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Abstract— For an autonomous vehicle, detecting and tracking
other vehicles is a critical task. Determining the orientation
of a detected vehicle is necessary for assessing whether the
vehicle is a potential hazard. If a detected vehicle is moving,
the orientation can be inferred from its trajectory, but if
the vehicle is stationary, the orientation must be determined
directly. In this paper, we focus on vision-based algorithms for
determining vehicle orientation of vehicles in images. We train
a set of Histogram of Oriented Gradients (HOG) classifiers to
recognize different orientations of vehicles detected in imagery.
We find that these orientation-specific classifiers perform well,
achieving a 88% classification accuracy on a test database of 284
images. We also investigate how combinations of orientation-
specific classifiers can be employed to distinguish subsets of
orientations, such as driver’s side versus passenger’s side views.
Finally, we compare a vehicle detector formed from orientation-
specific classifiers to an orientation-independent classifier and
find that, counter-intuitively, the orientation-independent clas-
sifier outperforms the set of orientation-specific classifiers.

I. INTRODUCTION

The ability to detect and track other vehicles automatically

is a core requirement for any autonomous vehicle designed

to operate in traffic. In order to plan a safe path through

the environment, a vehicle needs to determine not just the

location of other vehicles, but also their predicted trajec-

tories. The orientation of a vehicle constrains its short term

trajectory, and when the vehicle being tracked is in motion, it

is relatively straightforward to estimate its orientation based

on its direction of motion. The orientation of stationary

vehicles, however, must be determined by other means. In

this paper, we explore the ability of vision-based recognition

algorithms to determine vehicle orientation from images.

The problem of determining the orientation of stationary

vehicles is important for autonomous vehicles, especially

in urban environments. Stationary vehicles are encountered

frequently, and an autonomous vehicle must be able to

estimate whether a detected vehicle poses a potential hazard.

A car sitting at the end of a driveway is much more likely

to pull out into the street than a car parallel parked on the

side of the street. The cars may be in the same location in

both cases, but their orientation is the differentiating factor.

Various technologies have been shown to be effective

for detecting vehicles, including active sensors, such as

LIDAR [1], [2], [3], and RADAR [4], [5], and passive

sensors, such as cameras [6], [7]. Each sensing modality
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Fig. 1. The process by which the vision system described in this paper
is used in concert with a LIDAR system. (a) First, a vehicle candidate is
detected based on a LIDAR shape classification algorithm [2] (green lines).
The projection of the 3D LIDAR points onto the image plane (blue lines) is
calculated as a function of the estimated size/scale of the vehicle (plus some
padding) and is then passed to the HOG classifier. (b) HOG features are
extracted. (c) These features are passed to the vehicle detection algorithm
and if a vehicle is detected (red lines), (d) it is passed through the bank of
detectors to determine the orientation (purple lines and label).

has advantages and disadvantages. LIDAR and RADAR can

identify moving objects by inferring (indirectly for LIDAR

or directly for RADAR) the velocity of the surfaces that

reflect the emitted energy. Stationary vehicles may be indis-

tinguishable from a complex background and, thus, could

not be identified as a vehicle until they started moving.

At relatively close ranges, LIDAR can be used to detect

stationary vehicles by fitting a model to the points returned,

but such an approach will break down at longer ranges, where

the limited angular resolution of the sensor will cause the

points on the car to become much more sparse [8]. Computer

vision algorithms can detect stationary vehicles in images at

various ranges, orientations, and even under partial occlusion.

Although the accuracy of vision-based methods is not yet

high enough for practical application in autonomous vehi-

cles, recent work has shown that contextual reasoning can

offer improvements over brute force search over the entire

image [9]. Unfortunately, such methods are not currently

computationally efficient enough for autonomous vehicle

applications.

Our approach to stationary vehicle detection is to fuse

information from LIDAR and vision-based sensing, thereby

gaining the benefits of both modalities. The process is



illustrated in Figure 1. However, this paper focuses on the

vision aspects of the overall algorithm. A 3D LIDAR-based

algorithm, described separately in [2], is used to estimate the

ground surface and identify regions of the scene containing

objects sitting on the ground that are potential vehicles.

These vehicle candidates are in the form of 3D cuboids

encompassing the points for each contiguous region. The

cuboids are then projected into the image from a camera that

has been calibrated relative to the LIDAR, thereby identify-

ing the approximate image location of the vehicle candidates.

The vision-based algorithm then focuses its resources on

those areas of the scene. Thus, the vision algorithm only

needs to operate on a single candidate patch at a small set of

scales set by the LIDAR-based detector. This greatly reduces

the computation required and eliminates the need to handle

the case where multiple cars must be distinguished in a single

image patch. Vision is used to confirm whether or not a

vehicle is at the location hypothesized by the LIDAR, and if

so, then to determine the orientation of the target vehicle.

In this paper, we focus on the use of vision-based algo-

rithms to determine the orientation of vehicles in images.

The general problem of vehicle detection in images has been

studied extensively, but research on the more specific prob-

lem of determining vehicle orientation is fairly sparse [10].

In our work, we explore a detection algorithm based on

a feature set called the Histogram of Oriented Gradients

(HOG), which was first proposed by Dalal [11], [12], [13].

In Dalal’s formulation, the detector provides a binary output

indicating whether a specific region of an image contains

an instance of the desired object (in our case a vehicle).

Each image passed into the detector is first converted into a

set of gradients which are spatially discretized. A sub-image

of a given size is extracted from this gradient histogram

and converted into a feature vector (the HOG). This feature

vector is then used as input to a binary support vector

machine (SVM), and if the output exceeds a threshold, the

object is detected at that location. This process is repeated at

different offsets in the image and at multiple scales. A target

object usually generates many detections at slightly different

scales and offsets. Therefore, a mean-shift density estimation

algorithm is used to combine these detections into a single

bounding box location for a group of nearby detections.

The chief contribution of this paper is a detailed investi-

gation of how a set of HOG-based classifiers can be used to

distinguish the orientation of vehicles in images. We explore

how to create classifiers that are capable of determining

individual orientations of vehicles as well as multiple orien-

tations simultaneously. We also compare the effectiveness of

a generic (orientation-independent) vehicle detector to a set

of orientation-specific detectors. We conducted our analysis

using a corpus of vehicle imagery extracted from publicly-

available image databases, which we manually cropped and

labeled with the vehicle orientation information.

II. RELATED WORK

Research in vehicle tracking has been accomplished using

a variety of different sensors including, but not limited to,

imagery [6], [7], LIDAR [1], [3], and RADAR [4], [5].

In much of this work, the orientation of the vehicle is

determined as part of the tracking process (e.g., the direction

of motion indicates the front of the vehicle). Our approach is

to develop a visual classification algorithm that can be used

to augment and prime a LIDAR-based tracking algorithm.

One advantage of a vision-based approach as opposed to a

LIDAR-only approach is that it can be used to estimate the

existence and orientation of vehicles that are immobile (such

as parked cars) where a tracking-only approach would be

unable to pick the vehicle out from an arbitrary background.

Various combinations of features and classifiers can be

applied to recognize a vehicle in an image. Several popu-

lar feature types have emerged in the literature, including

Haar wavelets [14] [15] and Gabor filter outputs [16], both

of which focus primarily on appearance; and edge tem-

plates [17], histogram of oriented gradients (HOG) [11] [18],

edgelets [19], and shapelets [20], all of which focus pri-

marily on shape. Shape- and appearance-based approaches

are attractive because they operate on a single image and,

as such, can be used to detect both moving and stationary

objects. The discriminative power of shape-based features is

generally considered to be stronger than that of appearance-

based features. Within the class of shape-based algorithms,

those that are derived from the HOG approach are considered

one of the most accurate for visual classification problems.

One notable example of the use of HOG is [10], where

the algorithm has been used in concert with color features

and explicit shape models, which demonstrates the ability to

detect vehicles even in the presence of multiple occlusions.

Our work uses only the HOG feature set to allow for

operation on an autonomous vehicle.

III. CLASSIFYING THE VISUAL ORIENTATION OF

VEHICLES

For this study, we used eight orientations of vehicles with

respect to the camera as shown in Figure 2. The orientations

included: front (0 degrees), front-angle driver (45 degrees),

side driver (90 degrees), rear-angle driver (135 degrees),

rear−angle front−angle

side

rear front

driver

driver

driver

rear−angle
front−angle

side

passenger
passenger

passenger

Fig. 2. The classifiers were trained to recognize views of cars from eight
orientations. In this paper, we use the convention that the driver’s seat is on
the left side of the vehicle.



Fig. 3. Examples of training images. Each row shows one viewpoint -
front (first row), front-angle driver (second row), side driver (third row),
rear-angle driver (fourth row), and rear (fifth row).

rear (180 degrees), rear-angle passenger (225 degrees), side

passenger (270 degrees), and front-angle passenger (315

degrees). Examples of these views are shown in Figure 3.

Such coarse angles were used because it would be difficult

to label training and evaluation instances at any higher

resolution. Furthermore, this level of granularity is adequate

for the task of determining whether a stationary vehicle is a

potential hazard.

The majority of the images used in this study were

obtained from freely-available on-line sources, including

Caltech 1011, Caltech “Markus”2, MIT3, and Pascal VOC:

20054. We collected additional images of specific vehicles

as well. Statistics of the numbers of images in each category

are shown in Table I. These datasets consist primarily of

images of vehicles in urban settings. They contain a variety

of vehicles, including compacts, sedans, trucks, vans, and

SUVs.

All of the imagery was taken outdoors in daylight, though

the amount of light varied between the images (some were

taken on clear days and others were taken on cloudy days).

All images were taken from the ground (presumably by a

person carrying a camera at head height). There was a wide

variety of clutter found in each image, and the vehicles in

the images were located at a wide range of distances from

the camera as well.

The images were cropped and scaled based on the manu-

ally determined bounding boxes. During testing, the clas-

sifiers were presented with image patches that contained

the original cropped image plus upwards of 50% additional

padding around the outside. We chose this approach for

two reasons. First, we are interested in determining the

1http://www.vision.caltech.edu/Image Datasets/Caltech101/101 objectCategories.tar.gz
2http://www.vision.caltech.edu/Image Datasets/cars markus/cars markus.tar
3http://cbcl.mit.edu/projects/cbcl/software-datasets/cars128x128.tar.gz
4http://pascallin.ecs.soton.ac.uk/challenges/VOC/download/voc2005 1.tar.gz,

http://pascallin.ecs.soton.ac.uk/challenges/VOC/download/voc2005 2.tar.gz

orientation of vehicles, and less so in determining the ex-

istence or location of vehicles. Second, as described in the

introduction, our method is designed to work in conjunction

with a LIDAR-based cueing algorithm that identifies the im-

age regions where potential vehicles exist. Furthermore, the

range from the LIDAR provides a secondary source of scale

information, allowing us to obtain a good approximation of

the expected size of the potential vehicle in the image. The

widths and heights of these training images were selected

to provide a consistent boundary around the top/bottom and

left/right side of the car in the image. Thus, the front and

rear training examples were roughly square (50x60 pixels),

the front-angle and rear-angle examples were wider (100x50

pixels), and the side examples were widest overall (130x50

pixels).

The resulting images were divided into two sets: training

and testing. In each trial, 90% of the instances in each

category were randomly chosen for inclusion in the training

set, and the remaining 10% served as the testing set. A set of

images containing no vehicles was used as the base negative

example training set. This set of images was obtained from

the INRIA people dataset5. In our experiments, we found that

better performance for orientation-specific classifiers was

achieved if we augmented this base negative example training

set with positive instances of training examples from other

orientations. For example, when training the front classifier,

all of the positive examples from front-angle, side, rear-

angle, and rear were added to the negative training examples

for the front classifier. The inclusion of the other views

as negative examples for each orientation-specific classifier

helps ensure that the underlying binary SVM learns the

parameters of a hyperplane that maximizes the response

to a specific orientation of the car while minimizing its

response to the other orientations. Without the inclusion of

the negative examples for different views, there is no way

to ensure that the learned hyperplane does not also have a

strong response to other orientations of the vehicle.

Our orientation-specific vehicle detectors are based on

Dalal’s HOG detection algorithm [13]. We based our imple-

mentation on the publicly available HOG detector software

library, which we modified to support multiple instantiations

of the detector. In order to compare the results of the

different detector instances, we needed to normalize the raw

output of the classifiers. An SVM is a maximum margin

discriminator that maps a feature vector to a real number

score whose value is designed to separate targets from clutter.

In our multi-class task, we need to compare the output of

multiple pair-wise discriminators (i.e., orientation-specific

detectors). However, it is not meaningful to compare the

scores of different SVM discriminators. If the output of a

discriminator can be converted into a posterior probability,

then Bayesian discrimination can be used to compare them

to determine the best class among many. We chose to use

Platt’s technique [21], which models the posterior probability

5http://pascal.inrialpes.fr/data/human/INRIAPerson.tar



TABLE I

THE TOTAL NUMBER OF TRAINING AND TESTING IMAGES FOR EACH

DATA SET. EACH NEGATIVE TRAINING IMAGE IS BROKEN INTO

SUB-IMAGES AND SAMPLED AT MULTIPLE SCALES TO CREATE 1000S OF

NEGATIVE TRAINING SAMPLES PER IMAGE.

Data set # positive # negative # test
images images images

all-sides 2292 648 250

front 82 1089 42

front-angle 538 1033 58

front-angle driver 269 1033 29

front-angle passenger 269 1033 29

side 936 995 104

side driver 468 995 52

side passenger 468 995 52

rear-angle 388 1061 42

rear-angle driver 194 1061 21

rear-angle passenger 194 1061 21

rear 348 1058 38

of class Ci given data, D, as a sigmoid of the score:

P (Ci|D) =
1

(1 + exp(a × s + b))
(1)

where s is the output score of the classifier, and a and b are

parameters fit to a histogram of the scores (Figure 4). This

is an approximation and depends on how well the sigmoid

fits the data. Empirically, we found this simple model worked

well in most cases we tested. Using these posterior estimates

from the classifier scores, we selected the class with highest

probability among all the classes for each feature vector.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Classifier output

P
ro

b(
T

ar
ge

t|D
at

a)

Fig. 4. Sigmoid function generated labeled data given to the all-sides
classifier.

IV. EXPERIMENTAL RESULTS

We performed two specific studies for how the HOG

classification algorithm could be used for identifying vehicles

and their orientations. First, we evaluated the ability of the

HOG classifier to recognize vehicles at different orientations

assuming that a car was present in each image provided to

the classifier. Second, we performed a detection-only study

where we evaluated two different mechanisms for using the

HOG classifier to detect the presence of a car in an image.

A. Classification of Trained Car Orientations

For the car orientation classification experiments, only

the positive images (e.g. the images that actually contained

TABLE II

CONFUSION MATRIX FOR THE CLASSIFIERS TRAINED INDEPENDENTLY

OF DRIVER/PASSENGER VIEW.

Actual Predicted

front front- side rear- rear
angle angle

front 27 2 0 1 12

front-angle 1 50 0 5 2

side 0 0 104 0 0

rear-angle 0 20 0 22 0

rear 1 0 0 0 37

vehicles) were shown to the classifiers. In these experiments,

each image was shown to a set of different classifiers.

The output responses from each of those classifiers were

compared, and the maximum probability was chosen as the

output. Confusion matrices were generated for a number of

different training/testing scenarios.

1) Classification independent of driver/passenger view:

The first experiment was performed with a set of classifiers

trained on images containing both driver and passenger

views. This scenario evaluated whether the classifiers can

distinguish front from rear, and front-angle from rear-angle.

The resulting confusion matrix for these classifiers is shown

in Table II.

Other views that had seemingly large confusion were the

front-angle and the rear-angle. This is not entirely unexpected

given that many vehicles have similar appearance from

the front angles and from the rear angles. However, this

particular set of classifiers was not necessarily ideal for real

use because it was designed explicitly to be incapable of

detecting the difference between the driver and passenger

view of vehicles. Rather these were an initial experiment

set up to see whether the specific angles, regardless of

passenger or driver views, were readily distinguishable. One

potential utility of these classifiers is discussed at the end

of this paper. To address the more detailed question of

distinguishing the passenger and driver views, a different set

of view-dependent classifiers were developed and tested in

the following sections.

2) Classification dependent of driver/passenger view:

Second, an experiment was conducted where the front-angle,

side, and rear-angle classifiers were all trained only on

images that were from the driver view and then tested on

images that only showed the driver view of the car. (Note: the

front and rear data sets were the same as the first experiment,

since driver and passenger view is meaningless to those

views.) The resulting confusion matrix is shown in Table III.

As can be seen from the confusion matrix, these driver

view classifiers were much better at recognizing the dif-

ference between the front-angle and rear-angle views when

shown driver view test images. This appears to be an example

which illustrates that having a smaller variance in the types

of images to be recognized creates a more accurate detector

(as compared with the previous experiment).

We then conducted an experiment to determine how well



TABLE III

CONFUSION MATRIX FOR THE CLASSIFIERS TRAINED ONLY ON DRIVER

VIEWS AND TESTED ONLY ON IMAGES OF DRIVER VIEWS.

Actual Predicted

front front- side rear- rear
angle driver angle
driver driver

front 28 2 1 1 10

front-angle 0 28 1 0 0
driver

side 0 0 51 1 0
driver

rear-angle 0 0 0 20 1
driver

rear 1 0 0 0 37

TABLE IV

CONFUSION MATRIX SHOWING HOW CLASSIFIERS TRAINED ON

FRONT-ANGLE AND REAR-ANGLE DRIVER AND PASSENGER VIEWS

RESPONDED TO TEST IMAGERY OF THE SAME CATEGORIES.

Actual Predicted

front- front- rear- rear-
angle angle angle angle
driver passenger driver passenger

front-angle 29 0 0 0
driver

front-angle 0 29 0 0
passenger

rear-angle 0 0 21 0
driver

rear-angle 0 0 0 21
passenger

the four angles could be differentiated from each other, as

shown in the confusion matrix in Table IV. As can be seen,

the four angle classifiers do very well in differentiating one

view from the other regardless of whether the image of the

car is from the front, the rear, or from driver or passenger

views.

The same test was performed with the side-views as

shown in the confusion matrix in Table V. As can be

seen, approximately 10% of the the driver-side images were

misclassified as passenger-side. Certain vehicles are very

symmetrical when viewed from the sides, which apparently

can confuse the side detectors. A few of the driver views

misclassified as passenger views can be seen in Figure 5.

3) Results of orientation-specific detectors: Finally, the

complete set of eight orientation-specific classifiers was

Fig. 5. Several examples of vehicle side views that were misclassified as
being the other side.

TABLE V

CONFUSION MATRIX SHOWING HOW CLASSIFIERS TRAINED ON THE

SIDES OF VEHICLES FROM DRIVER AND PASSENGER VIEWS RESPONDED

TO TEST IMAGERY FROM THE SAME CATEGORIES.

Actual Predicted

side side
driver passenger

side 51 1
driver

side 3 49
passenger

tested against all of the vehicle imagery. Figure 6 shows some

results of the different orientation-specific classifiers on the

test data. The confusion matrix showing the results of this

experiment is shown in Table VI. From the table, we can

see that the eight different side-and-orientation dependent

classifiers are able to perform fairly well to identify the

orientation of vehicles and achieved an accuracy of 88%

correct over 284 test images.

The reason for the non-symmetry between the driver and

passenger sides is that the images chosen for training each

classifier were selected at random from the full training set.

Similarly, the test set was chosen at random so the various

driver/passenger pairs for front-angle, side, and rear-angle,

were not necessarily given the same (but mirrored) images

to view. Vehicles typically have a great deal of symmetry

between sides and potentially between the different angles

which is a source of classification error. More experimenta-

tion is needed to determine whether the front detector’s errors

in classification are caused by insufficient training data. The

better results from the rear detector suggest that this may be

the case.

B. Detection of Vehicles

The purpose for this research was to be able to classify the

orientations of vehicles found in an image. However, in order

to successfully do this, we are required to be able to detect

the presence of a vehicle in the environment, regardless of

its orientation. A simple way to do this would be to run

all of the individual orientation-specific detectors over the

image and return the union of their outputs. However, a

question remained regarding the effectiveness of the different

orientation-specific classifiers in general, due to the fact that

they were fed negative imagery of the other orientations as

part of their training set. One way to avoid this problem is

to construct a single classifier to recognize vehicles in the

image regardless of orientation. In this case, problems asso-

ciated with negative imagery could potentially be avoided,

as there would be no need to include this in the negative

imagery. However, since views of vehicles from different

angles, particularly front or rear vs. side, are so different,

the question remained whether such a universal car detector

would have poorer performance across vehicles in general.

First, a classifier, called “all-sides”, was trained on all eight

of the orientations of interest so that it would function as



TABLE VI

CONFUSION MATRIX FOR ALL ORIENTATION-SPECIFIC CLASSIFIERS.

Actual Predicted

Front Front-angle Side Rear-angle Rear Rear-angle Side Front-angle
(driver) (driver) (driver) (passenger) (passenger) (passenger)

Front 26 1 0 0 10 2 2 1

Front-angle 0 26 1 0 0 2 0 0
(driver)

Side 0 0 50 1 0 0 1 0
(driver)

Rear-angle 0 0 0 18 0 0 0 3
(driver)

Rear 1 0 0 0 37 0 0 0

Rear-angle 0 0 0 0 0 21 0 0
(passenger)

Side 0 0 3 0 0 2 47 0
(passenger)

Front-angle 0 0 0 4 0 0 0 25
(passenger)

Front (1.00) Front-angle driver (0.99)

Side driver (1.00) Rear-angle driver (1.00)

Rear (0.44) Rear-angle passenger (0.96)

Side passenger (0.31) Front-angle passenger (1.00)

Fig. 6. Example results of the classifiers. Each image represents a view of
a car that had the highest response from the corresponding classifier trained
to recognize the view. Probability scores are shown in parenthesis under the
image.

a generic car detector. A second classifier, called “union”,

consisted of all eight orientation-specific classifiers. The

detection threshold value for each classifier was chosen from

an ROC curve computed on the training data as the point on

the curve closest to the upper left corner. This is the threshold

which will maximize the positive hit rate while keeping the

false positive rate as low as possible. The overall classifier

will report a detection if any of the individual classifiers

exceed the detection threshold.
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Fig. 7. An ROC curve for the performance of the two different classifiers
for detecting the presence of vehicles rather than computing the orientation.
A threshold value for each classifier, which corresponds to the value in the
curve closest to the upper left of the graph, has been computed and is shown
in the legend.

In these experiments, all of the test data described in the

previous section were used as the positive examples. A set

of negative examples four times the size of the positive set

was used. Figure 7 illustrates the performance of the two

different classifiers.

As can be seen from the ROC curve, the single all-

sides classifier outperforms the union of the eight specific

angle detectors. Not only is the all-sides classifier more

accurate, but the runtime complexity is a fraction of the



(0.94) (0.98)

(0.97) (1.00)

(1.00) (1.00)

(1.00) (1.00)

(0.85) (1.00)

Fig. 8. Detection results from the “all-sides” classifier. From top to bottom
are examples of front, front-angle (driver and passenger), side (driver and
passenger), rear-angle (driver and passenger), and rear. Probability scores
are shown in parenthesis under the image.

union classifier. The union classifier requires that the image

be searched for responses to the HOG classifier 8 times,

whereas the all-sides only requires a single search. Some

of the results of the car detection algorithm are shown in

Figure 8.

In this experiment, multiple hits in a single image were

possible (as evidenced in the top row of front-view images).

However, only the hit with the maximum value was recorded

and used. If the maximum value hit was in the wrong part of

the image, the output was identified as a mis-classification.

We speculate that including negative car views into the

training sets for the orientation-specific classifiers in general

caused those classifiers to have a lower response rate to the

test imagery than the classifier trained on views from all

views of the car. However, at this time, further evaluation and

analysis is required to determine whether this hypothesis is

correct, or if there is another effect that is causing the poorer

performance of the individual orientation-specific classifiers

for detecting the presence of vehicles in general.

The strong performance of the all-sides classifier suggests

a potential efficiency boost for the general use of this system.

The required operating time for the union classifiers for this

rearfront

front/rear

allsides

passengerdriver

sides

front−angle rear−angle

passengerdriverpassengerdriver

angles

Fig. 9. A hierarchical method for searching for vehicle orientation in an
image.

experiment was 8 times more than the all-sides classifier

because of the need to re-run each of the 8 orientation-

dependent classifiers over the image. Thus, the all-sides clas-

sifier could be used first to identify the location of potential

cars in the image. Then the individual angle classifiers could

be used over those sub-patches, the size of which is smaller

than the original search area, and greatly improve the time

necessary to run the detector.

V. DISCUSSION AND FUTURE WORK

In this paper, we have described a study in which we used

a set of Histogram of Oriented Gradients (HOG) classifiers to

determine the orientation of vehicles in images. We explicitly

trained each classifier to recognize a different view of a vehi-

cle using publicly-available datasets, which we hand-labeled

and annotated. By running each of the different classifiers

on an image of a vehicle and picking the maximum, our

algorithm determined the correct orientation of the vehicle

88% of the time.

We also determined that “merged-view” classifiers de-

signed to detect only angles or only sides of the vehicle were

also possible. In order to successfully train these classifiers,

the negative image training set consisted of all of the views

that the classifier was not meant to recognize.

One challenge of determining the specific orientation of

the vehicle using the HOG classifier approach still requires

that the images be searched by multiple different classifier

instances – one for each orientation of interest. Thus, for the

problem described in this research, any implementation of the

classifier would be slowed down by a factor of 8. However,

because detectors can be created which encompass multiple

views, such as the “all-sides” detector and the left/right-

invariant detectors described above, a binary-search approach

for finding the vehicle orientation could be employed, as

illustrated in Figure 9.

Initially, a single generic view-independent vehicle de-

tector (all-sides) would be used to locate potential vehicle

candidates. This could additionally be run at a lower number

of pyramid scales to speed up the overall process without

sacrificing too much accuracy. Once a vehicle candidate

is found, three more classifiers, front/rear detection, side

detection, and all angles detection would be run, and the

highest performing result would then proceed down the tree

to further disambiguate the orientation. This hierarchical



Fig. 10. Plot of relative strengths of orientation detectors as vehicle moves
between front and front-angle-driver views. Strength is measured as the
length of the red bars in the angle graphs.

breakdown could potentially reduce the number of individual

classifiers from eight (or nine if the all-sides classifier is

used as an initial detector) to, at worst, four. Because there

is a large potential for repeated/redundant operations in this

algorithm, it may be possible to share the computation across

classifiers to improve run-time efficiency.

Our ongoing work is to fully integrate the visual classi-

fication algorithm with the LIDAR detector and tracker [2]

in order to prune false positives from the set of potential

trackable vehicles as well as to use the resulting orientation

from the visual classifier to improve the state estimate of the

tracked vehicle. Additionally, we are examining whether this

approach can more accurately determine the actual angle of

the vehicle (not just the angle of the strongest responding

classifier) by comparing the relative responses of adjacent

classifiers. An example of how the classifiers respond when

presented with “in-between” data can be seen in Figure 10.
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