
Visual cluster analysis of trajectory data
with interactive Kohonen maps

Tobias Schrecka, *

Jurgen Bernarda

Tatiana von Landesbergera

and Jorn Kohlhammerb

·Computer Science, Technische Universitat
Darmstadt, Interactive Graphics Systems

Group (GRIS), Fraunhoferstrasse 5, D-64283
Darmstadt, Germany.

E-mails: tobias.schreck@gris. informatik.
tu-darmstadt.de,
juergen.bernard@gris.informatik.

tu-darrnstadt.de,
tatiana. von_landesberger@gris.informatik .

tu-darmstadt.de,
bFraunhofer In stitute for Computer

Graphics (lGD), Fraunhoferstrasse 5, D-64283
Darmstadt, Germany.

joern.kohlhammer@igd .fraunhofer.de

' Corresponding author.

Abstract Visual-inte ractive cluste r analysis provides valuable tools for

effectively ana lyzin g la rge and complex data sets . Owing to desirabl e prop
erties and an inherent predisposition for visu a lization, the Kohonen Feature
Map (or Self-Organizing Map or SOM) algorithm is among the most popular
and widely used visu al clustering techniques . However, the unsupervised

nature of the algorithm may be disadvantageous in certa in app lications.
Depe nding on initia li zation a nd data characte ri sti cs, cluste r maps (cluster

layouts) may emerge th at do not comply with user preferences, expecta

tions or the application co ntext. Considering SOM-based ana lysis of trajectory
data, we propose a comprehensive visual- interactive monitoring and control
framework extending the bas ic SOM algorithm. The framework implements

the general Visual Analytics id ea to effectively combine automatic data anal
ys is w ith human expert supervisio n . It provides simple, yet effective faci li ties

for visua lly monitoring and in teractively co ntrolling th e trajecto ry clusterin g
process at arbitrary levels of detail. The approach all ows th e user to leverage

existing dom ain knowl edge and user preferences, arrivin g at improved cluste r

maps. We apply the fram ework on severa l traj ectory clustering prob lem s,
demonstrating its potential in combining both unsupe rvised (machine) and

supervised (human expert) processing, in producing appropriate cluster
results .

Keywords: visual analytics; visual cluster analys is; self-organizing maps; trajectory data;

tim e series data

Introduction

Cluster analysis is a process for structuring a nd reducing data sets by finding

groups of similar data elements.1 It is regarded as one of the core tools

to effectively analyze large data volumes. This process is usually unsuper

vised : Up to param eterization, most algorithms work fully automatic and

the use r has no further m ea ns to determine the clusters. However, only

appropriate clusterings effectively support the user in analyzing large data

sets. Visual cluster analysis is a specialization of general cluster analysis

and relies on the appropriate visualiza tion of clusters. Some of the most

popular approach es perform a spatialization of the cluster centers to display

space, trying to preserve essenti al re lationships among the clusters, while

visualizing additional data properties such as the number of represented

data items or m easures of cluster quality. To date, the Self-Organizing Map

(SaM) algorithm proposed by Kohonen 2 is one of the most popular visual

cluster algori thms. It effectively combines clustering and spatializat ion by

learning cluster prototypes located on a grid structure embedded in low

dimensional space. However, to the best of our knowledge none of the

existing SaM implementations allows the user to monitor and steer the

clustering process by visual-interactive means.

First publ. in: Information Visualization ; 8 (2009), 1. - pp. 14-29

http://dx.doi.org/10.1057/ivs.2008.29

Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-173895

http://ivi.sagepub.com/
http://nbn-resolving.de/urn:nbn:de:bsz:352-173895

In this paper, we focus on trajectory data, which is a

ubiquitous type of data important in many applications.

For instance, enabled by tracking technology, it is possible

to routinely collect large amounts of geo-referenced move

ment data . Also, trajectories consisting of observation

sequences in arbitrary vector spaces, for example, time

dependent observations in two-dimensional diagram

space can be regarded. Visual analysis in the trajectory

data domain often faces very large data sets that cannot

be visualized effectively per se. Trajectory cluster analysis

is a promising option to this end. In previous work,3 the

SOM algorithm was applied to visually analyze sets of

trajectories observed in diagram space. It was observed

that the fully automatic cluster analysis may yield mean

ingful cluster spatialization. However, we recognize that

there is a need to more closely integrate the expert user

in the clustering process .

We propose to extend the automatic (unsupervised)

SOM algorithm by a visual-inter-active control and anal

ysis framework. The framework allows the analyst to

guide the otherwise purely automatic SOM algorithm

toward resembling user-defined trajectory cluster maps.

Thereby, it allows the user to factor in domain knowl

edge, application needs and user preferences. The frame

work allows the user to visually monitor and understand

the otherwise black-box clustering process, and contro l

it at an arbitrary level. The user can use it to obtain

appropriate cluster maps from the full spectrum of maps

generated either completely unsupervised or completely

supervised.

Related Work

This work relates to a number of research strands. In

general, this work follows the Visual Analytics idea of inte

grating automatic data ana lysis with human expertise,
relying on visual-interactive means .4,5 Cluster analysis

is one key data mining technique of which many auto
matic approaches exist.6,7,1 Clusters may be found for

example, by centroid or medoid.based approaches, hierar

chical models or density-based approaches. Visualization

is often key to understand otherwise possibly abstract

clustering results. Although certain clustering approaches

implicitly yield visual representations (for example,

dendrograms or two-dimensional mappings), for many

other clustering techniques, appropriate visual represen

tations need to be constructed as a post-processing step.

Projection-based approaches are common to this end.8,9

The Kohonen Map (SOM) algorithm2 is a well-known

approach suited for analysis of large volumes of high

dimensional data. The algorithm basically combines clus

tering and projection, and it is ver6 amenable to visual

analysis of high-dimensional data .l Its effectiveness has

been demonstrated by its appli cation on many different

data types. 11- 14 The SOM may also be used in combi

nation with other visual data analysis approaches. In

Guo et al,15 it has been integrated with several comple

mentary visualizations, allowing the analYSis of data

showing high-dimensional as well as spatio-temporal

characteristics.

Trajectory data lately has attracted much research

interest. Because of advances in sensor and other

techniques, increasingly large amounts of trajectory data

arise, and consequently, techniques for their analysis

are being developed. Trajectory data may be observed
in real-world coordinates on various scales. 16,17 Also,

trajectories may be regarded in more abstract spaces,

for example, two-dimensional diagram space.3 Trajec

tory mining research considers analysis and description

of important properties in trajectory data . Of primary

concern are methods to define appropriate similarity

functions to query, compare, cluster trajectories l8 , 19 and

support the detection of interesting patterns.20

SOM-based Clustering of Trajectory Data

In this section, we discuss the clustering of trajectory

data using SOM. We briefly recall the basic mechanism of

the unsupervised SOM algorithm in the next subsection,

followed by a sketch of its application to trajectory data

in a subsequent subsection. Later, we then motivate the

need for integrating the user in the clustering procedure

using visual-interactive facilities .

Self-organizing map algorithm

The SOM algorithm is a neural network-type learning

algorithm. It iteratively trains a network of prototype

vectors to represent a set of input data vectors. The

network is usually given in the form of a two-dimensional

regular gr id . During training, the algorithm iterates over

the input data vectors; finds the best matching prototype

vector; and adjusts the best matching prototype and a

number of its network neighbors toward the input vector.

In the course of the process, the si ze of the considered

neighborhood and the strength of the ad justment process

are reduced.

In practice, two key effects are achieved by this

process. Firstly, a set of prototype vectors (or clusters)

is obtained representing the input data . And secondly,

a low-dimensional arrangement (sorting) of the proto

types is obtained, given by the grid structure. The main

parameterization required by the algorithm includes the

initialization of prototype vectors and the specification

of learning parameters. The latter include the duration of

the training process, the definition of the neighborhood

kernel and the degree of vector ad justment (the learning

rate). Although a number of rules of thumb exist for the

parameter setting, finding good settings for a given data

set usua lly requires experimentation and evaluation by

the user.

15

Simple trajectory data model for self-organizing map

analysis

Application of the SOM algorithm to trajectory data

requires a suitable vector representation of the trajectory

data items. The vector representation should capture

relevant trajectory characteristics and allow meaningful
interpretation of vector distances as a measure for

dissimilarity of the corresponding trajectories. Generally

speaking, a trajectory feature selection problem has to be

solved before the SOM algorithm can be applied. Many

different trajectory features are candidates for a vector

representation. For instance, features such as position,

orientation and direction, curvature and changes thereof

may be considered. Also, sampling and normalization

aspects are usually an integral part of the feature selection

process.

Following Schreck et al,3 we consider a simple trajectory

vector representation constructed from normalized trajec

tory sample points. To obtain the vector representation,

we first normalize each trajectory by scaling it into the

unit square [0, 1]2, and then sample n uniformly spaced

(x , y) coordinates spanning the trajectory from its start

point to its end pOint. The concatenation of the sample

coordinates in their sequence along the trajectory yields

the vector representation of length 2n. By definition this

representation ignores features, which might be impor

tant in certain applications. For instance, it ignores the

trajectories' absolute positions and scale in space, and,

depending on the number of samples, may lose trajectory

details or introduce sampling artifacts. The key advan

tage of this representation in context of this work is that

it has a direct geometric interpretation and that it can

serve as the basis for visualization of and interaction with

cluster prototype vectors produced by the SOM algorithm.

Therefore, it is an integral component of the framework

developed in the section Trajectory Cluster Map Learning

Framework. Besides, this vector representation is simple

to obtain and allows a straightforwa rd interpretation of

vector distances.

Requirement analysis

As an example following,3 we cons ider a data set from

the financia l Data analysis domain (d. also the subsec

tion, Data set and unsupervised clustering). The data set

consists of time-dependent observations of risk and return
measurements of financial assets. Specifically, we consider

consecutive observations in this two-dimensional space

as sample points describing trajectories in an abstract

(diagram) space. By taking daily samples and observing

whole trading weeks (Monday through Friday), we arrive

at five sample pOints and lO-dimensional trajectory

vector representations, describing the movement of asset

characteristics over time in risk x return diagram space.

Figure 1 shows the reference vectors of a 12 x 9 SOM

16

trained from 5.500 trajectories. Note that this SOM was

obtained by standard unsupervised training.

Generally, the result of the SOM algorithm depends on

input data characteristics, initialization of the map refer

ence vectors and the set learning parameters. For effective

SOM-based visual trajectory analysis, it is important that

the overall cluster map is (a) meaningfully interpretable
in terms of the location of reference trajectories and

(b) stable with respect to data updates. It is deSirable that

the position of the reference trajectories also corresponds

to specific features and transitions of the underlying

trajectories. Thereby, the spatial memory of the human

analyst can be fully utilized, and meaningful interpreta

tion can be supported even for changing data sets. Also,

the presentation of the results is made easier if the layouts

meet the common expectations of the target audience.

For example, it might be desirable that the left-hand side

of the SOM holds low values of the start points, whereas
the right-hand side holds high end values (both in terms

of (x , y) coordinates of the trajectory control points). On

the other hand, it could be desirable that the four corners

of the SOM contain reference trajectories resembling

trajectories in diagonal direction. Standard SOM training

usually cannot guarantee this, as it performs the learning

process strictly unsupervised, and often the SOM algo

rithm is applied in a 'black box' manner. What is required

from the user perspective are efficient means of guiding

the otherwise fully automatic learning process toward the

desired trajectory cluster layou t.

Trajectory Cluster Map Learning Framework

We propose a comprehensive framework for supervised

interactive SOM-based clustering of trajectory data. It

consists of three main visual-interactive extensions to the

otherwise fully automatic SOM learn ing algorithm. The

framework was designed to be systematic with respect to

the SOM clustering algorithm, and to incorporate visual

interactive monitoring and control facilities considered

useful in gUiding the clustering process.

We point out that we do not expect every single control

option discussed in this section to be required in every

data analysis scenario. Rather, depending on the appli

cation, an appropriate combination of controls from the

framework is best suited to support achieving a given

analysis goal.

Map initialization based on trajectory editor

Before the SOM training process can start, the grid of

cluster prototypes needs to be initialized. The initializa

tion guides the training process, and often influences the

overa ll layout of the emerging cluster map. In the stan

dard approach, two initia.1ization methods are common:

random initialization and initialization based on a

Figure 1: Self-Organizing Map of trajectory data, trained in unsupervised mode. Start and end points of trajectories are

indicated by green and red dots, respectively.

principal component analysis of the input data set.2 Both

methods are unsupervised in nature.

We propose a more user-oriented approach to control

the initialization process. We base the approach on the

fact that our trajectory data representation has a straight

forward geometric interpretation: the vectors directly

encode the trajectory geometry (the sequence of trajec

tory control points), and can therefore be readily visual

ized and manipulated interactively. To do so, we provide

an interactive trajectory editor that lets the user draw

example trajectories into chosen SOM grid positions.

Reference trajectories may be input at distinct map loca

tions, thereby specifying a model for the overall SOM

cluster layout desired . Starting from a user-provided set

of example trajectories, we initialize the full grid of SOM

trajectory prototypes as follows:

• For the grid nodes for which the user has provided

example trajectories, we set the initial value of the SOM

prototype vector equal to the vector representation of

the drawn trajectory (simply a sequence of (x, y) coor

dinates) .

• For the unaSSigned grid nodes, we interpolate between

the assigned example vectors.

Figure 2 illustrates the trajectory editor concept.

Figure 2(a) shows a simple trajectory consisting of two

control points: one (green) start and one (red) end

point. Figure 2(b) illustrates a 4 x 3 SOM grid, into

which two example trajectories have been drawn by the

user. Interpolation of the unaSSigned nodes takes place

on a component-by-component basis, determined by

the assigned values and an appropriate interpolation

function. Figures 2(c)- (f) illustrate the resulting distri

bution of components over the SOM grid. Consider for

example, Figure 2(c) showing the distribution of the Xl

component over the SOM grid. The top left cell corre

sponds to low value, and the bottom-right cell corresponds

to high value of this component. This is in accordance

with the fact that the Xl coordinate (the x coordinate

of the start point) of the two entered trajectories is low

for the top left example, and high for the bottom right

example. In this example, nearest neighbor interpolation

was used, but other schemes such as weighted average are

possible.

Figure 3 shows an example of the trajectory editor for

initialization of the SOM prototype vectors. Five reference

trajectories were assigned by the user, and the remaining

prototype vectors were filled in by weighted average

17

a y

high

b

/

x
low

low high
/

c d e f

Figure 2: Supervised initi alization of the SOM prototype grid using the trajectory editor co ncept. (a) An example trajectory

consisting of two contro l points (xl , Yl) (start point; marked green) and (x2 , Y2) (end point; marked red) . (b) Two example

trajectories specified o n a 4 x 3 SOM grid . (c)-(f) Interpo lated component planes for the xl, YI, x2 and Y2 components.

Bright (dark) colors indicate low (high) component values.

interpolation. With this concept, the user is able to effi

ciently initialize a SOM prototype map with a coarse

template of a desired layout.

Online visualization and control of the map training

In the standard approach, the SOM clustering is produced

by an unsupervised training process that ends'once a fixed

number of iterations has elapsed or the quantization error

meets a predefined threshold .2 In our approach, we aim

to produce SOM cluster results that are both good with

respect to quantization error, and at the same time reflect

user- or application-desired prototype patterns and layout

criteria. We therefore extend the unsupervised training

process by (a) online visualization and (b) control func

tionality. Visualization of online training and optional

user intervention are coupled. At any time during the

training, the user is able to pause the training, update

training parameters and resume the training.

Visualization of the training process

Recall that in our application, the data vectors have an

immediate geometric interpretation. Therefore we are

able to visualize the online training process by showing

a continuously updated display of prototype trajectories.

Specifically, the user can observe the effect of the provided

trajectory initialization on the subsequent training

process. In addition to visualizing the emerging trajectory

patterns within the SOM cells, we optionally superimpose

certain cluster map quality metrics using color-coding

18

and nearest neighbor connectors (d. Figure 4):

1. Color-coding of the current quantization error of the

emerging maps: for each prototype vector, we calculate

the average Euclidean distance between the prototype

and the trajectory data samples it represents .

2. Color-coding of the average Euclidean distance between

each SOM prototype vector and its immediate proto

type vector neighbors on the grid (also known as U

Matrix color coding) .l0

3. Nearest-neighbor connectors indicating the nearest

neighbor relations between the SOM prototype vectors.

This visualization reflects the smoothness of the

pattern transitions over the map (smoother transiting

prototype layouts show shortei- connectors) .

By means of these visualizations, the user can observe

both the emerging organization of the pattern layout, as

well as the quality of the representation of the obtained

clustering. Figure 4 illustrates the online training visual

ization with snapshots of the quantization error during

training of a 12 x 9 SOM of trajectories (a)- (c) and a zoom

into a connector display (d).

Control of the training process

The framework supports a set of interaction facilities for

control of the training process. At any time, the user can

suspend the training process and, depending on prefer

ences and experience, exert one or more of the following

controls:

1. Adjust single prototype trajectories by directly editing

them with the trajectory editor.

Figure 3: Editor-based initialization of a 12 x 9 SOM trajectory grid, using five user-defined example trajectories (marked

blue) in con junction with weighted average interpolation . Component distributions (xl, Yl) to (Xs , Ys) are shown in the left

panel.

2. Adjust the map by editing a selection of prototypes

and replace the remaining prototypes by interpolating

between the selected prototypes.

3. Update the training parameters at global granularity:
adjust the number of remaining iterations, learning rate

and neighborhood kernel.

4. Manipulate learning parameters at local granularity: set

different learning rate and radius for selected grid cells .

S. Reinforce training of selected patterns.

These controls serve to gUide the learning process toward

user desired results, if required. Control 4 particularly

allows the specification of smaller or even zero learning

rates for selected patterns. This allows to explicitly enforce

selected patterns on the map. Control S is another option

we implemented to smoothly place example patterns

into the map as follows. If this option is set, the system

monitors the evolution of the assigned example patterns

during the training process. Once the Euclidean distance

between the prototype vector and the user-assigned

trajectory grows too high, we repeatedly inject (update)

the assigned prototype onto the respective grid position

with the current training parameters. This has the effect

that the otherwise freely adapted patterns do not deviate

too strongly from the assigned patterns during training,

and that the map neighborhood smoothly accommodates

the assigned pattern.

Although options 1 and 2 are basic controls, options

3- S are more advanced controls of the training process,

designed for users requiring fine-grained control of the

training. However, we expect that it should also be

possible to wrap the more advanced controls by easy

to-use high-level commands, such as setting an 'enforce

this pattern' flag that can be set inside the trajectory

editor. Thereby, the more advanced options can also be

easily used by less experienced users. After updates to the

training process have been manually entered, training

is resumed and the user can continue to observe the

effects . Usually, experimentation with different param

eter settings is required for optimizing results on a given

data set and analysis task. The experimentation process

is supported by an undo operation, which rewinds the

training effect of the most recent update .

Note the idea of fixing selected data vectors to given

SOM grid locations during training is not new per se.
For instance, the Self-Organizing Map Program Package

19

.c

C'O

20

implementation includes an option for doing so.21 We

point out that our interactive training controls extend

beyond a simple fixing of vector assignments. Not only

any training parameter may be edited at rUntime, but

also the reference vectors may be interactively modified

during training using the trajectory editor.

We also point out that, in principle the control frame

work allows a user to produce any prototype layout

desired, possibly influencing the reliability of the obtained

results. Generally, we expect that an application- or

user-dependent trade-off will have to be found between

supervised and unsupervised training of the reference

map. Clustering quality visualization is recommended for

appropriately balancing the trade-off between the preci

sion of the clustering (in terms of quantization error and

nearest neighbor transitioning) on the one hand, and

supervised pre assignment of the reference layout on the

other.

Map post-processing

Usually, the final trajectory map yielded by the training

will be the basis for subsequent visual analysis of the

obtained clustering and the underlying data. Depending

on the nature of the analysis task, it may be useful to post

process the obtained trajectory map. The framework there

fore supports the following trajectory map post-processing

interactions:

1. Merging of multiple trajectory prototypes. This allows

aggregation of similar prototypes and reduces the size

of the map. The new prototypes are formed by aver

aging the original prototypes.

2. Expansion of trajectory prototypes. This allows finer

grained visual ana lysiS of prototypes that perform

too much aggregation . The expansion is achieved by

training a sub map of refined prototypes based on the

data represented by the original trajectory prototypes.

3. Editing, creation and deletion of trajectory proto

types. The user can manually edit existing trajectory

prototypes or add new prototypes to the map using

the tra jectory editor. Also, existing prototypes can be

deleted from the map.

4. Swapping of prototypes. The user is allowed to rear

range the layout of the prototypes by position swap

operations.

These operations are optional, yet useful in certain situ

ations. For instance, manual addition of pOSSibly non

represented, sparse patterns to the map may be very

helpful in situations where certain patterns are important

from the ana lysis perspective, but underrepresented in

the data set, and therefore were not trained by the SOM

algorithm. Note that like manual control of the online

training process, an interactive post-processing operation

may incur a loss of quantization preciSion or pattern

transition smoothness, compared to a SOM trained in

a completely unsupervised way. Again, referring to the

quality visualizations, it is left to the discretion of the user

to balance this trade-off.

Application

We apply our supervised SOM training framework in two

scenarios, illustrating the modes of operation supported,

as well as a possible analytical workflow adapted to finan
cial data analysis.

Operation of the framework

In the next subsection, we describe the results of an unsu

pervised reference SOM clustering. In the further subsec

tions, we then apply our framework to produce several

different target layouts, demonstrating the functionality

of the framework for generating supervised clusterings.

Data set and unsupervised clustering
We consider the same data set as in Schreck et at3
(d. also the Simple trajectory data model for self

organizing map section). An unsupervised reference SOM

was trained from this data set, consisting of a rectangular

grid of 12 x 9 trajectory prototypes. The description of the

training process follows. We first iterated 100 times over

the data set, initially setting the learning rate to 5 per cent

and the learning radius to 15 using a bubble neighbor

hood kernel. We then refined the map by a second run,

iterating 200 times over the data set, after adjusting the

learning rate to 2 per cent, and the neighborhood radius

to 5. We considered both random and linear initializations

of the prototype vectors, obtaining both times approxi

mately the same end result, which is shown in Figure l.

In the next sections, we present a series of experiments

applying our framework to produce user-guided trajectory

maps.

Adaptation of unsupervised trajectory map
In the first experiment, we show how the framework can

be used to adapt a given trajectory map to reflect the

users' global layout preferences, assuming that the user has

inspected the fully unsupervised map shown in Figure l.

Although the user agrees with the obtained cluster proto

types, another positioning of the patterns on global map

may be desired. The user proceeds to initialize a new map

by a number of example prototypes taken from the unsu

pervised map. Figure 5(a) shows the initialization: four

example trajectories were selected and assigned to the

corner regions of an initial map; the unassigned proto

types were filled in using weighted average interpolation.

Then, training using the SOM algorithm takes place. After

ward, a reinforcement of the assigned example trajecto

ries (described in the subsection Control of the training

process) is applied to the preassigned reference trajecto

ries. Figures 5(b)-(f) show how the map converges toward

a stable layout. The map layout basically represents the

patterns contained in the original unsupervised map, this

time, the user-intended global cluster map layout is also

obtained.

Abstract reference map
In this experiment, we assume that the user is inter

ested in a couple of rather different, dissimilar trajectory

patterns. The patterns are assumed to carry an application

specific important meaning, and therefore need to be

reflected in the map. The analyst starts the training by

assigning these patterns. Figure 6(a) shows the initializa

tion of a cluster map based on six abstract user-defined

patterns, along with nearest neighbor interpolation. A

short training interval consisting of a small number of

iterations, in conjunction with reinforcement of example

patterns, yields the smoothly transitionlng cluster maps

shown in Figures 6(b) and (c). The clusters adapt to

reflect the data distribution, while keeping up the types

of the preassigned patterns, as well as their positions.

Figures 6(d)-(f) visualize the emerging smooth transi

tions between the trajectory prototypes. The color-coding

represents the normalized average distances between the

prototype vectors (the second SOM metric in the section

Visualization of the training process).

Circular flow-like map
As a further abstract supervised target layout, we consider

a circular flow-like layout. Figure 7(a) shows an initial

ization given by eight control trajectories in conjunction

with weighted average interpolation. Figure 8 compares

training of that reference layout on the data set with

and without reinforcement (d. controlS described in the

section Control of the training process) of the assigned

patterns. We observe, as expected, that reinforcement

of the assigned patterns (top row in Figure 8) holds

them fixed on the map, and adapts neighboring patterns

accordingly. Without reinforcement of assigned patterns

(bottom row in Figure 8), these too are subject to adapta

tion by the SOM training, and evolve together with the

overall map of reference trajectories.

Application to financial data analysis problem

In this section, we present an exemplary analysis workflow

based on a financial data analysis problem, making use of

our trajectory clustering framework. The next subsection

introduces the used data set and a possible analytical task

and the further subsections describe analysis steps using

unsupervised and supervised cluster analysis.

Data set
We consider a second data set we compiled according

to the systematization in Schreck et al3 (d. also section

Simple tra jectory data model for self-organizing map) .

21

22

[(: ~ (/),.), \\ \ .1
[r lU I) j L):S[g1 \'1
l/ /j) ') 1) ', \ ; \ l\l
I.,.} / '.} ~ YJ II .l ~ ~ I \ \ j
l..J./..J, :-l Li --\ : ~ , ~ 1; \ 1\ '1
I. ' ., _I 'j' \ \ '11 \ 1
~ \....l '-l l ~ - -\ ---j "" I' ... 1 \>01

~ \. 1'\ , >''\1 'V ' ~ ,. \> :j
[i , <1/ "
k\ '\ I'\"\ "'7 1' ~ 1 V -.) 0 4

l\ .\ xl\' 1 17 / ./ JJJ
~ \ , \ \ ' V l iI T J , / ~ / j
l \~ " \ _I r ~ .r lZ]If]

() 1\ \ .\" \ ~ (I/ [J{]v l

1

(,, (/ J >::>1 \ ,,\' .\J
/IZJ / f; J '/) \ ; [~]\1
[1' 1/ .)) IJ : ~ .' \ \ \'j
I / ' / ' ~)~ : j .l ~ \. ~ \ , \
I ~ ~ '. ;-> :-1 ,-\ \11: \. :~ \. \ :1
l 'l ~: 'l "i ~;--\ :.:- < -\ " ~ < \-\ ~
1:'< ,, :;: ~ 1"'\ "V\J J. ~ ! ~ ~. \:) J

l\ f\ \ · h> .Ii ~ ;', Q ; ' \ ! ~ ~
I,) \ f\ 1.\ ") :l) ./ ~ J'./J
[\ l \ ~ \ "\ ~ I .'} J ~, 7 ;:

~ \ :... . \,.\ L J.l !Z1/1
.0 1.\ \ \J I-IJI! ' /

[~ , ~ r lr f Y >,))J
l ~ lZJ r l r f i y > EJ) ~
l ~ ~ . r. r)" IJ) ;.> '}.l
l {" {" ~ : r)" , }' } ~' '> r ,> .1

1.<' <' {" \ ,} I) ~. ~ I ~ I
l ~ ~ , ~ t:- t ,_ ~ , ~ ~ ~

[< 4.. '" " '_ ~ (I (\ ,I't ' I't l
l"J, ,, '\ I ~ ~ \' , \' <' : <' <' j

l" '\ ~ , 1; {' \ . f ' <' , <'1
1.1; , 1; 1; t \,f \ .<' <'1

I ~ ~ t t f {' f lZI \'1
C\l l ~ ~ t t f, {' f ' \' .. \'1

-

'C

23

It consists of risk vs. return data, observed on a weekly

basis, for 30 blue chip stocks listed in the Deutsche Aktien
Index (German Stock Index) .22 The full data set spans

a time frame between June 2005 and August 2007. We

specifically like to study the diagram characteristics for the

first three weeks of March 2007, characterized by transient
market turbulences.

Unsupervised trajectory map and identification of patterns of
interest .

Firstly, a SOM of the set of risk-return diagrams was

trained in an unsupervised mode. The result is shown in

Figure 9(a). Yellow color-coding shows the relative density

of matched sample charts over the SOM. It can be seen

that the distribution of the patterns in the data set is rela

tively uniform, meaning that all the found patterns occur

with similar frequency during the whole time period. The

shapes of the patterns vary substantially and cover the
important types of market movements.

Followingly, we look closely at the market movements

during the first three weeks of March 2007, when a tran

sient market downturn leading to significant drop of

many of the listed stocks' prices occurred. Figure 9(b)- (d)

indicate the patterns occurring during these weeks. The

density of matched samples, as well as their spread

(deviation) from the respective cluster prototypes is indi

cated by background highlighting (yellow) and trajectory

bundles (blue), cf.3 In contrast to the whole time period,

the pattern for the turbulent weeks show that the distri

bution of patterns changes drastically. The variance of the

market movements seen during normal trading weeks is

replaced by strong developments in one direction on the

whole market. The trading week of February 26- March

2002 (Figure 9(b» first shows an increase in daily stock

price return (y-aXiS, upward movement), while showing

increased risk (price volatility) at the same time (x-aXiS,

rightward movement) for most of the traded stocks.

Followed by this upturn, a downturn was observed for

many stocks, as characterized by a decrease in daily
return (downward movement along y-axis) together with

fluctuations in variance (movements along x-axis). The

downturn is dominating the risk-return chart patterns

occurring in the latter two weeks (Figures 9(c) and (d» .

Customized trajectory clustering and further analysis
Although such patterns of interest as described above

may be identified, for detailed analysis they may not be

adequately represented on the unsupervised cluster map.

For example, as the interesting patterns may account

only for a small fraction of overall patterns used during

the unsupervised training, they may not be represented

on the map in as much detail as reqUired for an in-depth

analYSis. In the next step, we therefore re-train the SOM

based on the identified patterns of interest. Specifically,

we initialized the map with the patterns identified as

significant in the previous analysis. An upturn prototype

24

'" c:
o
.~

o
. ~

Q.

'" E
C
.8
u
<Ii
.~

~

,£

'" :J
0-

<Ii
..r::.
~

'0
c:
o

.,p
u
<Ii
Q.
VI

c:

ro
:J
VI

':>

e
Q.

'" E

b c

e f

Figure 8 : Training based on the circular supervised reference layout from Figure 7(a), using reinforced reference patterns (top row) and free-floating

patterns. Like the bottom row of images in Fig ure 6, the color-coding indicates the average distance between Self-Organizing Map prototype vectors.

The visualization indicates that several different trajectory regions evolve. The reinforced map shows larger differences between trajectory regions;

specifically, the reinforced patterns produce larger differences to their neighborhood trajectory patterns.

a b

c d

.- I ~ i ...

l(lnnn ..,~
II I I

"

~
I

Figure 9: Figure (a) shows an unsupe rvised clustering of weekly risk-return charts for 30 German blue chip stocks, as

observed between 2005 and 2007. Figures (b)-(d) show a highlighted projection of the map to the chart patterns observed

during three consecutive weeks, during a transitory downturn phase of the market (c, d; the most frequent patterns are

zoomed in), preceded by a short upturn phase (b).

chart (identified from Figure 9(b» was placed on the left

hand side of the map, and two downturn prototype charts

(identified from Figures 9(c) and (d» were positioned on

the top and bottom right-hand side of the map. Training

then took place while reinforcing the assigned prototype

charts during the training.
Figure lO(a) shows the resulting SOM. The manu

ally adjusted map allows for a larger resolution of the

observed market patterns on the SOM, and provides the

user-specified global layout of the trajectory map. Specif

ically, upturn charts are found on the left hand side,

and downturn charts are found on the right hand side

of the overall SOM. The subsequent in-depth analysis

26

can concentrate on, for example, the temporal relation

ship between upturn and downturn patterns, for possible

identification of interesting correlations, and general

support of technical chart analysis and prediction tasks.

Figure lOeb) shows an example of such a temporal anal

ysis: the individual, weekly risk-return charts of the 30

stocks are replaced by their SOM representations, and are

shown in a sequence view.3 This view allows for anal

ysis of patterns over time (the patterns for each stock

are lined up along the time axis) . Highlighting of upturn

(blue) and downturn (yellow) patterns used in creation

of the supervised map then allows to study the observed

patterns across stocks in the specific turbulence periods

a

b

J RGO

N'IOhtlQUt Rtll 'on,

O ~"'.D b l arK'''

tJ ~tOll-.dOf'

0.....-." ... ' .. _
!18

Figure 10: (a) Self-Organizing Map of ri sk-return charts, trained in supervised mod e by assigning one upturn (left, middle

position) and two downturn sequences (right, top and bottom positions) identifi ed from the unsupervised SOM shown in

Figure 9. (b) Sequence analysi s of the weekly charts, hi ghlighting the upward (blue) and downward (yellow) patterns (two

regions are zoomed in for closer in spection) .

as well as to search for similar situations in other time

intervals . In our case, the results show that the upturn

phase of the market seen in the week identified above

(week 85) was directly followed by the downturn phase

in the following week (week 86) . The sequence view also

revea ls that a similar pattern occurred also in the past

(week 34). However, the immediate reversal of the trend

did not fo llow shortly afterward.

Discussion and Options for Extensions

The overa ll goa l of our SOM visualization and control

framework is to guide the otherwise unsupervised

algorithm to produce maps of user-preferred tra jectory

clusterings. User interaction with the clustering algorithm

includes setting of main training parameters as well as

manual assignment of reference trajectories guiding the

27

self-organization of cluster prototypes on the map. Several

options exist for the choice of assignment patterns used

in supervised training mode. They range from simply

re-using or adjusting patterns identified in a preceding

unsupervised clustering run, to completely unrestricted

specification by the user. The choice of method is task

specific and depends also on user interest and exper

tise. Although we did not perform a formal user study,

experience obtained from our experiments indicates

that the implemented visual-interactive SOM controls

support quite efficient and effective parameter setting by

the user.

Usually, the more the trajectory clustering aimed at by

the user differs from the result achievable by the purely

unsupervised algorithm, the less aggressive the training

parameters need to be set, to retain the main charac

teristics of the predefinition. This is in accordance with

practical recommendations for SOM training, suggesting
to use moderate training parameters during a fine-tuning

phase after a preceding global organization phase21 has

taken place. In our system, the global organization phase is

replaced by interactive map initialization using the trajec

tory editor, and the fine-tuning is done by application of

a number of interactive SOM training iterations.

By controlling the training process, in the extreme

case the user is able to achieve any clustering desired, no

matter how precise (and thereby meaningful) this clus

tering result may be. Balancing the trade-off between opti

mizing a formal clustering quality metric (for example,

quantization error) and the user-desired trajectory clus

tering, will ultimately be the responsibility of the user.

Although formally evaluating this trade-off is considered

to be difficult, we believe the SOM quality visualization

options implemented, including the nearest neighbor

connectors visualization such as illustrated in Figure 7(b),

support achieving a good trade-off. More evaluation in

this direction is considered interesting and should be

addressed in the future work.

Regarding the supported data model, our frame

work is applicable to trajectory data of constant length

described in a simple geometry-based vector represen

tation. Currently not included are position- and scale

dependent geometriC features, features for very long

tra jectories, or more abstract and non-geometric trajec

tory features. Some of these features are expected to be

easy to incorporate by an extended vector representation.

Other trajectory features are expected to be more difficult

to represent by the vector model, and also more difficult

to visualize and interact with. Generally, the inclusion

and evaluation of a richer set of tra jectory features into

our framework constitutes interesting future work.

Our framework was introduced on a rather conceptual

level. More deep application integration is considered

interesting and should be addressed in the future work.

Considering that in many domains vast amounts of time

dependent point cloud (scatter p lot) data arise, we see

much potential of applying customized cluster analysis

as proposed here . Relevant domains include financial

28

data analysis, but also engineering and science. Based

on the domain and application, customized trajectory

features should be defined, and application-specific chart

templates could be compiled, for assisting the user in

generating useful cluster layouts.

Fundamentally, we can distinguish trajectory analysis

tasks taking place in diagram space (for example, finance

data), as well as in real-world coordinates (for example,

traffic monitoring) . A comparative study that which

identifies typical trajectory analysis tasks in diagram and

real-world coordinate space could shed insight on how

to extend our approach to the Geographic Information

System domain .

Conclusion

We defined a visual-interactive framework for guiding the

otherwise unsupervised Self-Organizing Map algorithm by

a user, customized to operate in conjunction with a simple

trajectory data model. The framework enables the user to

visually monitor the clustering process and control the

algorithm at an arbitrary level of detail. A number of inter

action facilities were proposed, an integral part of them

being the trajectory editor for interactive initialization of

the clustering process and interaction facilities to manip

ulate the training parameters during runtime. The frame

work was applied to a number of trajectory clustering

tasks .

The framework is regarded as one step toward better

fitting this popular, yet largely unsupervised clustering

algorithm toward user supervision. A number of options

for future work have been identified, including extension

of the simple trajectory data model currently supported.

Based on a flexible set of trajectory features, also the

implementation of a hierarchical SOM algorithm, using

different tra jectory properties to organize the data on

different hierarchy levels, could be realized. To this

end, appropriate interaction techniques for specification

of the layouts on the different levels will have to be

developed.

References

1 Han, J. and Kamber, M. (2006) Data Mining: Concepts and
Techniques, 2nd edn., Los Altos, CA: Morgan Kauffman.

2 Kohonen, T. (2001) Self-Olganizing Maps, 3rd edn., Berlin:

Springer.

3 Schreck, T., Tekusova, T., Koh lhammer, j. and Fellner, D. (2007)
Trajectory-based visual analysis of large financial time series data .

SIGKDD Explorations 9(2): 30-37.

4 Thomas, J. and Cook, K. (2005) Illuminating the Path: The Research
and Development Agenda for Visual Ar/(/Iytics. Silver Spring, MD:

IEEE Computer Society.

5 Keirn, D., Mansmann, E, Schneidewind, J., Thomas, J. and Ziegler,
H. (2008) Visual Analytics: Scope and Challenges. Lecture Notes in

Computer Science (LNCS) Berlin: Springer.

6 Kaufman, L. and Rousseeuw, P. (1990) Finding Groups in Data: An
Introduction to Cluster Analysis. New York: Wiley-Interscience.

7 jain, A., Murty, M. and Flynn, P. (1999) Data clustering: A review.
ACM Compllting Surveys 31(3): 264- 323.

8 Hinneburg, A., Wawryniuk, M. and Keirn, D. A. (1999) HD-eye:

Visual mining of high-dimensional data. IEEE Computer Graphics
& Applications 10llrnal 19(5): 22- 3l.

9 Dhillon,!., Modha, D. and Spangler, W. (2002) Class visualization
of high-dimensional data with applications. Computational
Statistics and Data Analysis 4(1): 59- 90.

10 Vesanto, j . (1999) SOM-based data visualization methods.
Intelligent Data Analysis 3(2): 111- 126.

11 Kaski, S. , Honkela, T., Lagus, K. and Kohonen, T. (1998) WEBSOM

self-organizing maps of document collections. Nellrocompllting 21:
101- 117.

12 Laaksonen,j ., Koskela, M., Laakso, S. and Oja, E. (2007) picSOM

content-based image retrieval with self-organizing maps. Pattern
Recognition Letters 21(13- 14):1199-1207.

13 Deboeck, G. and Kohonen, T. (eds.) (1998) Visual Explorations in
Finance: with Self-Organizing Maps . Berlin : Springer.

14 Bustos, B., Keirn, D. A., l'anse, C. and Sch reck, T. (2004) 20

Maps for Visual Analysis and Retrieval in Large Multi-feature 3D

Model Databases. In: D. Laidlaw, V. Interrante and R. Kosara (eds.),

Proceedings of the IEEE Visualization Conference (VIS); Poster
paper, Austin, TX: IEEE Computer Society, pp. 598- 599.

15 Guo, D., Chen, j ., MacEachren, A. M. and Liao, K. (2006) A

visualization system for space- time and multivariate patterns
(VIS-STAMP) . IEEE Transactions on Visualization and Computer
Graphics 12(6): 1461-1474.

16 Andrienko, G., Andrienko, N. and Wrobel, S. (2007) Visual

analyt ics tools for ana lysis of movement data. SIGKDD
Explorations 9(2): 38- 46.

17 Andrienko, N. and Andrienko, G. (2007) Designing visua l

ana lytics methods for massive co llections of movement data.
Cartographica 42(2): 117-138.

18 Ivanov, Y., Wren, c., Sorokin, A. and Kaur, 1. (2007) Visualizing the
history of living spaces. Transactions on Visualization and Computer
Graphics 13(6): 1153-1160.

19 Pelekis, N., Kopanakis, 1., Marketos, G., Ntoutsi, 1., Andrienko,
G., and Theodoridis, Y. (2007) Similar ity Search in Trajectory

Databases. In: C. Dixon, V. Goranko and S. Wang (eds.),

Proceedings of the International Symposium on Temporal
Representation and Reasoning; Alicante, Spain: IEEE Computer

Society, pp. 129-140.
20 Tietbohl, A., Bogorny, V., Kui jpers, B. and Alvares, L. (2008)

A Clustering based Approach for Discovering Interesting Places
in Trajectories. In: R. L. Wainwright and H.M . Haddad (eds.),

Proceedings of the ACM Symposium on Applied Computing,
Advances in Spatial and Image-Based Information Systems Track;

Forta leza, Brazil : ACM, pp. 863- 868,
21 Kohonen, T., Hynninen, j ., Kangas, j . and Laaksonen, j . (1996)

Som_pak: The Self-Organizing Map Program Package. Helsinki
University of Technology. Technical Report A3l.

22 Deutsche Boerse, AG. Deutscher Aktien Index (DAX). http://
deutsche-boerse.com/ .

29

