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Abstract

In this paper we explore the use of visual common-
sense knowledge and other kinds of knowledge (such as
domain knowledge, background knowledge, linguistic
knowledge) for scene understanding. In particular, we
combine visual processing with techniques from natural
language understanding (especially semantic parsing),
common-sense reasoning and knowledge representation
and reasoning to improve visual perception to reason
about finer aspects of activities.

1. Introduction and Motivation

Human visual cognition involves a combination of visual
perception as well as reasoning with various kinds of as-
sociated knowledge (common-sense, background, domain,
etc.). For example, consider the following scenario. A hu-
man puts tofu on a bowl. She then takes a knife and cuts the
tofu in the bowl. Often, if the bowl is large, a nearby human
observer will see tofu being put in the bowl and then see
the “knife making a cutting action with respect to the bowl”.
However the observer, using her common-sense, is able to
easily conclude that the second action is actually the knife
cutting tofu. Now let us explore automating this cognition
process and analyze what capabilities would be needed for
an artificial system to emulate the human cognition in this
example.

As we will elaborate in a later section a vi-
sual processing system developed by three of the co-
authors (Yang, Fermüller, and Aloimonos 2013) can
recognize and record the facts: appears(put,tofu,bowl,1)
and appears(cut,knife,bowl,2). From these facts the hu-
man is able to conclude occurs(put,tofu,bowl,1) and
occurs(cut,knife,tofu,2). For an artificial system to do
that, it first needs to recognize that although ap-
pears(cut,knife,bowl,2) is perceived, one should not nor-
mally conclude occurs(cut,knife,bowl,2) from it. This can be
done if the system has domain knowledge about knives and
bowls being artifacts and the general common sense knowl-
edge that one artifact does not cut another artifact. The sys-
tem can also use the domain knowledge about the effect of
action “put A in B” and conclude that at time point 2, the
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tofu is in the bowl. Then the system needs the visual com-
mon sense knowledge that if it appears that X cuts Y, but
normally X should not cut Y, and there is something in-
side Y, then most likely X is cutting what is inside Y. Us-
ing this visual common sense knowledge and its earlier con-
clusion that (a) the tofu is in the bowl; (b) it appears that
knife is cutting the bowl and (c) normally a knife should not
cut a bowl, the system should then be able to conclude oc-
curs(cut,knife,bowl,2). In a later section we will show how
our cognition system is able to do this.

The previous example is about how to use commonsense
reasoning to correctly recognize a single action. In most sce-
narios, visual cognition of actions and activities involves
cognition of complex actions or activities that consists of
multiple short actions whose execution order satisfies cer-
tain constraints. Common-sense reasoning plays several dis-
tinct roles in this. First, while traditional visual processing
records occurrences of some individual actions, common-
sense reasoning can be used to reason with the occurrences
of these actions to make conclusions regarding finer aspects
of the activity. This is needed because often visual process-
ing systems are based on classifiers that recognize specific
actions or objects about which they are trained, and the num-
ber of such classifiers in a visual processing module may be
limited. Using visual common-sense knowledge one can fill
in some of the missing details and partly overcome the lim-
ited number of available classifiers. Second, common-sense
knowledge about the breakdown of some well known activ-
ities to individual actions can be used in recognizing the
higher level activities. Third, in the absence of the second
kind of common-sense knowledge, the system may have
to learn the decomposition of activities to individual ac-
tions from visual examples. However, it is difficult and time
consuming to construct multiple visual examples that cover
enough cases so as to learn a general decomposition of an
activity. An alternate approach is to train using a few ex-
amples, and use common-sense knowledge to generalize the
learned decomposition of an activity. Following are some
examples elaborating on the above kinds of visual common-
sense reasoning.

Consider an example of the occurrence of a complex ac-
tion of marking a line on a plank of wood using a ruler and
a pen. Our visual processing system is able to analyze a par-
ticular video of marking a line and record the occurrences of

9

Logical Formalizations of Commonsense Reasoning: Papers from the 2015 AAAI Spring Symposium



the following basic actions.
occurs(grasp1,lefthand,plank,50,85).
occurs(grasp2,lefthand,ruler,95,280).
occurs(align,ruler,plank,100,168).
occurs(grasp3,righthand,pen,130,260).
occurs(draw,pen,plank,170,225).

Figure 1: A timeline representation of the sub-activities of
the activity marking a line

Intuitively, the meaning of the first action occurrence
above is that “the lefthand grasped the plank during the
time points 50 to 85.” The meaning of the other action
occurrences are similar. Now suppose the system is asked
questions such as: (a) Which hand is being used in align-
ing the ruler; (b) Which hand is used in drawing; and
(c) Is the ruler aligned when the pen is drawing on the
plank? The visual processing systems may not have the
modules to answer those questions directly; however, the
action occurrences that are generated by the visual pro-
cessing modules can be used together with common sense
knowledge about actions and effects, about time and the do-
main of interest to answer the above questions. In a later
section we show how ASP (Gelfond and Lifschitz 1988;
Baral 2003) is used to express such common-sense knowl-
edge and how its reasoning mechanism allows us to give the
correct answers to the above questions.

Now consider this example from a different angle where
the video is given as an example of how to recognize the
marking of a line. Given just one example where the visual
processing system obtains the above facts, one can come
up with a rule that can recognize marking a line. Though,
this rule would be too specific regarding which hands to use
for the various actions. However, if we have the common-
sense rule that under normal circumstances one can switch
the hands all through an activity and achieve the same pur-
pose, then we can come up with a more general rule to rec-
ognize marking a line. In a later section we show how such
common-sense can be expressed using ASP and how we can
use that to come up with a more general rule.

The rest of the paper is organized as follows. In the next
section we present some additional background and dis-
cuss related work. In Section 3 we briefly describe our vi-
sual processing system. In Section 4 we discuss how visual
common-sense reasoning can be used in improving visual
perception. In Section 5 we discuss the role of common-
sense reasoning in recognizing finer aspects of activities that
may often be overlooked by the visual processing modules.
In Section 6 we explore the role of common-sense reasoning
in activity recognition. In Section 7 we conclude and discuss
some future directions.

2. Background and Related Work

So far there has been very few works in the use of com-
mon sense in scene understanding. A few exceptions are

(Wyatt, Philipose, and Choudhury 2005; Wang et al. 2007;
Santofimia, Martinez-del Rincon, and Nebel 2012; Mar-
tinez del Rincon, Santofimia, and Nebel 2013). The focus in
these works is on the use of common-sense reasoning in ac-
tivity recognition. The first two works use simple common-
sense models based on an average of four English words.
The second two works mention various sources of common-
sense knowledge and classify them as world knowledge, do-
main specific knowledge and expectations. We could not
find any work that uses common-sense reasoning in the other
aspects of scene understanding that we discuss in this paper,
such as improving visual perception, recognizing finer as-
pects of activities and learning activity structures.

There is a large body of work in activity recognition.
The early related work on this goes back to work in plan
recognition (Charniak and Goldman 1993; Carberry 2001;
Kautz 1987). In these works the focus was on recognizing
what goals a sequence of action may be trying to achieve
and plan recognition was treated as the opposite of plan-
ning. In recent years the problem of human activity recogni-
tion and understanding has attracted considerable interest in
computer vision. Both visual recognition methods and non-
visual methods using motion capture systems (Guerra-Filho,
Fermüller, and Aloimonos 2005; Li et al. 2010) have been
used. (Moeslund, Hilton, and Krüger 2006), (Turaga et al.
2008), and (Gavrila 1999) provide surveys of the former.
There are many applications for this work in areas such as
human computer interaction, biometrics, and video surveil-
lance. Most visual recognition methods learn the visual sig-
nature of each action from spatio-temporal feature points
(e.g, (Dollár et al. 2005; Laptev 2005; Wang and Suter 2007;
Willems, Tuytelaars, and Van Gool 2008)). Work has fo-
cused on recognizing single human actions like walking,
jumping, or running ((Ben-Arie et al. 2002; Yilmaz and Shah
2005)). Approaches to more complex actions have employed
parametric models such as hidden Markov models (Kale et
al. 2004) to learn the transitions between image frames (e.g,
(Aksoy et al. 2011; Chaudhry et al. 2009; Hu et al. 2000;
Saisan et al. 2001)). Among such works, the work by (Lax-
ton, Lim, and Kriegman 2007) has a lot of similarities with
our approach of activity recognition in this paper. However,
as mentioned, in this paper we go beyond activity recogni-
tion to many other aspects of scene understanding.

3. Visual Processing System
This section gives a brief description of the visual processes,
which have been designed specifically to be used with the
AI reasoning modules. The input to our system are RGBD
sequences. All sequences were recorded with one RGBD
camera in a fixed location (we used a Kinect sensor). Hu-
man subjects were instructed to perform a set of manipula-
tion actions with both objects and tools visible to the camera
during the activity, and in all recordings only one human was
present. To ensure some diversity, the actions were collected
from two domains, a kitchen and a manufacturing environ-
ment. To further diversify the data set, we adopted two dif-
ferent viewpoints for each action set. For the kitchen actions,
we used a front view setting; for the manufacturing actions,
a side view setting.
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The task of the vision system is to compute a sequence of
the symbols in the form of (Subject, Action, Object, Start-
Frame, EndFrame), which are used as input to the grammar.
In a nutshell, the symbols are computed as follows: A grasp
type classification module provides a “Start of action” signal
when the hand status changes from “Rest” to one of the three
other types, and an “End of action” signal when it changes
back to “Rest”. During the such derived interval of the ac-
tion the object monitoring and the segmentation-based ob-
ject recognition module compute the “Object” symbol. The
“Action” symbol is computed using as features the trajectory
profiles provided by the the hand tracking module and the
grasp type classification. These features produce “Action”
symbols such as “Cut” and “Saw”. The action “Assemble”
did not have a distinctive trajectory profile, so we simply
generated it when the “Cheese” merged with the “Bread”
based on the object monitoring process. Since the perception
system is not the main focus of the paper, only a very brief
description of the different modules is given. For further
details on the techniques, please refer to (Teo et al. 2012;
Summers-Stay et al. 2013; Yang, Fermüller, and Aloimonos
2013; Yang et al. 2014).

3.1 Hand Tracking and Grasp Type Recognition

We used the vision-based, markerless, articulated
model-based human hand tracking system devel-
oped by (Oikonomidis, Kyriazis, and Argyros 2011)
(http://cvrlcode.ics.forth.gr/handtracking/) to track the
hands. This software uses a 26 degree of freedom model of
the hand, but we only used a subset of the parameters. For
the classification of the movements from the hand, we only
used the center location of the hands. For the description
of the grasp we reduced the dimensionality of the data, as
described below, to classify the tracked hand-model into
one of four different grasp types.

We collected training data from different actions, which
we then processed as follows: A set of bio-inspired features
(Tubiana, Thomine, and Mackin 1998), namely the arches
of the fingers, were extracted. Intuitively, these arches are
crucial to differentiate different grasp types. In each im-
age frame, we computed the oblique and the longitudinal
arches to obtain an eight parameter feature vector, as shown
in Figure 2(a). We further reduced the dimensionality of the
feature space using Principle Component Analysis and then
applied k-means clustering to discover four types of grasp,
which are: Rest, Firm Grasp, Delicate Grasp (Pinch) and Ex-
tension Grasp. To classify a given test sequence, the data was
processed as described above and then the grasp type was
computed using a naive Bayesian classifier. Figure 2(c) and
(d) show examples of the classification result.

3.2 Object Monitoring and Recognition

Human actions involve objects. These objects are in the
hands of the humans and during the manipulation often they
may be occluded and only partly visible. Furthermore, the
manipulated objects may change their geometry and even
their topology during the action; they may be divided or two
objects may merge. Thus, we need a process that monitors
the objects being worked on. We use the method developed

(a) (b)

(c) (d)

Figure 2: (a) Example of the fully articulated hand model
tracking, (b) 3-D illustration of the tracked model, and (c-
d) examples of grasp type recognition for both hands (They
are: ’Rest, ’Rest’ (in c) and ’Rest’ ’Pinch’ in (d), shown with
red letter in black boxes).

in (Yang, Fermüller, and Aloimonos 2013), which combines
segmentation and tracking. This method combines stochas-
tic tracking (Han et al. 2009) with a fixation-based active
segmentation (Mishra, Fermüller, and Aloimonos 2009).
The tracking module provides a number of tracked points.
The locations of these points define an area of interest, and
the center of this area provides the fixation point for the seg-
mentation. The segmentation is addressed by minimizing for
a closed contour surrounding the fixation point and segregat-
ing different colors, where the color model for the segment
is derived from the region immediately surrounding the fix-
ation point and it is compared to the regions surrounding the
tracked points. The segmentation module segments the ob-
ject and updates the appearance model for the tracker.

Figure 3 illustrates the method over time. The method
is a dynamic closed-loop process, where active segmenta-
tion provides the target model for the next tracking step and
stochastic tracking provides the attention field for the active
segmentation.

For object recognition, our system simply uses color in-
formation. The color model is represented with a color his-
togram, which assigns one of m-bins to a given color at a
given location. To be less sensitive to lighting conditions,
the system uses the Hue-Saturation-Value color space with
less sensitivity in the V channel (8 × 8 × 4 bins). Since the
objects in our experiments have distinct color profiles, the
color distribution model used was sufficient to recognize the
segmented objects. For training, we manually labeled sev-
eral examples from each object class and used a nearest k-
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Figure 3: Flow chart of the active segmentation and tracking
method for object monitoring: (1) Weighting; (2) weighted
graph-cut segmentation; (3) point propagation and filtering;
(4) updating of the target tracking model.

neighbours classifier.

3.3 Action Recognition

The grasp classification is used to segment the image se-
quence in time and also serves as a feature of the action de-
scription. In addition, our system uses the trajectory of the
mass center of the hands to classify the actions. The hand-
tracking software provides the hand trajectories (of the given
action sequence between the onset of grasp and release of
the object), from which our system computes global features
of the trajectory, including the frequency and velocity com-
ponents. The frequency is encoded by the first four real co-
efficients of the Fourier transform for each of the the x, y
and z components of the trajectories. Together these com-
ponents provide a 24 dimensional vector for the two hands.
Velocity is encoded by averaging the difference in hand po-
sitions between two adjacent times tamps, which provides
a six dimensional vector. These features (together with the
grasp position) are then combined to yield the descriptor that
the system uses for action recognition (Teo et al. 2012).

3.4 Towards Unconstrained Visual Inputs

The perception system described above was developed to
compute symbolic information (Subject, Action, Object,
StartFrame, EndFrame) in a controlled lab environment, and
we used Kinect data. Furthermore the recognition (of grasp
type, objects, and actions) relies on the traditional hand-
crafted features. However, it is possible also to generalize
our approach to unconstrained video data. A recent work
(Yang et al. ) by three of the coauthors shows that with
the recent developments of deep neural networks in com-
puter vision it is possible to learn manipulation action plans
in the format of (Subject, Action, Object, Temporal Order)
from unconstrained demonstrations. However, due to the
large variation and occlusions inevitable happening in un-
constrained videos, our perception system computes wrong
facts. In the next section, we will show an example how us-
ing answer set programming and a semantic parser can fix
wrong visual detections.

4. Improving Visual Perception Through

Background Knowledge and Common-sense

Reasoning

In this section we show how using answer set programming
and a semantic parser built by two of the co-authors and their
colleagues1, we are able to make the correct conclusions re-
garding the occurrence of knife cutting tofu in the example
described in Section 1.

Our Answer Set program below consists of facts of pred-
icate “appears” obtained from the visual processing mod-
ule. It has domain knowledge about knife and bowl being
artifacts obtained from a semantic knowledge parser which
takes phrases and parses them to knowledge graphs. We have
the standard ASP rule to express effect of the action “put X
in Y” and the inertia axiom for unaffected fluents. In ad-
dition we have three new kind of rules: (i) The first rule
expresses that “normally an action that appears to have oc-
curred indeed occurs”; (ii) the second rule defines an ab-
normality predicate that blocks the application of the pre-
vious rule; (iii) and the third rule defines when a particular
appearance actually indicates that a slightly different action
occurred.

appears(put,tofu,bowl,1).

appears(cut,knife,bowl,2).

artifact(knife).

artifact(bowl).

holds(in(X,Y),T+1):- occurs(put,X,Y,T).

holds(F,T+1):- holds(F,T), not nholds(F,T+1).

nholds(F,T+1):- holds(F,T), not holds(F,T+1).

occurs(A,S,O,T):- appears(A,S,O,T),

not ab(A,S,O,T).

ab(cut,S,O,T):- artifact(S), artifact(O).

occurs(cut,S,O,T):- appears(cut,S,O’,T),

ab(cut,S,O’,T), holds(in(O,O’),T)).

We executed the above ASP program with addition of
necessary domain predicates, such as time, and correctly ob-
tained the answer set that contained occurs(put,tofu,bowl,1),
holds(in(tofu,bowl),2), occurs(cut,knife,tofu,2); meaning
that the action “put tofu in bowl” occurred at time point 1,
the action “cut knife with tofu” occurred at time point 2,
and the tofu is in the bowl at time point 2.

5. Common-sense Reasoning about Finer

Aspects of Activities
In Section 1, we listed the set of facts obtained by our visual
processing modules analyzing a video about marking a line.
We now present some commonsense rules written in ASP
and show how those rules can be used in answer the follow-
ing questions. (a) Which hand is being used in aligning the
ruler? (b) Which hand is used in drawing? (c) Is the ruler
aligned when the pen is drawing on the plank?
used(X,A1,T1,T2) :- occurs(A1,X,Y,T1,T2).
used(Y,A1,T1,T2) :- occurs(A1,X,Y,T1,T2).
used(H,A1,T1,T2) :- used(X,A1,T1,T2),

used(H,A2,T3,T4),
used(X,A2,T3,T4),

1This parser is available at http://www.kparser.org.
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grasper(H),
T3 < T1, T2 < T4.

The first two rules above reason about which object is
used in each of the actions and their time of use. Using the
five occurs fact from the introduction section and only the
first two rules above one can infer the following:
used(lefthand,grasp1,50,85).
used(plank,grasp1,50,85).
used(lefthand,grasp2,95,280).
used(ruler,grasp2,95,280).
used(ruler,align,100,168).
used(plank,align,100,168).
used(righthand,grasp3,130,260).
used(pen,grasp3,130,260).
used(pen,draw,170,225).
used(plank,draw,170,225).

The third rule is able to discover the use of graspers in
actions that were not explicitly recorded by the vision pro-
cessing system. Using the third rule and the facts that hands
are graspers2 we are able to infer the following two addi-
tional facts which answers the questions (a) and (b).
used(lefthand,align,100,168).
used(righthand,draw,170,225).

To answer question (c) we add the following rules to the
ASP program which encode effect of actions, inertia axioms,
and the question that is asked:
start(grasping,T1) :-occurs(grasp1,X,Y,T1,T2).

end(grasping,T2) :-occurs(grasp1,X,Y,T1,T2).

start(grasping,T1) :-occurs(grasp2,X,Y,T1,T2).

end(grasping,T2) :-occurs(grasp2,X,Y,T1,T2).

start(grasping,T1) :-occurs(grasp3,X,Y,T1,T2).

end(grasping,T2) :-occurs(grasp3,X,Y,T1,T2).

start(aligning,T1) :-occurs(align,X,Y,T1,T2).

end(aligning,T2) :-occurs(align,X,Y,T1,T2).

start(drawing,T1) :-occurs(draw,X,Y,T1,T2).

end(drawing,T2) :-occurs(draw,X,Y,T1,T2).

holds(aligned,T2+1) :-occurs(align,X,Y,T1,T2).

holds(drawn,T2+1) :-occurs(draw,X,Y,T1,T2).

holds(F,T+1) :-holds(F,T), not nholds(F,T+1).

nholds(F,T+1) :-nholds(F,T), not holds(F,T+1).

no :- start(drawing,T1), end(drawing,T2),

T1 < T, T < T2, not holds(aligned,T).

yes :- not no.

As expected, the program answers ”yes” to question (c).

6. Common-sense Reasoning in Activity

Recognition

As we mentioned in Section 1 there are two main aspects to
the use of common-sense reasoning in activity recognition.
First, having common-sense knowledge about general struc-
tures of activities (i.e., how activities can be broken down
to short actions and their timings), how to use that to recog-
nize activities from the output of a visual processing system
that gives us information about occurrences of short actions.
Second, how to use common-sense in learning the general
structures of activities from very few examples. Common

2The knowledge that hands are graspers can be obtained from
our semantic parser http://kparser.org when given sentences such
as “The left hand was grasping the ruler.”.

to both these aspects is the need for a formal notion of the
structure of an activity. We start with defining that.

Intuitively, an activity consists of smaller activities (which
can be further broken down all the way upto short actions)
and some constraints between their properties. Common
type of constrains are temporal (the timing of the activities)
and spatial (where the activities occur). While the notion
of an activity has similarities to notions such as workflows,
hierarchical task networks, complex actions (in languages
such as Golog), and Petrinets, in this paper we start with a
simple formulation that addresses the two above mentioned
aspects of activity recognition. In particular, to automatically
learn the structure of an activity, we need to have a simple
enough notion for that. In addition we choose a simple no-
tion of activity that makes it easier to make our main points
of this section regarding the use of common-sense to recog-
nize activities and to construct the structure of activities.

Thus, in this paper, an activity is defined in terms
of a set of short actions, temporal ordering information
about these short actions, and additional constraints about
the actions and their parameters. Some of the predicates
that we will use to describe the structure of an activ-
ity are: component(SA,X,Y,A), startsb4ov(SA1,SA2), subin-
terval(SA1,SA2), and before(SA1,SA2). Intuitively, compo-
nent(SA,X,Y,A) means that the activity or short action SA
with parameters X and Y is a component of the activity
A. The intuitive meaning of startsb4ov(SA1,SA2) is that the
start time of SA1 is before the start time of SA2, they have
some overlap, but SA2 is not a subinterval of SA1. Similarly,
the meaning of subinterval(SA1,SA2) is that the start time
of SA1 is after the start time of SA2 and the end time of
SA1 is before the end time of SA2; and the meaning of be-
fore(SA1,SA2) is that end time of SA1 is before the start time
of SA2. Using this formulation the structure of the activity
of marking a line can be expressed as follows:
component(g1,grasper1,plank,mark).
component(g2,grasper1,ruler,mark).
component(g3,grasper2,ruler,mark).
component(align,ruler,plank,mark).
component(draw,pen,plank,mark).
before(g1,g2). subinterval(align,g2).
subinterval(g3,g2). subinterval(draw,g3).
startsb4ov(align,g3).
neq(grasper1,grasper2).
grasper1 in {righthand, lefthand}
grasper2 in {righthand, lefthand}

6.1 Activity Recognition Using ASP
Now to recognize that the occurs facts in the Introduction
section corresponds to the activity “marking a line”, we need
to write rules that those occurs facts together satisfy the
structure of the activity of marking a line. For that we need
to define several rules that say when the occurs facts do not
satisfy and then write the following rule:
satisfy :- not donotsatisfy.

Some example rules defining donotsatisfy is given below:
donotsatisfy :- component(X,Y,Z,A),

not occuract(X).
occuract(X) :- occurs(X,Y,Z,U,V).
start(A,X) :- occurs(A,U,V,X,Y).
end(A,Y) :- occurs(A,U,V,X,Y).
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donotsatisfy :- before(A1,A2),end(A1,X),
start(A2,Y), X >= Y.

The above is a very simple formulation. It can be straight-
forwardly generalized to compare against multiple activ-
ity descriptions by incorporating the activity names in the
facts and rules. Uncertainty can be taken into account by
allowing weights or probabilities to be associated with the
occurs facts and using a matching probabilistic logic pro-
gramming language (Baral, Gelfond, and Rushton 2009;
Kimmig et al. 2011).

6.2 Learning Activity Structures

Our approach to learn the activity structures is based on the
assumption that we may have only a few and sometimes only
a single example from which to learn the structure. In that
case one can not use standard inductive learning techniques
that use a large number of examples and generalize based
on that. Our approach is to first come up with a possible
structure using the one (or a few) example(s) and then use
common-sense knowledge about the domain to soften the
constraints and generalize the structure. We illustrate this
with respect to the “marking the line” example from the In-
troduction.

Knowing that the predicates that we want to learn are
component, statrsb4ov, subinterval and before, we introduce
“possible” version of these predicates which we call, pcom-
ponent, pstatrsb4ov, psubinterval and pbefore respectively
and write rules that define these predicates with respect to
our example. Following are such rules.
pcomponent(A,X,Y,mark):-occurs(A,X,Y,T1,t2).

start(A,X) :- occurs(A,U,V,X,Y).

end(A,Y) :- occurs(A,U,V,X,Y).

pstartsb4ov(A1,A2):-start(A1,X), start(A2,Y),

end(A1,U), end(A2,V),

X < Y, Y < U, U < V.

psubinterval(A1,A2):-start(A1,X), start(A2,Y),

end(A1,U), end(A2,V),

Y < X, U < V.

pbefore(A1,A2) :- end(A1) < start(A2).

Using these rules together with the occurs facts, we obtain
the following as part of the answer set:
pcomponent(g1,lefthand,plank,mark).

pcomponent(g2,lefthand,ruler,mark).

pcomponent(g3,righthand,ruler,mark).

pcomponent(align,ruler,plank,mark).

pcomponent(draw,pen,plank,mark).

pbefore(g1,g2). pbefore(g1,align).

pbefore(g1,g3). pbefore(g1,draw).

pbefore(align,draw). psubinterval(align,g2).

psubinterval(g3,g2). psubinterval(draw,g3).

pstartsb4ov(align,g3). psubinterval(draw,g2).

Next we use two kinds of common-sense knowledge to
generalize the above and soften its constraints. First we use
knowledge such as: (a) lefthand and righthand are graspers,
(b) Ruler is an aligning artifact, and (c) pen is a writing in-
strument and the common-sense knowledge that normally in
an activity one can replace one element of these categories
by another as long as consistency is maintained. Using this
knowledge we obtain the following:
component(g1,grasper1,plank,mark).

component(g2,grasper1,aligner1,mark).
component(g3,grasper2,aligner1,mark).
component(align,aligner1,plank,mark).
component(draw,winstr1,plank,mark).
neq(grasper1,grasper2).
grasper1 in {righthand, lefthand}.
grasper2 in {righthand, lefthand}.
aligner1 in {ruler}. winstr1 in {pen}.

Next we need to come up with a minimal set of facts about
the predicates before, subinterval, and startsbr4ov that en-
tail all the important pbefore, psubinterval, and pstartsb4ov
facts. Domain knowledge can be used in determining which
are important. In the absence of such knowledge we can
consider all of them to be important, but even then we
can still minimize the set of temporal constraints. This is
achieved through the following steps: (i) we first enumer-
ate all possible before, subinterval, and startsbr4ov facts;
(ii) we then define pbefore, psubinterval and startsbr4ov in
terms of before, subinterval and startsbr4ov and (iii) we
then use the given important facts about pbefore, psubin-
terval and startsbr4ov as constraints and minimize the ex-
tent of before, subinterval, and startsbr4ov facts. Our ASP
code implementing the above gives us before(g1,g2), be-
fore(align,draw), subinterval(g3,g2), subinterval(align,g2),
subinterval(draw,g3), and startsb4ov(align,g3), which is
what we expected.

7. Conclusion, Discussion and Future Work

In this paper we gave a brief overview of how common sense
knowledge and common sense reasoning can be used in var-
ious aspects of scene understanding starting with improving
visual perception and leading to understanding of finer as-
pects of scenes, recognizing activities and learning activity
structures. All through the paper we presented several snip-
pets of ASP code.3

Our work uses more involved common-sense reasoning
than used in existing papers (Wang et al. 2007; Martinez del
Rincon, Santofimia, and Nebel 2013) and also goes beyond
activity recognition, the focus in the existing papers. We also
use more involved natural language analysis via our knowl-
edge parser. While some of of our common-sense knowl-
edge is hand written, some of it is obtained from our knowl-
edge parser that integrates linguistic as well as world knowl-
edge. In this paper we use ASP as our reasoning engine;
however probabilistic extensions of ASP can also be used
when reasoning with uncertainty is paramount. Our goal in
the future would be to minimize hand written knowledge
and develop ways to obtain knowledge from text and visual
object repositories on demand. We have used a similar ap-
proach to address a class of Winograd challenge schemas.
We also plan to develop an integrated end-to-end system that
starts from visual processing, uses natural language process-
ing to obtain necessary knowledge and then uses that knowl-
edge in scene understanding. A feedback loop would further
enhance this as one can then have a dialog mechanism that
can iteratively improve scene understanding.

3Full version of the ASP codes is available at
http://www.public.asu.edu/∼cbaral/papers/appendix-cs15.pdf
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