the form of grayscale Normalised Cross-Correlation

(NCC); and a measure of violation of the smooth rela-

tionship, g, between query and matching image intensi-

ties fitted in local windows using polynomial regression.

3.3 Combination of multiple change maps

In many cases the query image contains regions which
are visible in multiple matching images. In these areas,
we can combine the outputs of the individual change

maps using a probabilistic OR function:

p(C(x)) = 1−
∏

{i:x∈Dm
i
}

(1− p(Ci(x))) , (4)

where Dm
i is the domain of the matching image Imi and

the dependencies on Iq and Imi are dropped for clarity.

3.4 Geometric prior

We use the information available to us from our SfM

reconstruction to form a geometric prior, p(C|G), in-

cluded as follows:

p(Ci | I
q, Imi ,G) = p(Ci | I

q, Imi ) p(C|G) . (5)

The prior makes use of the recovered scene geometry,
G, which maps image locations to corresponding 3D

points: Dm ⊂ Dq → R
3. The objective of the prior

is to mask out nuisance changes caused by geometry
or poorly reconstructed features. It can thus also be

thought of as an inverse ‘nuisance map’ [13].

To construct the prior, we first group the image

interest points into an inlier (on-surface) and outlier
(off-surface) set, based on the distance of their corre-
sponding 3D points to the nearest point on the locally

fitted surface. Given the relatively sparse nature of G

(fig. 3(b)), we next apply mean-shift segmentation to
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(a) (b)

(c) (d)

Fig. 3 Geometric prior. (a) Query image (b) Distribu-
tion of reconstructed SIFT features (green) (c) Mean-shift
segmented image with colour-coded segments (d) Final ge-
ometric prior (black areas indicate off-surface or uncertain
geometry).

the query image [3]. This delineates the image into pixel

groups of similar colour and texture (fig. 3(c)).

Inliers and outliers contained within a pixel group
vote towards its overall classification. Pixel groups con-

taining only outliers are classified as off-surface and as-

signed a prior probability of zero, i.e. changes in those

regions are considered to be nuisance variability and

are ignored. Pixel groups containing more inliers than

outliers are classified as on-surface and assigned a prior

probability of one. For pixels lying in groups which con-

tain no points, or fewer inliers than outliers, the prior

depends on the distance of the pixel to the nearest in-
lier. The prior is therefore expressed as:

p(C(x)|G) =















1, for on-surface groups.

0, for off-surface groups.

exp
(

−||x−xin||
σ2
G

)

, otherwise.

(6)

where σG controls smoothness in uncertain regions and
xin signifies the nearest inlying 2D SIFT feature.

The geometric prior thus downweights changes

where the geometry is either known to be off-surface
or known to be unreliable. The latter is important in
the tunnel environment, where off-surface features such

as cables and boxes tend to have matte, featureless

surfaces and are therefore reconstructed poorly using

feature-based SfM. Fig. 3(d) shows an example of a ge-

ometric prior mask, downweighting changes along the
yellow cable and in the panel anchor (surface hole).

4 System description

A flowchart illustrating the main processes of our sys-

tem is shown in fig. 4. We now describe each process in

turn.

Reference images acquisition. At time t0, we use

a prototype capture system consisting of five cameras
with synchronised shutters and flash units, arranged in

a semi-circular array as shown in fig. 1(a) to capture a
stream of reference images {Iri }i=1,...,R. Each reference

image overlaps with its immediate neighbours by 50%,

both radially and longitudinally along the tunnel.

Structure from Motion (SfM). SIFT feature de-

scriptors [8] are extracted from each reference image

using a GPU implementation [22]. The image set is

split into smaller overlapping subsets and reconstructed

in parallel using standard SfM [15, 23]. Local recon-

structions are stitched into a global coordinate frame,

centred at the first image in the sequence, using over-

lapping feature correspondences. The resulting recon-

struction is illustrated in fig. 5. Note that the global

geometry recovered by the reconstruction process suf-

fers from drift as loop closure is not possible in linear

tunnels. However, such drift has little consequence on

the change detection system, which relies only on local
geometry.

Atlas (3D database) builder. Following SfM, the

pose of each reference image is known in a global co-
ordinate system. Each reference image is stored along
with its intrinsic and extrinsic parameters, the set of de-
scriptors for its N largest SIFT features over scale and

its corresponding subset number in an “atlas” database.
This is used later for query image localisation.

Geometric primitive (surface) fitting. The tunnel

surface is modelled locally with quadrics, fit to each

point cloud using robust non-linear optimisation with

outlier removal. As in [2], we find that in the tunnels

we consider, a piecewise cylindrical representation is
sufficient, though the system can be trivially extended
to any extruded shape (e.g. square or rectangular tun-

nels). This representation does not limit the system to

straight tunnels, but can be used for any curved tunnel

provided its gradients are smooth and shallow enough

to be accurately approximated as locally straight.

Query image(s) acquisition. Query images, Iqi , are

acquired at time t1 6= t0 using either the same capture

device or a new device such as a human inspector’s

camera. In the former case, the query image data will
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Fig. 4 Flowchart of main system processes.

be dense and overlapping and hence can be used as
a new reference dataset for t1; in the latter case, the

query image data will be sparse and unordered. In our

evaluation, we assumed the latter, making localisation

more challenging.

Query image localisation/camera resectioning.

Approximate k-nearest neighbours matching using a

k-d tree is used to match the descriptors of the N

largest 2D SIFT features in the query image to the atlas

database. In our experiments we set k=5 and N=300.
Each match is a weighted vote and votes are aggre-

gated to find the highest scoring reference image sub-

set. Within the subset, RANSAC-based registration is

performed over all SIFT features and the query image

camera is accurately resectioned with radial distortion

estimation. This method of localisation was found to be

sufficiently discriminative on concrete tunnel surfaces to

correctly register all of our query image dataset.

Change detection. Images from the reference dataset

which overlap with the query image are then back-
projected onto the recovered tunnel surface and re-
projected into the query image. This provides a set of
matching images, {Imi }i=1,...,M , for change detection,

as described in sec. 3.

Unsupervised clustering and ranking of changes.

To present the detected changes to the user in an ef-

ficient manner, we employ an unsupervised clustering

and ranking approach. The benefit of clustering, even if

the number of clusters is large, is that it can remove the

need for the user to address each image change individ-

ually. This is especially useful as entire groups of real

but unimportant changes can be quickly disregarded

(e.g. the addition/removal of a cable along the complete

length of the tunnel or the addition of a yellow chainage

marker on every panel along the tunnel, which would

appear as a change in many images).

The change probability maps are first thresholded

with hysteresis to give a discrete set of connected

changes. Each connected change is then represented as

a 6D point in a simple colour and shape-based feature

space:

– mean colour of (MSR-corrected) change as it ap-

pears in the query image (3D),

– perimeter to area ratio (1D),
– ratio of principal axes (1D),

– morphological Euler number (1D) - the number of

unchanged connected components surrounded by

the change.

The feature space is normalised and mean-shift cluster-

ing is used with an adaptive bandwidth in order to over-

cluster the changes. In our experiment, we set the num-

ber of clusters at 100, far greater than the ∼ 10 types
of changes applied. The motivation for over-clustering

is to ensure that clusters remain homogeneous to avoid
grouping together different types of changes.

Changes within each cluster are then ranked by a

user-defined importance measure. In our experiment,
we choose this measure as the sum of the pixels within

the change weighted by their change probabilities.
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Fig. 5 Tunnel surface reconstruction from overlapping image subsets. Above: overlapping reconstructed subsets are
shown in different colours; below: after texture mapping.

Large, high probability changes therefore appear before

small, low probability changes.

5 Experiments

We captured data covering 180◦ of a 3m diameter tun-

nel section of 100m length. This comprised 1,000 im-
ages at a resolution of 3, 888×2, 592 pixels. Next, artifi-

cial changes were applied to the concrete tunnel surface

to simulate the visual changes that might be observed

in a real environment - such as leaking, cracking and

spalling. A query set of 232 images was taken, of which

131 contained relevant changes. All 232 images were la-

belled with ground truth for the presence of absence of

change, 60 of which were labelled at the pixel-level.

5.1 Qualitative results

Fig. 6 shows three sample queries as well as different

distance functions, the geometric prior mask and final

change detection results. Relevant changes in seq. 1 and

2 include leaking, fine chalk markings, discolouration
and objects attached to the surface. The three illus-
trated distance functions – gray-world, regression and

NCC – pick out changes with different degrees of suc-

cess. Gray-world tends to amplify changes and has good

resolution, comparing each pixel individually without

taking into account its neighbourhood, but the model

we use is a global one and hence illumination effects are
also undesirably amplified. Polynomial regression, im-
plemented here as cubic regression with a 9×9 window,

picks out fine changes such as cracks which disrupt the
smooth relationship between query and matching image

intensities, but predictably fails to detect larger changes
such as water leaks where the entire window (and there-
fore relationship) is transformed. NCC, implemented
here with a 5× 5 window, reaches something of a com-

promise, highlighting both fine and coarser changes by
taking into account intensity and spatial information,
but at the cost of reduced resolution of the resulting dis-

tance image. All methods falsely detect changes from
the lighting units and cabling. This is especially evi-
dent in seq. 3, where there is significant parallax and

specularity in the scene.

The geometric prior in all three cases correctly iden-

tifies and removes most of the nuisance change caused
by off-surface features. The final column shows a prob-
abilistic output change mask, formed by a combination

of gray-world and NCC features, multiplied by the ge-

ometric prior as per Eqn. (5). In seq. 1 and 2, its per-

formance is close to ground truth. Seq. 3 illustrates a

failure case, caused by the unusual presence of some

thread on the normally featureless red cable. The large
downweighted area in the geometric prior of seq. 3 cor-
responds to an area of unknown geometry, as the query

image is at the edge of the reconstructed area.

5.2 Quantitative results

5.2.1 Pixel-level performance

The pixel-level detection performance of various com-
binations of features is compared in the ROC curves of
fig. 7(a). Distance functions which explicitly take into

account local spatial information (NCC and DSIFT)

performed better than methods which compare indi-
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Fig. 6 Illustrative results for three cases. Two sequences (1 and 2) feature relevant change: water leakage, chalk marks,
added features; all three sequences feature nuisance change: lighting change (significantly in 1 and 3) and cables, fixtures and
other off-surface geometry (significantly in 2 and 3).

vidual query pixels against individual reference pixels
(MSR and gray-world) or against a locally fitted rela-
tionship (regression). Grayscale NCC returned the best

performance, detecting 98% of positive change pixels

at a 20% false positive rate. NCC was also tested on

MSR and gray-world normalised images, although no

significant difference in performance was observed.

5.2.2 Effect of geometric prior

We compared the image-level detection performance of

two feature combinations, gray-world and gray-world

NCC, in three scenarios: without a prior; using the

mean-shift based geometric prior described in sec. 3.4;
and using an alternative SLIC superpixel based geomet-
ric prior [1]. The SLIC superpixel prior is calculated in
the same manner as described in sec. 3.4, but replac-

ing the mean-shift algorithm with SLIC superpixelisa-

tion in the segmentation stage. ROC curves are shown

in fig. 7(b). Classification performance after the intro-

duction of the geometric priors increases substantially.

With no prior, gray-world is initially far more discrimi-

native than NCC, which is more prone to detect changes

across nuisance areas of the image space. When a prior

is introduced however, nuisance regions are masked out

and NCC can safely exploit local spatial information

solely in the regions of interest (i.e. the tunnel sur-

face), allowing it to outperform gray-world. Finally, the

quantitative performance of our proposed mean-shift

prior is shown to be improved versus the more local,

SLIC-based prior. We tried several parameter settings

for each and found that qualitatively, mean-shift per-

formed better than SLIC. Despite larger computational

expense, it was able to capture both irregularly shaped

thin structures (e.g. cables) and large flat structures

(the tunnel surface) of non-uniform size at the same
parameter setting, thus returning a more semantically
meaningful and useful segmentation. SLIC, in compar-
ison, could not capture such different structures with a

given region size and regularisation parameter.

5.2.3 Image-level performance

The image-level detection performance of various com-
binations of features is shown in the ROC curves
of fig. 7(c). Consistent with our pixel-level results in

sec. 5.2.1, NCC performed best, detecting 81% of true

positives at 20% false positive rate. Furthermore, run-

ning NCC on MSR and gray-world normalised images

returned no significant quantitative difference in per-

formance.

One difference of note when comparing Figs. 7(a)

and 7(c) is that while gray-world and regression have
worse pixel-level performance than MSR, their image-
level performance is notably better. In the case of re-
gression, this can be attributed to its failure to detect

large areas of change such as the centre of the white

circle in seq. 2 of fig. 6. This reduces pixel-level perfor-

mance, but it still detects the boundaries of such areas

accurately (where there is overlap with an unchanged
area) and therefore correctly flags the image as contain-
ing change. Gray-world returns a higher rate of false
positive pixels because it offers little invariance to lo-

cal lighting changes, but there are relatively few images
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Fig. 7 ROC comparison. (a) Pixel-level performance of various features; (b) image-level performance with and without
geometric prior; (c) image-level performance of various features with mean-shift geometric prior. Area-based methods gave the
best performance and image-level performance was significantly improved with the introduction of a discriminative geometric
prior.

in which this is a problem so image-level performance

is not significantly degraded. Conversely, MSR resolves

lighting change by using local rather than global im-

age statistics, and so has improved pixel-level perfor-

mance but is more susceptible to artefacts at sharp lo-

cal boundaries e.g. between gray concrete and brightly

coloured cables. This results in a higher number of false

positive images.

5.3 Clustering and ranking results

The top-ranked changes in a subset of the clusters re-

turned after the unsupervised clustering and ranking

stage described in sec. 4 are shown in fig. 8. The method

employed showed good qualitative performance at pick-

ing out groups of similar changes, although it was found

that due to the variable visual nature of the false pos-

itives, larger clusters with more variation would often
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Fig. 8 Top-ranked changes in a subset of the clusters returned after unsupervised clustering and ranking.

contain some contamination (e.g. two instances of yel-

low cable in cluster 3). Smaller clusters such as clusters

5-9 were generally more homogeneous, although offer

less benefit in terms of reducing the workload for the hu-

man inspector. It should be noted that in a real system,

adding location to the feature space should enhance the
results of the method, by allowing for example all crack-
like changes in the crown of the tunnel or all leakages

in a particular tunnel segment to be grouped together.

6 Discussion

We have presented a system which is suitable for the

automated monitoring and detection of general visual

changes on smooth, unpainted, concrete tunnel sur-

faces. Our system is inexpensive to implement and
reduces the workload for visual inspection, enabling
higher frequency, more effective tunnel inspections and

better use of visual inspection data. The change de-

tection framework we present is broadly applicable to

any situation where an accurate geometric model can

be recovered of the area of interest, such that reference

images may be accurately synthesised from the view-
point of a query image.

6.1 Limitations

A key limitation of the proposed system is that there

must be sufficient texture on the tunnel surface to allow

reconstruction at a single time instance, and sufficient
stable texture to allow registration of images between
time instances. Our experience is that concrete and cast

iron tunnels are sufficiently textured for both, provided

they have not been painted or panelled. However, we

have thus far tested in relatively static (utility) tunnels,

not in more dynamic environments such as road or sub-

way tunnels, where the build up of dust and dirt over

time might mask the image texture used for localisa-

tion. Similar problems may occur between wet and dry

environments or at tunnel extremities. The variability

introduced by such factors could be mitigated to some

extent by using odometry and/or 3D information from

the reconstruction to improve query image registration.

However, further tests are needed.

A second limitation is that we assume the tunnel

geometry has a locally uniform cross-sectional shape,

which can be retrieved from the 3D reconstruction. Our

experience is that this is a fair assumption in modern

pre-cast concrete tunnels which are precisely fabricated,

but does not hold true of all tunnels. A significantly
varying tunnel geometry would require a more precise
approach to surface reconstruction.

Finally, despite the inclusion of the geometric prior,

many false positives are still detected around areas such
as cables. Performance might be further improved by
adding domain-specific knowledge such as segmenting
out all cable-like structures which appear as a cer-

tain colour in the images. A more generally applica-

ble method would be to segment out cable structures

by first reconstructing them using a model-based ap-

proach.

6.2 Future work

We are currently developing our capture device to ac-

quire much larger volumes of data automatically. In the

future, we plan to test our system in an active tunnel

environment to detect real changes on a larger scale

and to make a more direct comparison of our system

against existing manual inspection techniques.

We also plan to further explore nuisance invariant

features and extend our system to more complex tunnel

geometries. Another interesting avenue for research is

designing the system to scale efficiently in time as well



Visual Change Detection on Tunnel Linings 11

as space, so that historical data may be stored and used

efficiently.
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