
Visual Compositional–Relational Programming

Andreas Zetterström

June 29, 2010

Abstract

In an ever faster changing environment, software developers not only need agile

methods, but also agile programming paradigms and tools. A paradigm shift towards
declarative programming has begun; a clear indication of this is Microsoft’s substan-
tial investment in functional programming. Moreover, several attempts have been
made to enable visual programming. We believe that software development is ready
for a new paradigm which goes beyond any existing declarative paradigm: visual

compositional-relational programming.
Compositional-relational programming (CRP) is a purely declarative paradigm—

making it suitable for a visual representation. All procedural aspects—including
the increasingly important issue of parallelization—are removed from the program-
mer’s consideration and handled in the underlying implementation. The foundation
for CRP is a theory of higher-order combinatory logic programming developed by
Hamfelt and Nilsson in the 1990’s.

This thesis proposes a model for visualizing compositional-relational program-
ming. We show that the diagrams are isomorphic with the programs represented in
textual form. Furthermore, we show that the model can be used to automatically
generate code from diagrams, thus paving the way for a visual integrated develop-
ment environment for CRP, where programming is performed by combining visual
objects in a drag-and-drop fashion. At present, we implement CRP using Prolog.
However, in future we foresee an implementation directly on one of the major object-
oriented frameworks, e.g. the .NET platform, with the aim to finally launch relational
programming into large-scale systems development.

Keywords: visual programming, compositional-relational programming, logic program-
ming, declarative programming

Uppsala Universitet
Institutionen för informatik och media

Data- och systemvetenskap

Master thesis, D-level (30 hp)
Spring term 2010

Supervisor: Prof. Andreas Hamfelt

CONTENTS

Contents

1 Introduction 5

1.1 Aim . 6
1.2 Demarcations . 6
1.3 Method . 7
1.4 Outline . 7

2 Programming Paradigms 7

2.1 Machine Language and Assemblers . 7
2.2 High-Level Languages . 8
2.3 Structured Programming . 8
2.4 Imperative Programming . 8

2.4.1 Procedural Programming . 8
2.4.2 Object-Oriented Programming . 9

2.5 Declarative Programming . 10
2.5.1 Functional Programming . 10
2.5.2 Logic Programming . 12

3 Compositional–Relational Programming 15

3.1 Combilog . 15
3.2 Variable-Free Form . 16
3.3 Combinators . 16
3.4 Recursion Operators . 17
3.5 The Make Operator . 18
3.6 Basic Programs . 20
3.7 Curried Programs . 21

4 Diagrammatic Models 22

4.1 Euler and Venn Diagrams . 22
4.2 E–R Diagrams . 22
4.3 Data Flow Diagrams . 24
4.4 UML . 24
4.5 Higraphs . 25
4.6 Visual Object-Oriented Programming Tools 25
4.7 Previous Attempts at Visualizing Logic Programming 26

5 Towards Visual CRP 26

5.1 Adding Some “Syntactic Sugar” . 27
5.1.1 Declaring Constants and Adding Arguments 27
5.1.2 Facts . 29

5.2 Strategies for Handling Make . 30
5.2.1 First Strategy—Hiding Make Inside the Combinator Implementation 30

2

CONTENTS

5.2.2 Second Strategy—Using Make Inside the Program Definitions . . . 31
5.3 “User-Friendly” Recursion Operators . 32
5.4 Negation . 33
5.5 A Visual Model for CRP . 33

5.5.1 General Structure of Program Symbols 34
5.5.2 Basic Programs . 34
5.5.3 Composed Programs . 35
5.5.4 Combinator Programs . 35
5.5.5 Recursive Programs . 35
5.5.6 The Make Operator . 37
5.5.7 The Not Operator . 37
5.5.8 Structure of CRP Diagrams . 37

5.6 Automatic Code Generation . 39
5.6.1 Basic Programs . 41
5.6.2 Wrapping Programs in Make Constructs 41
5.6.3 Composed Programs . 41
5.6.4 Adding Necessary Definitions . 42

6 Concluding remarks 43

6.1 Conclusions . 43
6.2 Discussion . 44
6.3 Implications and Future Work . 44

3

ACKNOWLEDGEMENTS

Acknowledgements

I want to thank the people who have been helpful to me in my work with writing this
thesis: Jørgen Fischer Nilsson, Gunnar Dahlberg, Pär Ågerfalk, Jonas Sjöström, Erika
Widenkvist, and my supervisor Andreas Hamfelt.

4

1 INTRODUCTION

1 Introduction

Globalized and turbulent business environments fused with rapid advancements in tech-
nology put new demands on software developing organizations. User requirements are
often hard to establish and can seldom be assumed to be stable throughout a project.
As a consequence, a class of software development methodology referred to as agile has
emerged. Agile methods operate on the principle of “just enough method” and are tai-
lored to “embrace change.” By adopting principles such as short iterations and test-driven
development (TDD), projects are more flexible and better suited to handle changing re-
quirements, even late in the development process [1]. To be successful, agile projects need
flexible development tools and environments able to cope with the required pace of change.
Object orientation is the dominant paradigm in software development. Unfortunately, it
is rooted in imperative problem solving techniques that require the programmer to specify
how something should be than rather than what should be done. For a long time, the dom-
inance of the fundamentally imperative object-oriented paradigm appeared not be broken
in any foreseeable future. Now, however, there are clear indications that a paradigm shift
is underway in the software development industry. The most evident sign is the current
substantial investment in functional programming by Microsoft (LINQ and F#).

Functional programming is a declarative programming paradigm. Declarative program-
ming is performed at a higher level of abstraction than imperative programming, focusing
on what the program should do rather than how. Declarative programming is not a new
phenomenon—functional programming has existed since the 1950’s. In the 1970’s, another
more expressive declarative paradigm emerged: logic programming, also called relational
programming. Theoretically, logic programming has many advantages; however, it also
has disadvantages and has not been widely adopted in the software development industry.
In existing logic programming languages, e.g. Prolog, the programmer has to consider pro-
cedural aspects of the program’s execution. The logical semantics of the program is not
identical to the procedural semantics of the program.

One reason why object-oriented programming has been the preferred paradigm in soft-
ware development industry is that it lends itself naturally to a component-based, modular
structure of large-scale programs, where program components can be re-used. This mod-
ularity and re-usability are features that to a large extent have been lacking in existing
relational programming. Another reason for the unchallenged dominance of object-oriented
programming is its suitability for modeling. Class hierarchies are easy to visualize using
tools such as design class diagrams in the Unified Modeling Language (UML). Logic pro-
gramming, on the other hand, is still perceived as difficult, or even “strange”, by most
mainstream systems developers. If declarative programming is to be widely used in main-
stream commercial systems development, it has to be easy to use and to visualize. An
indication of this is that the only wide-spread declarative programming language is the
database management language Structured Query Language (SQL), which is built on math-
ematical set theory and relational algebra. Database modeling, in fact, has a diagrammatic
model, namely the Entity-Relationship model.

Attempts have been made to enable visual programming, e.g. by using UML-diagrams

5

1 INTRODUCTION

to generate object-oriented code. The idea behind this is that visual representations of pro-
grams are easier to understand to the human mind than textual representations. However,
existing visual programming techniques often lead to diagrams that are more complicated
than the code itself, something that have been criticized by leading software engineering
practitioners [26]. Several types of diagrams—both static and dynamic diagrams—are
required to represent a program. Moreover, these visual programming environments of-
ten require some manual coding. Attempts have also been made to enable visual logic
programming, with limited success—the diagrams tend to be more complicated than the
code.

A very promising branch of declarative programming is compositional-relational pro-
gramming (CRP), developed by Hamfelt and Nilsson [29, 14, 13, 15, 16, 20, 18, 17, 19].
In comparison to existing logic programming, e.g. Prolog, CRP has multiple advantages
such as being purely declarative and naturally compositional. These properties of CRP
enable a unique, unambiguous visualization—a one-to-one relationship between the visu-
alization and the program code. The unique, unambiguous visualization is a prerequisite
for high-level visual programming.

One important factor behind the recent interest in declarative programming is paral-
lelization. This factor increases in importance with the evolution in hardware. With the
multi-core processors available today, programs have to execute in parallel in order to be
efficient. Declarative programs are much easier to parallelize than imperative programs.
The theoretical properties of CRP enable parallelization to be completely implemented in
the underlying framework—the programmer would not have to consider parallelization at
all.

1.1 Aim

The aim of this thesis is to develop a design theory [12]—a model—for visual compositional-
relational programming. To fulfill this aim, we will introduce additional “syntactic sugar”
constructs which facilitate visualizing, develop a diagrammatic model for visualizing CRP,
and show that the proposed model can be used to automatically generate source code for
CRP programs.

1.2 Demarcations

We do not perform any usability study on the visual CRP programming model, nor do
we consider other alternative models. The CRP programs we consider are side-effect-free
programs. We do not consider programs with side effects (e.g. accessing the computer
file system); nor do we consider interaction with existing code libraries (e.g. the .NET
platform).

6

2 PROGRAMMING PARADIGMS

1.3 Method

We use a research method that aims at developing a design theory in accordance with
Gregor and Jones [12]. In their theoretical framework, a design theory is a conceptual
model related to information technology (IT), e.g. diagrammatic models, programming
paradigms, or systems development methods. When developing a design theory, the pur-
pose and scope of the theory must be clearly stated. Furthermore, principles of form and
function must be declared, testable propositions must be made, and justificatory knowledge
must be provided. Principles of implementation must be stated, and proof of concept
must be given in the form of expository instantiations. We will evaluate our design theory
analytically.

1.4 Outline

We begin by describing the various forms of computer programming that currently ex-
ist (programming paradigms), with a special focus on relational (logic) programming and
compositional-relational programming. We continue by describing the major existing mod-
els for visualizing software and information systems. Next, we propose a diagrammatic
language—a model—for visual compositional-relational programming, and explore how
this model can be used to automatically generate source code from diagrams. In the last
chapter we conclude, discuss implications and highlight some interesting areas for future
research.

In accordance with the theoretical framework of Gregor and Jones, we state the pur-
pose and scope of our theory in chapter 1, we define principles of form and function in
chapter 5, we address artifact mutability in chapter 6.2, we state testable propositions in
chapter 5, we provide justificatory knowledge in chapters 2, 3 and 4, we state principles of
implementation in chapter 5, in particular 5.6, and we exemplify our design theory with
expository instantiations in chapter 5 and the Appendices.

2 Programming Paradigms

This chapter provides a background to programming paradigms. It is based on [3] and
[31]. If the reader is already familiar with the subject, this chapter can be skipped without
loss of continuity.

2.1 Machine Language and Assemblers

At the lowest level, all computer programs consist of sequences of instructions encoded
as numeric digits. This form of numerically represented instructions is called machine
language. An example of an instruction in machine language could be “move the contents
of register 3 to register 8”, and this instruction is expressed as a binary number (e.g.
10010110). The first computers had to be programmed directly in this way, and machine
languages are therefore called first generation programming languages.

7

2 PROGRAMMING PARADIGMS

In the 1940’s, notational systems called assembly languages or assemblers were devel-
oped, in which machine language instructions can be expressed as words instead of num-
bers. A translational system translates the commands to numeric instructions. This was
such a large advance in programming that assembly languages are called second generation
programming languages.

2.2 High-Level Languages

Both first and second generation programming languages are dependent of the proper-
ties of a particular machine. The instructions in the language are also restricted to the
atomic steps of the machine’s execution of the program. The next step in the evolution
of programming paradigms were the so-called high-level or third-generation programming
languages that began to emerge in the 1950’s.

The instructions in a high-level programming language are expressed at a higher level
of abstraction, i.e. several machine-language instructions are bundled together in higher-
level constructs such as variable assignment, if-else-statements, loops etc. Furthermore,
locations in memory are not referenced directly by their address; they can be given names.
These names are known as variables. A system called translator or compiler translates the
high-level instructions to machine-language code. Thus, high-level programming languages
are machine-independent, because as long as there is a compiler for a combination of a
particular language and a particular machine, programs written in the language can be
executed on the machine.

2.3 Structured Programming

Structured programming was proposed by E.W. Dijkstra et al. in the late 1960’s [10, 8],
in a reaction to the “spaghetti”-like code which was the result of an abundant use of
the goto-statement. They proposed that the flow of the program should exclusively be
handled by predefined control structures such as loops and if-statements. The code should
be organized in named procedures. The control flow of the program should be handled by
calling these procedures by name, not by ordering a jump to a numbered line in the source
code file. The aim was to arrive at cleaner, more maintainable program code.

2.4 Imperative Programming

This section describes the two main imperative programming paradigms: procedural and
object-oriented programming.

2.4.1 Procedural Programming

In procedural programming, the program code consists of a sequence of commands that
step by step tells the machine how to obtain the desired results. While bundling together

8

2 PROGRAMMING PARADIGMS

several machine-language instructions into high-level language constructs such as if-else-
statements and loops, the basic idea is still the same as in the assembly languages: tell the
machine step by step what to do. The first procedural high-level languages gained a huge
popularity in the early 60’s, the foremost being FORTRAN for scientific computing and
COBOL for business computing. Today, C is the most wide-spread procedural language.

2.4.2 Object-Oriented Programming

Today, object-oriented programming (OOP) is the most prominent programming paradigm
in the software development industry. In OOP, software is structured in entities called
objects, reflecting how humans view the real world. For instance, in a system for admin-
istrating a university, every course in the real world would be represented by an object
in the system. Objects are created from classes ; in the university administration system,
there would be a Course class, from which Course objects are created.

OOP is still imperative programming, but—and this is why it has replaced procedural
programming as the main paradigm—it organizes the imperative code statements more
elegantly. This more elegant organization of the code permits huge software systems to be
grasped by a human mind. In procedural programming, data structures are kept separate
from procedures. In OOP, data structures and procedures—in OOP called methods—
belong together. A class—and therefore the objects created from that class—contains both
data and methods for performing operations upon that data. For instance, in the university
administration system, the Course class would contain both data (such as course literature,
number of credit points etc.) and methods (such as enrolling a student).

An important principle in OOP is encapsulation. This means that a class should expose
to other classes only what these need to access; everything else should be hidden from the
outside world. In this way, software can be built in a modular way, where software compo-
nents communicate only through strictly defined interfaces1. Software components should
be highly cohesive—i.e. have well-defined responsibilities—and they should be loosely cou-
pled to one another—i.e. have as few connections to one another as possible.

Another important principle in OOP is polymorphism. In the real world, many classes
of entities are similar and share attributes. This is reflected in OOP, where we can create
class hierarchies, using inheritance. This means for instance that we can create a class for
vehicles (Vehicle)—having attributes for production year, owner and color as well as some
methods. From this Vehicle class (the superclass) we can create an inherited class Car

(a subclass) without having to rewrite the code for the attributes in Vehicle—they are
inherited. What is more, in the superclass we can declare virtual properties and methods,
which can be altered (overridden) in subclasses. Polymorphism means “of several shapes”.
In our Vehicle example, a VehicleRegister object could have a collection of vehicles,
without knowing which are cars and which are bikes, and could iterate over this collection
and invoke a CalculateTax method on each vehicle. Each vehicle would then perform this
operation according to how the CalculateTax method is implemented in the subclass the

1In OOP, an interface specifies what a class exposes to the outside world.

9

2 PROGRAMMING PARADIGMS

vehicle belongs to (car, bike, truck etc.).
This modular, component-based structure of OOP is suitable for reuse of code. Huge

libraries, often called frameworks, have been written, from which the programmer can use
already-written—and what is equally important, already tested—classes. This suitability
for code reuse is a main factor behind the popularity of OOP. The two dominant frameworks
in OOP today is the Java platform (developed by Sun Microsystems, now belonging to
Oracle) and the .NET platform (developed by Microsoft). Major object-oriented languages
today are C++, Java, C#, Visual Basic and Python.

2.5 Declarative Programming

Declarative programming stems from mathematical concepts such as set theory, lambda
calculus and formalized logic. It has found the most widespread use in the database
management systems following the relational model—based on mathematical set theory—
proposed by Codd in 1970 [6].

In a declarative paradigm the programmer describes what to compute, but does not tell
the machine how to do it. This description of the desired result is often called an expression.
Since the computer at the machine level still needs to be told step by step what to do, the
logic concerning the program’s execution is defined in the underlying implementation—it
is hidden “under the hood”. The declarative description of the program is translated to
imperative statements. This means that declarative programming is performed at a higher
level of abstraction than imperative programming.

Another feature common to all declarative paradigms and languages is statelessness.
In imperative programming, there are variables that can change state (i.e. values). In
declarative programming, this is not the case. The only way to change the state of a
variable is to create a new variable with a new value. Also, iteration is not handled
by loops, but by a technique called recursion. Since there are no variables, we cannot
have a loop variable that changes value for every step in the loop. Recursion means that
the algorithm calls itself with a new changed argument which is the counterpart to the
imperative loop variable.

The statelessness of declarative programming has a big impact on an issue that has
recently gained significantly in importance: parallelization. In imperative programming,
making code execute in parallel is difficult, because different threads must be prevented
from accessing the so-called shared state—i.e. the variables and objects in the program.
In declarative programming, on the other hand, there is no shared state. This makes
parallelization much less complicated, and this is an important factor behind the recent
renewed interest in declarative programming. There are two major branches of declarative
programming: functional programming and logic (or relational) programming.

2.5.1 Functional Programming

The functional paradigm dates from the same period (the 1950’s) as the first imperative
high-level languages. LISP is the most prominent functional language of that period. Func-

10

2 PROGRAMMING PARADIGMS

tional programming has increased in use in recent years, with languages such as OCaml,
Erlang and Scala. The year 2010 may signify a turning point for the functional paradigm,
with the introduction of F# as a fully-fledged language on Microsoft’s .NET platform,
thus spreading the use of functional programming from only specific domains to main-
stream commercial systems development. F# also has an interesting feature—which it
shares with several other recent programming languages—namely being a multi-paradigm
programming language. This feature makes a transition from an object-oriented language
such as C# seamless, since existing object-oriented code can be used from inside F#, and
F# code can be called from object-oriented C# or Visual Basic code [30].

In functional programming, everything—including the program itself—is a function. A
function takes input (so-called arguments) and produces output (so-called return value).
Functions are regarded as values, which means that functions can take other functions
as parameters and return a function. A function taking other functions as arguments
and/or returning a function is called a higher-order function. Using higher-order func-
tions, programs can be written at a high level of abstraction, relieving the programmer
of tedious, routine tasks—these tasks are abstracted away from the programmer and en-
coded as general solutions to a general type of problem.2 The following example highlights
the difference between the imperative and declarative paradigms, with C# and LINQ as
example language:

1 //Find all female customers older than 30 years and return their address

2

3 //Imperative solution

4 //***

5

6 var addressList = new List<Address>();

7 foreach (var customer in customers)

8 {

9 if (customer.Age > 30 && customer.Sex == Sex.Female)

10 {

11 addressList.Add(customer.Address);

12 }

13 }

14 return addressList;

15

16 //***

17

18

2In fact, in object-oriented programming these general types of problems are often referred to as design
patterns. They have a conceptual solution, but this solution needs to be programmed every time in
every application, all over again. In functional programming, this can more often than not be replaced
by a general encoding of the pattern as program code, which can be placed in a library provided to the
programmer [30].

11

2 PROGRAMMING PARADIGMS

19 //Functional solution using LINQ

20 //***

21

22 return

23 customers.Where(

24 c => c.Age > 30 && c.Sex == Sex.Female).Select(

25 c => c.Address

26);

27

28 //***

In the above example we can clearly see how the imperative solution requires the program-
mer to create a list object where to store the result, declare a loop over all customers,
declare an if-statement to check if the selection conditions hold, add the customer to the
result list, and finally return the result list. In the functional solution, on the other hand,
all that is required is to declare an expression describing what to return; this description is
a composition of two higher-order functions (Where and Select) which take other functions
as arguments.

2.5.2 Logic Programming

Logic programming is based on formal predicate calculus. The most wide-spread logic
programming language is Prolog, which was invented by Colmerauer and Kowalski in the
early 1970’s [7, 24]. Logic programming is a paradigm that builds on formal predicate
logic. A logic programming language relies on an underlying problem-solving algorithm
that can make deductions in a system for predicate logic. For Prolog, this problem-solving
algorithm is called SLD-resolution (Selective Linear Definite Clause Resolution). A Prolog
program consists of predicates, defined by facts and rules. The program is executed by
asking questions to it, either via a Prolog console window, or by other software units (e.g.
via a HTTP-request). The following listing gives an example of a simple Prolog program.

1 %harry is a man. This is a Prolog "fact".

2 man(harry).

3 %bill is also a man.

4 man(bill).

5 %And so is peter

6 man(peter).

7 %Another fact. harry is bill’s parent

8 parent(bill, harry).

9

10 %If Y is a man and is also X’s parent, Y is X’s father.

11 %This is a Prolog "rule"

12 father(X, Y) :- man(Y), parent(X, Y).

12

2 PROGRAMMING PARADIGMS

The above listing shows a very simple Prolog program. It states the facts that the
symbols harry, bill and peter are men. It also states a rule saying that if somebody is
a man and a parent of somebody, then he is a father of that somebody. When we load
this program into a Prolog engine and asks it questions, it will apply its SLD-resolution
problem solving algorithm. If we ask father(bill, harry) it will see that this goal means
that the subgoals man(harry) and parent(bill, harry) must succeed. Success of a goal
means that Prolog finds a fact or can deduce from the facts and rules in the program that
the goal is true. In this case, it has read the source file from top to bottom and matched
the question with the rule for father(X, Y), and found that it needs to see if the subgoals
man(Y) and parent(X, Y) succeed. It starts with the first subgoal, man(harry) and reads
the source file from top to bottom again. This time, it finds a match at man(harry) and so
this subgoal has succeeded. It moves on to prove parent(bill, harry)—and it finds the
line saying parent(bill, harry). Thus, father(bill, harry) has succeeded. Prolog
will now respond “yes”.

In the same example program, what happens if we ask Prolog father(X, Y)—i.e.
we give it unbound variables as arguments for the father-relationship (as opposed to the
constants we gave it before)? As answer to this question, Prolog will give us, one after
the other, all father-relationships it can deduce. In our example, there will be just one
father-relationship: X=bill, Y=harry. Prolog will create a search tree, and try to resolve
all the subgoals it finds on its way. It will try to unify the unbound variables X and Y with
the constants found in the program (in this case harry, peter and bill). If a subgoal
does not succeed with a particular unification, it will return—backtrack—and try to unify
the variable with the next constant etc. This is a brief desription of how the underlying
problem-solving algorithm in Prolog works.

The fact that Prolog predicates—unlike functions in functional programming—can be
used in both directions is called bi-directionality. This is a very important concept that
makes logic programming more expressive than functional programming. A predicate does
not describe a 1-1 mapping between input and output, but any kind of relation between
entities. This is why logic programming is also called relational programming.

The relational counterpart of recursive functions in functional programming is recursive
predicates (or recursive relations). This means that the predicate is defined in terms of
itself. A classic textbook example is a predicate for the ancestor relation. Say we have a
parent relation with two arguments (parent and child). Then we can recursively define an
ancestor relation in terms of the parent relation and the ancestor relation itself:

1

2 %Some facts about parents and children

3 parent(abraham, isaac).

4 parent(isaac, jacob).

5 parent(jacob, judah).

6

7 %Base case. Parents are ancestors.

8 ancestor(A, B) :- parent(A, B).

13

2 PROGRAMMING PARADIGMS

9

10 %Recursive case

11 %If there is an X that is parent of someone,

12 %and B is ancestor of this X, then A is

13 %ancestor of B

14 ancestor(A, B) :- parent(A, X), ancestor(X, B).

Recursion often involves lists, where each element of the list is processed and the predi-
cate is applied to the rest of the list. The following listing gives an example of a recursively
defined list relation, delete, that relates a list to another list in which the first occurrence
of a given element has been removed:

1 /*In Prolog, a list can be constructed and deconstructed

2 with the construct:

3 [Head | Tail] where Head is the first element

4 and Tail is the rest of the list

5 */

6

7 %Base case. If the element to delete is the head of list,

8 %the result is the tail of the list

9 delete(Element, [Element | Tail], Tail).

10

11 %Recursive case. If the head of the list is not

12 %the element to delete, keep it there and apply the predicate itself

13 %to the tail of the list

14 delete(Element, [OtherElement | Tail], [OtherElement | NewTail]):-

15 delete(Element, Tail, NewTail).

Negation is a complicated matter in relational programming [5]. In Prolog, negation is
implemented as negation as failure. This means that to Prolog, something is false as long
as it fails to prove it—i.e. that the predicate fails (closed-world assumption).

Logic programming in Prolog is not purely declarative, unlike the predicate logic (Horn
clause logic) which forms the theoretical basis for Prolog programs. The logical semantics
and the procedural semantics of a Prolog program may not be the same. For instance, a
predicate can consist of several clauses, the order of which does matter. For example, in
a recursive predicate, if the base case clause and the recursive clause switch places, the
program may not terminate. The following listing exemplifies this:

1 %This will execute correctly:

2 ancestor(A, B) :- parent(A, B).

3 ancestor(A, B) :- parent(A, X), ancestor(X, B).

4

5 %Logically, this is the same program,

6 %however it will not execute correctly:

14

3 COMPOSITIONAL–RELATIONAL PROGRAMMING

7 ancestor(A, B) :- parent(A, X), ancestor(X, B).

8 ancestor(A, B) :- parent(A, B).

This is just an example of how the programmer must know how the underlying Prolog
implementation executes the program. Another aspect the programmer must have knowl-
edge about is how the backtracking mechanism works; in many Prolog programs so-called
cuts are used to prevent unwanted backtracking.

3 Compositional–Relational Programming

Compositional-relational programming (CRP) was invented by Hamfelt and Nilsson in the
late 1990’s. This paradigm raises the level of abstraction in relational programming by
introducing higher-level control structures, called combinators and operators, with which
predicates (henceforth called programs), can be combined and operated upon [16]. In
CRP, recursion is not handled by the programmer on an ad-hoc basis in every program
definition (as is the case in ordinary logic programming); recursion is conducted using
built-in recursion operators. This eliminates all procedural aspects from the programmer’s
consideration—making CRP a purely declarative programming paradigm.

Ordinary logic programming (e.g. Prolog) is not purely declarative. The programmer
has to deal with procedural aspects, which is not in accordance with the fundamental idea
of logic programming. Indeed it is reasonable to believe that it is an important factor
behind the lack of success of the logic programming paradigm in the software development
industry. If the programmer has to control procedural aspects anyway, why not write
the program in a main-stream object-oriented language, with all the debugging and other
development tools readily available?

In CRP, the programmer does not have to consider procedural aspects of the pro-
gram’s execution; this is a prerequisite for high-level visual component-based program-
ming. CRP introduces structured programming facilities, in the form of pre-defined control
structures (schemes), similar to the schemes for sequencing, conditionalizing and iterating
present in procedural programming or to the higher-order functions present in functional
programming. The theoretical basis of CRP is a theory of combinatory logic program-
ming having been proposed and developed by Hamfelt and Nilsson in a series of papers
[29, 14, 13, 15, 16, 20, 18, 17, 19]. We will now look into some key aspects of CRP.

3.1 Combilog

We will use the programming language Combilog, introduced by Hamfelt and Nilsson [20],
for representing compositional-relational programs. Combilog can be implemented in or-
dinary Prolog using a meta-logic environment, where all programs are represented as ar-
guments to a meta-predicate called apply. The following listing shows an example.

1 %Ordinary prolog

2 p(X) :- q(X).

15

3 COMPOSITIONAL–RELATIONAL PROGRAMMING

3

4 %Combilog form using the metapredicate "apply"

5 apply(p, [X]) :- apply(q, [X]).

The first argument to apply is a program, or a variable ranging over programs. In order
to enable compositional programming, variables ranging over programs are necessary. The
second argument to apply is a list of arguments that the program is to be applied to. We
will henceforth use this Combilog-Prolog form in our program examples. This allows the
reader to run and experiment with the programs using ordinary Prolog.

3.2 Variable-Free Form

Definitions of programs in Combilog do not contain any variables. This is called variable-
free form. Hamfelt and Nilsson [20, 16] have shown that every Prolog program can be
rewritten into this variable-free Combilog form, and they also present algorithms for how
this is to be done. The fact that the definition of Combilog programs are variable-free is also
fundamental for enabling composition of programs. We will now look at what variable-free
form means, taking as example a simple program for joining two lists: append.

1 %Ordinary prolog.

2 %The first two arguments are two lists,

3 %The third argument is a list containing

4 %the elements from the first two lists

5 append([],L,L).

6 append([H|T],L2,[H|L3]) :- append(T,L2,L3).

7

8 %Combilog form using the foldright recursion operator

9 %(Recursion operators will be explained subsequently)

10 apply(append, [L1, L2, L3]) :- apply(foldr(cons, id), [L1, L2, L3]).

11

12 %Leaving the Prolog syntax,

13 %"append" written in a pure variable-free Combilog form

14 append :- foldr(cons, id).

15

From the above example we can see that in the recursive Prolog predicate definition—
consisting of two clauses—variables are needed in the definition. In the Combilog form,
the list of arguments on the left-hand side is identical to the list of arguments on the
right-hand side. Since this is the case, we can “cancel out” the arguments and write the
definition in a completely variable-free form.

3.3 Combinators

CRP programs can be compositionally combined using combinators—and and or—forming
a new program which constitutes a combination of the sub-programs. This works similar

16

3 COMPOSITIONAL–RELATIONAL PROGRAMMING

to “,” and “;” in Prolog. The mechanism of these combinators is standard logical and and
or—if all subcomponents combined with the and combinator succeed, the whole combina-
tion succeeds, and if any subcomponent combined with the or combinator succeeds, the
whole combination succeeds. We will now look at an example, first in pure variable-free
Combilog syntax and then in Combilog-Prolog syntax of the and combinator:

1 %Pure variable-free Combilog syntax

2 newProgram :- and(oneComponent, anotherComponent)

3

4 %In a Combilog-Prolog implementation:

5 apply(newProgram, [X]) :-

6 apply(and(oneComponent, anotherComponent), [X]).

7

8 %We have to define the combinator

9 apply(and(P, Q), ArgList) :- apply(P, [X]), apply(Q, ArgList).

3.4 Recursion Operators

All iteration in CRP is handled through pre-defined recursion schemes. In Combilog,
Hamfelt and Nilsson have introduced two basic recursion operators: foldright (foldr) and
foldleft (foldl).3 Foldright (also known as Reduce) reduces a problem to the base case
and then computes the result, whereas foldleft (also known as Accumulate) accumulates
the result when recursing down to the base case. They have proven a duality theorem
regarding these operators—a theorem stating that every program that can be expressed
using one of these operators can also be expressed using the other. This in turn leads
to a certainty regarding termination criteria for any program using these two recursion
operators. Termination can be guaranteed through simple input-output mode analysis
(inspecting which arguments are bound and which are unbound) making any other program
analysis superfluous [15]. For the time being, there is proof for the duality theorem only for
primitive recursive list relations—which can informally be described as recursive relations
defined with only one recursive call.4 Although this is theoretically sufficient, obviously
programming praxis and efficiency considerations would require at least one more basic
operator: double recursion (binary recursion). If double recursion operators are to be
introduced, proof for a corresponding duality theorem should be pursued.

We will now look at the definition of foldr and foldl in the Prolog implementation
of Combilog:

1 %Foldright

2 apply(foldr(P, Q), [[], Y, Z]) :- apply(Q, [Y, Z]).

3 apply(foldr(P, Q), [[X | T], Y, W]) :-

3It is outside the scope of this thesis to provide a full formal explanation of foldr and foldl; this can
be found in [15] and [16].

4For full formal description see [15].

17

3 COMPOSITIONAL–RELATIONAL PROGRAMMING

4 apply(foldr(P, Q), [T, Y, Z]),

5 apply(P, [X, Z, W]).

6

7 %Foldleft

8 apply(foldl(P, Q), [[], Y, Z]) :- apply(Q, [Y, Z]).

9 apply(foldl(P, Q), [[X | T], Y, W]) :-

10 apply(P, [X, Y, Z]), apply(foldl(P, Q), [T, Z, W]).

In the above example, we can see that the recursion operators foldr and foldl are not
particularly intuitive or easy to use by the programmer. However, foldr and foldl could
in turn be used to construct more programmer-friendly recursion operators. The three ar-
guments to foldright and foldleft make it possible to use an accumulator argument carrying
information during the recursion steps, as well as to present a result when the recursion
is finished. It is important to keep in mind that such programmer-friendly recursion op-
erators would merely be “syntactic sugar” for the programmer’s convenience: since they
would use foldright and foldleft, the duality theorems still hold.

Hamfelt and Nilsson later proposed a more generalized form of the fold operators, where
the base case is not confined to match the empty list [16]. This is more expressive, since
on many occasions we need a base case that is not restricted to match the empty list—for
instance in the classic ancestor program in 2.5.2. This is how the more general foldr
and foldl are implemented in Combilog-Prolog:

1 %Foldright

2 apply(foldr(P, Q), [L, Y, Z]) :-

3 apply(Q, [L, Y, Z]).

4 apply(foldr(P, Q), [[X | T], Y, W]) :-

5 apply(foldr(P, Q), [T, Y, Z]),

6 apply(P, [X, Z, W]).

7

8 %Foldleft

9 apply(foldl(P, Q), [L, Y, Z]) :- apply(Q, [L, Y, Z]).

10 apply(foldl(P, Q), [[X | T], Y, W]) :-

11 apply(P, [X, Y, Z]), apply(foldl(P, Q), [T, Z, W]).

3.5 The Make Operator

When combining programs with the combinators and recursion operators described above,
making no use of variables, we have to be able to take a program and construct another
program with a different number and/or different order of arguments. This means that
we need a projection operator. Thus the variable-free form can be upheld, even if the
combined subprograms do not take the same number of arguments in the same order. The
following example shows that if we do not have a possibility for projection of arguments,
we find ourselves in a dilemma:

18

3 COMPOSITIONAL–RELATIONAL PROGRAMMING

1 %First program, taking one argument

2 apply(firstProgram, [Arg1]) :-

3 apply(/*implementation of firstProgram */).

4

5 %Second program, taking two arguments

6 apply(secondProgram, [Arg1, Arg2]) :-

7 apply(/*implementation of secondProgram */).

8

9 %How to combine these without referring to variables?

10 apply(thirdProgram, [/* Which arguments should go here??*/]) :-

11 apply(and(firstProgram, secondProgram),

12 [/* Which arguments should go here??*/]).

The above mentioned dilemma is solved by Hamfelt and Nilsson using a generalized pro-
jection operator, which they call the make operator [20]. The make operator takes a list
of indeces (we will call it the index list) and a program (we will call it the inside program)
as arguments, thus creating a new program (we will call it the outside program). The
outside program in turn has its own argument list. The make operator directs the outside
program’s arguments to the inside program, to the place in the argument list specified in
the index list. If the inside program has more arguments than the outside program, the
remaining arguments to the inside program will be instantiated with unbound variables. If
the inside program has less arguments than the outside program, the remaining arguments
to the outside program will not be given to the inside program. The following code listing
provides some examples:

1 %First program, taking one argument

2 apply(firstProgram, [Arg1]) :-

3 apply(/*implementation of firstProgram */).

4

5 %Second program, taking two arguments

6 apply(secondProgram, [Arg1, Arg2]) :-

7 apply(/*implementation of secondProgram */).

8

9

10 %We construct a new program with two arguments,

11 %which takes the first of its arguments and

12 %gives it to firstProgram.

13 %X1 will be bound to Arg1 in firstProgram,

14 %and X2 is a "dummy" argument which is never used.

15 apply(thirdProgram, [X1, X2]) :-

16 apply(make([1, 2], firstProgram), [X1, X2]).

17

18 %Combination of the two programs

19 apply(fourthProgram, [X1, X2]) :-

19

3 COMPOSITIONAL–RELATIONAL PROGRAMMING

20 apply(and(thirdProgram,

21 secondProgram),

22 [X1, X2]).

23

24 %First and second program

25 %can also be combined directly,

26 %without first declaring thirdProgram

27 apply(fourthProgram, [X1, X2]) :-

28 apply(and(make([1, 2], firstProgram),

29 secondProgram),

30 [X1, X2]).

31

32 %This time, let’s give the second argument (X2)

33 %to firstProgram instead.

34 %Here, X1 is a "dummy" argument never used,

35 %and X2 will be bound to Arg1 in firstProgram

36 apply(fifthProgram, [X1, X2]) :-

37 apply(make([2, 1], firstProgram), [X1, X2]).

38

39 /*

40 We need to define all "make" operators that

41 we use

42 */

43 apply(make[1, 2], P), [X1, X2]) :- apply(P, [X1]).

44 apply(make[2, 1], P), [X2, X1]) :- apply(P, [X1]).

In the above example we see that the application of the make operator to a program
makes it possible to “pick” arguments and give it to the program. Thus programs taking
different arguments can be combined in the variable-free form. We can also see that in the
Combilog-Prolog implementation, a definition of make for every combination of indexing
and number of arguments needs to be defined.

3.6 Basic Programs

To start with, there has to be a set of basic programs available—predefined basic programs
that constitute the basic building blocks in the compositional programs. In Combilog [20],
these are id (the identity program), cons (the list constructor), true (the true program) and
const (program for declaring constants). Much like a machine language needs a few basic
instructions, all CRP programs can be built compositionally using only basic programs,
the combinators and the operators.5 The following example shows the Combilog-Prolog

5With cons, list processing programs can be built. For number processing programs, the successor

program would be needed. If other data structures than lists, e.g.
trees are to be included, basic programs for constructing these would also be needed.

20

3 COMPOSITIONAL–RELATIONAL PROGRAMMING

implementation of the basic programs:

1 %The identity program

2 apply(id, [X, X]).

3

4 %The list constructor

5 apply(cons, [H, T, [H | T]]).

6

7 %The true program

8 apply(true, [_]).

9

10 %The constant program.

11 %We need one definition for every constant in the program.

12 apply(const_a, [a]).

13 apply(const_anotherConstant, [anotherConstant]).

But why is there a need for a program for constants (const)? The reason is that we
need to define every CRP program in the variable-free form discussed above (3.2). The
following listing provides an example:

1 %Definition of a program with two arguments

2 apply(firstProgram, [X1, X2]) :-

3 /*Implementation of firstProgram */

4

5 %Now we want to call firstProgram with

6 %Arg2 hard-coded as the constant ’’a’’

7 apply(secondProgram, [Arg1, Arg2]) :-

8 apply(and(make([1, 2], firstProgram),

9 make([2, 1], const_a)), [Arg1, Arg2]).

10

11 %We need a definition for const_a

12 apply(const_a, [a]).

In the above example we can see that the variable-free form is preserved—because the
variable has been bound to a constant using the constant program.

3.7 Curried Programs

In order to simplify the source code version of a CRP program, so-called currying can be
applied. This is a “syntactic sugar” construct that can always be re-written to the pure
Combilog form. It is used by Hamfelt and Nilsson, (e.g. [16]), and also by us in our example
programs in the Appendices. The following listing provides an example:

1 %We want to create a curried identity program

2 % that should check if Arg is equal to X.

21

4 DIAGRAMMATIC MODELS

3 %With this program available, we can

4 %directly write i.e.\ id([]) or id(1)

5 apply(id(X), [Arg]) :- apply(id, [X, Arg]).

6

7 %If we didn’t have the curried version above

8 %we would have to write a program like the following

9 %for everything we need to check for:

10 apply(id([]), X) :- apply(id, [X, []]).

11 apply(id(1), X) :- apply(id, [X, 1]).

12 %Etc...

4 Diagrammatic Models

There are countless diagrammatic models for visualizing information. This section will pro-
vide a background to the models most relevant to information systems and programming.
If the reader is already familiar with the subject, this chapter can be skipped without loss
of continuity.

4.1 Euler and Venn Diagrams

Both Euler and Venn diagrams visualize sets. Euler diagrams—also called Euler circles—
were first presented by Euler in 1768 [11]. An Euler circle divides the plane on which
it is drawn in two zones: inside and outside the circle. Everything that is inside the
circle belongs to the set, and everything that is outside does not belong to the set. The
mathematical set-theoretical notion of intersection is represented by letting circles overlap,
the notion of a subset is represented by letting one circle contain another circle, and the
notion of disjointness is represented by letting several circles not overlap.

Venn [32] criticized Euler diagrams for being too strict in the sense that they cannot
deal with imperfect knowledge about the domain. He summarized his criticism as follows:

The weak point in this [Euler diagrams], and in all similar schemes, consists
in the fact that they only illustrate in strictness the actual relation of classes
to each other, rather than the imperfect knowledge of these relations which we
may possess, or may wish to convey by means of the proposition.[11](p. 510)

In a Venn diagram, all possible combinations are shown even if we do not know anything
about them (the “imperfect knowledge”). Areas which we are not interested in are just
shaded out. (See figure 1.)

4.2 E–R Diagrams

The Entity-Relationship diagram (ERD) was proposed by Chen in 1976 [4]. The ERD is a
diagrammatic model for visualizing the relational database model. The relational database

22

4 DIAGRAMMATIC MODELS

Figure 1: An Euler diagram (left) and a Venn diagram (right).

model has two major components: entities and relationships. Entities are the concepts to
be modeled, for example “employees”, “aircraft”, “products” etc. Relationships denote the
relationships between the entities—i.e. “project-worker” may be the relationship between
“company” and “employee”. (See figure 2.) ERD:s have found a very wide-spread use—
mainly for modeling databases, but the concept is also used for object-oriented modeling.

Figure 2: An E–R Diagram depicting the entities Employee, Company and Project and their
relations.

23

4 DIAGRAMMATIC MODELS

4.3 Data Flow Diagrams

In imperative programming there are two traditional views of a program or system: the
static and the dynamic view. The static view is usually depicted by some kind of E–R
diagramming; but this only describes how the data is structured. When modeling impera-
tive programs, we also need to depict what is happening when the program executes—how
data flows through the system (i.e. what data are passed between procedures, modules
or other program components). The traditional way of doing this is data flow diagrams
(DFD). Despite its name that indicates a focus on data, DFD diagramming focuses on
what activities are taking place in the program [9]. A data flow diagram shows how data
flows between program components (often called processes) and data stores. Figure 3 gives
an example. DFD:s can also be used to model business processes.

Figure 3: A simple DFD showing how data flows between processes and data stores.

4.4 UML

The Unified Modeling Language (UML) was created in the 1990’s as a modeling language
suitable for object-oriented modeling. It consists of several diagrammatic models which
are integrated and used together to replace ERD:s and DFD:s [9]. It would require a whole
book to describe all the subtleties of the various UML diagrams.6 However, the concepts are
the same as in ERD:s and DFD:s: there are static diagrams for modeling data (e.g. design
class diagrams) and dynamic diagrams for modeling activity (e.g. sequence diagrams).

6A good introduction to UML diagramming and Object-Oriented Analysis and Design (OOAD) is given
by Craig Larman in [25].

24

4 DIAGRAMMATIC MODELS

4.5 Higraphs

The higraphs are proposed by Harel as a suitable visualization for a wide array of applica-
tions [21]. The higraph is a general kind of diagramming object, combining set-theoretical
diagrams like Venn diagrams with graphs (connections by arrows). He does not allow for
showing intersection just by letting two shapes (Harel uses round-corner rectangles) inter-
sect, but he draws a named rectangle inside the intersecting area. In this manner, he arrives
at a stunning level of detail and expressiveness, and he suggests that his hi-graphs may
be suitable for i.e. database modeling, knowledge representation and statecharts. Figure 4
provides an example.

Figure 4: A higraph, taken from [21].

4.6 Visual Object-Oriented Programming Tools

Various attempts have been made for constructing visual programming tools for object-
oriented programming, e.g. Model-Driven Architeture [28], Executable UML [27] and var-
ious other CASE-tools.7 These aim at allowing the programmer to model the program
visually and automatically generate code from diagrams, much like our approach. How-
ever, these approaches are different from ours in that they do not provide an isomorphic
relation between the visual model and the code—due to the inherent procedural nature of

7CASE: Computer-Aided Software Engineering.

25

5 TOWARDS VISUAL CRP

the object-oriented paradigm, as opposed to the declarative nature of the visual model-
ing. They have been criticized by leading software engineering practitioners, e.g. Robert
Martin [26], who recommend that they should not be used because the resulting code
is in too many cases difficult to understand. Furthermore, most often they also require
manual coding, leading to an unfortunate co-habitation of manually written and automat-
ically generated code. However, in some areas of the systems development industry, visual
programming tools are widely used, notably for producing classes that represent database
entities in object-relational mappers (ORM).8

4.7 Previous Attempts at Visualizing Logic Programming

Attempts have been made at visualizing ordinary logic (Prolog) programming, e.g. by
Agust́ı et al. [2]. They use higraphs to visually represent Prolog predicates in the standard
Horn clause logic form, and their goal, just as ours, is to provide a visual programming
environment. Although this is possible using their approach, their model suffers from
several problems. Ordinary logic programming is not compositional like CRP. Recursive
predicates cannot be depicted in one diagram but two. Predicates with a different number
of arguments cannot be combined. Conjunctions (and -combinations) and disjunctions (or -
combinations) cannot be depicted in one diagram symbol representing the whole construct,
but need as many diagrams as there are terms. All this leads to similar problems as with the
above mentioned visual programming tools for object-oriented programming: the diagrams
are as complicated—if not more—than the corresponding source code.

A visualization of CRP has been attempted by H̊akansson et al. [23, 22]. They try
to visualize a form of Combilog where recursion is not restricted to built-in recursion
schemes. They use a three-dimensional model that looks similar to how molecules (e.g.
the DNA molecule) are often visualized in chemistry and physics. However, their model
is not complete—they present some ideas for a visualization of CRP, but important issues
are left unconsidered. The mapping between the visualization and the Combilog code is
not fully elaborated.

5 Towards Visual CRP

We will now explore some important issues on our way towards visual CRP. Some practical
examples of our efforts can be seen in Appendix A and B. First, we will add some “syntactic
sugar” concerning declaration of constants and addition and removal of arguments without
using the make operator. Secondly, we will devise strategies for hiding the make operator
from the programmer. Thirdly, we will devise a visual model—diagrammatic symbols—for
CRP. Finally, we will evaluate our model by exploring how an automatic code generator
that produces source code from CRP diagrams could be constructed.

8An example is the visual designer for Microsoft’s Entity Framework in the Visual Studio IDE.

26

5 TOWARDS VISUAL CRP

5.1 Adding Some “Syntactic Sugar”

In order to arrive at a viable visualization of CRP, we will add some “syntactic sugar”
constructs that will simplify the visualization. Our goal is to reduce the number of diagrams
needed to describe a program.

5.1.1 Declaring Constants and Adding Arguments

It would not be very convenient if the programmer had to declare constants explicitly using
the const program (see 3.6). Let us recall the example in 3.6:

1 %Definition of a program with two arguments

2 apply(firstProgram, [X1, X2]) :-

3 /*implementation of firstProgram */

4

5 %Definition of constant a

6 apply(const_a, [a]).

7

8 %Declaration of constant a using

9 %the const program

10 apply(secondProgram, [Arg1, Arg2]) :-

11 apply(and(make([1, 2], firstProgram),

12 make([2, 1], const_a)), [Arg1, Arg2]).

Now we will do the same thing as in the above example; however, we will use constants
directly, using the Prolog implementation.

1 %Now, we call firstProgram with the constant "a"

2 %as its second argument using the constant directly

3 apply(secondProgram, [Arg1, Arg2]) :-

4 apply(firstProgram, [Arg1, a]).

Using this method, every direct use of a constant can be re-written to a variable-free form
by means of the make operator, the and combinator and the const program. The direct
use of a constant is just “syntactic sugar” on top of the pure variable-free form.

Looking at the previous example, we can see that Arg2 is a “dummy” argument,
meant always to take an unbound variable. In fact, we would probably like to wrap
secondProgram in a make construct:

1 %Wrap secondProgram inside another program

2 %which takes 1 argument. Give an unbound "dummy"

3 %value to the second argument of secondProgram,

4 %using the "make" operator

5 apply(thirdProgram, [X1]) :-

6 apply(make([1], secondProgram), [X1]).

27

5 TOWARDS VISUAL CRP

7

8 %Recall the definition of "make" for this case

9 apply(make([1], P), [X1]) :-

10 apply(P, [X1, X2]).

From the above example we can see that thirdProgram wraps secondProgram using the
make operator. The second argument to secondProgram will be given a “dummy” value
(righthand-side argument X2 in the definition of make).

Now we will add a “syntatic sugar” construct for adding unbound arguments directly,
without using the make operator. For clarity, we will give all programs again in this
example:

1 %Definition of a program with two arguments

2 apply(firstProgram, [X1, X2]) :-

3 /*implementation of firstProgram */

4

5 %Now, we call firstProgram with the constant "a"

6 %as its second argument using the constant directly

7 apply(secondProgram, [Arg1, Arg2]) :-

8 apply(firstProgram, [Arg1, a]).

9

10 %We want to create another program which

11 %takes one argument. It should call

12 %secondProgram with the constant "a"

13 %as the second argument.

14 apply(thirdProgram, [X1]) :-

15 apply(secondProgram, [X1, X2]).

In the previous example we can see that there are more arguments on the right-hand side in
thirdProgram than on the left-hand side. However, every program written in this form can
be rewritten to the variable-free form of the previous examples. Finally we will combine
the two “syntactic sugar” constructs, using both direct declaration of constants and adding
of arguments:

1 %Definition of a program with two arguments

2 apply(firstProgram, [X1, X2]) :-

3 /*implementation of firstProgram */

4

5 %We want to create another program which

6 %takes one argument. It should call

7 %secondProgram with the constant "a"

8 %as the second argument. We will now do so directly.

9 apply(secondProgram, [X1]) :-

10 apply(firstProgram, [X1, a]).

28

5 TOWARDS VISUAL CRP

Clearly this simplifies the source code significantly, and the programs will be easier to
visualize because we can eliminate the programs which only declare constants or wrap
other programs inside make constructs. We will henceforth allow direct declaration of
constants and adding new arguments; indeed, we will coin some new terminology for this.
We will call the arguments on the left-hand side outside arguments, and the arguments on
the right-hand side inside arguments. When using a program in another program, we care
only about the arguments on its left-hand side; the arguments on the right-hand side are
“inside” the program, hidden from us. The familiar idea of the “black box” when describing
modular software springs to mind (see e.g. [3], chapter 7)—hence the terms outside and
inside arguments.

One could ask if we ever would want to remove outside arguments—i.e. have fewer
inside than outside arguments? Although theoretically this would be possible (recall that
themake operator can both add and remove arguments), we would never have any practical
use for it. If we would want to discard an outside argument, there is no need to have it as
an outside argument at all. To have a clear, structured, modular design of CRP programs,
the programs should expose only the necessary arguments to the outside world—everything
else should be hidden inside the program.

5.1.2 Facts

When declaring programs that simply state facts like the following ordinary Prolog facts

1 parenthesisPair("{", "}").

2 parenthesisPair("[", "]").

3 parenthesisPair("(", ")").

in CRP, it would be tedious to have to use cons, member9 to construct the program
parenthesisPair.10 For practical reasons, we will introduce a “syntactic sugar” construct
for stating facts:

1 apply(parenthesisPair, ["(", ")"]).

2 apply(parenthesisPair, ["{", "}"]).

3 apply(parenthesisPair, ["[", "]"]).

This construct diminishes the number of programs and thus makes its visualization simpler—
however, it can always be rewritten into pure Combilog form.11 It is used in the example
program in Appendix B.

9Program that describes the relation between a list and its elements, succeeding if the element is a
member of the list.

10Use cons to put the two characters in a list, then use member to see if this list is a member of a
hard-coded list of parenthesis pairs.

11Of course, the re-writing for the constant declaration “syntactic sugar” construct (see 5.1.1) would
also have to be applied.

29

5 TOWARDS VISUAL CRP

5.2 Strategies for Handling Make

As discussed in 3.5, when applying a combinator to two programs and a list of arguments,
we cannot be sure that the two programs needs all of the arguments sent to the combinator.
For instance, we could have two programs sent to the combinator, one program which
always takes only one argument and the other program taking three arguments. We still
want to be able to combine the two programs using the and operator. To this end, we use
the make operator:

1 apply(firstProgram, [Arg1]) :- /* firstProgram */

2 apply(secondProgram, [Arg1, Arg2, Arg3]) :- /* Body of secondProgram

3

4 apply(thirdProgram, [Arg1, Arg2, Arg3, Arg4]) :-

5 apply(and(make([1, 2, 3, 4], firstProgram),

6 make([1, 2, 3, 4], secondProgram)), [Arg1, Arg2, Arg3, Arg4]).

It is rather obvious that having to write programs like this is not very convenient. There-
fore, strategies for hiding the make operator should be devised. For instance, looking at
the example program in Appendix A, it is clear that in most cases new arguments in-
side the program definitions (see 5.1) are added at the rightmost position, i.e. that no
re-ordering of arguments is performed. Thus, a simple mapping strategy emerges, which
relieves the programmer of tedious, routine work. We will map the inside arguments to
the subprograms using a left-to-right strategy (leftmost inside argument bound to left-
most sub-program argument etc.); and if the number of arguments do not match, either
arguments are “discarded” or given “dummy” (unbound) values, as discussed in 5.1.

5.2.1 First Strategy—Hiding Make Inside the Combinator Implementation

By inserting themake operator into the implementation of all combinators a simple strategy
for hiding the make operator is obtained. We will look at the and combinator as an
example:12

1 apply(and(P, Q), [X]) :-

2 apply(make([1], P), [X]),

3 apply(make([1], Q), [X]).

4 apply(and(P,Q), [X1, X2]) :-

5 apply(make([1, 2], P), [X1, X2]),

6 apply(make([1, 2], Q), [X1, X2]).

7 apply(and(P, Q), [X1, X2, X3]) :-

8 apply(make([1, 2, 3], P), [X1, X2, X3]),

9 apply(make([1, 2, 3], Q), [X1, X2, X3]).

10 /* Etc... */

12This strategy is illustrated in the example program in appendix A.

30

5 TOWARDS VISUAL CRP

By defining a basic set of make definitions, the Combilog implementation can both remove
arguments from the list sent to the combinator as well as add dummy-arguments which are
never used. Recall that everymake construct that we use must be defined. Make constructs
are distinguished by the index list and the number of outside arguments of the wrapped
program; however, in this case we cannot know how many outside arguments the programs
(P and Q) have. We will therefore ascertain that we have defined all make constructs up to
a maximum possible number of arguments.13 The following listing provides an example:

1 apply(make([1], P), [X1]) :-

2 apply(P, [X1]).

3 apply(make([1], P), [X1]) :-

4 apply(P, [X1, X2]).

5 apply(make([1], P), [X1]) :-

6 apply(P, [X1, X2, X3]).

7 /* Etc... */

8

9 apply(make([1, 2], P), [X1, X2]) :-

10 apply(P, [X1]).

11 apply(make([1, 2], P), [X1, X2]) :-

12 apply(P, [X1, X2]).

13 apply(make([1, 2], P), [X1, X2]) :-

14 apply(P, [X1, X2, X3]).

15 /* Etc... */

16

17 apply(make([1, 2, 3], P), [X1, X2, X3]) :-

18 apply(P, [X1]).

19 apply(make([1, 2, 3], P), [X1, X2, X3]) :-

20 apply(P, [X1, X2]).

21 apply(make([1, 2, 3], P), [X1, X2, X3]) :-

22 apply(P, [X1, X2, X3]).

23 /* Etc... */

5.2.2 Second Strategy—Using Make Inside the Program Definitions

Hiding make inside the combinator definitions makes the source code more readable; how-
ever, there are some drawbacks. It is more difficult to see what goes on in the program.
Furthermore, there are unwanted side-effects to this strategy—one example being that
combinators cannot be nested, because that results in rather nasty nested make constructs
such as

1 (make([1, 2, 3], make([3, 1], someProgram))

13In a real-world implementation, this could be done automatically, “on the fly”, by a code generator.

31

5 TOWARDS VISUAL CRP

which result in bugs when the program executes. This problem can be avoided by pro-
hibiting nested combinators—every combination would then need to be defined as a named
program of its own. However, it is not an ideal situation.

Furthermore, whether the source code is readable or not should not be of significant im-
portance when we have arrived at a visualization viable for use in a visual integrated devel-
opment environment (IDE). Programming will then be made visually, not textually. All the
same, a default mapping of arguments would be convenient even in a visual environment—
relieving the programmer of tedious tasks. The programmer would then when needed
visually reorder the arguments, but only when the left-to-right strategy discussed above
is not the desired mapping of arguments. Therefore we will devise a second strategy for
dealing with mapping of arguments, which we will propose for a visual CRP IDE. In this
strategy, every program is “wrapped” inside make, with the default left-to-right argument
mapping. This is visually shown in the IDE. If a re-ordering of arguments is to be made,
this is made visually in the IDE and the list of indeces for the corresponding make wrapper
in the source code is changed. The following listing provides an example of the default
left-to-right argument mapping with make used inside the program definitions:

1 apply(firstProgram, [Arg1]) :-

2 /*Implementation of firstProgram*/

3 apply(secondProgram, [Arg1, Arg2, Arg3]) :-

4 /* Implementation of secondProgram */

5 apply(thirdProgram, [X1, X2]) :-

6 apply(and(make([1, 2], firstProgram),

7 make([1, 2], secondProgram)), [X1, X2]).

5.3 “User-Friendly” Recursion Operators

The make operator also needs to be hidden in the recursion operators. The programmer
should not have to consider how to apply make to make the recursion operators work
properly. On the other hand, all recursion in Combilog should be based on fundamental
recursion schemes, for which important theorems (see 3.4) have been proven. Therefore,
more “user-friendly” recursion operators need to be constructed on top of the basic re-
cursion schemes. In these “user-friendly” recursion operators, appropriate application of
make takes care of delivering the right arguments to the right programs in the lower-level
recursion operators. The following listing exemplifies this:

1 /*

2 foldr.

3 Basic recursion scheme (level 0)

4 */

5 apply(foldr(P, Q), [[], Y, Z]) :-

6 apply(Q, [Y, Z]).

7 apply(foldr(P, Q), [[X | T], Y, W]) :-

8 apply(foldr(P, Q), [T, Y, Z]),

32

5 TOWARDS VISUAL CRP

9 apply(P, [X, Z, W]).

10

11 /*

12 More specific recursion, needed when the recursion program

13 needs both the head and the tail of the list.

14 (level 1)

15 */

16 apply(natrec(P, Q), [X, Y]) :-

17 apply(foldr(p(P), q(Q)), [X, _, [Y, _]]).

18 apply(p(P), [X, [V, T], [W, [X | T]]]) :-

19 apply(make([1, 2, 3], P), [[X | T], V, W]).

20 apply(q(Q), [_, [V, []]]) :-

21 apply(make([1], Q), [V]).

22

23 /*

24 User-friendly recursion operator (level 2)

25 */

26 /* Recursion operator which applies P

27 to the head and the tail of List in each step */

28 apply(foreachNatrec(P), [List]) :-

29 apply(make([1], natrec(make([1], P), true)), [List]).

5.4 Negation

Although theoretically not necessary, for practical reasons we introduce an operator—
not—which takes a program and creates its negation. Negation is a complicated matter
in relational programming, and the matter of how negation should be handled in CRP
should be investigated further. For the time being, we propose that the not operator
be implemented as negation as failure, i.e. that if a program P fails, its negation not(P)
succeeds. The following listing shows the Combilog-Prolog definition of not :

1 %Cancel out double negation

2 apply(not(not(P)), ArgList) :- apply(P, ArgList).

3 %Negation as failure

4 apply(not(P), ArgList) :- \+ apply(P, ArgList).

5.5 A Visual Model for CRP

We will now propose a visual model for CRP. We have not performed any usability study
of the proposed visual model, nor have we considered other alternative models. Let us
again stress that our aim is to show that the proposed model can visualize programs, and
that this model can be used for visual programming.

33

5 TOWARDS VISUAL CRP

5.5.1 General Structure of Program Symbols

We let a CRP program have the general structure of a simple rectangular box. The
program’s name is written at the top of the box. In a future visual IDE we will have
a button named “i”, which will show the documentation for the program when clicked
upon. We let the program display a number of “electrical wall sockets”, connections that
represent the outside arguments. Let us henceforth call these connections sockets. These
sockets for the outside arguments will have the argument names written on them. If we
do not show how a CRP program is constructed internally, its symbol will not contain
anything else except its name, the information button (documentation) and sockets for
outside arguments. We will call this representation a closed box. (See figure 5.)

Figure 5: General structure of a CRP program symbol. In this closed box form, we do not
show how the program is constructed internally. We only depict what the program exposes to
the outside world: program name, documentation and sockets for outside arguments.

5.5.2 Basic Programs

Basic programs will not contain anything else than outside argument sockets, program
name and documentation. They do not contain other programs inside; thus they are al-
ways represented as closed boxes. Something that should be considered is whether other
programs than the fundamental basic programs (see 3.6) should be available as basic

34

5 TOWARDS VISUAL CRP

programs—some candidates for this are member (member of a list), length (length of a
list), and arithmetic operators (+, - etc.).

5.5.3 Composed Programs

We let composed programs have additional inside arguments that will be represented by
internal sockets on the inside of the program. They can optionally be given hard-coded
constants directly—these will then simply be written inside the socket. Every outside
argument will also be an inside argument, which is visually shown by letting the outer
sockets extend to the inside just as the sockets for the inside arguments. (See figure 6.)

Composed programs will contain subprograms, which are other programs combined by a
combinator or a recursion operator. The mapping of inside arguments of the whole program
module to outside arguments of each individual subprogram will be done by simply drawing
a line from the inside argument to the appropriate outside argument of the subprogram.
In a visual IDE we would implement an automatic default mapping according to the left-
to-right strategy described in 5.2.2, which the programmer can change by rearranging the
lines.

5.5.4 Combinator Programs

As can be seen in figure 6, we let a combinator program have subprograms, which are
connected by a bar. On this bar the symbol representing the type of the combinator is
drawn: the logical and symbol (∧) for the and combinator and the logical or symbol
(∨) for the or combinator. It is reasonable to believe that it would be convenient to be
able to combine not just two, but three subprograms—to avoid having to create another
program just for combining two of the three subprograms and then combining this new
program with the third subprogram. We will include this “syntactic sugar” and use it in
the example program in Appendix B. However, we believe that allowing for combination
of more than three subprograms would not contribute to clarity—the number of lines for
mapping the arguments would just be to large, resulting in a diagrammatic “cobweb”.
However, considerations like this should be evaluated in a usability study.

5.5.5 Recursive Programs

We let a recursive program have one recursion operator on the inside (see figures 7 and 8).
This operator should be one of the “user-friendly” recursion operators proposed in 5.3. The
recursion operator has a “saw-tooth” line at the top. The idea behind this is to visualize
the repetitive process of recursion. We let the recursion operator have two subprograms
inside—a subprogram to the left which is the recursion program (for the recursive case)
and a subprogram to the right which is the base program (for the base case). A recursion
operator can have one recursive outside argument, whose data type should be a recursive
data type (e.g. a list). We let a recursive argument be placed leftmost (see figure 7). We
believe that it is important to show that the recursive argument is of a different nature than
normal arguments; it needs a special representation, so we let it have a “saw-tooth” line

35

5 TOWARDS VISUAL CRP

Figure 6: Symbol for a CRP combinator program. This program is an and -combination of two
subprograms. It has two outside arguments, and one additional internal argument hard-coded
as a constant, the empty list ([]). The mapping of the arguments is indicated by lines. The
corresponding Combilog-Prolog code for this program is: “apply(myCombinatorProgram, [Arg1,
Arg2]) :- apply(and(make([1, 2, 3], program1), make([1, 2, 3], program2)), [Arg1, Arg2, []]).”

on its inside socket. Some recursion operators do not use a recursive list argument. In that
case, there is no recursive argument; all arguments have the usual socket representation
(see figure 8 that visualizes the “ancestor” program).

In some cases of recursion, there are two accumulator arguments that carry information
during the recursion steps. The recursion program can describe the relation between the
old and new accumulator in each step. When the next recursion step is called, the new
accumulator is sent to the argument for the old accumulator. This process is visualized
by a dashed arrow that shows how the new accumulator “jumps” to the place of the old
accumulator (see figures 7 and 8).

When using a recursion operator, initially its outside arguments are bound to the argu-
ments we give it; however, during the recursion steps, the arguments are bound differently,
and when all recursion steps are finished, the initial bindings are valid again. We could
think of a recursion operator as a “reactor” performing some kind of process. We give it
some arguments, push a “Start” button, and when the process is finished, we get the argu-
ments back again.14 We will visualize this by letting the inside arguments of the program

14For a full, formal explanation of how the foldright and foldleft recursions are unfolded, see [15].

36

5 TOWARDS VISUAL CRP

be connected to the outside arguments of the recursion operator by bi-directional arrows
instead of lines (see figures 7 and 8).

When constructing the examples found in the Appendices, we found that the most
complicated aspect was to get the recursion to work correctly (i.e. use foldright or foldleft
and use make to get the right arguments to the right places). We presume that it will be
too complicated for the ordinary programmer to use foldr and foldl directly; however,
it is not necessary to understand this in order to construct CRP programs. When we had
constructed a “user-friendly” recursion operator for the type of recursion that was needed,
we found it easy to construct recursive CRP programs, and we believe that this will also be
the case for an ordinary programmer. Therefore, the programmer should be provided with
a whole palette of carefully chosen, welldocumented recursion operators, from which he or
she can choose one that is “tailor-made” for solving the problem at hand. In a visual CRP
IDE, the programmer could drag a recursion operator onto the design surface, and then
drag and place two programs onto the recursion operator’s placeholders for the recursion
program and the basic program.

5.5.6 The Make Operator

We let the mapping of arguments—i.e. projection using the make operator—be visualized
solely through the lines connecting the sockets for the arguments. This is fully sufficient,
as every subprogram in a composed program will not appear in its pure form in the source
code, but will be wrapped inside a make construct according to the mapping of arguments
indicated by the lines connecting the sockets in the diagram.

5.5.7 The Not Operator

We let the not operator be visualized by a box with dashed lines and rounded corners; this
box encloses the program to be negated. The logical symbol for negation (¬) is drawn on
the box. (See figure 9).

5.5.8 Structure of CRP Diagrams

Subprograms in a composed CRP program are other CRP programs. Thus, given enough
space to draw on, the internal implementation of the subprograms could be drawn inside
the subprograms, recursively down to the basic programs. Theoretically, just as the CRP
program in source code Combilog-Prolog form could be written on one line, the program
could also be drawn completely in one diagram. For practical reasons—as in a visual
IDE with limited computer screen space—we believe that in general, subprograms in a
composed CRP program will be represented by closed boxes, and that these boxes are
“opened up” and drawn on another page.

A CRP program has no connection directly to the inside of another program. This is
in line with already well-established concepts in software engineering, notably for object-
oriented software, where classes and modules communicate through specified interfaces and
their internal implementation can stay hidden from the outside world. In our proposed

37

5 TOWARDS VISUAL CRP

Figure 7: Symbol for a CRP recursive program. This program uses a recursion operator with
two subprograms—base program and recursion program. It has a recursive outside argument,
which is placed leftmost and represented by a “saw-tooth” line. The other outside argument
is an accumulator argument. The internal argument holds the new value for the accumulator
argument, and the dashed arrow shows how this new accumulator “jumps” to the place of the
old accumulator in each successive recursion step.

visual CRP model, the subprograms in a larger program communicate only through their
outside arguments, which in fact is the CRP counterpart for the object-oriented concept of
an interface. Since each subprogram in a larger CRP program communicates exclusively
through its outside arguments, there is no need for the level of detail present in the higraph
model presented by Harel [21].

The visual model of CRP programs (the diagrams) shows—in one and the same diagram—
a complete and unambiguous view of the program. This is in contrast to e.g. UML diagrams,
where several diagrams show different views (static and dynamic) of the system. Further-
more, the modular structure of a CRP program is reflected—actually, it is inherent—in its
visual representation. Thus, the classic notion of decomposition in problem solving is visu-
alized. For instance, the visual representation of the program in the CRP diagrams shows

38

5 TOWARDS VISUAL CRP

Figure 8: Symbol for a CRP recursive program without a recursive list argument. This program
uses a recursion operator called transitiveRecursion, with the fatherOf program as both
recursion program and base program. This visualizes nicely that in order to find out if OldPerson
is ancestor of YoungPerson, we have to keep finding his son and son’s sons etc, until we find
someone who is the father of YoungPerson.

a top-down decomposition of a problem into smaller subproblems. Visual CRP program-
ming can in fact be performed both bottom-up—starting with the basic building blocks,
then combining them to ever larger program components—as well as top-down—starting
with an empty box representing the whole program, then filling it with other empty boxes
combined by combinators and operators, then filling these empty boxes etc. A usability
study would shed some light on which of these approaches would be appropriate as a recom-
mended CRP programming practice; however, when programming the example programs
found in Appendices A and B, we found that the top-down approach was most adequate.

5.6 Automatic Code Generation

Since the semantical meaning of the diagrams is identical to the semantical meaning of the
Combilog source code (e.g. the Combilog-Prolog source code used in the examples in this
thesis), it would be possible to construct an automatic code generator—a program that

39

5 TOWARDS VISUAL CRP

Figure 9: Symbol for a negated CRP program. The program is enclosed by a dashed-line box
with rounded corners. The lines for mapping its outside arguments pass right through the box.

generates source code from the CRP diagrams. We will now show that this can be done.
We will attempt an object-oriented approach, since the reader is probably most familiar
with the object-oriented paradigm.

In our code generator the CRP programs are represented as objects. Every object
knows how to produce its source code, using a polymorphic SourceCode property. There
is a base class for all programs, with a virtual SourceCode property. There is a class
hierarchy inheriting from this base class: a class for basic programs, another for programs
combinating subprograms with the and/or-combinator, other classes for programs built
with each available recursion operator, a class for programs wrapping other programs
inside a make construct, as well as classes for definitions of combinators and operators.
We will use C# for the code examples.

40

5 TOWARDS VISUAL CRP

5.6.1 Basic Programs

The basic programs are the smallest building blocks of a CRP program—they do not
contain other CRP programs and will always be visually represented by closed boxes. Thus,
the SourceCode of a basic program is just a hard-coded string of text. The following listing
shows the definition of the identity program:

1 apply(id, [X, X]).

We need such lines of source code defining the basic programs in every CRP program (at
least for those basic programs which are used in the CRP program).

5.6.2 Wrapping Programs in Make Constructs

There is a class for programs wrapped inside amake construct. This class has an IndexList

property for the index list (a list of integers). Its Name property could be implemented like
this:

1 /// <summary>

2 /// The name of the program wrapped in make, e.g.\:

3 /// make([1, 2, 3], programName)

4 /// </summary>

5 public string Name

6 {

7 get

8 {

9 var builder = new StringBuilder();

10 builder.Append("make([");

11 builder.Append(IndexList.ToCommaSeparated<string>());

12 builder.Append("], ");

13 builder.Append(Program.Name);

14 builder.Append(")");

15 return builder.ToString();

16 }

17 }

5.6.3 Composed Programs

Composed programs produce source code that represents the subprograms and a combina-
tor/operator. Accordingly, the object representing the composed program has properties
for its subprograms (e.g. Subprogram1 and Subprogram2 for a and/or-combinator program
and BaseSubprogram and RecursiveSubprogram for a recursive program). Every subcom-
ponent to composed programs should first be wrapped in a make construct that represents
the mapping of arguments shown with lines connecting the sockets in the diagrams. The
following listing gives an example of how programs built with the and/or combinator could
produce their source code:

41

5 TOWARDS VISUAL CRP

1 //The following method would provide output like:

2 //"apply(myNewProgram, [Arg1, Arg2]) :-

3 // apply(or(make([1, 2], anotherProgram),

4 // make([1, 2], yetAnotherProgram)), [X1, X2])."

5 //

6 //(Subprogram1 and Subprogram2 would be ordinary

7 // programs wrapped inside a "make" construct.)

8 //

9 public override string SourceCode

10 {

11 get

12 {

13 var builder = new StringBuilder();

14 builder.Append("apply(");

15 builder.Append(Name);

16 builder.Append(", [");

17 builder.Append(ExternalArgs.ToCommaSeparated<string>());

18 builder.Append("]) :- apply(");

19 builder.Append(Type);

20 builder.Append("(");

21 builder.Append(Subprogram1.Name);

22 builder.Append(", ");

23 builder.Append(Subprogram2.Name);

24 if (Subprogram3 != null)

25 {

26 builder.Append(", ");

27 builder.Append(Subprogram3.Name);

28 }

29 builder.Append("), [");

30 builder.Append(InternalArgs.ToCommaSeparated<string>());

31 builder.Append("]).");

32 return builder.ToString();

33 }

34 }

Programs consisting of a recursion operator with a base program and a recursive program
produce source code using a similar strategy.

5.6.4 Adding Necessary Definitions

When using a make construct with a particular number of arguments and index list, an
appropriate line of source code defining this needs to be added—but the programmer would
not even have to be aware that the line is added. With this method of adding definitions

42

6 CONCLUDING REMARKS

“on the fly” we avoid unnecessary large source code files. In the object-oriented automatic
code generator, these lines could be added in the constructor of the classes that need such
definitions, for instance:

1 /// <summary>

2 Constructor

3 /// </summary>

4 public Make(IEnumerable<int> indexList, Program program)

5 {

6 IndexList = indexList;

7 Program = program;

8

9 if (!ThisMakeAlreadyExists)

10 {

11 AddThisMake();

12 }

13 }

14

15 private void AddThisMake()

16 {

17 var thisMake = new MakeDefinition

18 (DefinitionName, IndexList, Program.NumberOfExArgs);

19 CRProgram.Instance.Makes.Add(thisMake);

20 }

6 Concluding remarks

We will conclude by discussing our design theory and its implications and point out some
interesting areas for future research.

6.1 Conclusions

We have added some “syntactic sugar” to the Combilog language, proposed a diagrammatic
model that visualizes CRP programs, and explored how source code can be automatically
generated from the diagrams. The exploration of an automatic code generator constitutes
a first analytical evaluation of our design theory. We have shown how diagrams are un-
ambiguously created from code; with our code generator, we have shown that relationship
also holds in the opposite direction: the textual representation of the programs can be au-
tomatically generated from the CRP diagrams. Therefore the visual CRP model supports
both automatic forward and reverse engineering. We have a diagrammatic model that
unambiguously represents the programs; there is a 1–1 relationship between the diagrams
and the source code—they are isomorphic. Providing our code generator with a graphical
user interface (GUI) would make visual CRP a reality.

43

6 CONCLUDING REMARKS

6.2 Discussion

Unlike previous attempts at visualizing logic programming (see 4.7), the visual CRP model
is fully compositional and compliant with well-established concepts of software engineer-
ing, such as modularity and encapsulation. It is reasonable to believe that this will be
an advantage for programmers who are trained and experienced in procedural or object-
oriented programming, which is the case for the majority of programmers in the world
today. Visual CRP can achieve these advantages over previous attempts at visual logic
programming because of the properties of the compositional-relational paradigm.

Visual CRP would not be “just another programming language”. In fact, the visual
CRP paradigm could be independent of programming languages. The visual program-
ming model could be the same, but different output in form of source code text could be
generated—it would suffice to implement a code generator that generates code in different
programming languages. In this thesis, we used Combilog-Prolog as output language—
however, the resulting source code could be written in any programming language. In
this way, the same conceptual model for visual CRP could be used when the underlying
technology changes, in accordance with the concept of artifact mutability [12].

Visual CRP programs could be represented in other forms as well as the visual form
and various source code forms; an interesting option would be to represent programs in
XML15 form. The diagrams constituting a CRP program could be represented by XML
tags, which would facilitate compatibility between different visual CRP implementations.

6.3 Implications and Future Work

If the proposed model for visual CRP programming would prove adequate in a usability
study—in a real-world systems development setting—this would most probably have a sig-
nificant impact on most aspects of systems development. The component-based structure—
visualized in the CRP diagrams—together with the pure declarative CRP paradigm would,
in our opinion, facilitate agile systems development in an ever-faster-changing world. Fol-
lowing important ideals of software engineering, the internal structure of a software compo-
nent would remain completely hidden to the outside world. A component could be changed
or replaced by another component with no risk of introducing errors. A major advantage
of the visual CRP model is that the visualization of the software would not be separate
from the software itself—it would represent the exact same thing. We also believe that
for the human mind, thinking of software in a visual way would be easier than thinking of
software as source code text. If we allow for some speculation, we could even imagine a sys-
tems development project where different teams use different visual CRP implementations,
i.e. that the various CRP implementations generate source code in different programming
languages.

Furthermore, CRP is a purely declarative paradigm. Procedural aspects—how the pro-
gram should execute—do not disturb the programmer from focusing on what the program

15eXtensible Markup Language.

44

REFERENCES

should do. Today, one increasingly important aspect is the ability of a program to exe-
cute in parallel. In CRP, parallelization would not be something the programmer has to
consider—after all, executing in parallel is a question of how rather than what. Instead,
the CRP implementation could be parallelized: for instance, programs built with a com-
binator and two subprograms would execute the two subprograms in parallel because the
implementation of the combinator would be parallelized.

However, much work remains to be done in order to make visual CRP a viable tool
for commercial systems development. Pure side-effect free programming is not enough;
programs with side-effects need to be included and dealt with in the visual CRP model.
Furthermore, we believe that in order to be adopted by the systems development industry,
visual CRP has to co-exist with and communicate with existing object-oriented code (e.g.
the .NET or the Java platforms)—just as F# is fully integrated on the .NET platform.

Fundamental recursion operators for double recursion would need to be devised, in order
to provide adequate tools for dealing with common data structures such as binary trees. A
duality theorem corresponding to the one proven for primitive recursive list relations (foldr
and foldl) should be pursued. Additional “user-friendly” recursion operators need to be
constructed on top of these new double recursion operators as well as the already existing
foldright and foldleft—providing the programmer with a palette of adequate easy-to-use
recursion operators tailored for the problem at hand.

In order to implement a commercially viable CRP environment, several other issues need
to be considered as well. Concerning datatypes: should CRP be strongly typed (unlike
the Combilog-Prolog implementation used in the examples in this thesis)? How should the
visual CRP language be implemented—i.e. what should the output of the automatic code
generator be? How should this implementation be optimized for efficiency? How should
the visual IDE be designed—using color schemes, sound effects etc.?

We argue that the most promising attempt to make CRP viable for large-scale use in
commercial systems development would be to implement it on the .NET platform. At first
an implementation in F# seems natural, since many issues regarding side-effects and co-
operation with existing object-oriented code have already been handled in that language.

References

[1] P. Abrahamsson, K. Conboy, and X. Wang, ’lots done, more to do’: the cur-
rent state of agile systems development research., European Journal of Information
Systems, 18 (2009), pp. 281–284.

[2] J. Agust́ı, J. Puigsegur, and D. Robertson, A visual syntax for logic and logic
programming, Journal of Visual Languages & Computing, 9 (1998), pp. 399 – 427.

[3] J. Brookshear, Computer Science — an Overview, Pearson Education, Boston,
MA., 2008.

45

REFERENCES

[4] P. Chen, The entity–relationship model—toward a unified view of data, ACM Trans-
actions on Database Systems, 1 (1976), pp. 9–36.

[5] K. L. Clarke, Negation as Failure, Plenum Press, New York, USA, 1978, pp. 293–
322.

[6] E. F. Codd, A relational model of data for large shared data banks, ACM, 13 (1970),
pp. 377–387.

[7] A. Colmerauer, H. Kanoui, M. v. Caneghem, R. Pasero, and P. Roussel,
Un système de communication homme-machine en français, Univ. Aix-Marseilles, II
(1973).

[8] O.-J. Dahl, E. Dijkstra, and C. Hoare, A case against the go to statement,
Communications of the ACM, 11 (1968).

[9] A. Dennis, B. Haley Wixom, and R. M. Roth, Systems Analysis and Design,
John Wiley & Sons, Inc., Hoboken, NJ, USA, 2006.

[10] E. W. Dijkstra, A case against the go-to statement, Communications of the ACM,
11 (1968), pp. 147–148.

[11] L. Euler, Lettres à une princesse d’Allemagne, l’Academie Imperiale des Sciences,
St. Petersburg, 1768.

[12] S. Gregor and G. Jones, The anatomy of a design theory, Journal of the Associ-
ation for Information Systems, 8 (2004), pp. 312–335.

[13] A. Hamfelt and J. F. Nilsson, Constructing logic programs with higher order
predicates, in Procs. of GULP-PRODE’95, the Joint Conference on Declarative Pro-
gramming 1995, M. Alpuente and M. I. Sessa, eds., Università degli Studi di Salerno,
1995, pp. 307–312.

[14] A. Hamfelt and J. F. Nilsson, Inductive metalogic programming, in Procs. of
Workshop on Inductive Logic Programming, S. Wrobel, ed., 237, Bad Honnef, Bonn,
1995, GMD-Studien.

[15] A. Hamfelt and J. F. Nilsson, Declarative logic programming with primitive re-
cursive relations on lists, Maher, P. (ed.) Proceedings of the Joint International Con-
ference and Symposium on Logic Programming, (1996), pp. 230–243.

[16] A. Hamfelt and J. F. Nilsson, Towards a logic programming methodology based
on higher-order predicates, New Generation Computing, 15 (1997), pp. 421–448.

[17] A. Hamfelt and J. F. Nilsson, Inductive logic programming with well-modedness
constaints, in The 8th Int. Workshop on Functional and Logic Programming, Grenoble,
1999, Laboratoire LEIBNIZ, Centre National de la Recherce Scientifique.

46

REFERENCES

[18] A. Hamfelt and J. F. Nilsson, Inductive synthesis of logic programs by composi-
tion of combinatory program schemes, in Procs. of Workshop on Logic Based Program
Transformation and Synthesis 1998, P. Flener, ed., vol. Lecture Notes in Computer
Science of 1559, Springer Verlag, 1999.

[19] A. Hamfelt, J. F. Nilsson, and N. Oldager, Logic program synthesis as prob-
lem reduction using combining forms, Journal of Automated Software Engineering, 8
(2001), pp. 165–191.

[20] A. Hamfelt, J. F. Nilsson, and A. Vitoria, A combinatory form
of pure logic programs and its compositional semantics, unpublished,
http://www.anst.uu.se/andhamlt/pub/Combilog.ps, (1998).

[21] D. Harel, On visual formalisms, Communications of the ACM, 31 (1988), pp. 514–
530.

[22] A. Håkansson, Graphic Representation and Visualisation as Modelling Support for
the Knowledge Acquisition Process, PhD thesis, Uppsala University, Computer Sci-
ence, 2003.

[23] A. Håkansson, L. Oestreicher, T. Jonsson, and A. Hamfelt, Vicoll - a
visual compositional logic language, in Human-Centric Computing Languages and En-
vironments, 2001. Proceedings IEEE Symposia on, 2001, pp. 394 –395.

[24] R. Kowalski, The early years of logic programming, Communications of the ACM,
3 (1988).

[25] C. Larman, Applying UML and Patterns, Pearson Education, Upper Saddle River,
NJ, USA, 2005.

[26] R. C. Martin and M. Martin, Agile Principles, Patterns, and Practices in C#,
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

[27] S. J. Mellor and M. Balcer, Executable UML: A Foundation for Model-Driven
Architectures, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002. Foreword By-Jacoboson, Ivar.

[28] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, Model-Driven Archi-
tecture, vol. 2426/2002 of Lecture Notes in Computer Science, Springer Verlag,
Berlin/Heidelberg, 2002, pp. 233–239.

[29] J. F. Nilsson, Combinatory logic programming, in Procs. of the 2nd Workshop on
Metaprogramming in Logic, M. Bruynooghe, ed., K U Leuwen, april 1990, pp. 187–
202.

[30] T. Petricek and J. Skeet, Real-World Functional Programming—With examples
in F# and C#, Manning Publications, Greenwich, CT., 2010.

47

REFERENCES

[31] P. V. Roy and S. Haridi, Concepts, Techniques, and Models of Computer Pro-
gramming, MIT Press, Cambridge, MA, USA, 2004.

[32] J. Venn, Symbolic logic, McMillan, London, 1881.

48

APPENDIX A

Appendix A

An eight-queens solver in Combilog

This is an example program for solving the eight-queens problem, written in a Prolog-
based implementation of Combilog. The program itself is found at line 83 ff. Lines 1–82
constitute the Combilog implementation.

1 apply(true, [_]).

2 apply(id, [X, X]).

3 apply(id(X), [X]) :- apply(id, [X, X]).

4

5 /*

6 Definitions of combinators

7 */

8

9 apply(and(P,Q), [X]) :-

10 apply(make([1], P), [X]), apply(make([1], Q), [X]).

11 apply(and(P,Q), [X1, X2]) :-

12 apply(make([1, 2], P), [X1, X2]),

13 apply(make([1, 2], Q), [X1, X2]).

14 apply(and(P, Q), [X1, X2, X3]) :-

15 apply(make([1, 2, 3], P), [X1, X2, X3]),

16 apply(make([1, 2, 3], Q), [X1, X2, X3]).

17 /* Etc... */

18

19 apply(or(P,Q), [X]) :-

20 apply(make([1], P), [X]); (make([1], Q), [X]).

21 apply(or(P,Q), [X1, X2]) :-

22 apply(make([1, 2], P), [X1, X2]);

23 apply(make([1, 2], Q), [X1, X2]).

24 apply(or(P, Q), [X1, X2, X3]) :-

25 apply(make([1, 2, 3], P), [X1, X2, X3]);

26 apply(make([1, 2, 3], Q), [X1, X2, X3]).

27

28 /* Definition of "make" */

29

30 apply(make([1], P), [X1]) :- apply(P, [X1]).

31 apply(make([1], P), [X1]) :- apply(P, [X1, X2]).

32 apply(make([1], P), [X1]) :- apply(P, [X1, X2, X3]).

33

34 apply(make([1, 2], P), [X1, X2]) :- apply(P, [X1]).

35 apply(make([1, 2], P), [X1, X2]) :- apply(P, [X1, X2]).

36 apply(make([1, 2], P), [X1, X2]) :- apply(P, [X1, X2, X3]).

49

APPENDIX A

37

38 apply(make([1, 2, 3], P), [X1, X2, X3]) :- apply(P, [X1]).

39 apply(make([1, 2, 3], P), [X1, X2, X3]) :- apply(P, [X1, X2]).

40 apply(make([1, 2, 3], P), [X1, X2, X3]) :- apply(P, [X1, X2, X3]).

41

42 apply(make([1, 3, 2], P), [X1, X3, X2]) :- apply(P, [X1, X2]).

43

44 apply(make([3, 1, 2], P), [X3, X1, X2]) :- apply(P, [X1, X2]).

45

46

47

48 /* Recursion operators */

49 apply(foldr(P, Q), [[], Y, Z]) :- apply(Q, [Y, Z]).

50 apply(foldr(P, Q), [[X | T], Y, W]) :-

51 apply(foldr(P, Q), [T, Y, Z]), apply(P, [X, Z, W]).

52

53 apply(foldl(P, Q), [[], Y, Z]) :- apply(Q, [Y, Z]).

54 apply(foldl(P, Q), [[X | T], Y, W]) :-

55 apply(P, [X, Y, Z]), apply(foldl(P, Q), [T, Z, W]).

56

57

58 apply(natrec(P, Q), [X, Y]) :-

59 apply(foldr(p(P), q(Q)), [X, _, [Y, _]]).

60 apply(p(P), [X, [V, T], [W, [X | T]]]) :-

61 apply(make([1, 2, 3], P), [[X | T], V, W]).

62 apply(q(Q), [_, [V, []]]) :- apply(make([1], Q), [V]).

63

64 /* Recursion operator that applies P to all elements in List */

65 apply(foreachRecursion(P), [List]) :-

66 apply(make([1], foldr(make([1, 2, 3], P), true)), [List]).

67

68 /* Recursion operator which applies P to the head and the tail of List */

69 apply(foreachNatrec(P), [List]) :-

70 apply(make([1], natrec(make([1], P), true)), [List]).

71

72 apply(append, [L1, L2, R]) :-

73 apply(foldr(cons, id), [L1, L2, R]).

74

75 /* This is not implemented using pure Combilog */

76 apply(member, [X, L]) :- member1(X, L).

77 member1(X, [X | L]).

78 member1(X, [Y | L]) :- member1(X, L).

79

50

APPENDIX A

80 apply(length, [List, R]) :-

81 length(List, R).

82

83 /**

84 EightQueens as a Combilog program

85 */

86

87 /*

88 (This uses Prolog built-in predicates)

89 */

90 apply(notInCheck, [X/Y, X1/Y1]) :-

91 X =\= X1, Y =\= Y1, abs(Y1-Y) =\= abs(X1-X).

92

93 /*

94 Succeeds if Queen does not hold X1/Y1 in check.

95 */

96 apply(notInCheckWith(Queen), [X1/Y1]) :-

97 apply(notInCheck, [Queen, X1/Y1]).

98

99 /*

100 Succeeds if X/Y is on the board (8x8 squares)

101 */

102 apply(isOnBoard, [X/Y]) :-

103 apply(and(make([1, 3, 2], member),

104 make([3, 1, 2], member)), [X, Y, [1,2,3,4,5,6,7,8]]).

105

106 /*

107 Succeeds if Queen is not in check with any queen in Queens.

108 */

109 apply(nocheck, [Queen, Queens]) :-

110 apply(foreachRecursion(notInCheckWith(Queen)), [Queens]).

111

112 /*

113 Succeeds if Queen is on the board an not in check

114 with any queen in Rest.

115 */

116 apply(queenOnBoardAndOkWithRest, [[Queen | Rest]]) :-

117 apply(and(isOnBoard, nocheck), [Queen, Rest]).

118

119 /*

120 Succeeds if Queens is a legal placement of queens on the board.

121 */

122 apply(legal, [Queens]) :-

51

APPENDIX A

123 apply(foreachNatrec(queenOnBoardAndOkWithRest), [Queens]).

124

125 /*

126 Succeeds if Queens is a valid placement of 8 queens on the board.

127 */

128 apply(eightQueens, [Queens]) :-

129 apply(and(length, legal), [Queens, 8]).

52

APPENDIX B

Appendix B

A matching parentheses parser

Now we will look at another example program in CRP. First we will show it visually, using
the proposed visual model. Subsequently we will give the corresponding Combilog-Prolog
code. In the code example, the program itself is found at line 111 ff. Lines 1–110 constitute
the Combilog implementation.

Visual representation

Figure 10: parenthesesOK. The top-level program. (The corresponding code is found at line
145.)

53

APPENDIX B

Figure 11: checkParentheses. One of the subprograms to parenthesesOK. (Line 136.)

Figure 12: caseIsLeftSign. One of the subprograms to checkParentheses. (Line 129.)

54

APPENDIX B

Figure 13: caseIsRightSign. One of the subprograms to checkParentheses. (Line 126.)

Figure 14: caseIsOtherSign. One of the subprograms to checkParentheses. (Line 132.)

55

APPENDIX B

Figure 15: isOtherSign. One of the subprograms to caseIsIOtherSign. (Line 122.)

Figure 16: parenthesisPair. This is a basic program stating facts, namely which parenthesis
pairs we handle in our matching parenthesis parser. (Lines 118–120.)

56

APPENDIX B

Textual representation

1 apply(true, [_]).

2 apply(id, [X, X]).

3 apply(id(X1), [X2]) :- apply(id, [X1, X2]).

4 apply(cons, [Head, Tail, [Head | Tail]]).

5 apply(not(not(P)), ArgList) :- apply(P, ArgList).

6 apply(not(P), ArgList) :- \+ apply(P, ArgList).

7

8 /*

9 Definitions of combinators

10 */

11

12 apply(and(P, Q), ArgList) :-

13 apply(P, ArgList), apply(Q, ArgList).

14 apply(and(P, Q, R), ArgList) :-

15 apply(P, ArgList), apply(Q, ArgList), apply(R, ArgList).

16

17 apply(or(P, Q), ArgList) :-

18 apply(P, ArgList); apply(Q, ArgList).

19 apply(or(P, Q, R), ArgList) :-

20 apply(P, ArgList); apply(Q, ArgList); apply(R, ArgList).

21

22 /* Implementation of "make" */

23

24 /*

25 General "makes"

26 */

27 apply(make([1], P), [X1]) :- apply(P, [X1]).

28 apply(make([1], P), [X1]) :- apply(P, [X1, X2]).

29 apply(make([1], P), [X1]) :- apply(P, [X1, X2, X3]).

30 apply(make([1], P), [X1]) :- apply(P, [X1, X2, X3, X4]).

31

32 apply(make([1, 2], P), [X1, X2]) :- apply(P, [X1]).

33 apply(make([1, 2], P), [X1, X2]) :- apply(P, [X1, X2]).

34 apply(make([1, 2], P), [X1, X2]) :- apply(P, [X1, X2, X3]).

35 apply(make([1, 2], P), [X1, X2]) :-

36 apply(P, [X1, X2, X3, X4]).

37

38 apply(make([1, 2, 3], P), [X1, X2, X3]) :- apply(P, [X1]).

39 apply(make([1, 2, 3], P), [X1, X2, X3]) :- apply(P, [X1, X2]).

40 apply(make([1, 2, 3], P), [X1, X2, X3]) :-

41 apply(P, [X1, X2, X3]).

57

APPENDIX B

42 apply(make([1, 2, 3], P), [X1, X2, X3]) :-

43 apply(P, [X1, X2, X3, X4]).

44

45 apply(make([1, 2, 3, 4], P), [X1, X2, X3, X4]) :- apply(P, [X1]).

46 apply(make([1, 2, 3, 4], P), [X1, X2, X3, X4]) :- apply(P, [X1, X2]).

47 apply(make([1, 2, 3, 4], P), [X1, X2, X3, X4]) :-

48 apply(P, [X1, X2, X3]).

49 apply(make([1, 2, 3, 4], P), [X1, X2, X3, X4]) :-

50 apply(P, [X1, X2, X3, X4]).

51

52 /*

53 Specific "makes"

54 */

55 apply(make([2], P), [X2]) :- apply(P, [X1, X2]).

56 apply(make([2], P), [X2]) :- apply(P, [X1, X2, X3]).

57 apply(make([1, 3], P), [X1, X3]) :- apply(P, [X1, X2, X3]).

58 apply(make([2, 1], P), [X2, X1]) :- apply(P, [X1]).

59 apply(make([2, 1], P), [X2, X1]) :- apply(P, [X1, X2]).

60 apply(make([2, 1], P), [X2, X1]) :- apply(P, [X1, X2, X3]).

61 apply(make([2, 3], P), [X2, X3]) :- apply(P, [X1, X2, X3]).

62 apply(make([1, 3, 2], P), [X1, X3, X2]) :- apply(P, [X1, X2, X3]).

63 apply(make([1, 3, 2], P), [X1, X3, X2]) :- apply(P, [X1, X2]).

64 apply(make([3, 2, 1], P), [X3, X2, X1]) :- apply(P, [X1, X2, X3]).

65 apply(make([3, 2, 1], P), [X3, X2, X1]) :- apply(P, [X1, X2]).

66 apply(make([2, 1, 3], P), [X2, X1, X3]) :- apply(P, [X1]).

67 apply(make([2, 1, 3], P), [X2, X1, X3]) :- apply(P, [X1, X2, X3]).

68 apply(make([3, 1, 2], P), [X3, X1, X2]) :- apply(P, [X1, X2, X3]).

69 apply(make([4, 3, 2, 1], P), [X4, X3, X2, X1]) :-

70 apply(P, [X1, X2, X3, X4]).

71 apply(make([2, 3, 4, 1], P), [X2, X3, X4, X1]) :- apply(P, [X1, X2]).

72 apply(make([4, 3], P), [X4, X3]) :- apply(P, [X1, X2, X3]).

73 apply(make([3, 4, 1], P), [X3, X4, X1]) :- apply(P, [X1, X2, X3]).

74

75

76 /* Recursion operators */

77

78 apply(foldr(P, Q), [L, Y, Z]) :- apply(Q, [L, Y, Z]).

79 apply(foldr(P, Q), [[X | T], Y, W]) :-

80 apply(foldr(P, Q), [T, Y, Z]), apply(P, [X, Z, W]).

81

82 apply(foldl(P, Q), [L, Y, Z]) :- apply(Q, [L, Y, Z]).

83 apply(foldl(P, Q), [[X | T], Y, W]) :-

84 apply(P, [X, Y, Z]), apply(foldl(P, Q), [T, Z, W]).

58

APPENDIX B

85

86

87 /*

88 User-friendly recursion operators

89 */

90

91 /*

92 Recurse over a list, using an accumulator argument during the recursion.

93

94 Arguments:

95 List: List to recurse over

96 Accumulator: an accumulator argument which changes during the recursion

97 (hence OldAccumulator and NewAccumulator for predicate P)

98

99 Predicates:

100 P: Predicate with 3 arguments(Element, OldAccumulator, NewAccumulator).

101 Q: Base case predicate with 1 argument, to be applied to Accumulator.

102

103 */

104 apply(foreachRecursion(P, Q), [List, Accumulator]) :-

105 apply(foldl(make([1, 2, 3], P),

106 and(make([1, 2, 3], id([])),

107 make([2, 1, 3], Q))), [List, Accumulator, NewAccumulator]).

108

109

110

111 /**

112 A matching parentheses parser in Combilog:

113 */

114

115 /*

116 The allowed parenthesis signs, mapped to each other

117 */

118 apply(parenthesisPair, ["(", ")"]).

119 apply(parenthesisPair, ["{", "}"]).

120 apply(parenthesisPair, ["[", "]"]).

121

122 apply(isOtherSign, [Char]) :-

123 apply(not(or(make([1], parenthesisPair),

124 make([2], parenthesisPair))), [Char]).

125

126 apply(caseIsRightSign, [Char, OldStack, NewStack]) :-

127 apply(and(make([2, 3, 4, 1], parenthesisPair),

59

APPENDIX B

128 make([4, 3, 2, 1], cons)), [Char, OldStack, NewStack, StackPop]).

129 apply(caseIsLeftSign, [Char, OldStack, NewStack]) :-

130 apply(and(make([1, 3, 4], parenthesisPair),

131 make([1, 2, 3], cons)), [Char, OldStack, NewStack]).

132 apply(caseIsOtherSign, [Char, OldStack, NewStack]) :-

133 apply(and(make([1, 2, 3], isOtherSign),

134 make([3, 1, 2], id)), [Char, OldStack, NewStack]).

135

136 apply(checkParentheses, [Char, OldStack, NewStack]) :-

137 apply(or(make([1, 2, 3], caseIsLeftSign),

138 make([1, 2, 3], caseIsRightSign),

139 make([1, 2, 3], caseIsOtherSign)), [Char, OldStack, NewStack]).

140

141 /*

142 Check whether parentheses match in a text,

143 eg. a C# code file.

144 */

145 apply(parenthesesOK, [Text]) :-

146 apply(foreachRecursion(checkParentheses, id([])), [Text, []]).

60

