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Abstract Visual-inte ractive cluste r analysis provides valuable tools for 

effectively ana lyzin g la rge and complex data sets . Owing to desirabl e prop
erties and an inherent predisposition for visu a lization, the Kohonen Feature 
Map (or Self-Organizing Map or SOM) algorithm is among the most popular 
and widely used visu al clustering techniques . However, the unsupervised 

nature of the algorithm may be disadvantageous in certa in app lications. 
Depe nding on initia li zation a nd data characte ri sti cs, cluste r maps (cluster 

layouts) may emerge th at do not comply with user preferences, expecta

tions or the application co ntext. Considering SOM-based ana lysis of trajectory 
data, we propose a comprehensive visual- interactive monitoring and control 
framework extending the bas ic SOM algorithm. The framework implements 

the general Visual Analytics id ea to effectively combine automatic data anal
ys is w ith human expert supervisio n . It provides simple, yet effective faci li ties 

for visua lly monitoring and in teractively co ntrolling th e trajecto ry clusterin g 
process at arbitrary levels of detail. The approach all ows th e user to leverage 

existing dom ain knowl edge and user preferences, arrivin g at improved cluste r 

maps. We apply the fram ework on severa l traj ectory clustering prob lem s, 
demonstrating its potential in combining both unsupe rvised (machine) and 

supervised (human expert) processing, in producing appropriate cluster 
results . 

Keywords: visual analytics; visual cluster analys is; self-organizing maps; trajectory data; 

tim e series data 

Introduction 

Cluster analysis is a process for structuring a nd reducing data sets by finding 

groups of similar data elements.1 It is regarded as one of the core tools 

to effectively analyze large data volumes. This process is usually unsuper

vised : Up to param eterization, most algorithms work fully automatic and 

the use r has no further m ea ns to determine the clusters. However, only 

appropriate clusterings effectively support the user in analyzing large data 

sets. Visual cluster analysis is a specialization of general cluster analysis 

and relies on the appropriate visualiza tion of clusters. Some of the most 

popular approach es perform a spatialization of the cluster centers to display 

space, trying to preserve essenti al re lationships among the clusters, while 

visualizing additional data properties such as the number of represented 

data items or m easures of cluster quality. To date, the Self-Organizing Map 

(SaM) algorithm proposed by Kohonen 2 is one of the most popular visual 

cluster algori thms. It effectively combines clustering and spatializat ion by 

learning cluster prototypes located on a grid structure embedded in low 

dimensional space. However, to the best of our knowledge none of the 

existing SaM implementations allows the user to monitor and steer the 

clustering process by visual-interactive means. 
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In this paper, we focus on trajectory data, which is a 

ubiquitous type of data important in many applications. 

For instance, enabled by tracking technology, it is possible 

to routinely collect large amounts of geo-referenced move

ment data . Also, trajectories consisting of observation 

sequences in arbitrary vector spaces, for example, time

dependent observations in two-dimensional diagram 

space can be regarded. Visual analysis in the trajectory 

data domain often faces very large data sets that cannot 

be visualized effectively per se. Trajectory cluster analysis 

is a promising option to this end. In previous work,3 the 

SOM algorithm was applied to visually analyze sets of 

trajectories observed in diagram space. It was observed 

that the fully automatic cluster analysis may yield mean

ingful cluster spatialization. However, we recognize that 

there is a need to more closely integrate the expert user 

in the clustering process . 

We propose to extend the automatic (unsupervised) 

SOM algorithm by a visual-inter-active control and anal

ysis framework. The framework allows the analyst to 

guide the otherwise purely automatic SOM algorithm 

toward resembling user-defined trajectory cluster maps. 

Thereby, it allows the user to factor in domain knowl

edge, application needs and user preferences. The frame

work allows the user to visually monitor and understand 

the otherwise black-box clustering process, and contro l 

it at an arbitrary level. The user can use it to obtain 

appropriate cluster maps from the full spectrum of maps 

generated either completely unsupervised or completely 

supervised. 

Related Work 

This work relates to a number of research strands. In 

general, this work follows the Visual Analytics idea of inte

grating automatic data ana lysis with human expertise, 
relying on visual-interactive means .4,5 Cluster analysis 

is one key data mining technique of which many auto
matic approaches exist.6,7,1 Clusters may be found for 

example, by centroid or medoid.based approaches, hierar

chical models or density-based approaches. Visualization 

is often key to understand otherwise possibly abstract 

clustering results. Although certain clustering approaches 

implicitly yield visual representations (for example, 

dendrograms or two-dimensional mappings), for many 

other clustering techniques, appropriate visual represen

tations need to be constructed as a post-processing step. 

Projection-based approaches are common to this end.8,9 

The Kohonen Map (SOM) algorithm2 is a well-known 

approach suited for analysis of large volumes of high

dimensional data. The algorithm basically combines clus

tering and projection, and it is ver6 amenable to visual 

analysis of high-dimensional data .l Its effectiveness has 

been demonstrated by its appli cation on many different 

data types. 11- 14 The SOM may also be used in combi

nation with other visual data analysis approaches. In 

Guo et al,15 it has been integrated with several comple

mentary visualizations, allowing the analYSis of data 

showing high-dimensional as well as spatio-temporal 

characteristics. 

Trajectory data lately has attracted much research 

interest. Because of advances in sensor and other 

techniques, increasingly large amounts of trajectory data 

arise, and consequently, techniques for their analysis 

are being developed. Trajectory data may be observed 
in real-world coordinates on various scales. 16,17 Also, 

trajectories may be regarded in more abstract spaces, 

for example, two-dimensional diagram space.3 Trajec

tory mining research considers analysis and description 

of important properties in trajectory data . Of primary 

concern are methods to define appropriate similarity 

functions to query, compare, cluster trajectories l8 , 19 and 

support the detection of interesting patterns.20 

SOM-based Clustering of Trajectory Data 

In this section, we discuss the clustering of trajectory 

data using SOM. We briefly recall the basic mechanism of 

the unsupervised SOM algorithm in the next subsection, 

followed by a sketch of its application to trajectory data 

in a subsequent subsection. Later, we then motivate the 

need for integrating the user in the clustering procedure 

using visual-interactive facilities . 

Self-organizing map algorithm 

The SOM algorithm is a neural network-type learning 

algorithm. It iteratively trains a network of prototype 

vectors to represent a set of input data vectors. The 

network is usually given in the form of a two-dimensional 

regular gr id . During training, the algorithm iterates over 

the input data vectors; finds the best matching prototype 

vector; and adjusts the best matching prototype and a 

number of its network neighbors toward the input vector. 

In the course of the process, the si ze of the considered 

neighborhood and the strength of the ad justment process 

are reduced. 

In practice, two key effects are achieved by this 

process. Firstly, a set of prototype vectors (or clusters) 

is obtained representing the input data . And secondly, 

a low-dimensional arrangement (sorting) of the proto

types is obtained, given by the grid structure. The main 

parameterization required by the algorithm includes the 

initialization of prototype vectors and the specification 

of learning parameters. The latter include the duration of 

the training process, the definition of the neighborhood 

kernel and the degree of vector ad justment (the learning 

rate). Although a number of rules of thumb exist for the 

parameter setting, finding good settings for a given data 

set usua lly requires experimentation and evaluation by 

the user. 
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Simple trajectory data model for self-organizing map 

analysis 

Application of the SOM algorithm to trajectory data 

requires a suitable vector representation of the trajectory 

data items. The vector representation should capture 

relevant trajectory characteristics and allow meaningful 
interpretation of vector distances as a measure for 

dissimilarity of the corresponding trajectories. Generally 

speaking, a trajectory feature selection problem has to be 

solved before the SOM algorithm can be applied. Many 

different trajectory features are candidates for a vector 

representation. For instance, features such as position, 

orientation and direction, curvature and changes thereof 

may be considered. Also, sampling and normalization 

aspects are usually an integral part of the feature selection 

process. 

Following Schreck et al,3 we consider a simple trajectory 

vector representation constructed from normalized trajec

tory sample points. To obtain the vector representation, 

we first normalize each trajectory by scaling it into the 

unit square [0, 1]2, and then sample n uniformly spaced 

(x , y) coordinates spanning the trajectory from its start 

point to its end pOint. The concatenation of the sample 

coordinates in their sequence along the trajectory yields 

the vector representation of length 2n. By definition this 

representation ignores features, which might be impor

tant in certain applications. For instance, it ignores the 

trajectories' absolute positions and scale in space, and, 

depending on the number of samples, may lose trajectory 

details or introduce sampling artifacts. The key advan

tage of this representation in context of this work is that 

it has a direct geometric interpretation and that it can 

serve as the basis for visualization of and interaction with 

cluster prototype vectors produced by the SOM algorithm. 

Therefore, it is an integral component of the framework 

developed in the section Trajectory Cluster Map Learning 

Framework. Besides, this vector representation is simple 

to obtain and allows a straightforwa rd interpretation of 

vector distances. 

Requirement analysis 

As an example following,3 we cons ider a data set from 

the financia l Data analysis domain (d. also the subsec

tion, Data set and unsupervised clustering). The data set 

consists of time-dependent observations of risk and return 
measurements of financial assets. Specifically, we consider 

consecutive observations in this two-dimensional space 

as sample points describing trajectories in an abstract 

(diagram) space. By taking daily samples and observing 

whole trading weeks (Monday through Friday), we arrive 

at five sample pOints and lO-dimensional trajectory 

vector representations, describing the movement of asset 

characteristics over time in risk x return diagram space. 

Figure 1 shows the reference vectors of a 12 x 9 SOM 
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trained from 5.500 trajectories. Note that this SOM was 

obtained by standard unsupervised training. 

Generally, the result of the SOM algorithm depends on 

input data characteristics, initialization of the map refer

ence vectors and the set learning parameters. For effective 

SOM-based visual trajectory analysis, it is important that 

the overall cluster map is (a) meaningfully interpretable 
in terms of the location of reference trajectories and 

(b) stable with respect to data updates. It is deSirable that 

the position of the reference trajectories also corresponds 

to specific features and transitions of the underlying 

trajectories. Thereby, the spatial memory of the human 

analyst can be fully utilized, and meaningful interpreta

tion can be supported even for changing data sets. Also, 

the presentation of the results is made easier if the layouts 

meet the common expectations of the target audience. 

For example, it might be desirable that the left-hand side 

of the SOM holds low values of the start points, whereas 
the right-hand side holds high end values (both in terms 

of (x , y) coordinates of the trajectory control points). On 

the other hand, it could be desirable that the four corners 

of the SOM contain reference trajectories resembling 

trajectories in diagonal direction. Standard SOM training 

usually cannot guarantee this, as it performs the learning 

process strictly unsupervised, and often the SOM algo

rithm is applied in a 'black box' manner. What is required 

from the user perspective are efficient means of guiding 

the otherwise fully automatic learning process toward the 

desired trajectory cluster layou t. 

Trajectory Cluster Map Learning Framework 

We propose a comprehensive framework for supervised

interactive SOM-based clustering of trajectory data. It 

consists of three main visual-interactive extensions to the 

otherwise fully automatic SOM learn ing algorithm. The 

framework was designed to be systematic with respect to 

the SOM clustering algorithm, and to incorporate visual

interactive monitoring and control facilities considered 

useful in gUiding the clustering process. 

We point out that we do not expect every single control 

option discussed in this section to be required in every 

data analysis scenario. Rather, depending on the appli

cation, an appropriate combination of controls from the 

framework is best suited to support achieving a given 

analysis goal. 

Map initialization based on trajectory editor 

Before the SOM training process can start, the grid of 

cluster prototypes needs to be initialized. The initializa

tion guides the training process, and often influences the 

overa ll layout of the emerging cluster map. In the stan

dard approach, two initia.1ization methods are common: 

random initialization and initialization based on a 



Figure 1: Self-Organizing Map of trajectory data, trained in unsupervised mode. Start and end points of trajectories are 

indicated by green and red dots, respectively. 

principal component analysis of the input data set.2 Both 

methods are unsupervised in nature. 

We propose a more user-oriented approach to control 

the initialization process. We base the approach on the 

fact that our trajectory data representation has a straight

forward geometric interpretation: the vectors directly 

encode the trajectory geometry (the sequence of trajec

tory control points), and can therefore be readily visual

ized and manipulated interactively. To do so, we provide 

an interactive trajectory editor that lets the user draw 

example trajectories into chosen SOM grid positions. 

Reference trajectories may be input at distinct map loca

tions, thereby specifying a model for the overall SOM 

cluster layout desired . Starting from a user-provided set 

of example trajectories, we initialize the full grid of SOM 

trajectory prototypes as follows: 

• For the grid nodes for which the user has provided 

example trajectories, we set the initial value of the SOM 

prototype vector equal to the vector representation of 

the drawn trajectory (simply a sequence of (x, y) coor

dinates) . 

• For the unaSSigned grid nodes, we interpolate between 

the assigned example vectors. 

Figure 2 illustrates the trajectory editor concept. 

Figure 2(a) shows a simple trajectory consisting of two 

control points: one (green) start and one (red) end 

point. Figure 2(b) illustrates a 4 x 3 SOM grid, into 

which two example trajectories have been drawn by the 

user. Interpolation of the unaSSigned nodes takes place 

on a component-by-component basis, determined by 

the assigned values and an appropriate interpolation 

function. Figures 2(c)- (f) illustrate the resulting distri

bution of components over the SOM grid. Consider for 

example, Figure 2(c) showing the distribution of the Xl 

component over the SOM grid. The top left cell corre

sponds to low value, and the bottom-right cell corresponds 

to high value of this component. This is in accordance 

with the fact that the Xl coordinate (the x coordinate 

of the start point) of the two entered trajectories is low 

for the top left example, and high for the bottom right 

example. In this example, nearest neighbor interpolation 

was used, but other schemes such as weighted average are 

possible. 

Figure 3 shows an example of the trajectory editor for 

initialization of the SOM prototype vectors. Five reference 

trajectories were assigned by the user, and the remaining 

prototype vectors were filled in by weighted average 
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Figure 2: Supervised initi alization of the SOM prototype grid using the trajectory editor co ncept. (a) An example trajectory 

consisting of two contro l points (xl , Yl) (start point; marked green) and (x2 , Y2) (end point; marked red) . (b) Two example 

trajectories specified o n a 4 x 3 SOM grid . (c)-(f) Interpo lated component planes for the xl, YI, x2 and Y2 components. 

Bright (dark) colors indicate low (high) component values. 

interpolation. With this concept, the user is able to effi

ciently initialize a SOM prototype map with a coarse 

template of a desired layout. 

Online visualization and control of the map training 

In the standard approach, the SOM clustering is produced 

by an unsupervised training process that ends'once a fixed 

number of iterations has elapsed or the quantization error 

meets a predefined threshold .2 In our approach, we aim 

to produce SOM cluster results that are both good with 

respect to quantization error, and at the same time reflect 

user- or application-desired prototype patterns and layout 

criteria. We therefore extend the unsupervised training 

process by (a) online visualization and (b) control func

tionality. Visualization of online training and optional 

user intervention are coupled. At any time during the 

training, the user is able to pause the training, update 

training parameters and resume the training. 

Visualization of the training process 

Recall that in our application, the data vectors have an 

immediate geometric interpretation. Therefore we are 

able to visualize the online training process by showing 

a continuously updated display of prototype trajectories. 

Specifically, the user can observe the effect of the provided 

trajectory initialization on the subsequent training 

process. In addition to visualizing the emerging trajectory 

patterns within the SOM cells, we optionally superimpose 

certain cluster map quality metrics using color-coding 
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and nearest neighbor connectors (d. Figure 4): 

1. Color-coding of the current quantization error of the 

emerging maps: for each prototype vector, we calculate 

the average Euclidean distance between the prototype 

and the trajectory data samples it represents . 

2. Color-coding of the average Euclidean distance between 

each SOM prototype vector and its immediate proto

type vector neighbors on the grid (also known as U

Matrix color coding) .l0 

3. Nearest-neighbor connectors indicating the nearest 

neighbor relations between the SOM prototype vectors. 

This visualization reflects the smoothness of the 

pattern transitions over the map (smoother transiting 

prototype layouts show shortei- connectors) . 

By means of these visualizations, the user can observe 

both the emerging organization of the pattern layout, as 

well as the quality of the representation of the obtained 

clustering. Figure 4 illustrates the online training visual

ization with snapshots of the quantization error during 

training of a 12 x 9 SOM of trajectories (a)- (c) and a zoom 

into a connector display (d). 

Control of the training process 

The framework supports a set of interaction facilities for 

control of the training process. At any time, the user can 

suspend the training process and, depending on prefer

ences and experience, exert one or more of the following 

controls: 

1. Adjust single prototype trajectories by directly editing 

them with the trajectory editor. 



Figure 3: Editor-based initialization of a 12 x 9 SOM trajectory grid, using five user-defined example trajectories (marked 

blue) in con junction with weighted average interpolation . Component distributions (xl, Yl) to (Xs , Ys) are shown in the left 

panel. 

2. Adjust the map by editing a selection of prototypes 

and replace the remaining prototypes by interpolating 

between the selected prototypes. 

3. Update the training parameters at global granularity: 
adjust the number of remaining iterations, learning rate 

and neighborhood kernel. 

4. Manipulate learning parameters at local granularity: set 

different learning rate and radius for selected grid cells . 

S. Reinforce training of selected patterns. 

These controls serve to gUide the learning process toward 

user desired results, if required. Control 4 particularly 

allows the specification of smaller or even zero learning 

rates for selected patterns. This allows to explicitly enforce 

selected patterns on the map. Control S is another option 

we implemented to smoothly place example patterns 

into the map as follows. If this option is set, the system 

monitors the evolution of the assigned example patterns 

during the training process. Once the Euclidean distance 

between the prototype vector and the user-assigned 

trajectory grows too high, we repeatedly inject (update) 

the assigned prototype onto the respective grid position 

with the current training parameters. This has the effect 

that the otherwise freely adapted patterns do not deviate 

too strongly from the assigned patterns during training, 

and that the map neighborhood smoothly accommodates 

the assigned pattern. 

Although options 1 and 2 are basic controls, options 

3- S are more advanced controls of the training process, 

designed for users requiring fine-grained control of the 

training. However, we expect that it should also be 

possible to wrap the more advanced controls by easy

to-use high-level commands, such as setting an 'enforce 

this pattern' flag that can be set inside the trajectory 

editor. Thereby, the more advanced options can also be 

easily used by less experienced users. After updates to the 

training process have been manually entered, training 

is resumed and the user can continue to observe the 

effects . Usually, experimentation with different param

eter settings is required for optimizing results on a given 

data set and analysis task. The experimentation process 

is supported by an undo operation, which rewinds the 

training effect of the most recent update . 

Note the idea of fixing selected data vectors to given 

SOM grid locations during training is not new per se. 
For instance, the Self-Organizing Map Program Package 
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implementation includes an option for doing so.21 We 

point out that our interactive training controls extend 

beyond a simple fixing of vector assignments. Not only 

any training parameter may be edited at rUntime, but 

also the reference vectors may be interactively modified 

during training using the trajectory editor. 

We also point out that, in principle the control frame

work allows a user to produce any prototype layout 

desired, possibly influencing the reliability of the obtained 

results. Generally, we expect that an application- or 

user-dependent trade-off will have to be found between 

supervised and unsupervised training of the reference 

map. Clustering quality visualization is recommended for 

appropriately balancing the trade-off between the preci

sion of the clustering (in terms of quantization error and 

nearest neighbor transitioning) on the one hand, and 

supervised pre assignment of the reference layout on the 

other. 

Map post-processing 

Usually, the final trajectory map yielded by the training 

will be the basis for subsequent visual analysis of the 

obtained clustering and the underlying data. Depending 

on the nature of the analysis task, it may be useful to post

process the obtained trajectory map. The framework there

fore supports the following trajectory map post-processing 

interactions: 

1. Merging of multiple trajectory prototypes. This allows 

aggregation of similar prototypes and reduces the size 

of the map. The new prototypes are formed by aver

aging the original prototypes. 

2. Expansion of trajectory prototypes. This allows finer 

grained visual ana lysiS of prototypes that perform 

too much aggregation . The expansion is achieved by 

training a sub map of refined prototypes based on the 

data represented by the original trajectory prototypes. 

3. Editing, creation and deletion of trajectory proto

types. The user can manually edit existing trajectory 

prototypes or add new prototypes to the map using 

the tra jectory editor. Also, existing prototypes can be 

deleted from the map. 

4. Swapping of prototypes. The user is allowed to rear

range the layout of the prototypes by position swap 

operations. 

These operations are optional, yet useful in certain situ

ations. For instance, manual addition of pOSSibly non

represented, sparse patterns to the map may be very 

helpful in situations where certain patterns are important 

from the ana lysis perspective, but underrepresented in 

the data set, and therefore were not trained by the SOM 

algorithm. Note that like manual control of the online 

training process, an interactive post-processing operation 

may incur a loss of quantization preciSion or pattern 

transition smoothness, compared to a SOM trained in 

a completely unsupervised way. Again, referring to the 



quality visualizations, it is left to the discretion of the user 

to balance this trade-off. 

Application 

We apply our supervised SOM training framework in two 

scenarios, illustrating the modes of operation supported, 

as well as a possible analytical workflow adapted to finan
cial data analysis. 

Operation of the framework 

In the next subsection, we describe the results of an unsu

pervised reference SOM clustering. In the further subsec

tions, we then apply our framework to produce several 

different target layouts, demonstrating the functionality 

of the framework for generating supervised clusterings. 

Data set and unsupervised clustering 
We consider the same data set as in Schreck et at3 
(d. also the Simple trajectory data model for self

organizing map section). An unsupervised reference SOM 

was trained from this data set, consisting of a rectangular 

grid of 12 x 9 trajectory prototypes. The description of the 

training process follows. We first iterated 100 times over 

the data set, initially setting the learning rate to 5 per cent 

and the learning radius to 15 using a bubble neighbor

hood kernel. We then refined the map by a second run, 

iterating 200 times over the data set, after adjusting the 

learning rate to 2 per cent, and the neighborhood radius 

to 5. We considered both random and linear initializations 

of the prototype vectors, obtaining both times approxi

mately the same end result, which is shown in Figure l. 

In the next sections, we present a series of experiments 

applying our framework to produce user-guided trajectory 

maps. 

Adaptation of unsupervised trajectory map 
In the first experiment, we show how the framework can 

be used to adapt a given trajectory map to reflect the 

users' global layout preferences, assuming that the user has 

inspected the fully unsupervised map shown in Figure l. 

Although the user agrees with the obtained cluster proto

types, another positioning of the patterns on global map 

may be desired. The user proceeds to initialize a new map 

by a number of example prototypes taken from the unsu

pervised map. Figure 5(a) shows the initialization: four 

example trajectories were selected and assigned to the 

corner regions of an initial map; the unassigned proto

types were filled in using weighted average interpolation. 

Then, training using the SOM algorithm takes place. After

ward, a reinforcement of the assigned example trajecto

ries (described in the subsection Control of the training 

process) is applied to the preassigned reference trajecto

ries. Figures 5(b)-(f) show how the map converges toward 

a stable layout. The map layout basically represents the 

patterns contained in the original unsupervised map, this 

time, the user-intended global cluster map layout is also 

obtained. 

Abstract reference map 
In this experiment, we assume that the user is inter

ested in a couple of rather different, dissimilar trajectory 

patterns. The patterns are assumed to carry an application

specific important meaning, and therefore need to be 

reflected in the map. The analyst starts the training by 

assigning these patterns. Figure 6(a) shows the initializa

tion of a cluster map based on six abstract user-defined 

patterns, along with nearest neighbor interpolation. A 

short training interval consisting of a small number of 

iterations, in conjunction with reinforcement of example 

patterns, yields the smoothly transitionlng cluster maps 

shown in Figures 6(b) and (c). The clusters adapt to 

reflect the data distribution, while keeping up the types 

of the preassigned patterns, as well as their positions. 

Figures 6(d)-(f) visualize the emerging smooth transi

tions between the trajectory prototypes. The color-coding 

represents the normalized average distances between the 

prototype vectors (the second SOM metric in the section 

Visualization of the training process). 

Circular flow-like map 
As a further abstract supervised target layout, we consider 

a circular flow-like layout. Figure 7(a) shows an initial

ization given by eight control trajectories in conjunction 

with weighted average interpolation. Figure 8 compares 

training of that reference layout on the data set with 

and without reinforcement (d. controlS described in the 

section Control of the training process) of the assigned 

patterns. We observe, as expected, that reinforcement 

of the assigned patterns (top row in Figure 8) holds 

them fixed on the map, and adapts neighboring patterns 

accordingly. Without reinforcement of assigned patterns 

(bottom row in Figure 8), these too are subject to adapta

tion by the SOM training, and evolve together with the 

overall map of reference trajectories. 

Application to financial data analysis problem 

In this section, we present an exemplary analysis workflow 

based on a financial data analysis problem, making use of 

our trajectory clustering framework. The next subsection 

introduces the used data set and a possible analytical task 

and the further subsections describe analysis steps using 

unsupervised and supervised cluster analysis. 

Data set 
We consider a second data set we compiled according 

to the systematization in Schreck et al3 (d. also section 

Simple tra jectory data model for self-organizing map) . 
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It consists of risk vs. return data, observed on a weekly 

basis, for 30 blue chip stocks listed in the Deutsche Aktien 
Index (German Stock Index) .22 The full data set spans 

a time frame between June 2005 and August 2007. We 

specifically like to study the diagram characteristics for the 

first three weeks of March 2007, characterized by transient 
market turbulences. 

Unsupervised trajectory map and identification of patterns of 
interest . 

Firstly, a SOM of the set of risk-return diagrams was 

trained in an unsupervised mode. The result is shown in 

Figure 9(a). Yellow color-coding shows the relative density 

of matched sample charts over the SOM. It can be seen 

that the distribution of the patterns in the data set is rela

tively uniform, meaning that all the found patterns occur 

with similar frequency during the whole time period. The 

shapes of the patterns vary substantially and cover the 
important types of market movements. 

Followingly, we look closely at the market movements 

during the first three weeks of March 2007, when a tran

sient market downturn leading to significant drop of 

many of the listed stocks' prices occurred. Figure 9(b)- (d) 

indicate the patterns occurring during these weeks. The 

density of matched samples, as well as their spread 

(deviation) from the respective cluster prototypes is indi

cated by background highlighting (yellow) and trajectory 

bundles (blue), cf.3 In contrast to the whole time period, 

the pattern for the turbulent weeks show that the distri

bution of patterns changes drastically. The variance of the 

market movements seen during normal trading weeks is 

replaced by strong developments in one direction on the 

whole market. The trading week of February 26- March 

2002 (Figure 9(b» first shows an increase in daily stock 

price return (y-aXiS, upward movement), while showing 

increased risk (price volatility) at the same time (x-aXiS, 

rightward movement) for most of the traded stocks. 

Followed by this upturn, a downturn was observed for 

many stocks, as characterized by a decrease in daily 
return (downward movement along y-axis) together with 

fluctuations in variance (movements along x-axis). The 

downturn is dominating the risk-return chart patterns 

occurring in the latter two weeks (Figures 9(c) and (d» . 

Customized trajectory clustering and further analysis 
Although such patterns of interest as described above 

may be identified, for detailed analysis they may not be 

adequately represented on the unsupervised cluster map. 

For example, as the interesting patterns may account 

only for a small fraction of overall patterns used during 

the unsupervised training, they may not be represented 

on the map in as much detail as reqUired for an in-depth 

analYSis. In the next step, we therefore re-train the SOM 

based on the identified patterns of interest. Specifically, 

we initialized the map with the patterns identified as 

significant in the previous analysis. An upturn prototype 
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Figure 8 : Training based on the circular supervised reference layout from Figure 7(a), using reinforced reference patterns (top row) and free-floating 

patterns. Like the bottom row of images in Fig ure 6, the color-coding indicates the average distance between Self-Organizing Map prototype vectors. 

The visualization indicates that several different trajectory regions evolve. The reinforced map shows larger differences between trajectory regions; 

specifically, the reinforced patterns produce larger differences to their neighborhood trajectory patterns. 
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Figure 9: Figure (a) shows an unsupe rvised clustering of weekly risk-return charts for 30 German blue chip stocks, as 

observed between 2005 and 2007. Figures (b)-(d) show a highlighted projection of the map to the chart patterns observed 

during three consecutive weeks, during a transitory downturn phase of the market (c, d; the most frequent patterns are 

zoomed in), preceded by a short upturn phase (b). 

chart (identified from Figure 9(b» was placed on the left 

hand side of the map, and two downturn prototype charts 

(identified from Figures 9(c) and (d» were positioned on 

the top and bottom right-hand side of the map. Training 

then took place while reinforcing the assigned prototype 

charts during the training. 
Figure lO(a) shows the resulting SOM. The manu

ally adjusted map allows for a larger resolution of the 

observed market patterns on the SOM, and provides the 

user-specified global layout of the trajectory map. Specif

ically, upturn charts are found on the left hand side, 

and downturn charts are found on the right hand side 

of the overall SOM. The subsequent in-depth analysis 
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can concentrate on, for example, the temporal relation

ship between upturn and downturn patterns, for possible 

identification of interesting correlations, and general 

support of technical chart analysis and prediction tasks. 

Figure lOeb) shows an example of such a temporal anal

ysis: the individual, weekly risk-return charts of the 30 

stocks are replaced by their SOM representations, and are 

shown in a sequence view.3 This view allows for anal

ysis of patterns over time (the patterns for each stock 

are lined up along the time axis) . Highlighting of upturn 

(blue) and downturn (yellow) patterns used in creation 

of the supervised map then allows to study the observed 

patterns across stocks in the specific turbulence periods 
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Figure 10: (a) Self-Organizing Map of ri sk-return charts, trained in supervised mod e by assigning one upturn (left, middle 

position) and two downturn sequences (right, top and bottom positions) identifi ed from the unsupervised SOM shown in 

Figure 9. (b) Sequence analysi s of the weekly charts, hi ghlighting the upward (blue) and downward (yellow) patterns (two 

regions are zoomed in for closer in spection) . 

as well as to search for similar situations in other time 

intervals . In our case, the results show that the upturn 

phase of the market seen in the week identified above 

(week 85) was directly followed by the downturn phase 

in the following week (week 86) . The sequence view also 

revea ls that a similar pattern occurred also in the past 

(week 34). However, the immediate reversal of the trend 

did not fo llow shortly afterward. 

Discussion and Options for Extensions 

The overa ll goa l of our SOM visualization and control 

framework is to guide the otherwise unsupervised 

algorithm to produce maps of user-preferred tra jectory 

clusterings. User interaction with the clustering algorithm 

includes setting of main training parameters as well as 

manual assignment of reference trajectories guiding the 
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self-organization of cluster prototypes on the map. Several 

options exist for the choice of assignment patterns used 

in supervised training mode. They range from simply 

re-using or adjusting patterns identified in a preceding 

unsupervised clustering run, to completely unrestricted 

specification by the user. The choice of method is task 

specific and depends also on user interest and exper

tise. Although we did not perform a formal user study, 

experience obtained from our experiments indicates 

that the implemented visual-interactive SOM controls 

support quite efficient and effective parameter setting by 

the user. 

Usually, the more the trajectory clustering aimed at by 

the user differs from the result achievable by the purely 

unsupervised algorithm, the less aggressive the training 

parameters need to be set, to retain the main charac

teristics of the predefinition. This is in accordance with 

practical recommendations for SOM training, suggesting 
to use moderate training parameters during a fine-tuning 

phase after a preceding global organization phase21 has 

taken place. In our system, the global organization phase is 

replaced by interactive map initialization using the trajec

tory editor, and the fine-tuning is done by application of 

a number of interactive SOM training iterations. 

By controlling the training process, in the extreme 

case the user is able to achieve any clustering desired, no 

matter how precise (and thereby meaningful) this clus

tering result may be. Balancing the trade-off between opti

mizing a formal clustering quality metric (for example, 

quantization error) and the user-desired trajectory clus

tering, will ultimately be the responsibility of the user. 

Although formally evaluating this trade-off is considered 

to be difficult, we believe the SOM quality visualization 

options implemented, including the nearest neighbor 

connectors visualization such as illustrated in Figure 7(b), 

support achieving a good trade-off. More evaluation in 

this direction is considered interesting and should be 

addressed in the future work. 

Regarding the supported data model, our frame

work is applicable to trajectory data of constant length 

described in a simple geometry-based vector represen

tation. Currently not included are position- and scale

dependent geometriC features, features for very long 

tra jectories, or more abstract and non-geometric trajec

tory features. Some of these features are expected to be 

easy to incorporate by an extended vector representation. 

Other trajectory features are expected to be more difficult 

to represent by the vector model, and also more difficult 

to visualize and interact with. Generally, the inclusion 

and evaluation of a richer set of tra jectory features into 

our framework constitutes interesting future work. 

Our framework was introduced on a rather conceptual 

level. More deep application integration is considered 

interesting and should be addressed in the future work. 

Considering that in many domains vast amounts of time

dependent point cloud (scatter p lot) data arise, we see 

much potential of applying customized cluster analysis 

as proposed here . Relevant domains include financial 
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data analysis, but also engineering and science. Based 

on the domain and application, customized trajectory 

features should be defined, and application-specific chart 

templates could be compiled, for assisting the user in 

generating useful cluster layouts. 

Fundamentally, we can distinguish trajectory analysis 

tasks taking place in diagram space (for example, finance 

data), as well as in real-world coordinates (for example, 

traffic monitoring) . A comparative study that which 

identifies typical trajectory analysis tasks in diagram and 

real-world coordinate space could shed insight on how 

to extend our approach to the Geographic Information 

System domain . 

Conclusion 

We defined a visual-interactive framework for guiding the 

otherwise unsupervised Self-Organizing Map algorithm by 

a user, customized to operate in conjunction with a simple 

trajectory data model. The framework enables the user to 

visually monitor the clustering process and control the 

algorithm at an arbitrary level of detail. A number of inter

action facilities were proposed, an integral part of them 

being the trajectory editor for interactive initialization of 

the clustering process and interaction facilities to manip

ulate the training parameters during runtime. The frame

work was applied to a number of trajectory clustering 

tasks . 

The framework is regarded as one step toward better 

fitting this popular, yet largely unsupervised clustering 

algorithm toward user supervision. A number of options 

for future work have been identified, including extension 

of the simple trajectory data model currently supported. 

Based on a flexible set of trajectory features, also the 

implementation of a hierarchical SOM algorithm, using 

different tra jectory properties to organize the data on 

different hierarchy levels, could be realized. To this 

end, appropriate interaction techniques for specification 

of the layouts on the different levels will have to be 

developed. 
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