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Summary

This thesis describes the investigation into the use of visual servoing to keep an
unmanned aerial vehicle (UAV) aligned with overhead electricity distribution
lines, in order to use it to inspect them. The UAV would carry cameras in order to

capture video footage showing the line’s condition.

Firstly, the current methods of inspecting overhead electricity distribution lines,
line-walking and manned helicopters, are described. A review of visual servoing
and the relevant tracking methods is presented. Then a mathematical model of a
ducted-fan UAV is developed. Analysis of the image geometry is performed to
show how movements of the UAV affect the positions that the overhead lines
appear in the images from the UAV’s camera. This analysis shows that it should
be possible to estimate the UAV’s position relative to the lines if two cameras,
one pointing forward and one pointing backwards, are used. The design and
construction of a laboratory test rig to perform experiments is described. Then the
image processing method, based on the Hough transform, used to extract the
overhead lines from the image is described followed by the development of a
tracker, which makes use of fuzzy logic and a Kalman filter, to track the overhead
lines from frame to frame. Experiments are performed to see how well the UAV is
able to follow the lines using the laboratory test rig. Finally, conclusions are
drawn as to how well the system works as well as suggestions for the future

direction of the project.
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Chapter 1 Introduction

1.1 Introduction

In the modern world we are using more and more electrical equipment and are
becoming increasingly reliant on computers in all aspects of life. In order to
support this modern lifestyle, we have become increasingly reliant on a reliable
electricity supply. In addition, more basic requirements for survival are now
dependent on the electricity supply; for example, modern heating systems, while
usually fired by gas or oil, require electricity to run the controllers and so during a
power cut more and more people have no way of heating their homes. People are
also left without lighting and, in many cases, cooking facilities. Power cuts, or
outages, are no longer acceptable to consumers or businesses, and electricity

companies have a duty to keep the electricity supply on.

Figure 1.1: Example Support Pole showing 3-phase Conductors on Pin Insulators and a Pole-
mounted Transformer.

Electricity distribution in the U.K. is usually done by means of 3-phase overhead

lines. These are open conductors supported on wooden poles, an example of

which is shown in Figure 1.1, at a voltage of 11 or 33kV. There are approximately

150,000km of overhead line and 1.5 million wood support poles in the UK.,

which are primarily in rural areas, as most distribution within towns and cities is

done using underground cables. Putting cables underground means that they are
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less susceptible to damage, although any repairs that are required necessitate the
cables being dug up. The use of underground cables is far more expensive than
overhead lines (around five to ten times the cost), hence the use of overhead lines
for rural distribution, where the distances are longer. The lines and poles need
regular inspection to detect faults, check for tree encroachment and ensure a
reliable electricity supply. In addition the law requires the electricity companies to
inspect the distribution lines, and electricity companies may have to pay
compensation to customers if their supply is off for too long. The safety of
members of the public may be at risk if safety measures such as warning notices
and anti-climb guards become damaged or missing and are not replaced. The
electricity companies also need to monitor the state of the lines so that
replacement and upgrade strategies can be planned and estimates of required

future investment can be made.

1.2 Overview of the Thesis
1.2.1 Motivation

In order to ensure a reliable supply of electricity, it is necessary to inspect the
distribution lines regularly. Currently the lines are inspected by inspectors
walking the line and observing its condition. This gives a good written record of
the lines’ condition, with any possible faults recorded, although degradation of the
top of the insulators cannot be seen from below. Unfortunately it is a slow method
of inspection and at times involves inspectors going into fairly rough terrain. On

rare occasions, inspectors can also be attacked by livestock.

An alternative inspection method that is currently used is to inspect the lines from
manned helicopters. This method is quite fast but expensive. Nevertheless, many
companies use this method on a regular basis. Inspection using manned
helicopters is hazardous because the helicopter flies within five to ten metres of
the lines in order for the observer to be close enough to see the overhead line in
sufficient detail for defects to be spotted. This requires great skill from the pilot. It
is difficult to inspect power lines near roads or property due to the risk to people

on the ground.
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This project considers an alternative method of inspection. The idea is to use an
unmanned aerial vehicle (UAV), carrying a camera, which would fly above the
line to capture video, showing its condition. The UAV would be electrically
insulated, so that if it landed on the line, it would not cause a short circuit. The
UAYV would also draw power from the line, which would limit its ability to fly
away from the line. This “tethering” of the UAV to the vicinity of the lines is an
important feature of the concept, with regard to preparing a safety case for the
Civil Aviation Authority (CAA), and is discussed in more detail in Chapter 2. The
video footage of the line could then be lodged in a database and analysed, and the
data used to schedule maintenance. It is believed that this approach will be faster
than walking the line, but without the cost and at reduced risk compared to

manned helicopters.

1.2.2 Aims

The aim of this work is to investigate the possibility of using visual servoing to
control a UAV for power line inspection. This requires the following objectives to .
be fulfilled:

e Develop a mathematical model of the UAV.

e Construct a test rig on which to perform experiments.

e Develop and test a method of locating the overhead lines in the images taken
from a camera onboard the UAV.

e Develop and test a method of tracking the lines from frame to frame.

e Demonstrate visual control of the UAV.

¢ Demonstrate visual control of multiple axes of the UAV.

1.2.3 Structure

Chapter 2 describes the background of the project and includes a description of
the concept of using a UAV for power-line inspection. A review of the literature
for visual servoing is also presented. Based on the review, suitable methods are
selected for guiding the UAYV along the line and tracking of the lines from frame

to frame.
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Chapter 3 presents a mathematical model of the chosen type of UAV, along with

simulation results of the model and the design of a feedback controller.

In Chapter 4 a geometric analysis of how the lines are transformed into the image
is presented. The mathematical model is used to predict how movements of the
UAY in lateral displacement, height, yaw, roll and pitch will affect the positions
of the overhead lines in the image. It is shown that the effect of movements in
different degrees of freedom on the line positions in the image is largely additive,
meaning that it is possible to extract the positibn and pose of the UAV from image
processing. In addition, it is shown that, in order to separate yaw, roll and lateral

displacement a second camera, pointing rearward, is needed.

Chapter 5 describes the laboratory test-rig used for experiments. The extensive
mechanical modification of an existing test-rig is described, along with the design
and construction of a digital position controller, implemented in a microcontroller,
to drive the rig. The structure of the control visual servoing software is also

presented.

The image processing software is described in Chapter 6. This is based on the
Hough transform, which transforms straight lines in the image into points in the
transform space. The selection and testing of the methods of pre-processing of the

image and post-processing of the transform are described.

The development of a tracker to track the lines from frame to frame is described in
Chapter 7. First, an early local search tracker is described. An acquisition routine
that finds the lines to initialise tracking is developed. Refinements are introduced,
including the addition of fuzzy logic rules to detect if the tracker has mistaken a
sideline for the centre line or if the tracker has lost lock on the lines. Finally, a
Kalman filter is added to smooth out noise in the line positions and reduce the
chances of the tracker switching away from the lines. Results for tracking both

lateral displacement and height are also presented.

Chapter 8 describes the use of two cameras, with the tracker algorithm applied to

both video streams, in order to extract yaw and roll as well as lateral
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displacement. Visual control of both the lateral displacement and yaw
simultaneously is demonstrated, along with measuring the roll of the UAV from

the image.

Finally, Chapter 9 discusses the work in this thesis and assesses the extent to
which the objectives have been satisfied. Conclusions are drawn and a discussion

of how the project could be developed in the future is given.

1.3 Contributions of this Research Work

The research described in this thesis makes the following contributions to
knowledge, which, to the best of the author’s knowledge, have not been
previously reported.

¢ A mathematical model for a ducted fan rotorcraft UAV controlled by shifting
its centre of gravity (CG) has been developed.

e An extension of the Hough Transform method, called the Aggregated Hough
Transform, has been developed, which is particularly suited to locating
overhead power lines in aerial images. |

e A model-based visual tracking method, using fuzzy logic and a Kalman filter,
has been developed to track the lines from frame to frame.

e Control of the UAV to keep it aligned with the power line, based on visual
measurement, has been demonstrated. This includes controlling multiple
degrees of freedoms including lateral displacement, yaw and height and
estimating the roll of the UAV.

1.4 Contributions to Published Literature
Published:

[1] Golightly, I.T. and Jones, D.I., Visual control of an unmanned aerial vehicle
Jor power line inspection. in Proc. IEEE Int. Conf. Advanced Robotics (ICAR
2005). 2005. Seattle, USA: 228-295.

This paper was a finalist for the “Boeing Company Best Paper Award”.
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[2] Jones, D., Golightly, I., Roberts, J., Usher, K. and Earp, G., Power line
inspection - a UAV concept. in IEE Forum on: Autonomous Systems. 2005.
London, UK.

Accepted:

[3] Jones, D., Golightly, 1., Roberts, J. and Usher, K., Modeling and Control of a
Robotic Power Line Inspection Vehicle. to appear in Proc. IEEE International
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Chapter 2 Background and
Literature Review

2.1 Overview

This chapter has three main functions. First, it describes the current methods used
for inspecting power distribution lines, and discusses the possible use of a UAV
for power line inspection. Secondly, a review of the current literature on visual
servoing is presented. Finally the theory of Fuzzy Logic and Kalman filtering

used in the tracking software is presented.

2.2 Power Line Inspection

The U.K.’s electricity distribution lines and support poles need regular inspection
in order to comply with legal requirements and to ensure a reliable electricity
supply. As the poles and lines are exposed to the elements, there are many ways
that they can sustain damage. When the lines are inspected, the inspectors are

looking for defects such as:

e Cracked, or degraded insulators.

e Signs of corrosion on the cables.

e Cables that have come off the insulators and are hanging or resting on the
cross-arm.

e Damage to the pole or cross-arm.

e Broken, slack or missing stays.

e Damaged pole-mounted transformers.

¢ Encroachment of trees.

e Traces of arcing.

e Missing or damaged safety notices or anti-climb guards.

If these problems can be detected early, then they can be fixed before they cause a
problem. For example if one conductor comes off its insulator and rests on the

cross-arm, the line will still work, as the cross-arms are not earthed. However, if a
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second conductor comes off, then there will be a short circuit, causing severe
damage and presenting a danger to anyone near the affected pole, as lines could
fall. If the problem is detected early, then the first conductor can be put back onto
its insulator before there is a problem, and the other two conductors can be
checked to make sure they are not about to come off. It is important to check for
tree encroachment as most damage caused to power lines in storms is due to trees
being blown over onto the lines. In addition, if trees grow too close to the line,
then children can climb them and be electrocuted by the line. An example of tree

encroachment is shown in Figure 2.1.

Figure 2.1: Tree Encroaching on a Power Line.

Currently the lines are inspected by inspectors walking the line and observing its
condition. This gives a good written record of the lines condition, with any
possible faults recorded, although degradation of the top of the insulators cannot
be seen from below. This means that not all faults can be seen by this inspection
method. Unfortunately it is a slow method of inspection, as inspectors have to
walk between the poles. They often have to cross walls, fences and hedges, which
slows the process further, and at times the inspectors have to go into fairly rough
terrain, as shown in Figure 2.2. Many of the lines cross farmland and on rare

occasions, inspectors can be attacked by livestock. It can also be quite tedious,

8



Chapter 2 Background and Literature Review

meaning that faults are occasionally not recorded or detail is poor. As there is no
visual record, the inspector’s report has to be relied upon, and it is difficult to tell

if degradation has got worse between inspections.

Figure 2.2: Power line in an Upland Area.

An alternative method of inspection is to use manned helicopters. This method is
also used by National Grid Transco to inspect transmission lines and pylons. This
method is quite fast, but is very expensive. It is also hazardous, as the helicopter
has to fly within five to ten metres of the line in order to allow the observer to see
the lines with sufficient detail. This requires a highly skilled pilot in order to avoid
crashing into the line or the ground and makes it difficult to inspect power lines
near roads of property due to the risk to people on the ground. It can also be
difficult for the observer to tell which pole appears in the image.

A project [4-9] was run at Bangor to improve the quality of inspection from
helicopters by using a video camera on a stabilised mount. A visual tracker to
keep the camera pointing at the poles was developed. This uses a combination of
Differential Global Positioning System (DGPS) and machine vision to lock the
camera onto the pole and keep it locked onto the pole as the helicopter flies past.
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This system should allow the camera operator to zoom in on the pole to capture

video showing its condition.

This thesis considers an alternative method of inspection. The idea is to use an
unmanned aerial vehicle (UAV), which would fly above the line to capture video,

- showing its condition. An early artist’s impression is shown in Figure 2.3.

Figure 2.3: Early Artist’s Impression of the UAV Flying Above the Lines.

The UAYV proposed for the project is a ducted fan rotorcraft. Many rotorcraft of
type have been constructed, rainging from the “flying platform” [10] of the 1950s
to current examples such as [11]. For this work, we have assumed a ducted fan
with contra-rotating propellers (to equalise yaw moment on the airframe) and a
payload above the duct so that the centre of gravity is above the aircraft centre.
Prouty [12] shows that this configuration should be dynamically stable, but only
marginally statically stable with a tendency to drift into translational flight. Ando
[13] indicates that using a duct with a lip, or bellmouth, and placing the centre of
gravity within a very small height range above the aerodynamic centre of the duct,
then the craft can be made asymptotically stable. Height and yaw control of the
craft is provided by adjusting the speed of the rotor blades either together for lift
or differentially for yaw. Control of the pitch and roll axes is provided by moving
the payload mass in the relevant direction. The craft moves in the horizontal plane

by pitching and/or rolling in the desired direction of travel. This means that the

10
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craft is under actuated: the same actuator controls both roll and lateral
displacement, while another actuator controls forward movement and pitch. Some
of the problems associated with this kind of craft are discussed by Hamel [14, 15].
The advantages of using a ducted fan are that the duct improves the hover
efficiency and means that, in the event of a crash, the rotor blades are shielded and
so won’t hit anything. The airfréme would be designed to be electrically

insulating, such that if it comes to rest on the lines, it doesn’t cause a short circuit.

In this concept, it is planned that the UAV will pick up its power from the line
itself. The type of missions that the UAV will be expected to carry out vary in
length and can be quite long, which means that the use of a battery powered
vehicle would not be practical. A UAV powered by an internal combustion engine
or a turbine could be used, although these are very noisy and would require the
carrying of fuel. If the UAV is powered from the line then it is possible to reduce
its weight because there is no need to carry fuel or large numbers of batteries.
There will be the weight of the power pick-up and conversion equipment,
however. An additional advantage of using an electric UAV is that, in the event of
a crash, there is no fuel on board to cause an explosion or a fire. Even though the
UAYV will be powered from the line, the UAV will still need some battery power

as it will need to disconnect from the lines in order to fly over the poles.

One of the problems facing the project is compliance with the CAA regulations on
UAVs [16]. This primarily involves complying with the ‘Sense and Avoid’
requirement to avoid collision with other aircraft. In order to comply with this
requirement, this would require an “intelligent electronic pilot” to be put into the
UAYV. The aim of this project is to design a component of this “pilot” that uses
visual servoing to keep the UAV aligned with the lines. The UAV will also need
to be able to avoid obstacles in its path and work has been done in Bangor by
Matthew Williams [17] on a similar project looking at using vision to achieve this.
Compliance with CAA regulations is another advantage of powering the UAV
from the line. As the UAV is effectively tethered to the line, by its requirement for

power, it cannot fly far from the line and so endanger other aircraft.

11
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For small UAVs (<20kg) that are operated below 400ft and within sight of an
operator, it is possible to operate under the rules for model aircraft [18], although
permission is required for commercial use of UAVs between 7 and 20kg. It would
be possible to operate the power line inspection UAV under the rules in [18] if it
was kept in sight of the operator. To operate a UAV that is over 20kg would
require airworthiness certification. Operating out-of-sight of the operator is
currently not normally permitted and so the aim would be to gain approval for the
use of an on-board electronic pilot with remote monitoring and supervision. The
effective tethering of the UAV to the line will help with the safety case for such a

vehicle.

The control system would guide the UAV along the lines under visual control, but
with the ability for the operator to take control if necessary. The UAV would
capture video showing the condition of the line. This would be viewed off-line to
check for faults, as well as providing a visual record of the condition of the line.
" This would be the most likely way of operating early commercial versions of an
inspection UAV. For the UAV to become economically attractive, longer-range
missions with operation out-of-sight of the operator would be necessary. A
business case for using a UAV for power line inspection is given in [19]. The use
of a UAV should give higher quality video footage of the line and be cheaper and
safer than using manned helicopters, as well as being quicker than line walking. A
longer-term aim would be to have the UAV more autonomous. It may also be
possible to include some fault detection software, to automatically spot faults on

the lines.

2.3 Visual Servoing

Visual Servoing [20, 21] refers to the control of robots or vehicles using vision to
provide the control feedback signals in real-time using a closed vision loop. In
older systems, referred to as “look then move”, an image would be captured and
processed to locate the feature of interest. This robot would then move to the
calculated position with no more input from the vision system. The term visual
servoing is believed to have been used first in 1979 by Hill and Park [22]. Visual

servoing can be used for both factory robots in a structured environment and for

12
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robots operating in real-world environments. There is an excellent tutorial on
visual servoing by Hutchinson et al. [23]. Visual Servoing is a very wide field and

is addressed by many researchers.

Visual servoing systems all use one or more cameras for input. These can either
be fixed in the workspace, looking at the robot and target, or mounted to the robot
end-effector, referred to as “eye-in-hand™. Factory robots can use either system,
but when visual servoing is used to control a vehicle, the camera is mounted onto
the vehicle, and so they are eye-in-hand systems. The images from the camera are
processed in real-time in order to locate the required target in the image. As well
as processing the current frame, the vision system needs to match features found
in the current frame with those found in the previous frame and thus track the
target object from each frame to the next. These trackers usually use a predictive
filter, in order to aid finding the target object in each new frame and also to reduce
the effect of noise on the measurements. Once this has been done, the current
position of the robot or vehicle relative to the target is calculated and the
difference between the demanded position and the current position is calculated
and this error signal is used to drive the robot. This is updated with each frame

from the camera.

The primary problems associated with visual servoing are associated with the
image processing. In unstructured environments, features in the background can
affect the location of the target in the image, by providing alternative possibilities
as to what the target is. Changing lighting can also affect the processing of images
and so affect the ability of the vision system to find the target. As the vision
system has to run in real time, there is a compromise between accuracy and speed:
it is often necessary to use less accurate image processing methods in order to
allow the vision system to process frames sufficiently fast to provide control input

to the robot or vehicle.

A lot of the current research is into the use of visual servoing to control robots that
operate in the real world. These include using visual servoing to manoeuvre small
robots around buildings [24, 25], visual control of cars or other motor vehicles

[26-29] and visual control of aerial vehicles.

13
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As this project involves guiding a UAV along electricity distribution lines, it was
necessary to look at the literature to find what techniques are in use for controlling
UAVs. There are a number of UAV projects using visual servoing happening
around the world and there are summaries of some of these by Ollero [30] and
Kontitsis [31]. The UAVs used are primarily helicopters or rotorcraft, but there
are projects that use airships. A variety of techniques are used to process the
images to estimate the position of the UAV. These include optical flow, stereo
vision, pattern matching, edge detection and the Hough transform. The techniques
chosen are suited to the particular application, rather than there being universal

techniques.

Hrabar el al. [32] used a combination of optic flow and stereo vision for guiding a
UAV through urban canyons. This uses optical flow to estimate the speed and
rotation of the UAV and also locating objects to be avoided. Stereo vision is used
to locate objects in the field of view for obstacle avoidance. The outputs from
both of these are combined, giving priority to any objects found by the stereo

vision, as this is good at finding objects that are in front of the vehicle.

Work has also been done by Mejias et al. [33] into guiding UAVs through urban
canyons. In this case the UAV uses visual servoing, in addition to GPS, to guide
itself towards features of interest, in this case, windows on buildings. It uses
colour segmentation to highlight them in the image. This image is then
thresholded to produce a binary image. A square finding algorithm is used to
locate the window in the binary image. A Kalman filter is used in tracking the

location of the window in the image from frame to frame.

Amidi [34, 35] developed a visual odometer for autonomous helicopters. This
works by detecting arbitrary objects on the ground and then using template
matching to track objects on the ground and estimating the helicopter’s position
by the movement of these objects within the images from the stereo cameras. The
system is also able to measure changes in yaw and height of the helicopter by

changes in the appearance of the objects in the images,

14
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The ELEVA project [36, 37] is a project to develop a UAV for the inspection of
electricity pylons. This project intends to use a small helicopter to inspect
electricity transmission lines. The system uses a Hough Transform to extract the
lines from images of the lines; these are then tracked from frame to frame. Stereo
vision is also used to estimate the distance from the lines. The helicopter sends
images to a ground-based computer for processing via radio link and control
signals are sent back up to the helicopter. The control computer allows a user to
manually override control of the helicopter in the event of a problem. The visual
servoing is augmented with inputs from Differential Global Positioning System

(DGPS), an inertial measurement unit and a laser altimeter.

Mejias et al. [38] have been working on using machine vision to locate a safe
landing area for landing a UAYV in the event of a forced landing being required.
The paper considers a power line inspection vehicle inspecting a line that is forced
to land within a very short period of time. In order to do this, a forward pointing
camera is used to detect the lines. When the system is no longer able to detect the
lines, focus is switched to a downward pointing camera in order to look for a
landing site. In order to search for a landing site, a contrast threshold is applied to
the image in order to pick out obstacles on the ground. An edge detector is then
applied to give the edges of the obstacles. The UAV then heads towards the
largest area free of obstacles. This work was tested on the Air Vehicle Simulator
(AVS) [39, 40] at the Autonomous Systems Laboratory, CSIRO, Australia.

The optical flow and stereo vision techniques could be useful for avoiding objects
while inspecting power lines. These would primarily involve debris resting on the
line, tree encroachment and occasions where insulators are above the level of the
lines and work has already been done into using optical flow for this purpose by
Matthew Williams [17]. Optical flow may also be able to detect when the UAV is
approaching a support pole. Template matching could also be useful for locating
poles while inspecting power lines. The aims of the ELEVA project are quite
similar to those of this project and also uses image processing based on the Hough
transform in order to locate the lines. Carelli et al [25] use an edge detector and a
similar line classification to extract lines from the scene, although this is being

used to guide a wheeled robot along corridors. The ability for the UAV to land
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itself in case of an emergency will be needed for a final inspection UAV. This

ability may also be useful for landing the UAYV at the end of a mission.

2.4 Tracking

Tracking involves taking features found in an image frame and locating the same
features in subsequentb frames. Davison [41] describes four main tracking

methods:

¢ Exhaustive search, where the entire image, or the transform space in this case,
is searched for a match between the object being tracked in the previous frame
and the current frame.

e Local search: this is similar to exhaustive search except that only the local
area around the point at which the object would be expected to be found is
searched.

e Kalman Filter [42]: this attempts to find a best estimate of the object’s
position by combining a prediction from the previous frames with the
measurement of the object’s position in the current frame. All the errors are
assumed to have a Gaussian distribution and are used form a weighting factor
to combine the prediction and measurement.

e Particle Filter [43]: this also uses errors to produce position estimates but
unlike the Kalman filter, the errors are not assumed to be Gaussian. Instead the
error function is represented by a number of particles, which allows more

~ complex error functions to be represented, including multi-modal functions,

allowing multiple-hypothesis testing.

In this project, the image is processed using a Hough Transform, which
transforms lines in the image to points in the transform space. A tracker was
developed to track the points in the transform space. This tracker started as a
Local Search tracker and was later adapted to include a Kalman filter. In addition,
fuzzy logic is used in the tracker for hypothesis testing. The Hough Transform,
Fuzzy logic and the Kalman filter are briefly described in the following sections.
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2.4.1 Hough Transform

The Hough Transform is a well-known method for extracting lines that match
parameterized functions from an image. The most common case is classifying
straight lines in normal form according to their angle (0) and distance from the

image centre (p).

In order to create the transform, an edge detector is used to pick out lines in the
image, and then each line is classified by its angle and distance from the image

centre.

The transform consists of a 2D array of accumulators addressed by p and 6. For
each edge pixel, the relevant accumulator is incremented. After this process is
completed, the transform is normalised such that all the accumulators have a value
between zero and one. A threshold, called the Hough Transform threshold (H
threshold), is then applied. This picks out the features of interest and suppresses
background noise. For this application, clusters of points are aggregated to a
single point. An example image and the resulting transform are shown in Figure

24.

(a) (b)

Figure 2.4: Typical Result showing: (a) the Three Overhead Lines Overlaid with the Straight
Lines Generated by the Hough Transform and (b) the Corresponding Points in the Hough
Transform Space.

17



Chapter 2 Background and Literature Review

2.42 Fuzzy Logic

Boolean logic is a useful method of decision making in situations where it is clear
which category a given case belongs to. In many cases, however there is a grey
area between the two categories. In these cases the possible categories form a
fuzzy set and fuzzy logic [44, 45] can be used to differentiate between them.
Figure 2.5 shows the different membership functions (p) of a Boolean set (dotted)
and a fuzzy set (solid). The value of p indicates the probability of a given case

belonging to category 2.
heo §
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Figure 2.5: Classic and Fuzzy Set Membership Functions.

In order to determine which category a particular case belongs to, the value of
some measure, M, is used. M is a measure associated with the situation and is
indicative of the category a case belongs to. Depending on the situation, multiple
measures may be appropriate, with fuzzy rules combineing the measures. If M is
very high or very low then the case can be assigned to either category 2 or 1
respectively. For values of M that relate to a probability of around 0.5 then more
information is needed to decide which category the case belongs to. This can be
obtained from repeated measurements, which will either increase or decrease the
probability value. As it is extremely unlikely to obtain perfect 0 or 1 probability
values, it is necessary to defuzzify the set. This can be done by approximating the
membership function to piece-wise linear. This creates a not sure category in

between the two categories. When a case lies in this category, repeated
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measurements must be made until the probability measure lies in one of the other

two categories.

u’CZ A
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Category Not Sure Category
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Figure 2.6: Defuzzifying a Fuzzy Set.

The tracking algorithm (Chapter 7) typically encounters a number of situations
that require a decision to be made on the basis of uncertain data and this is where
fuzzy logic is applied. For instance the tracker could mistake one of the sidelines
for the centre line and cause a missing sideline in the Aggregated Hough
transform (AHT). However, this could also be caused by a sideline disappearing
from the frame. As it is not immediately apparent which of these situations has
occurred, a fuzzy logic rule is used to distinguish between the two cases. A full

account of the method is given in section 7.4.

2.4.3 Kalman Filter

When the lines are tracked from frame to frame, a measurement of their position
in each frame is produced. Due to the nature of image processing, these
measurements are quite noisy. In order to improve their accuracy, it is normal to
filter the measurements. This smooths out the noise in order to give a more
accurate estimate of the line’s position. In 1960 Kalman published the Kalman
filter [42, 46], which is a recursive filter. It gives an optimal solution if the errors

in the measurements being filtered have a Gaussian distribution. With other error
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probability density functions, the Kalman filter can still give good results; in order

to use it in these situations, the errors are assumed to be Gaussian.

For the line tracking Kalman filters will be used to filter the p and 0 values of
each line. The Kalman filter has four stages:

e Calculate the Kalman gain: this determines the fraction of the estimate that is
from the prediction and the fraction from the measurement.

e Update the estimate.

e Update the error (variance) associated with the estimate.

e Calculate the prediction for the next frame and its associated error (variance).

This is shown in Figure 2.7.
Initial Prediction and Variances of
Variance In Measurements In
| Compute Kalman Gam | ( MeasurementsIn )
Calculate prediction and Combine Measurement and
associated variance for Prediction to produce Updated
the next step. - Estimate
C
Compute variance in the (_ Estimates Out

D

Updated Estimate

]

Figure 2.7: Operation of the Kalman Filter.
In Chapter 7, results for the performance of the tracking algorithm are presented

with and without the Kalman filter.

2.5 Summary

In this chapter, a case has been made for using a UAV to improve the quality and

speed of power line inspection. In order to navigate along the lines, the UAV must
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be able to measure its position relative to the lines. The remainder of this thesis is
an investigation of using machine vision for this purpose, allowing visual servoing
of the UAV to be implemented. The following chapters describe the modelling of
the UAV, how the overhead lines are located in the image and the closed-loop

visual servoing of the UAV.
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3.1 Introduction

The UAV that is proposed for use in this application is a ducted fan rotorcraft,
based on the ‘flying platform’ principle [10] discussed in section 2.2. This has the
Centre of Gravity (CG) deliberately placed above the aircraft centre (AC) to give
dynamic stability in hover [12]. Early construction of a laboratory demonstrator
version of the craft is shown in Figure 3.1. This rotorcraft is approximately 35cm
in diameter and 25cm high; the craft used for inspecting the lines would be larger.
As the mathematical model developed in this chapter is for the small laboratory
demonstrator, rather than a full sized inspection UAV it will be more easily

affected by wind gusts.

Figure 3.1: Ducted-fan Rotorcraft with Half of the Duct Removed to show the Twin Motors,
Counter-rotating Propellers and Internal Construction.

The payload (not shown) is to be mounted above the duct and attitude control is

accomplished by moving a mass to change the position of the CG. Lift and yaw

control are achieved by changing the propeller speeds collectively or

differentially. Overall, the design is quite similar to that described by Sherman et

al [11].
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3.2 UAV Model

Ando [13] has derived a simple 3 degree of freedom dynamic model for this
configuration which suggests that placing the CG within a very small range of
locations above the AC gives both static and dynamic stability. In practice, it is
anticipated that active (gyro) stabilization will be necessary but starting with a
system that has near passive stability is attractive. Ando’s model is extended, as
shown in Figure 3.2, to include a servo-controlled payload mass (m,) on a
prismatic joint with origin at a distance £ above AC; this places the CG a distance
h above AC. Moving this mass to the right causes a moment about AC, Mac,
causing the duct to ‘topple’ clockwise and the horizontal thrust component thus
produced accelerates it to the right. As the duct moves to the right, a force, Ha,
acts against the duct; due to the presence of a lip, or bellmouth, at the top of the
duct, H, produces a moment that tries to return the duct to the upright position. It
should also be noted that the velocity, U, the duct velocity, Up, and Hy in Figure
3.2 are defined in the opposite direction to the expected motion; this is a
convention taken from Ando’s model. When testing the visual servoing, this
model will be applied to the left/right displacement and roll axes, although in this
chapter only pitch will be referred to; it should be noted that this model applies
equally to the left/right/roll and forward/backward/pitch axes.

m.g

Figure 3.2: Forces, Moments and Velocities for the Ducted-fan Model.
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If we assume that the thrust, Ta, is adjusted such that its vertical component
balances mg, where m=m,+m, and m, is the aircraft mass, giving a hover
condition and that 6 remains small, the acceleration of the UAV and the pitch

angle are given by (3.1) and (3.2).
U=-g0-2u-89 ()
V 14

where:
g is the acceleration due to gravity
V is the velocity of air through the duct

2
G=Lpg 4| LOM _Kmg hoM é+(la—"i—1%)cf (32)
I I 06 v 10U 10U IV

where:

I is the moment of inertia of the UAV

oM
ou

acceleration and are assumed to be constant, as done in [13]. The moment about

and _651154_ give the contributions to the moment due to the velocity an angular

AC due to moving my is given by:

M, =m,gAx (3.3)

If (3.2) and (3.3) are combined and the coefficients of § and U in (3.2) are
replaced by K; and K, this gives:

. Mg

0=

Ax+K0+K,U (3.4)

By taking parameters from our lab demonstrator or using Ando’s non-
dimensionalised values and calculating estimated values for our lab demonstrator.

The value of h is chosen in order to give a stable response. The values used are:
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m,=0.7kg
m,=1.4kg
h=0.125m
V=16.59ms-1
1=0.0656 kgm2

oM =0.1559Ns
ou

éy.— =-0.0580Nms
00

If these are substituted into (3.1) and (3.4) this gives:
U =-9.810-0.591U - 0.07399 (3.5)

6 =104.7Ax - 0.8830 + 0.0103U (3.6)

These equations can be used to simulate the UAV to see how it will perform.

3.3 UAYV Simulation

3.3.1 Simulation of the UAV

The equations for the UAV were modelled in Simulink. Initially this was tested
with a step input into the deltaX input, giving a ramp position output and a
constant speed after the transient response. This showed that the payload needed
to move only a tiny amount: Imm movement of the payload caused a speed of
10ms™. This would require the movement of a large mass with great precision. To
solve this problem it was decided that the payload should be fixed and instead
carry a moveable mass to tip the UAV. This moveable mass forms an actuator to
tip the UAV. The mass is modelled as 1% of the payload mass. This changes (3.6)

to:

6 =1.047Ax-0.8830 +0.0103U (3.7)
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Equations (3.5) and (3.7) were modelled in Simulink. Figure 3.3 shows the
Simulink model of the UAV; the direction of U, shown in Figure 3.2 is opposite
to the expected direction of travel; in order to correct this the Simulink model
incorporates an inverting gain on U. The UAV model in Figure 3.3 was made into

a Simulink subsystem and tested using the Simulink model shown in Figure 3.4.

1 dtheta | 1
s | d_theta "1 s [ theta
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Integrator Integratort
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Figure 3.3: Simulink Model of UAV.
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Figure 3.4: Simulink Model used to Test the UAVY Model.

To test the UAV model, a step input was put into the actuator input (deltaX) to tip

the duct. It would be expected that this would produce a constant speed response,
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after the initial transient, and an increasing position response at a constant rate.
This is because moving the actuator causes the duct to tip. However, as the duct
tips, a back force, H,, acts such as to stop the duct tipping. The tipping moment
from the actuator is balanced by Ho meaning that, for a given actuator input, the

duct settles at a constant pitch and so has a constant speed.
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Figure 3.5: UAV Position, Speed and Pitch Response.

Figure 3.5 shows the result of putting a step input into the UAV’s actuator. The
upper graph shows the velocity, U, (solid) and pitch angle, 0, (dashed), while the
middle graph shows the lateral position of the duct and the lower graph shows the
step input to the actuator. The graphs show that the UAV has quite a slow

response time. The response is as expected for the chosen CG position.

As the UAV will be simulated in real-time on a computer at a fixed sample rate, it
is necessary for the model to work in discrete time. The model will be run at
25Hz, which is considerably faster than the response of the UAV; according to
[47] a discrete approximation to integration should give a good match with the
continuous time model. As backward Euler integrators are easy to code in

software, the model was converted to discrete time using the backward Euler rule.
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Figure 3.6 shows the discrete-time Simulink model of the UAV; the unit delay
blocks represent the fact that the values used come from the previous time-step.

This model was tested using the Simulink model shown in Figure 3.7.

LK Tsz thets , |KTs2 .
d2theta gl d_theta kgl theta '®

z1 Theta
Disorete-Time Disorete-Timne

Integrator Integratord
Unit Delay Gain{

1.

Unit Delay1 Gain2

1 0.0103
z

Unit Dalay2 Saind

1
- | 0.501
z
K T
s >l
du ,1 ] U
Disorete-Tima Gaind

Integrator2

Figure 3.6: Discrete-time Version of UAV Model.
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Figure 3.7: Simulink Model used to Test the Discrete-time UAV Model.

Figure 3.8 shows that the response of the discrete UAV model matches well with

the continuous time version.
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Figure 3.8: Discrete-time UAV Model Response.

3.3.2 Position Control Loop

This application requires position control of the UAV and so a position control
loop was wrapped around the UAV model in Figure 3.6. The aim is to control the
lateral position of the UAV with respect to the overhead lines. This requires a
lateral position feedback loop. The system is shown in Figure 3.9. Normally, the
lateral position of the UAV is estimated from image processing shown in the
vision-processing loop. In order to bring the UAV into the vicinity of the lines and
in case vision feedback fails, there is also a feedback loop using DGPS. The
model switches to vision feedback when the lines are acquired and away to DGPS

if the lines are lost or the UAV strays to far from the lines.
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Figure 3.9: System Model, where X, is the lateral position resulting from the demand
position, X,q.
SISOtool was used to select an optimal position loop gain (Kp or Ky). Working
from the block diagram in Figure 3.3, the transfer function of the UAV, from Ax
to U is:

Uls) _ 0.0774s+10.27

= 3.8
Ax(s) s3+1.474s2+0.523s+0.101( )

The speed, U, is integrated to give the position, X. The transfer function from Ax
to X is:

X(s) _ 0.0774s +10.27

= 3.9
Ax(s) s4+1.474s’+o.523s2+o.101s( )

The transfer function for the position of the UAV was entered into SISOtool and |
the resulting root locus is shown in Figure 3.10. In order to see the pole, it was
necessary to zoom in on the region around the origin; the zoomed in version is

shown in Figure 3.11.
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Figure 3.10: Root Locus for the UAV,
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Figure 3.11: Zoomed-in Version of the Root Locus for the UAV,
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Critical damping occurs with a gain of 0.00074. The step response is shown in
Figure 3.12.

Step Response
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Figure 3.12: Step Response with Critical Damping.

It can be seen in Figure 3.12 that at critical damping, the UAV’s response is very
slow. If the gain is increased the system becomes faster but oscillatory and with a
gain above 0.0032 the system becomes unstable. A good compromise between
speed and oscillation occurs with a gain of 0.001. Figure 3.13 shows that the
response at this value of gain is under-damped but quicker than critical damping.
It may be possible to design a compensator to help improve the speed of response
but maintain the damping, although this would be differential in nature, and so
tend to increase the signal noise. It is believed that the scope to improve the
response by this method is limited and so instead, the use of pitch rate feedback is

considered; this is discussed in section 3.4.
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Figure 3.13: Underdamped Step Response for a Loop Gain of 0.001.

As the system is actually being run in discrete time, the continuous to discrete
time conversion function of SISOtool was used to convert the root locus to
discrete time. The step response for the discrete time model could then be seen.
The discrete root locus is shown in Figure 3.14 and Figure 3.15 shows the root

locus zoomed in on the unit circle; the discrete step response is shown in Figure

3.16.

It can be seen from Figure 3.16 that the response is virtually identical to the
continuous time model. As with the continuous time case, it can be seen from

Figure 3.15 that the poles are close to the stability margin.
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Figure 3.14: Discrete-time Root Locus for the UAV.
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Figure 3.15: Zoomed-in Version of the Discrete-time Root Locus for the UAV.
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UAV Model
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Figure 3.16: Discrete-time Step Response for a Loop gain of 0.001.

3.3.3 Simulation of Position Feedback Control of the UAV

As the UAV will be subjected to wind gusts, the model of Figure 3.9 incorporates

their effect into the simulation. Figure 3.18 shows the UAV model with wind gust

input while Figure 3.17 shows the position controller.
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Figure 3.17: Discrete UAV Position Controller.
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Figure 3.18: UAV Model with Wind Gust Input.

The UAV was tested with a step demand of Sm and its response is shown in
Figure 3.19. In order to test the response to wind, a pulse wind gust of strength
1ms™ for 5s was applied. This is quite a strong gust for a small UAV like the one
that is modelled. The response to the wind gust is shown in Figure 3.20.

Figure 3.19 shows the demand (dashed) and the response (solid), which matches
well with the response from SISOtool.
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Figure 3.20: Pulse Wind Gust Response of UAV Model.
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Figure 3.20 shows that the system is able to recover from a wind gust, but is quite
slow to do it; it is also displaced a considerable distance from the demanded
position (dashed). It should be noted that, while the wind gust to cause the effect
seen in Figure 3.20 may seem small, the UAV modelled is a small laboratory
demonstrator, which is much more easily affected by wind compared to a larger

UAYV, as would actually be used for inspection purposes.

The UAV model was programmed into the test rig control computer (to be
described in Chapter 5). The position response of the UAV to a step input to the
UAV’s actuator (Ax) could then be obtained when it is being simulated by the
laboratory test-rig. Figure 3.21 shows the response from the Simulink model
(dash-dotted) and the measured rig response (solid). It can be seen that there is a
good match between the two. Also shown is the response of the bare test rig (i.e.
no UAV model (dashed)). It can be seen that the natural test-rig response is much

faster than the UAV and so it is able to simulate the UAV’s movement accurately.

14 . I e T e
12

10 P i b . .

Lat. Pos. (m)

Time (s)

Figure 3.21: Comparison of the Step Response Produced by the Test Rig and the Off-line
Simulation; the Raw Test rig Response is also shown.
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3.4 Pitch Rate Feedback

The UAV’s speed of response should improve with the addition of pitch rate
feedback. An investigation into this was undertaken by Dr Dewi Jones, which
showed an improved response speed if a pitch rate gyro and compensator are
added. The gyro bandwidth is significantly faster than the UAV dynamics and so
could be omitted from the model. The compensator transfer function is shown in
(3.10) and the Simulink model in Figure 3.22.

0.4545s +1

C..ls)= 3.10

w(s) 10s® +100.1s +1 (3.10)

GO —1—po0we8 C—>l Vg S
In =1

Gain Discrate- Time

Integrator2
Disorete-Time
Unit Delay Gain2  infegratort Unit Delayt QGain3
KT 1 KTsz 1
il Al 1
»1 z z1 z

Disorete-Time Gaint
Integrator

Figure 3.22: Pitch Rate Compensator.

The UAV model was modified to give pitch rate output as shown in Figure 3.24.
Gains were selected for the controller to obtain a faster response than previously

but without too much overshoot. The controller is shown in Figure 3.23.
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Figure 3.23: Controller with Pitch Rate Feedback.
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Figure 3.24: UAV Model with Pitch Rate Output.

As with the previous controller, the UAV model with pitch rate feedback was

tested with a step demand of 5Sm and a wind gust of 1ms™ for Ss.
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Figure 3.25: Step Response of UAV with Pitch Rate Feedback.
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Figure 3.25 shows the UAV response (solid) to a step demand (dashed); for
comparison the step response of the UAV without pitch rate feedback is shown
(dash-dotted). It can be seen that the UAV responds in about half the time
compared with the model with no pitch rate feedback, although there is now a

small steady state error.
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Figure 3.26: UAV Response to Wind Gust with Pitch Rate Feedback.

Figure 3.26 shows the result of a wind gust (solid). It can be seen that the UAV
responds more quickly than without pitch rate feedback and also doesn’t stray as
far from the demand (dashed); for comparison the response to the same sized

wind gust for the UAV without pitch rate feedback is shown (dash-dotted).

The pitch rate feedback was programmed into the real-time UAV model on the
test rig control computer and its response compared with the off-line Simulink
version. Figure 3.27 shows that there is good agreement between the test rig
model (solid) and the Simulink model (dash-dotted) although there may be some
effect from the test-rig dynamics as the UAV now has a faster response; the raw
test rig response is shown (dotted), showing that the rig time constant remains

well below that of the new UAV model. Often in Hardware-in-the-Loop

41



Chapter 3 UAV Model

simulators an inverse transfer function of the test-rig is included in order to try to
remove the dynamics of the rig; this would likely become necessary in this project
if we wish to simulate a faster UAV. Also shown in Figure 3.27 is the UAV
model with position feedback only (dashed), showing the improved response

speed with pitch rate feedback.

Time (s)

Figure 3.27: Comparison of Step Responses of UAV Model with and without Pitch Rate
Feedback and Test Rig.

3.5 Conclusions

A model of the UAV has been developed in this chapter. With pitch-rate feedback
it has a reasonably fast position response but with some overshoot. It will give a
good basis on which to test the vision software. It should be noted that, as
construction of the laboratory demonstrator is not complete, it has not been
possible to validate the model with data from the real craft. Also, the model is
limited to two degrees of freedom, and it is currently assumed that there will be
little interaction between the forward/backward direction and the left/right model.
This is likely to be a reasonable assumption, due to the symmetrical nature of the
UAYV, but again there is no experimental data to validate this. There will be some
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interaction between pitch and lift, as when the UAV pitches, a component of the
thrust acts horizontally and so the vertical thrust is reduced. It should also be
noted that the model is linear and at extremes, the small angle assumptions break
down. The model assumes that the aerodynamic derivatives are constant but, in
practice, they change with operating conditions. What this means in practice is
that you can arrange for the CG to be within a small interval that gives stability
but this interval changes as the aerodynamic derivatives change, so getting true

passive stability is unlikely.

The current model is for a small laboratory demonstrator, rather than a full sizes
UAYV, as would be used for inspection. When data for such a craft becomes
available it could be simulated. It would be expected that it will be less affected
by wind, due to its larger mass, although its response time may be slower.
Another future development will be to look at using a UAV that is not passively
stable but uses gyro stabilisation to give a faster response. The limitation on the
pitch rate response is due to the non-minimum phase zero introduced by the servo

mechanism that controls the mass, m,,.
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4.1 Introduction

This chapter describes a mathematical model of the effect of UAV motion on the
resulting image. The geometric transformation of the lines in the 3D world into
the 2D image is modelled in order to predict how the UAV’s motion affects their
position in the image. Ideally, processing the image should yield the height, lateral
displacement, yaw, pitch and roll of the vehicle with respect to the lines. It would
not be expected to obtain its distance along the lines from image processing, as
their position in the image is invariant to the UAV’s longitudinal position. It is
shown here that height and pitch can be estimated from processing the frames
from a single camera pointing forward and angled down along the lines, but that
yaw, roll and lateral displacement cannot be fully separated. It is also shown that
the use of a second camera, pointing backwards, allows the separation of yaw, roll

and lateral displacement.

4.2 Analysis for One Camera

The camera is assumed to be mounted on the UAV looking forwards. The UAV
will pitch forward in order to travel along the lines and so this will cause the
camera to be pointed down at the lines. The pitch angle that will be used for flying
the UAV forward along the lines on the actual UAV used for inspection is not yet
known; it may be necessary to pitch the forward camera down relative to the duct.
Currently the pitch angle is assumed to be 20° Figure 3.8 indicates that this
corresponds to a forward speed of Sms™. This is a reasonable speed for the final
UAV to travel at along the lines, although it may be on the high side. It is not
currently known how this speed will scale up with a full-sized UAV. This camera
configuration was chosen as it allows the lines to be seen but also to see ahead
along the lines. A camera pointing vertically downwards may have some
advantage for measuring yaw and lateral displacement relative to the lines, but
this would need to be mounted below the duct and on the proposed UAV the
payload is above the duct; in addition the image would be complicated by the

power pick-up appearing in it. The position of the power lines is known in world
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space, {W}. In order to see how a line will appear in the image its co-ordinates
must be transformed into a reference frame centred on the camera lens, {C} as

shown in Figure 4.1.

Optical
. Axis

Figure 4.1: Reference Frame Definitions.

4.2.1 Mathematical Model

The relationship between the position of a point on the power line in the world
space {W} and its image co-ordinates is defined by a sequence of transformations
[48], based on the reference frames shown in Figure 4.1. The co-ordinates (Xc,
Yc, Zc) of a point in {C} are related to a point in {W} by a translation, u, from the
origin in {W} to the centre of the camera mount, three rotations through the Euler
angles yaw (a), pitch (B) and roll (y) to a reference frame centred on the UAYV,
{A}. This is followed by a translation, £, to the centre of the camera lens, {C}. It
should be noted that a, B and y are being used in this case for the yaw, pitch and
roll, rather than the conventional y, 0 and ¢, as 0 is used for one of the Hough
Transform variables. In order to create the image there is then a perspective
transformation into the image. The transformations are given in homogeneous co-

ordinates, as discussed in [48]. The sequence of transformations is given by:
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Xl [t 0 00|11 00 0] [cosy O siny 0

Ye ] 101 00100 1 0 —¢f| 0 1 of,
Zc 000 101001 o -siny 0 cosy O

Yl o -2 00000 1 0 0 1

L2 1L 4 i

1 0 0 0] [cos@ -sine 0 0] [1 0 0 -X,] [X,
0 cosp -sinf 0| |sin@ cosa 0 0{ 10 1 0 -Y, [V,
0 sing cosg 0/ 0 o 10lloo1 -z|]|z
0 0 0 1[0 0 01 0 00 1 1
4.1)

where £ is the distance between the rotation point of the camera and the lens
centre and A is its focal length. Dividing the X¢, Yc and Z¢ co-ordinates by —Y¢/A

gives the points in the (x, z) image plane, placed at Y¢ = -A. These are given by:

_ Xc _Zc
x—_f_g_ andz--Y_C “4.2)
A A

4.2.1.1 Analysis for Lateral Displacement

Applying equation (4.1) to a straight-line model of the centre conductor, placed at
Xw = 0 and Zw = -Z;, where Z_ is the vertical height of the camera centre above
the line, generates a corresponding line in the image. Applying the Hough
Transform then gives p and 0 values of the lines as a function of the camera pose.
Consider, for instance, an UAV that is displaced laterally by X, to either side of
the centre line. Assume that the vehicle is flying along the lines at constant speed,
and so has a fixed pitch, B. Assume also that a and y are zero. Equation (4.1)

becomes:
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- 1 - -
Xe|[1 0 00100 0]t o 0 0
YC_OIOO*OIO—Z*Ocosﬂ—sin,BO*
Zc |10 0 1 01'1p 01 0 0 sinfg cosf O
“Yelfo-200/looo 1]lo o 0 1
L2 1L 4 i
1 0 0 -X, 0
010 O Y,
7l 43)
001 0 -Z,
0 0 0 1 1
This becomes:
(X | [ -X, ]
Y, Y,cosf+Z,sinf—-¢
Z. |T| Y,sinf-Z,cosp (4.4)
~-Y, _Y,cosB+Z, sinf-1
L A 1 L A i
From (4.4), using (4.2), the image co-ordinates are given by:
e -,v(,,. o z=/1(YWsinﬂ—ZL.cosﬂ) “5)
Y,cosf+Z,sinf—¢ Y,cosf+Z sinf-¢
Applying the Hough Transform then gives:
0=tan-‘(i) and p =xcos@—zsinf (4.6)
z
and hence:
0 = tan™ - — X, and
Y,sinff-Z,cosf
p= —AX, cose—l(YWsmﬂ—ZL,cos'B)sinB 4.7
Y,cosf+Z,sinf—¢ YycosB+Z,sinf-1¢
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Constants Kx), Kx» and Kx3 can be defined as follows:
Ky =Y,sinf-Z,cosfp (4.8)

_ AY, sinf-2Z, cos )
X2 Y,cosf+Z,sinf—{

(4.9)

Ky, = 2 - (4.10)
Y,cosf+Z,sinff—1{

Re-arranging (4.12) and evaluating the constants Kxi, Kx2 and Kx; for fixed

values of £, B, A, Yw and Z, gives:

0=tan"[X" ) and
KX]

Xll -1 Xu - : -1 Xu
p=- K., cos(tan (Kxn JJ Ky, sm(tan (Kxn D 4.11)

This converts to:

0= tan"’[ X, J and
KXI

X

X, 1 K
sz X1

p:— — ———— .
e

+ ¥ + u

KXl KXI

where both p and 0 are seen to vary with lateral displacement, X,.

(4.12)

4.2.1.2 Analysis for Roll

Applying the same procedure to the roll axis, y, (assuming X, is zero), gives the

image co-ordinates as:
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i Y, sm,b’smy—ZL.cos,Bsmy and
Y,cosB+Z,sinf—4

i Y, smﬂcosy—ZL.cos,Bcosy (4.13)
Y,cosf+Z, sinff~1

and applying the Hough Transform gives:
O=y and p=0 (4.14)

In (4.14) 6 changes with roll angle while p is identically zero. Full analysis is

presented in Appendix A.

4.2.1.3 Analysis for Yaw

If the same procedure is applied to the yaw axis, a, with y and X, kept at zero,

then the image co-ordinates are:

Y, sina

- and
Y, cosacos f+Z, sinff~4£

x=1

Y, cosasinf—-Z, cos B
Y, cosacosf+Z,sinff—¢

z=-1

4.15)

and applying the Hough Transform gives:

0= tan-" —-Y,sina and
Y, cosasin f-Z, cos B
p= —AX, . cosg — A sinf-Z, cos ) sinf (4.16)
Y, cosf+Z,sin B¢ Yycosf+Z, sinf—¢

When the yaw angle (q) is varied, we see from (4.16) that p and 6 vary, although

it should be noted that changes very little. Full analysis is presented in Appendix
A.
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Summarising, equations (4.12), (4.14) and (4.16) show that both p and 6 of the
centre line change with lateral displacement and with yaw, although it should be
noted that 0 changes very little with yaw; an example showing the effect of lateral
displacement and yaw of a camera is given in [49]. However, roll of the UAV
only changes that value of 0 of the centre line. Thus an ambiguity occurs, because
any pair of values of y and a can be chosen independently to alias a given lateral
displacement, X,. In other words, it is possible for a finite value of X, to be
produced by a combination of yaw and a roll of the UAV, despite the real value
being zero. It is concluded that X,, ¥ and a cannot all be estimated from just two

variables, p and 0, obtained from a single camera.

4.2.1.4 Analysis for Height

If we apply equation (4.1) to a model of the centre conductor and vary the height
of the UAV from its “normal” height above the lines, Z;, by a distance Z, then we

get the following:
Xe|[t 0 00[r1 00 071 o 0 0
Ye | |01 001101 0 -£[,|0 cosp ~sinf O,
Z, 00 1011001 0|0 sinf cosf O
Xeilo-Looflooo 1]lo o o 1
L 2 ] L A d
1 0 0 0 0
010 O Y,
| 7| @17
001 -2||-2 *17)
00 0 1 1
This becomes:
Cx: ] T 0 ]
Y. Y, cosB+(Z, +Z,)sinf—¢
Z. || Y,sing-(Z,+2Z)cosp (4.18)
-Y. _YWcos,B+(ZL+Zu)sinﬂ—£
L A 1 L A _

From (4.18), using (4.2), the image co-ordinates are given by:
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Y, sin f-(Z, +Z, )cos §

x=0and z=-4 -
Y, cos f+(Z,+Z,)sinf -1

(4.19)

Applying the Hough Transform then gives:

0=0and p=0 (4.20)

It can be seen that the height of the UAV above the lines does not affect the

position of the centre line in the image.

4.2.1.5 Analysis for Height applied to a Sideline

If the same analysis is done for a sideline at a lateral distance Xg from the centre

line, then we get following:

X1t 0 00100 011 o 0 o0
Ye _OIOO*OIO—Z*Ocosﬂ-—sin,BO*
Zc 1710 0 1. 0/1g 01 0|0 sing cosg O
“Yeljo =L oo 000 1]|lo o 0 1
L a4 ] L A i

[1 0 0 o - X

010 0 Y

* P 1421

001 -2z||-2 (421)

000 1 1
This becomes;

—Xc- [ —Xs ]

Y, Y,cosB+(Z,+Z,)sin f—¢

Z. |Z| Y,snB-(Z,+Z)cosp | (422)

=Y. | | _YycosB+(Z, +Z,)sinB—1

L A J L A J

From (4.22), using (4.2), the image co-ordinates are given by:

‘LXS
x= - an
Yy cosB+(Z, +Z, )sin g~

d
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Y, sin B~(Z, +Z,)cos B
Y, cosB+(Z, +Z,)sin g4

z=-—

(4.23)

Applying the Hough Transform then gives:

6 = tan™ - X and
Y, sin B~(Z, +Z,)cos B
p= AX : cosO+ 1 szmﬂ—(ZL+Zu).cos,B sind
Y, cos f+(Z, +Z,)sin B~ Y, cosfB+(Z, +Z,)sinf—¢

(4.24)

It can be seen that while the centre line does not change position in the image with

varying height, the positions of the sidelines do vary in both p and 6.

4.2.1.6 Analysis for Pitch

A similar analysis for the pitch gives no change of the centre line position in the
image with changing pitch although the positions of the sidelines do vary with

pitch. The image co-ordinates are given by:

AX g
x= - and
Y,cosfp+Z,sinff—4£

s=—] Y, sm,B—ZL.cos,B (4.25)
YycosB+Z,sinf—¢

Applying the Hough Transform then gives:

6 =tan™ - AXs and
Y,sinff~Z, cosf
p= AXs _ cosf+A Yy sin _ZL_COS'B sin@ (4.26)
Y,cosf+Z,sin B~/ Y,cosB+Z, sinff—¢
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Full analysis is presented in Appendix A. It can be seen that, while the position of
the centre line in the image is unaffected by height or pitch, the positions of the
sidelines do vary. Thus it should be possible to estimate the height and pitch of the
UAYV from the distances in p and 0 between the sidelines and the centre line. As
the two sidelines are at approximately equal distances either side of the centre
line, the mean distance between a sideline and the centre line could be used (0,
pa). Height affects both py and 84 while pitch affects pq, but has very little effect
on 6. It should, therefore, be possible to determine both the height and pitch of
the UAV from one camera. Distance along the lines does not affect the positions

of the lines in the image, as would be expected.

4.2.2 Model Validation in MATLAB

In order to assess whether the geometric model is an acceptable representation of
the test rig, an image was effectively synthesized by evaluating equation (4.1) for
parameter values taken from the test rig, Yw = 150mm, y =a =0, § = 20°, { =
30mm and Z; = 80mm. A small refinement was to use a parabolic model of the
lines to approximate their catenary shape. The Hough Transform of the
synthesized image was then calculated as each of the UAV’s six degrees of
freedom were changed one at a time. Figure 4.2 shows that the model predicts pc
(dash-dotted) and 6c¢ (solid) for the centre conductor will vary almost linearly with
lateral displacement X,. Also shown in Figure 4.2 are the mean of the Hough co-
ordinates of the two outer conductors relative to the centre conductor, py (dotted)

and 64 (dashed). These are calculated using:

0, = (eL “90)+(ac _HR)
‘ 2

Py = (pL _pC)+(pC _pR) (4.27)

2
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Figure 4.2: Comparison of Geometric Model Predictions (lines) and Test Rig Measurements
(discrete points) for Lateral Displacement of the Vehicle from the Centre Line.

To see how the model compares with results from the test rig, a sequence of
images, a sub-sampled version of which is shown in Figure 4.3, was produced
with a lateral translation of the camera on the test rig. These were then processed
using the Hough Transform, described in Chapter 6, to obtain the p and 6 values
of the three lines. The data points measured directly on the test rig were plotted
onto Figure 4.2 (pc, X; Oc, 0; p4, O; 64, +). There is good agreement between the
data points measured directly on the test rig and the model prediction. The
discrepancies between the model and the measurements in pc (for negative X,)
and in O¢ (for positive X,) are thought to be due to a slight offset of the lines at
zero displacement on the test rig, and slight differences in the scaling of the
image. There is also good agreement for the mean of the Hough co-ordinates of
the two outer conductors relative to the centre conductor, which is seen to be

relatively insensitive to lateral displacement.
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Figure 4.3: Lateral Displacement Image Sequence.

It can be seen that pc and O¢c change approximately linearly with lateral
displacement, X. If these are assumed to be linear then the value of the slope will

relate the values of X to pc and Oc. If the inverses of each slope are defined as Xg

and X, (where X, and X, are 2—'; and aa—X ), then the value of X can be calculated
D

using either:

X=X,0 (428)

X=X,p (429)

Measuring the values X and X, from the test rig data in Figure 4.2 gives:
Xp=0.048
X, =-0.0433

The lateral displacement could be obtained individually from either p or 8 but for
the testing done in Chapter 7 the average was used:
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X=X,,,6'+pr

: (4.30)

The same procedure was repeated for yaw, roll, pitch and height above the lines.
Again image sequences were obtained from the test rig. Because the test rig
doesn’t have roll or height adjustment, these sequences had to be obtained
manually, i.e. the camera had to be taken off the rig and moved relative to the
lines by hand. This accounts for the larger amount of noise in these two data sets.
The results for yaw, roll, height above the lines and pitch are shown in Figure 4.4,
Figure 4.5, Figure 4.6 and Figure 4.7 respectively. Line styles are as for the lateral

displacement results (Figure 4.2).

p (pixels) o (deg)
o

|

-60 2 e i i . = |
-15 -10 5 0 5 10 15
Yaw (deg)

Figure 4.4: Comparison of Geometric Model Predictions (lines) and Test Rig Measurements
(discrete points) for Yaw of the Vehicle.

Figure 4.4 shows that pc changes roughly linearly with yaw, as predicted, but

there is virtually no change in 8¢c. The positions of the outer lines relative to the

centre line are insensitive to yaw. There is again good agreement between the test

rig and model results.
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Figure 4.5: Comparison of Geometric Model Predictions (lines) and Test Rig Measurements
(discrete points) for Roll of the Vehicle.
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Figure 4.6: Comparison of Geometric Model Predictions (lines) and Test Rig Measurements
(discrete points) for Varying Vehicle Height above the Lines.
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Figure 4.5 shows that 6c changes linearly with roll, as predicted, but there is
virtually no change in pc. The positions of the outer lines relative to the centre line
are insensitive to roll. There is again good agreement between the test rig and

model results.

Figure 4.6 shows that there is no change in the position of the centre line(pc, 0¢)
with height above the lines. There is a change in the mean of the Hough co-

ordinates of the two outer conductors relative to the centre conductor (pg, 04).

40, , e apne N

p (pixels) 0 (deg)
8

5 10 15 20 25 30 35 40 45
Pitch (deg)

Figure 4.7: Comparison of Geometric Model Predictions (lines) and Test Rig Measurements
(discrete points) for Pitch of the Vehicle.

Figure 4.7 shows that, as with height, there is no change in the position of the

centre line in the image with pitch. In this case, there is little change in the 64

values of the outer lines, while there is an almost linear relationship between the

pa values.

It can be seen that the measurements match well with the theoretical model. As
predicted, 64 and pg are only significantly affected by pitch and height meaning
that it should be possible to estimate the height and pitch from 64 and pg. The
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position of the centre line in the image is affected by the lateral position, yaw and
roll. Roll only affects the value of 6c while yaw only significantly affects the
value of pc. Lateral displacement has an effect on both 6¢ and pc. As such it is
possible for a combination of a yaw and a roll to have an equivalent effect on the
image as a lateral translation. It is not, therefore, possible to separate these three
values from the two variables, pc and 8¢. The solution to this problem is discussed

in section 4.3.

4.2.3 Two-axis Modelling in MATLAB

The previous section considered varying individual axes and observed the effect
on the image. However the results do not show the effect of any cross coupling
between axes. Here the effect of varying multiple axes is assessed, using the same

procedure as was used for single axes, but varying two axes at a time.

The axes of the UAV can be formed into two groups: those that affect the position
of the centre line in the image (lateral displacement, yaw and roll), the “Centre
Line” group and those that affect 64 and py (height and pitch), the “Difference”
group. If all combinations of two axes were to be tested this would produce a
prohibitive number of tests, therefore, testing was limited to cross coupling within

the groups and between them.

In order to test for cross coupling within the “Centre Line” group, it was
necessary to test three combinations: lateral displacement and yaw, lateral

displacement and roll and roll and yaw.
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Figure 4.8: The Effect of Varying both Yaw and Lateral Displacement on 0.
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Figure 4.9: The Effect of Varying both Yaw and Lateral Displacement on pc.
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It can be seen from Figure 4.8 and Figure 4.9 that there is little cross coupling
between the lateral displacement and yaw axes; the 6c and pc values are
approximately equal to the sum of the contributions to 8¢ and pc from each axis.
This procedure was repeated for the lateral displacement and roll axes and the roll
and yaw axes. The graphs for these tests are shown in Appendix B. It can be
concluded that there is little cross coupling between the lateral displacement, yaw

and roll axes.

There is only one test required for the “Difference™ group: pitch and height. This
test looks for cross coupling between 64 and pgy, as neither axis affects the values

of Oc and pPc-

It can be seen from Figure 4.10 and Figure 4.11 that there is more cross coupling
than there was within the “Centre Line” group, although the height and pitch axes
should be reasonably separable. The cross coupling should be less of a problem

with pitch and height, as the aim would be to maintain the pitch and height within

tight limits.

Pitch () 2 Height (m)

Figure 4.10: The Effect of Varying both Pitch and Height on 0,.
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Figure 4.11: The Effect of Varying both Pitch and Height on py.

In order to test for cross coupling between the two groups of axes, the lateral
displacement and height were varied, and the effect on both 64 and p4 and the
centre line position in the image were measured. This allows the effect each group
of axes has on the other to be seen. As the lateral displacement is measured from

the centre line, the test on the centre line showed the effect on lateral displacement

by changing the height.

Figure 4.12 and Figure 4.13 show that there is cross coupling between height and
lateral displacement. Varying the height will affect the position of the centre line
in the image if there is also lateral displacement of the UAV, although the effect is
fairly small provided the UAV height is maintained within a couple of metres
above the lines. The effect on the lateral displacement could also be caused by

pitch and the effect could also affect yaw and roll measurement.
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Figure 4.12: The Effect of Varying both Height and Lateral Displacement on 0c.
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Figure 4.13: The Effect of Varying both Height and Lateral Displacement on pc.
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As the height is measured from 64 and py, the test on 64 and pg showed the effect
on height by changing the lateral displacement. The graphs showing this are
shown in Appendix B. This shows that there is some effect on the height
measurement by changing the lateral displacement. This could be predicted by the

84 and pq lines in Figure 4.2. This effect is not caused by yaw or roll.
To summarise, the following cross-coupling effects are seen:

e There is little cross coupling between lateral displacement, yaw and roll.

e There is little cross coupling between height and pitch.

e There is some effect on the measurement of height or pitch by changing the
lateral displacement but not by changing the roll or yaw.

e There is an effect on the measurement of lateral displacement, yaw and roll by

varying height and pitch.

It should be possible to extract the information about all five axes from the image.
There is little cross coupling between most of the axes. The main concern would
be the effect on the lateral displacement, yaw and roll of varying the height. This
shouldn’t present too much of a problem as the aim will be to maintain the height
and pitch within tight limits as the UAV travels along the line, and an estimate of

the height could be fed back into the vision system to compensate for this.

4.3 Analysis for Two Cameras

It has been shown that one camera is insufficient to determine the lateral
displacement, yaw and roll of the UAV. One strategy is to use an independent roll
sensor to resolve the ambiguity. There are forms of GPS that can estimate the roll
of a vehicle by using two antennas or it would be possible to use a roll rate gyro
and integrate the signal to obtain the position. It is possible to combine these two
to improve the accuracy as described in [50]. Another possibility would be to use
a mercury inclinometer, which would consist of a circular tube, mounted
vertically aligned left to right, with a number of contacts spread around its length,
inside the tube, and small amount of mercury, inside the tube; roll could be

measured by which contacts were connected by the mercury. Mercury
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inclinometers are sensitive to all acceleration rather than just gravity. All of these
sensors do have a problem with noise and limited accuracy. The known effect of
the roll could then be subtracted from the 6c value from the image and the yaw
and lateral displacement can be extracted from the resulting pc and ¢ values.
Another possibility to separate lateral displacement, yaw and roll is to use a
second camera, pointing backward, and pitched downward relative to the duct, as
shown in Figure 4.14. This should allow the separation of lateral displacement,
yaw and roll as they will affect the position of the centre line in the image from
the backward camera differently to its position in the image from the forward

camera.

Backward Forward
Camera Camera

Payload
Duct

|

Line
Figure 4.14: Mounting of Twin Cameras on the Duct.

The reference frames for two cameras are shown in Figure 4.15, The geometric
model for the forward camera is given by (4.1) and the analysis proceeds in
similar fashion to Section 4.2, except that the value of £ is larger. This is due to
the cameras being back to back, requiring them to be placed further from the
vertical axis of rotation. The geometric model for the rear-pointing camera is
similar to (4.1) and is shown in (4.31). The differences are: the camera is pitched

down from the rotorcraft by an angle ¢, giving an extra transformation; the yaw
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angle is incremented by n due to the camera pointing rearward and the roll and

pitch are in the opposite direction.

Optical
Zer B Axis
t /YCF
Xcr
Zu, Zea /A {CF}
YWXCB
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u
;Y
Optical * c8
Axis
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Figure 4.15: Reference Frame Definitions for twin Cameras.
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Again, the Hough Transforms for the dual camera case were calculated for a
synthetic image. The simulation was repeated, as for the case of one camera, for
lateral displacement, yaw and roll. The values of p and 6 for both cameras were

plotted against lateral displacement, yaw and roll.
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Figure 4.16: Geometric Model Predictions (lines) and Test Rig Measurements (discrete
points) of pc and O for Varying Lateral Displacement (X,) with Twin Cameras.

Figure 4.16 shows that each camera gives opposite results: as lateral displacement
increases, pcr (dash-dotted) and Ocp (dashed) decrease while pcp (dotted) and Oy
(solid) increase. To see how the model compares with results from the test rig, a
sequence of images was produced, in the same way as for one camera, with a
lateral translation of the cameras on the test rig. These were then processed using
the Aggregated Hough Transform, described in Chapter 6, to obtain the p and 0
values of the three lines. The data points measured directly on the test rig were
plotted onto Figure 4.16 (pcr, X; Ocr, 0; pce, O; Ocp, +). This effect would be
expected because when the UAV moves to the left, the forward-pointing camera
moves to its left but the rearward-pointing camera moves to its right. Example
synthesised images for the two cameras, where the UAV is to the left of the lines,

are shown in Figure 4.17.
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Forward Backward

Figure 4.17: Synthesised Images for the Forward and Backward Camera when the UAV is
Laterally Displaced from the Lines,
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Figure 4.18: Geometric Model Predictions (lines) and Test Rig Measurements (discrete
points) of pc and O for Varying Yaw (a) with Twin Cameras.
Figure 4.18 shows the result for varying yaw angle (a), where it is clear that
changes in pc and 6 are the same for both cameras; the backward camera results
(dotted, dashed) overlap the camera 1 results in the figure. This is as expected
because the rotation occurs in the same sense for both cameras. It can also be seen
that there is a small change in the value of 6 with yaw, compared to the single
camera, where there was very little change; this is due to the longer value of { in

the two-camera configuration.
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Figure 4.19: Geometric Model Predictions (lines) and Test Rig Measurements (discrete
points) of pc and 0¢ for Varying Roll (y) with Twin Cameras.

In contrast, varying the roll angle (y) causes different changes in pc and 6¢ for

each camera as shown in Figure 4.19, which is due to the pitch of the second
camera relative to the UAV. Example synthesised images for the two cameras,

where the UAYV is to the left of the lines, are shown in Figure 4.20.

\

Forward Backward

Figure 4.20: Synthesised Images for the Forward and Backward Camera when the UAV
Rolls.

Because the two cameras yield different results for varying lateral displacement,
yaw and roll, there are now four equations and three unknowns. Estimates of the

position and orientation of the UAV relative to the lines can therefore be made.
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By defining co-efficients that are the values of the slopes of each of the lines in
Figure 4.16, Figure 4.18 and Figure 4.19 the values of pc and 8¢ for each camera

are given by:
Pr = PrxX + praa (4.32)

0p =0 X +60,,a+6,y (433)

P = Ppx X+ pga+ppy (434)
Op =0 X + 6,0+ 6,y (4.35)

where:

O and pr are the values of 6 and p for the centre line from the forward pointing
camera.

0z and pp are the values of 0 and p for the centre line from the backward pointing
camera.

X is the lateral displacement of the UAV

a is the yaw of the UAV

v is the roll of the UAV

Orx, Prx, Orae, Pra €tc. are the coefficients: these are equal to the values of the slope

of the relevant graphs (e.g. Ogx is %%)

Measuring the co-efficient values from the test rig data gives:

Orx=24.9 Ora=1.30 0r,=0.93
Prx=-30.7 Proa=-4.66 PE=0
Opx=-24.9 08.=1.30 Opy=-1.36
pex=30.7 PBa=-4.66 pBy=2.74

Table 4.1: Lateral Displacement, Yaw Roll Co-efficients.

Height and pitch information can be obtained from p4 and 64 from the forward

camera.
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4.4 Conclusions

It has been shown in this chapter that it is theoretically possible to estimate the
pose and position of the UAV relative to the lines. Lateral displacement, yaw and
roll affect the position of the centre line, while pitch and height above the lines
affect the distance between the outer and centre line in Hough space. It is possible
to obtain estimates of the pitch and height from one camera, but in order to obtain
the lateral displacement, yaw and roll it is necessary to combine the results from
two cameras or one camera and a roll sensor. Measurements from the test rig

agreed well with the predictions of the geometric model.
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5.1 Introduction and Overview

In order to perform real-time experimental testing of the image processing,
tracking, controller and UAV model, it was necessary to construct a test rig that
simulates the UAV. While the UAV itself has six degrees of freedom, it was
decided, for simplicity, to limit the rig to the three degrees of freedom: X, Y and
Yaw. These axes were chosen because it is necessary to control the horizontal
position and heading of the UAV relative to the lines. The pitch and height
relative to the lines should remain within tight limits when the UAYV flies along a
line, and so can be assumed to be constant for the purposes of this project. The
roll axis would be useful for simulation, but would add significantly to the
complexity of the rig; a roll axis would be the choice if a fourth axis were to be
added.

The rig used for this project is a large custom-built X-Y table, which carries a
camera. The mechanical subsystem was originally designed by Matthew Williams
[17] but has been extensively modified for use with this project. The test rig
measures approximately 2.5x1.1m and is shown in Figure 5.1. In addition to the
table, the rig comprises a custom-made controller board to control the position of
the camera, and three PCs to run the image processing, tracking, controller and
UAV model.

The rig has position control of the X and Y axes and the Yaw of the camera,
provided by a custom written software controller. Underneath the table is a 30:1
scale model power line. This gives an idealised version of the scene that would be
seen by the UAV. The camera can be steered to simulate the yaw of the rotorcraft,
and has a fixed forward pitch. As the UAV travels forwards along the line at a
constant speed it will maintain a constant pitch in order to achieve this. Although
the pitch angle of the rig’s camera can’t be changed actively during simulation it
is possible to change the pitch angle manually. The X and Y axes are both driven
through timing belts driven by motors. The position of the camera in the X

direction is sensed by an optical encoder driven by the belt, while the Y position is
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sensed by an optical encoder on the motor shaft. The Yaw axis is directly driven

by a motor with an optical encoder attached.

Figure 5.1: Test Rig.

The test rig retains the original table’s mechanical components, but has new X and
Y drives. The camera mount and Yaw axis drive are also new. The whole rig has

been raised on legs, in order to place the camera above the lines. The interface
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between the drives and the controller is identical for each axis, which simplifies

the writing of the control software.

The X-Y table consists of two parallel aluminium channels mounted on a wooden
frame. A carriage runs on each channel with a THK linear V rail fixed between
them. Mounted on each carriage is a pulley housing. Between the two pulleys
there is a toothed belt, which is attached to the camera mount and provides the X
drive for the table. The drive motor itself is mounted on one of the pulley
housings. The position of the belt is sensed by a rotary optical encoder, which is
mounted on the other pulley housing. A second toothed belt runs in the Y
direction between two pulleys mounted at either end of the wooden frame. The
linear V rail is attached to this belt to provide the Y drive. Both the drive motor
and position encoder are attached to the pulley at one end of the rig. The upper

section of the camera mount contains a drive motor and an optical encoder to |
sense the angle of the lower part of the camera mount, which carries the camera
and is rotated by the yaw drive motor. The lower part of the camera mount also
includes a manual pitch setting, allowing the pitch of the camera to be fixed. The
reference frame for the test rig is shown in Figure 5.2. The origin of this reference

frame is at camera level at the top right corner of the rig as shown in Figure 5.1.

Yaw

Y

Figure 5.2: Test Rig Reference Frame.

The position and orientation of the camera is controlled by a dedicated controller.
This circuit board carries a PIC microcontroller that runs the position control
software. This interfaces to the rig motors through DACs and power amplifiers,
and the encoders via dedicated counter chips. The microcontroller receives
position demands from the control PC via a serial connection. This PC runs a

model of the UAV and the visual servoing.
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The femaining sections describe in more detail the mechanical design of the rig
modifications, the modelling of the rig and the electronic and software design of

the controller.

5.2 Mechanical Design

The author designed all the modifications to the test rig. The School’s Mechanical

Workshop carried out the majority of the construction

5.2.1 X Drive

The X drive required the simplest modification, involving the replacement of the
drive belt and the fitting of a rotary encoder to the pulley housing at the non-drive
end of the linear V rail. The existing drive motor and pulley wheels were used.
Figure 5.3 shows the design of the encoder end of the X drive. Figure 5.4 shows

the X drive system.
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Figure 5.3: Design of the X Drive Encoder Pulley Housing,.
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Figure 5.4: X Drive.

5.2.2 Y Drive

The Y drive needed to be replaced completely, with the exception of re-using the
drive motor. It was decided that the best option was to use a toothed belt design as
used in the X drive. This required a pulley mount at one end, and a pulley mount
with the drive motor and position optical encoder at the other. A method of
linking the belt to the linear V rail was required, which needed to avoid the X

drive belt and the camera mount.

Figure 5.5 shows the Y drive pulley housing design while the design for the non-
drive pulley housing and linear V rail link are shown in Figure 5.6. Figure 5.7 is a
photograph of the drive end of the Y mechanism.
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Figure 5.5: Drive Pulley Housing for the Y Drive.
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Figure 5.6: Y Drive Non-drive End Pulley Housing and the Link to the Linear V Rail.
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Figure 5.7: Y Drive.
5.2.3 Camera Mount/Yaw Drive

A new camera mount was required to hold a camera looking down onto the lines
and act as a base for the yaw axis. The design has the motor housing fixed to the
running block so as to be below the linear V rail. The camera mount is attached to
the motor shaft underneath the motor housing. Figure 5.8 shows the yaw assembly

and camera mount and a picture of the camera assembly is shown in Figure 5.9.
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Test Rig
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Figure 5.8: Yaw Assembly and Camera Mount Design.
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Figure 5.9: Camera Mount.

The choice of motor for the yaw axis was limited by the requirement to have a
shaft at both ends, in order to allow the optical encoder to be fitted. The motor
also needed to be approximately 25 mm in diameter and run from 12V. This
limited the choice to a Maxon RE25 or a Maxon A-max 26 motor. It was
necessary to calculate how fast each motor could turn the camera mount, to ensure
it would be fast enough to simulate the rotation of the rotorcraft; a maximum rate
of 1 rad/s was estimated. Both motors were found to be capable of this rate so the

cheaper A-max motor was chosen.
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5.2.4 Twin Camera Mount

For later experiments, two cameras were required, one pointing forwards and one
pointing backwards. A second camera mount was designed and built to do this.
Figure 5.10 shows the design of the mount while Figure 5.11 shows a photograph
of it.

[ Shaft

Camera J I/ Camera

Figure 5.10: Design of the Twin Camera Mount.

Figure 5.11: Twin Camera Mount.
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5.3 Modelling of the Test Rig
5.3.1 Position Feedback Controller

In order to write the control software to provide position control of the test rig, it
was necessary to develop a dynamic model of the rig. The parts of the rig being
moved by each axis form a load, which places an effective moment of inertia on
each motor shaft. A mathematical model of the motor, based on a servo model in
[51], was built in Simulink and is shown in Figure 5.12. A disturbance input is

included, in order to test how well the rig rejects disturbances.

K 1
% —’g —» 5 »(D)
SpeedDem Out1
Kn |«
€D,
Disturbance
Figure 5.12: Motor Model.

Here K is the motor torque constant, R, is the armature resistance, J is the moment
of inertia of the load and n is the gearbox ratio. Values of K and R, for each axis
were obtained from the motor data sheets, while n is known for each gearbox. An
estimate of J needed to be calculated for each axis. For the yaw axis this was done
by calculating the moments of inertia for each of the parts of the camera mount
and the camera and adding them up. As the X and Y axes are rectilinear, J is the
effective inertia. It should also be noted that the loads presented to the motors by
the X and Y axes have a large frictional component, although the load is being

modelled as inertial for this exercise. The inertia can be calculated using:
J=mrt (5.1)
where r is the radius of the belt pulley wheel and m is the mass.

The value or r is known, so what is needed is an estimate of the effective mass in

order to calculate the effective inertia. In order to estimate the mass, a string was
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attached to the drive belt. This was run parallel to the belt until the edge of the test
rig, where it passed over a pulley. Masses were attached to the end of the string
and the mass increased until it was sufficient to move the slider block in the case
of the X axis or the linear V rail in the case of the Y axis. The moment of inertia

was then calculated for the two axes using:

The values for the three axes are shown in Table 5.1.-

Axis Yaw X Y

K (NmA™) 0.0146 0.0163 0.0525

J (kgm®) 5.1x10* 4.5x10™ 52.42x10°
R 2.5 1.23 2.07

n 1 35 27

Table 5.1: Values for the Motor Model for each Axis.

Initially a rig model was built with only the X and Yaw axes, because the Y axis
is expected to behave in a similar manner to the X axis. Figure 5.13 shows this
model, which includes a model for the motor stiction at the input to each motor,

shown in Figure 5.14.

O—» YRy SpeedDem

YawPosDem

Amp Bat Stiction Dut % | 1
—»1 Disturbance YawPosOut
: Rad2Count Integrator Quantizer awros

Yawhiotor

YawDisturbance [

Count2Rad

CO—» At out]——p{speedbem

XPosDem

AmpSaty  Stictiond Out 1 3
r——u Disturbance
Rad2Count1 Integrator! Quantizerq XPosQut

XMotorAndGear

XD

Coun2Rad1

Figure 5.13: Test Rig Model.
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CO—* 4 C—+ (D)

in Out1

Sign Gain

Dead Zone

Figure 5.14: Simulink Stiction Model.

A controller model based on position feedback was implemented. Optimum gains
to give a critically damped response were found using SISOtool and included in
the Simulink model. Due to the non-linearity in the motor model, a higher gain
was needed for the yaw axis than the optimum determined by linear analysis.
Figure 5.15 shows the controller model. This was tested with square wave inputs
into both the X and Yaw axes, to test the step response. The magnitudes of the
demand inputs are £2m (scaled) for the X axis and +45° for the Yaw axis and the

results are shown in Figure 5.16.

(i}

Yaw Disturbance

R

YawPos Dem

YauPos Out |-—j

Yaw Signal

Generator

 XPos Dern
oo O (I I 1A XPosOut
] pix >

X Signal Gaind Quantizar! Saturationt DALY Rig g |
Genarator Count2m

i

X Disturbance

=

Figure 5.15: Test Rig Position Feedback Controller Model.

In Figure 5.16 it can be seen that we get a critically damped response (solid) to the
step demand (dotted) with the X axis, as predicted by SISOtool. The yaw axis

gives a very under-damped response to the step input.
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Yaw (°)
o

X Pos. (m)
o

time (s)
Figure 5.16: Position Feedback Controller Output.
5.3.2 Speed Feedback for the Yaw Axis

Due to the oscillatory response, it was necessary to alter the yaw controller. Speed
feedback was added to the yaw axis. The model was adjusted to give the motor
speed, as shown in Figure 5.17, although on the test rig the speed would be
obtained by differentiating the position signal.

1 Pin1  Outt SpeedDem
—>I> :

YawPosDem -
o g mig2)
Rad2Count Integrator Quantizer
Yawhotor
AT
YawSpeedOut

Quantize2

YDA | . cuniihed
(3} » Piint  Outt SpeedDem

1
XPosDem = i Stictiont m1-—bl>——b- e »(3)
Disturbance XPosOut

Rad2Count1 Integrator! Quantizert

XDhtubance Count2Rad1

XMotorAndGear

Figure 5.17: Test Rig Model With Yaw Speed Output.
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To select the value of the speed feedback, the yaw model was put into SISO tool,
using different values of speed feedback. The best response was found using a
speed feedback gain of 0.1 and a loop gain of 22. The new model was built in
Simulink and tested. Figure 5.18 shows the new model, while the step response is
shown in Figure 5.19. In order to test the disturbance rejection, pulses were
applied to the disturbance inputs of the model. These were of magnitude 1ms™ for

the X axis and 45°%™ for the Yaw axis and the responses are shown in Figure 5.20.

E | | |
g 0 | ; | l : ‘i
o § ! ] i [
x é -' | | | !
0 _10_ __ZLO_ e 50 o _4L0 5 5IO 60 70 80

time (s)

Figure 5.19: Step Response for the Test Rig Model with Speed Feedback on the Yaw Axis.
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Figure 5.20: Disturbance Response for the Test Rig Model with Speed Feedback on the Yaw
Axis.

It can be seen from Figure 5.19 that the Yaw response is very much improved.

Figure 5.20 indicates that the test rig will reject disturbances quite well.

5.3.3 Discrete-time Controller

As the controller will be implemented in software, it was necessary to convert the
model to a discrete-time controller. At this point, a model for the Y axis was
added. Figure 5.21 shows the discrete-time controller model. The step response is

shown in Figure 5.22.

A satisfactory response was obtained for all three axes. It can be seen in Figure
5.22 that the assumption about the step response of the Y axis was correct, in that
it is similar to the X axis. It was then possible to write the controller code.
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Figure 5.21: Descrete-time Controller for Test Rig.
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Figure 5.22: Output for All Three Axes for the Discrete-time Controller.

5.4 Electronic Design

The position sensors on the rig are HP HEDS optical encoders, which produce

digital output and the rig controller needs to communicate with the control PC.

For these reasons, it was decided that it would be easiest to implement the

89



Chapter 5 Test Rig

controller digitally in software. A PIC16F874A microcontroller was chosen to
implement the controller. This has a number of I/O ports, which can be used to
interface with the encoders and motors, as well as a serial port, which can be used
to communicate with the control PC. The optical encoders are connected to the
PIC using dedicated HCTL2016 quadrature decoder chips. These hold a count
representing the current position, and the position can be read out by an 8-bit
interface. The motors are connected using an AD DAC8412F 4-channel 12-bit
DAC. The outputs from this are fed to the motors through L.165 power amplifiers.
Three of the PIC’s ports are assigned to form a bus to interface with the DAC and
counters. A crystal oscillator provides the clock for the PIC and counters at a
frequency of 3.6864MHz. This value was chosen because the PIC generates the
baud clock for the serial port from this clock and this value divides down to give

the 38400baud required.

The circuit was implemented on Veroboard. Figure 5.24 shows the circuit
diagram for the test rig control circuit. Figure 5.23 shows a photograph of the

circuit board.

Figure 5.23: Test Rig Control Circuit Board.
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Figure 5.24: Test Rig Circuit Diagram.

5.5 Embedded Software

The PIC microcontroller had to be programmed to perform the control. Its main
functions are to implement the controller and to communicate with the control PC.
These two functions must run concurrently. This was implemented using the PIC
interrupt. The control loop is the most time critical of the functions and was run at
interrupt level, with the communication routine run at normal level. The
microcontroller software is written in MPASM, the assembly language for PIC
microcontrollers. Figure 5.25 shows the state transition diagram of the embedded
software. It should be noted that in Figure 5.25 there are two transitions leaving

the Control Algorithm state marked end. This is possible because these transitions
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are a “return from interrupt” and so the software returns to the state it was in

Set Up PIC

End of Setup

before the interrupt.

Timer Interupt

Data Request

Timer Interupt
Control Algorithm

PC
Communication
End

Figure 5.25: Embedded Software State Transition Diagram.

The PIC contains a timer and this is set to trigger the interrupt at a frequency of
450Hz. This value had to be sufficiently high in order to control the Yaw axis,
which has a response time of 0.5s. There is an upper limit to the frequency caused
by the clock frequency driving the PIC. The specific value of 450Hz was chosen
due to the frequency of the crystal that drives the system, 3.6864MHz, which

itself was chosen in order to provide the correct baud rate for the serial port.

The controller must provide position control for the X and Y axes and both
position and speed feedback on the Yaw axis. Because the Yaw speed is obtained

by differentiating the position signal, it is quite noisy. This caused some chatter of
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the Yaw axis so a first order infinite-impulse response low pass filter [52] on the

Yaw demand signal was used to remove it.

In order to test the validity of the model of the test rig described in section 5.3, the
step response of the test rig was measured for all three axes and the results are

shown in Figure 5.26.
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Figure 5.26: Comparison between the Step Rl::ponses of Rig and Simulink Model of the Test
g
Figure 5.26 shows that the step response of the test rig’s yaw axis (solid) matched
well with the predicted model (dash-dotted), although there is a position offset.
This is due to the cables going to the camera acting as a spring. There was some
difference in the X and Y response in that the rig’s response time is quicker than
predicted. This is due to the fact that the load was modelled as inertial while it is
partly frictional. While inertia tends to hinder both acceleration and deceleration,
friction aids deceleration. This allowed a higher loop gain to be used than
predicted without causing an overshoot, thus allowing the faster response. The
gains were rounded to powers of two, in order to speed up the operation of the

software. Figure 5.27 is a flowchart showing how the control algorithm works.
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Figure 5.27: Flowchart for the Control Algorithm.

In between calls to the control algorithm, the PIC needs to monitor the serial port
for requests from the control PC. In most cases this will be the PC sending new
poéition demands and read back the current positions. In addition, the PC needs to
be able to check that the communication channel is working, and reset the rig

position to zero. Figure 5.28 shows a flowchart for the communication routine.
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Figure 5.28: Flowchart for the Serial Communication Routine.

5.6 Control Software

The control software provides simulation of the UAV and the image processing
required to do visual control. This software runs on a PC under Microsoft
Windows XP and was written using Microsoft Visual C++ 6.0. In order to grab
images from the test rig’s camera, the control PC has a Matrox Meteor
framegrabber card in it. This is accessed from the C code using the supplied MIL

software,

The PC software is multithreaded. One thread operates the user interface, while
the other two run the control and UAV model, described in Chapter 3, and the
image processing and tracking described in Chapters 6, 7 and 8. The vision

processing thread is started and stopped by the control thread, which also reads
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the line positions from the vision thread. The control thread is itself started and

stopped by the user interface. The tasks performed by each thread and the thread

ownership is shown in Figure 5.29

Interface .

| Display test-rig
position and status
to user.

| Allow manual i
Control of test rig.

Control Thread.

Display position
information from the |

Start and stop
|
| Control Thread.

Control Thread

Start and stop
Vision Thread.

Take positions from
map, Vision Thread
and DGPS
simulation to
generate control
inputs for the UAV.

Simulate the UAV
and send the
resulting position
demands to the test

rig.

Ll

Vision Thread

Process Images from
the Camera with
AHT to extract the
lines.

Track the lines from
frame to frame.

Provide estimates of
the positions of the
lines in the image to
the Control Thread.

Figure 5.29: Separation of tasks within the Control Software.
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Figure 5.30: Test Rig Control Software Interface.
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The interface was put together using the tools within the Visual C++ development
environment. The control and vision threads implement the control and vision
algorithms described elsewhere in this thesis. Figure 5.30 shows the user

interface.

This allows the user to move the camera on the test rig and set the rig’s zero
position, as well as starting and stopping the tracking software and setting the
magnitude of a wind gust to be applied to the UAV. There are two sets of
direction buttons: the inner set give a small movement, while the outer ones give a
larger movement. CW stands for clockwise while ACW stands for anti-clockwise.
There is a box to show the user if the test-rig’s controller is responding and the
user is able to specify a map file. This tells the software where the poles are
relative to the rig’s zero position. This is equivalent to providing DGPS waypoints

for an actual inspection UAV. An example Map file is:

EPM1

3

00

3515 3350
3515 14840

The structure of the file is that on the first line is a header to identify the file type
and on the second line is the number of waypoints, which, due to a requirement of
the software is equal to the number of poles plus one. On the subsequent lines are

the X and Y coordinates of the waypoints, in encoder counts, the first of which is

always (0,0).

* MIL DISPLAY #0

Rho: 3
Theta:

Figure 5.31: Example Image and the Lines Found by the Hough Transform.
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Figure 5.31 shows an example frame with the processed image next to it.

For later experiments two cameras were used, which required two image
processing computers, one per camera. The software was split to run on three
computers, two running the vision threads and one performing the control. The
vision and control parts of the software were left unchanged. The change to three
computers only required modifications to the user interfaces and the addition of
code to handle the communication between them. For simplicity and because the
amount of data to be transferred between the PCs was quite small, serial
communication was used. Figure 5.32 shows the new control interface, which is
similar to the interface for the single camera software, apart from the addition of
the boxes to display the connection status of the vision PCs. Figure 5.33 shows the
interface for the vision part of the software. This allows the user to start and stop

the vision thread and specify whether captured images are written to disk.

i Test Rig Control '

o |
|i Browse... Bz I

Test Rig Status:
[Test Rig: "COM2" 38400 Baud ResettoZero| GotoZero |
Forward Vision PC Status: Test Comms. | Read PM
[Forward Vision PC: "COM3", 38400 Baud i e
Backward Vision PC Status:
Go

|Backwud Vision PC: "COM4", 38400 Baud. l

X Demand: 0

Start Trackhgl Control Loop Frequency: I_U Hz
Y Demand: 0

Stop Tracl:.iru_JI Vision Loop Frequency: 0 Hz
Yaw Demand: I 0

[V Restict Movement — % Position: 0
Forward .

pu——— Y Position: 0

Left Left Right Right i ; 0

ACW Backward Cw Enor Code: 0

Figure 5.32: Test Rig Control Software Interface for Two Cameras.
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Figure 5.33: Test Rig Vision Software Interface.

5.7 Conclusions

The test rig successfully gives accurate position control of the X and Y position
and the Yaw of the camera. The test rig did take quite a lot of time to design and
build, but once this was done very little maintenance was needed and the rig
proved to be reliable. The rig proved to be extremely useful for this project, in that
it allowed the real-time testing of the tracking software and control of the UAV
model.



Chapter 6 Image Processing

6.1 Introduction

Image processing offers a means for measuring the position and orientation (pose)
of the rotorcraft with respect to the lines using a small, lightweight and cheap
sensor which can also provide information for higher-level functions, such as
obstacle detection and path planning. A camera fixed on the rotorcraft body will,
depending on its orientation and location, see 3 lines extending into the distance,
converging due to perspective distortion. Although they are in fact catenaries,

from overhead they are approximated reasonably well by straight lines.

The UAYV needs to be able to track the lines from frame to frame in order to
maintain lock onto the lines. In order to do this, the lines must be located in the
image. Each frame needs to be processed in order to locate the lines within it and
this must be done with a good degree of accuracy. The lines appear up to six
pixels wide in the image and the test rig lines do have a few kinks that would not
be present on the actual lines. While most of the time the estimated position of the
line from the image processing should appear within a few pixels of the actual
line, some may be up to 10 pixels away. This occurs due to kinks in the model
lines. Such kinks don’t occur on full sized power lines due to the weight of the
cable. That the estimate of the line positions occasionally appear up to 10 pixels
away from there actual position in the image should not cause a problem as
filtering is included in the tracker. The slow response time of the UAV means that
it is unable to respond to high frequency noise. As this is a real time application,
the image processing must also be fast. The sample time for the vision feedback
must be considerably smaller than the response time of the UAV. A frame rate of
ten frames per second should be sufficient for this application. A compromise
between these two criteria is necessary. The Hough Transform [48, 53] finds
straight lines in an image and is also a relatively fast method, computationally, so
this is used as the basis of the image processing. Successful application of the
Hough transform requires pre-processing of the raw image and post-processing in

the transform space. The image processing is summarised in Figure 6.1. On the
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current hardware this takes approximately 8ms with the first three tasks taking

around 28% of that time each.

[ Contrast Enhancement |

| Edge Detection |

| Hough Transform |

| Aggregation |

Figure 6.1: Flowchart showing the Operation of the Image Processing.

6.2 Contrast Enhancement

The varying light levels encountered in this application greatly affect the image
processing. The images from the camera do not use the full dynamic range of
intensity representation: in low light levels the images from the camera use only
the lower end of the dynamic range while, with high light levels, only the upper
end of the dynamic range is used. Contrast enhancement can help with this by
adjusting the brightness of each pixel such that the full dynamic range is used to
store the image. Methods of doing this include contrast-stretching, histogram
equalisation and histogram specification [48]. For speed, a very simple contrast-
stretching algorithm was used. This works by first finding the lightest and darkest
pixel values within the image, Ppin and Ppax. The pixel values between these two
values are then stretched to fill the range 0-255. The grey level transformation
function is shown in Figure 6.2. Contrast enhancement improves the image in low

light levels, as can be seen in Figure 6.3.
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Figure 6.2: Grey Level Transformation Function.

Figure 6.3: Image Before and After Contrast Enhancement.

6.3 Edge Detector

Before the Hough Transform is applied, an edge detection algorithm is used to
pick out lines in the image: i.e. boundaries of rapid transition between light and
dark. A variety of different algorithms for this purpose are described in the
literature. These include the Roberts [48], Prewitt [48] and Sobel [54] mask edge
detectors, the Laplacian of Gaussian edge detector [55] and the Canny detector
[56]. Two of the most commonly used are the Sobel detector and the Canny
detector. Although the Canny detector can produce better results, it is more

computationally demanding so the Sobel detector was used.

The Sobel edge detector is a mask operator. The mask is applied to the image both
horizontally and vertically, which finds both the horizontal and vertical

components of a line. Figure 6.4 shows the masks used.
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Figure 6.4: Vertical and Horizontal Sobel Masks.

After the masks have been applied, there is a value for the horizontal, X, and
vertical, Y, image gradient for each pixel. The vertical and horizontal gradients
are then combined for each pixel to give the square of the gradient magnitude
using (6.1) The angle perpendicular to the gradient at each pixel is calculated

using (6.2), as this is needed for the transform stage.

G*=X*+Y? (6.1)
—an[ X
6 = tan (X) (6.2)

A sample result is shown in Figure 6.5. Figure 6.5a is the raw image and b shows
the results of applying the Sobel masks. In order to pick out the stronger edges, a
threshold, called the gradient threshold, is applied, which gives image c. Looking
at image c, it can be seen that the edges vary in thickness. This is because, with
very strong edges, the values of the gradient is higher than the threshold either
side of the lines The lines can be reduced to 1 pixel wide using non-maximum
suppression [57]. This is a thinning technique and it works by rejecting a pixel as
an edge if it is next to an edge pixel with a higher gradient value, perpendicular to
the edge direction. Figure 6.5d shows the final result. In this application we are
not looking for horizontal lines, as the power lines should appear reasonably close
to vertical in the image. Lines whose angle is within +5° of the horizontal have

been removed from image d.
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(c) (d)

Figure 6.5: An Image at Different Stages of Edge Detection.

The optimum value for the gradient threshold needs to be found for the edge
detector. This needs to be low enough to include the desired lines but high enough
to reject background noise. The method used has been described previously by
Golightly & Jones [8], for corner detector algorithms. The method works by
taking a number of sample images and marking areas around the features of
interest. A threshold value is determined for the number of pixels that are
expected to make up each feature and then the actual number of pixels comprising
the feature in each image is counted and compared to the threshold value. In this
case eleven frames were selected from a sequence of images. A MATLAB
program was written to count the number of pixels making up sections of the three
lines in each frame. Figure 6.6 shows an example frame used; marked on this
image are three boxes highlighting the sections of line that are of interest. The
program counts the number of pixels making up the lines within these boxes.

The program plots the total number of pixels found for each threshold value,
across all eleven frames. The ideal number of pixels for each line, based on
finding two unbroken I-pixel-wide lines, is also plotted. Figure 6.7 shows the

results.
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Figure 6.6: Example Line with the Areas of Interest Marked.
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Figure 6.7: Edge Detector Results with Non-maximum Suppression.

Figure 6.7 shows the number of pixels actually found for the left (dash-dotted),
centre (solid) and right (dotted) lines while the ideal number of pixels for each
line is shown with horizontal lines in the same style. It can be seen that changing
the gradient threshold does not have a large effect on the result: looking at the
centre line, the number of pixels is nearly ideal over the full range of gradient
threshold values. For the left and right lines there is some change and the

crossover point is at around 0.023. This value will be used as the threshold.

105



Chapter 6 Image Processing

The effect of non-maximum suppression may be assessed by running the same
experiment on edge images where it was not used. Figure 6.8 shows the results. It
can be seen that the target number of pixels is not reached, and that the number of
pixels found is sensitive to the threshold value. The benefits of non-maximum

suppression are clear.
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Figure 6.8: Edge Detector Results without Non-maximum Suppression.

6.4 Hough Transform

The Hough Transform is a well-known method for extracting lines that match
parameterized functions from an image. The most common case is classifying
straight lines in normal form according to their angle (6) and distance from the

image centre (p).

In order to create the transform, each line in the edge map must be classified by its
angle and distance from the image centre. In order to do this, the edge map is
stepped through. When a pixel, which is part of an edge, is discovered, its angle
(0), as previously calculated by the edge detector, is retrieved. The perpendicular
distance from the image centre, p, can then be calculated using (6.3):
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p =xcos(@)+ ysin(@) (6.3)

where:

x and y are the cartesian co-ordinates of the pixel in the image

The transform consists of a 2D array of accumulators addressed by p and 6. For
each edge pixel in the edge map, the relevant accumulator is incremented. After
this process is completed, the transform is normalised such that all the
accumulators have a value between zero and one. A typical result of this is shown
in Figure 6.9a, which has been inverted for clarity. A threshold, called the Hough
Transform threshold (H threshold), is then applied. This picks out the features of
interest and suppresses background noise. A typical result of this is shown in

Figure 6.9b.

(@) (b) ()

Figure 6.9: A Typical Hough Transform of a Line Image Before (a) and After Thresholding
(b) and After Aggregation (c).

(b)

Figure 6.10: Typical Result showing: (a) the Three Overhead Lines Overlaid with the
Straight Lines Generated by the Hough Transform and (b) the Corresponding Points in the
Hough Transform Space.
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This leaves clusters of points that need to be reduced to form single points with a
typical result after reduction shown in Figure 6.9c. An example image and the

resulting transform are shown in Figure 6.10.

The optimum threshold for the Hough transform needs to be found. In addition,
there are alternative methods to reduce the clusters in the thresholded Hough

transform to single points:

e An Aggrégation algorithm described in [8].

e Non-maximum suppression, as used in the edge detector.

The aggregation algorithm works by stepping through the transform with a NxN
search square. The search square is centred on each pixel in turn. If the pixel has a
value of zero, a zero pixel, then no further action is taken. If the pixel has a value
of one, a one pixel, the average position of all the one pixels within the search
square is calculated along with the number of one pixels within the search square,
called the associated value. The pixel at the average position is set to one in the
aggregated version of the Hough transform (AHT). If it is the only pixel within N
pixels in the AHT then it is kept. If there are other pixels within N pixels, then the
one with the highest associated value is kept. This leaves a pixel whose position is
at the centre of the cluster. The Non-maximum suppression works as in the edge

detector, i.e. only points that are a local maximum are retained.

To find out which is the best to use for this application, both were tested with
different values of threshold. In order to do this, a measure of detection quality is
needed. The number of true positives (TP), false positives (FP) and false negatives
(FN) in each transform can be counted. A true positive is a line that appears in the
AHT that is associated with one of the three lines in the original image, while a
false positive is a line that appears in the AHT that is not associated with one of
the three lines. If there are two lines in the AHT associated with one line in the
image then one is defined as TP and the other as FP. A false negative is where
there is a line in the image that doesn’t have an associated line in the AHT. The
fraction of true positives (frp) is then defined in (6.4), while the detection success
(DS) is defined as in (6.5). |
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TP
= 6.4
Jre TP + FP 64)
DS=—T£— (6.5)
FN +1

As FN+TP=3, DS can be defined as in (6.6):

DS=—2_ (66)
4-1P

In order to assess how well each method works, a measure is needed that includes
both DS and frp. The detection quality (DQ) is defined as the product of the two,

resulting in (6.7):
TP’
DQ = 6.7
Q (4-TP)TP + FP) ©7)

The DQ varies from zero to three, with zero representing a bad detection quality

and 3 being good.

Figure 6.11 shows the result of how detection quality changes with H threshold,
averaged for five frames. It can be seen that the aggregation method (solid) gives
better results than non-maximum suppression (dotted), the best threshold value
being 0.55. This is because the clusters contain a number of maxima and so the
non-maximum suppression tends to give a number of points in the AHT to
represent one line in the original image. Occasionally there are two points in the
AHT for one line in the image with the aggregation method, although this is a

much rarer occurrence than with non-maximum suppression.

109



Chapter 6 Image Processing

25,

1.5}

1)

Detection Quality

0.5+

0 0.2 N R T R 1
H Threshold

Figure 6.11: Detection Quality against Hough Transform Threshold for the Aggregation and
Non-maximum Suppression Methods.

25

Detection Quality
o N

—

05}

0.2 0.4 0.6 08 1
H Threshold

Figure 6.12: Detection Quality against Hough Transform Threshold for Different Mask
Sizes.
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The aggregation algorithm can be used with varying mask sizes. A suitable size
was found by computing the Hough transform of a selection of frames for three
mask sizes. Figure 6.12 shows that better results are obtained with a 9x9 mask
(solid) than using a 7x7 mask (dotted) or a 5x5 mask (dash-dotted); the best result
is obtained using a threshold value of 0.475. These values are used in the final

algorithm to obtain the results in Chapters 7 and 8.

6.5 Evaluation

In order to evaluate the performance of the image processing method, it was run
on a sequence of 225 image frames taken by flying the UAV along the line, with
no wind disturbance. The line has a plain background. Detection is considered
successful if the maximum distance between the true line and that in the AHT is
no more than 10 pixels. Ideally, all three lines will be found and Figure 6.13
shows that this occurs 47% of the time. Figure 6.13 also shows that, in 7% of
images, more than 3 lines are identified. This occurs when a line in the original
image is mapped to more than one point in the AHT sufficiently far apart that they
are not aggregated. This can occur if there is a kink in the line, causing the cluster
in the thresholded transform to appear as two clusters. This is generally not a
problem as both are usually a reasonably good match for the line and the tracker

simply selects one of them.
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Figure 6.13 Number of Lines Identified by the Hough Transform in Each Frame of a
Sequence.
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Reliable tracking requires that at least two lines in the image are found because
the position of the third line can then be estimated. This assumes that the lines are
spaced an equal distance apart. This is very common although is not always the
case. It would be possible to supply a priori information to the tracking system in
cases where the conductors are not equally spaced. Finding at least two lines
happens 60% of the time in Figure 6.13. If only one line is found, it is difficult to
distinguish it from single lines generated by the background and the system

becomes vulnerable to tracking false targets.

A significant problem occurs as the distant support pole is approached and
becomes more prominent in the image. The Hough transform then tends to find
one of the strong edges associated with the pole, rather than the overhead lines.
This edge is an acceptable substitute for the centre line, with which it is nearly co-
linear. Unfortunately, its relative strength causes the thresholding algorithm to
suppress the Hough transforms of the two outer lines and tracking is adversely
affected. This may be seen in Figure 6.13 between frames 150 and 210, where
only one line is consistently identified. For the preceding section, before the
distant pole becomes prominent, at least two lines are found 95% of the time, with

all three lines being found 77% of the time.

6.6 Conclusions

It can be seen that this form of image processing yields the positions of the lines
in the image with sufficient frequency to be tracked from frame to frame. It would
be expected that similar results would be obtained with other image sequences
with plain backgrounds. When cluttered backgrounds are present, the performance
is likely to be less good. Background features will produce additional lines in the
AHT. Very dark or very bright features in the background may affect the
performance of the contrast enhancement. It may be necessary to adjust the values
of parameters when used with realistic backgrounds although the structure of the
image processing software shouldn’t need to change in order to process cluttered

backgrounds except when dealing with very cluttered scenes.
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The tracking algorithm and estimation of the vehicle’s position is discussed in
Chapter 7.
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7.1 Introduction

In order for the UAV to follow the lines, it is necessary to track the lines from

frame to frame. This involves finding the lines in the current frame and then

finding which ones correspond to the three lines found in the previous frame.

According to Davison [41] there are four main tracking methods:

- Exhaustive search, where the entire image, or the transform space in this case,
is searched for a match between the object being tracked in the previous frame
and the current frame.

Local search: this is similar to exhaustive search except that only the local
area around the point at which the object would be expected to be found is
searched.

Kalman Filter [42]: this attempts to find a best estimate of the object’s
position by combining a prediction from the previous frames with the |
measurement of the object’s position in the current frame. All the errors are
assumed to have a Gaussian distribution and are used form a weighting factor
to combine the prediction and measurement.

Particle Filter [43]: this also uses errors to produce position estimates.
However, unlike the Kalman filter, the errors are not assumed to be Gaussian.
Instead the error function is represented by a number of particles, which
allows more complex error functions to be represented, including multi-modal

functions, allowing multiple-hypothesis testing.

The most basic form, exhaustive search, is likely to produce many tracking errors;

this is because the pattern we are searching for is relatively simple (three dots in

the transform space) and so could be lost in the background noise. In addition the

exhaustive search is more computationally demanding than a local search tracker

because all of the transform must be searched at every sample. For these reasons,

a local search tracker was used initially.
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This chapter discusses the development of the tracking software. This starts with a
local search tracker and the development of a model-based acquisition routine, to
find the lines in the early frames in order to initialise the tracking. Section 7.4
considers the use of fuzzy logic, to detect whether the tracker erroneously thinks a
sideline is the centre line or whether the lines have been lost. Finally, the inclusion
of a Kalman filter is described. This chapter concentrates on obtaining the lateral
displacement of the UAYV relative to the lines, although some results for tracking
height are presented. Tracking of roll, yaw and lateral displacement using two

cameras is described in Chapter 8.

7.2 Early Tracker

7.2.1 Description of the Early Tracker

A relatively simple tracker was implemented to start with, giving a broad
assessment of tracking performance as well as a basis on which to build a more

advanced tracker.

Lateral displacement of the rotorcraft with respect to the lines leads to the pattern
shown in Figure 7.1 where the 3 points are seen to slide along a straight-line locus

in the Hough transform space, as predicted in chapter 4.

/

,,,,,,

O\

Figure 7.1: Three Examples of Image Line Patterns (left) and their Corresponding Hough
Transform Points (right).
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Assuming that yaw, roll, pitch and height remain constant, the displacement
relative to the centre line is given by (7.1). Chapter 4 showed that either the 0 or p

value can be used to obtain the lateral displacement so equation (7.1) uses an

average of the two.
X,0+X
X= ”—2”—” (1.1)

where Xp and X , are % and &

dp

The 6 and p scaling factors are obtained from the analysis in section 4.2.2.

Substituting these values into (7.1) gives:

_0.0480-0.0433p
2

X

(7.2)

It is reasonable to assume that yaw pitch and height will generally remain within
tight limits when the rotorcraft is flying along a line section. In practice the UAV
will roll when it moves from side to side. However, because roll and lateral
displacement independently affect the line positions in the image (as shown in

section 4.2.2) lateral displacement can be considered independently.

Once the line co-ordinates have been extracted, it is necessary to track them from
frame to frame. The tracker is initialised by taking off-line measurements of the
positions of the lines in the early frames of each image sequence. The averages of
these measurements were used as the start points. Clearly, this is not a practical
method of initialising tracker on an actual UAV; an automated method of
initialisation is described in section 7.3. Once tracking has started, it is necessary
to search the local area around the predicted position of each line in the transform
space. Initially, the search area is chosen to be symmetric in 0 and p: this gives a
choice between either a circular or square shaped search area. In order to compare
the two, a square and a circle, with a diameter equal to the side of the square, were
generated in the transform space. Each point within the square and circle represent

a line in the image space. All the lines associated with these points were drawn in
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the image space. Figure 7.2 shows the two HT search areas, on the left, and all the
lines in the corresponding image shown on the right in white. The red lines show
the limits for the square search area, for comparison. Both search areas are seen to
produce a similar set of lines in the image space. Squares are easier to represent,
computationally, and so square search areas, hereinafter called search-squares,

will be used.

I,_

60—

(a)

Figure 7.2: Square and Circle Search Spaces in the HT with Corresponding Lines in the
Image Space.

Search-squares, centred on the predictions from the previous frame, are placed on
the transform of the current frame and searched for matches to the three lines.
When flying straight above the lines, each frame should appear substantially the
same as the previous frame, although there is in fact a small change due to the
catenary shape of the lines. With the assumption that the pattern in Hough
transform space is invariant with position along the line, the current line positions

can then be used as reasonable predictions for the next frame. For most overhead
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lines, the pattern should be symmetrical. However, there are lines that are not
constructed symmetrically, but this information is known and can be accounted
for in the tracker algorithm. In some cases, one or more lines are not found.
Merging into the background, glare or obclusion can cause this. If only one line is
missing, then its position can be predicted from the other two. If fewer than two
lines are found, then the previous predictions are simply carried forward and used
as the next prediction. Initially the size of the search-squares is set to the
minimum size, in this case it is 21 pixels (10 pixels either side) in a transform
space of 181x120 pixels; a more formal choice of search square size is undertaken
in section 7.4.If a cofresponding line is not found in a given frame, the size of the
search square is increased by two pixels in the next frame in order to increase the
chances of finding a match, up to a maximum size of 41 pixels. When a match is
found in a frame the size of the search square is reset to the minimum size of 21
pixels. In addition rules are included to ensure conformance to the three-line
pattern in the transform, as shown in Figure 7.1. This involves ensuring that the
points corresponding to the two sidelines are at least 10 pixels in both 6 and P

away from the centre pixel in the correct direction.

7.2.2 Implementation of the Early Tracker

The structure of the tracking algorithm is shown in Figure 7.3. In order to test the
tracker, it was coded in MATLAB and run off-line on sequences of images taken
from the test rig. These were the straight-line sequence used for testing the image
processing and a sine sequence, where the camera was flown on a sinusoidal path
in a horizontal plane above the line. Once the off-line version of the tracker was
working, it was ported into C++ and incorporated into the test rig control

software.
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Figure 7.3: Flowchart showing the Operation of the Early Tracker.
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The aim of the image processing and tracking is to provide the local position
feedback signal for the UAV when it is close to the overhead lines. In order to
bring the UAV into the vicinity of the lines, or if the visual tracker loses the lines,
Differential Global Positioning System (DGPS) can be used to provide the
position signal. The model of the system is shown in Figure 7.4, which is an
extended version of Figure 3.9 that includes the pitch rate feedback described in
section 3.4. The rotorcraft model and pitch rate compensator run at a sample rate
of 25Hz, while the vision processing runs at 10Hz and the DGPS runs at 1Hz. The
vision processing and DGPS together form the position feedback loop for the
UAV. The model includes a switching condition to select between vision and
DGPS feedback. The system uses the DGPS to bring the UAV to the vicinity of
the lines and then switches to using vision when the lines are acquired. Currently
the system is set to switch back to DGPS if the UAV strays more than 2m from
the line, as measured from the test-rig. On an actual inspection UAV this enveiope
limit measured from the DGPS and would likely be set further from the lines, in
order to stop DGPS errors erroneously switching the system away from vision
feedback. When the UAV comes back within 2m of the line, the system attempts
to re-acquire the lines. The system will also switch to using DGPS in the event of

the tracker losing lock on the lines.
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Figure 7.4: High Level System Model.
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It was necessary to model the DGPS position errors in order to show the effect of
DGPS feedback. Position fixes from DGPS contain random correlated errors.
Figure 7.5 shows a sequence of East-West DGPS errors obtained by Earp [7]
using a Trimble Pro XR receiver at a fixed reference point — the error distribution

and power spectral density are also to be found in [7].
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Figure 7.5: Measured DGPS Errors at 1Hz Sampling Rate showing the Two Sections of Data
Used in the Test.

In order to simulate DGPS, two sequences of errors were selected from the error
set shown in Figure 7.5. Sequence 1 has a distinct bias offset, while sequence 2
has no bias. These error sequences are added into measurements from the test rig
to produce simulated DGPS position fixes. Using two error sequences allows

testing of the effect of different errors.

7.2.3 Results with Early Tracker
7.2.3.1 Still-air Responses

In order to use DGPS to guide the UAV along the lines, a number of waypoints

would be set; these would almost always be at pole locations. In practice

121



Chapter 7 Tracking

electricity companies only know the locations of the poles to within a few metres.
If DGPS were used to guide the UAV, it would blindly follow the recorded pole
locations. Using vision feedback means that the UAV would follow the actual
line, provided that the initialisation is correct, i.e. that the UAV is sufficiently near

to the lines for visual acquisition to occur.

In the first test, the second pole on the test rig was offset from its recorded
position, with the first pole being kept at its recorded position, and the UAV flown
along the line. Figure 7.6 shows that the UAV’s path with vision feedback (solid)
follows the actual lines (dotted) rather than an erroneous course based on the

recorded waypoints (dash-dotted).
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Figure 7.6: Lateral Displacement of the UAV using Vision Feedback with an Offset Pole.

In addition to the waypoint errors, DGPS has errors in the fixes it gives, as
discussed in subsection 7.2.2. To quantify their effect, the UAV is flown along the
lines with lateral position feedback from the DGPS loop alone. The path of the
UAYV, using the two different DGPS error sets (dashed, sequence 1; dash-dotted,
sequence 2) are shown in Figure 7.7, which shows that the varying errors in the
DGPS position fixes cause significant perturbations of the flight path. The UAV
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was then flown along the lines with vision providing the position feedback (solid).
This flight path tracks the centre line more closely than the DGPS flight paths.
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Figure 7.7: Lateral Displacement of the UAV using DGPS and Vision Feedback; Zero Wind
Gusting.
It can be seen from Figure 7.7 that the vision system does not produce perfect
tracking. The deviation that occurs in the range 5-20m is due to the image
processing finding a strong edge in the direction of a kink in the overhead line, as
shown in Figure 7.8, which is then tracked for a period. This occurs because the
model lines are lightweight and so don’t keep to a true catenary shape. With a line
in the real-world, this does not occur, as the weight of the line scales up far more
than its diameter relative to our rig lines; this causes the weight of the line to keep
it in catenary shape. The second feature of the response is a small offset, which
forms at about 30m along the line and persists to the end of the run. This is caused
by the detection and tracking of a strong edge on the upcoming support pole,
whose width becomes significant as it is approached. The camera therefore tracks
slightly to one side of the centre line. These results shows that we should get
better tracking using vision, rather than relying on DGPS alone; DGPS is essential

to bring the UAV into the vicinity of the lines, however.
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Figure 7.8: Example of a Kink in the Lines.

The vision results in Figure 7.6 and Figure 7.7 show the position of the UAV
measured from the test rig under vision control, rather than the estimated position
of the UAV from the image processing and tracking. Figure 7.9 shows both the
measured position of the UAV from the test rig (dash-dotted) and the estimates

from the image processing (solid).
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Figure 7.9: Measured UAYV Position and Estimated UAYV Position from the Image
Processing.

Figure 7.9 shows that the estimated position from the image processing matches
well with the measured UAV position, although it is noisier. This would be
expected as the line positions in the image do change slightly from frame to
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frame. Due to the slow response time of the UAV, this noise is smoothed out and

so doesn’t appear on the measured UAV position graph.

As was discussed in Chapter 6, there can be problems associated with low light
levels. This is countered using contrast enhancement. In order to test how this
affects the tracker, the UAV was flown along the lines in low light level
conditions. Figure 7.10 shows that the tracker works as well in low light levels
(solid) as in normal light levels (dash-dotted): Normal lighting levels refers to the
test rig being illuminated by the overhead laboratory fluorescent lights plus a
small amount of varying daylight and low light refers to the small amount of

daylight entering the laboratory with the window blind closed.
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Figure 7.10: Lateral Displacement of the UAV using Low and Normal Light Levels.
7.2.3.2 Wind gust Responses

The response of the vision feedback system to a simulated wind gust was
investigated. In order to test this, a 3s pulse of wind of 1ms™ velocity, which
represents a significant wind gust for this size of UAV, was input between
approximately 3 and 5m along the line. As the UAV model being used in
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simulation is for the lab demonstrator, rather than the final UAV, which is likely
to be around 5x bigger, it is more affected by wind. How the wind gust scales with
the size of the UAV is currently unknown, although if it scales linearly, the 1ms
wind gust would be equivalent to around 11mph for a full size UAV. The
modelling of a full size UAV and the effect of wind gusts on it will need to be

done later in the project.

It should be noted that the wind gust was simulated on the control PC and was
input into the dynamic model simulated on that PC via the gust disturbance input
of the model, as discussed in section 3.4; the position of the UAV is then relayed
to the test-rig. Figure 7.11 shows two results, for a positive and negative wind

gust (solid lines).
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Figure 7.11: Lateral Displacement of the UAV in Response to a Pulse Wind Gust.

Figure 7.12 shows samples of the images recorded, during the run with the

positive wind gust, sampled at equal intervals in the range 3-10m along the lines.
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Figure 7.12: Sequence of Camera Views taken during the Run with Positive Wind Gust.

There is a slight asymmetry in the flight paths because of the small offset in the
initial position. Although both responses start at the same lateral displacement, a
slight drift in the flight path has occurred before the positive wind gust is applied.
Both responses are under-damped; this is due to the underlying under-damped
UAV model, discussed in Chapter 3. In both cases, the UAV manages to re-align
correctly with the centre line. Towards the end of the run, the system tracks the

pole edge rather than the centre line, as discussed previously.

Next, the velocity of the pulse wind gust was increased to 5ms™', which is a very
large wind gust for this UAV. There is now a sufficient initial deviation to cause
the camera to lose the lines from its field of view as shown in Figure 7.13 and the

corresponding image sequence (3-11m) in Figure 7.14.
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Figure 7.13: Lateral Displacement of the UAV in Response to a Large Pulse Wind Gust.

Figure 7.14: Sequence of Camera Views taken during the Run with Large Positive Wind
Gust.

The initial deviation is now about 12m from the centre line, which removes all

except the furthest portion of the span from the image. At 2m lateral
displacement, the position feedback is switched to the DGPS loop, which returns
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the camera back to the vicinity of the lines. As the 2m threshold is crossed again,
control is switched back to the vision system, which occurs at about 6m along the
lines. When the vision system re-acquires the lines, it tends to lock onto the right
hand line, rather than the centre line. It should be noted that, as there is no
automatic acquisition system in the early tracker, the predicted positions of the
lines for re-acquisition is fixed at the positions that they were at when they were
lost. The line is then tracked until about 30m along the lines, where the system
locks onto the strong edge from the pole, causing the UAV to move towards the
centre line. The negative wind gust gives a response that is approximately a mirror
image of the positive gust response. The extension of the visual tracking system to
detect when the system has locked onto one of the sidelines, and switch to the
centre line is described in section 7.4, and an automatic acquisition system is

described in section 7.3.

7.3 Acquisition
7.3.1 Description of the Acquisition Routine

Rather than have a fixed starting point for tracking, it is better for the system itself
" to find the lines in the image for a starting point. This is because the UAV may
not be fully aligned with the lines at the start of tracking. For this reason, an
acquisition routine was developed. First, the principle is described and then the

implementation and performance are discussed.

The acquisition routine initialises the tracker by providing the first estimates of 0
and p for each of the three lines, which are used to place the search-squares. The
AHT is searched exhaustively for straight lines and the “best” lines are selected as
the lines to track. A model of the expected AHT pattern, as described in section
6.4, is used to define the criterion for the “best” lines. Each possible match is
given a score depending on how well it fits the model and the best of these is
chosen. At least two of the three lines need to be found for a match, with three

lines being given preference over two.
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Figure 7.15: Points in AHT and the Distances between them; Crosses Represent the Positions
where the Three Points are Expected to be, while the Circles Represent Examples of Actual
Points Found.

Ideally the point representing the centre line should appear at the centre of the
Aggregated Hough transform (AHT), point C. in Figure 7.15. In practice the
centre line, C, will be found a short distance, dc, from C.. Ideally we would then
expect to find the left and right line at points L. and R., a distance d from C.
Again, in practice these will be found a short distance from L. and R, at LL and R;
these are distances di, and dg from C respectively. For any set of lines (R, C and

L) we can define an improbability measure, P, as in (7.3):
P=S(+fi(a? +d2)+ f.d2) (1.3)

where:
fs is the sideline factor
fc is the centre factor

S is the symmetry measure

This measure incorporates three important factors about the best match model: the
distance from the AHT centre, how far the sidelines deviate from their expected
positions and how symmetrical the lines are. The best match is the most
symmetrical with the sidelines close to their expected position. In addition it

should be close to the centre of the AHT, although this is less critical, as reflected
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in the value of fc in (7.3). The candidate set of lines which minimises (7.3) is

selected.

The values of the sideline and centre line factors were determined experimentally
and fc=0.0001 and fs=0.002 were found to give the best results. In the case where

all three lines are found the symmetry measure is given by (7.4)
S=(R-C+L-C) (14)

If either the right or left line is not found, its position has to be estimated from the
other two. In these cases, (7.4) fails and an alternative measure for S, based on the
predicted distance, d is used. This measure is also designed to give higher values
of S than (7.4) in order to give preference to line sets where all three lines are
found. In the cases where only two lines are found, S is defined as in (7.5) when

the left line is missing, or (7.6) when the right line is missing.
S = (abs(d)+abs(R-C))* (7.5)
S = (abs(d)+abs(L~C))* (7.6)

7.3.2 Implementation of the Acquisition Routine

The acquisition routine needs to check every point in the AHT to see if it is a
possible candidate for the centre line by scoring it according to (7.3). Figure 7.16
shows the operation of the acquisition routine. In order to test it, it was coded in
MATLAB and run on the same test sequences used to test the early tracker. After
testing the acquisition routine, it was ported to C++ and incorporated into the real-

time vision software; the code is shown in Appendix D.
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Figure 7.16: Flowchart showing the Operation of the Acquisition Routine.

7.3.3

Results with the Acquisition Routine

Ideally, the acquisition routine should find the three lines from the AHT, as shown

in Figure 7.17. However, this is not always the case and we can define six

different types of result:

e Found All Correct; where all three lines are found and match well to the actual

lines.

e Found 2 Correct: where two of the three lines are found and match well to the

actual lines, with the third line predicted from the other two, an example of
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which is shown in Figure 7.18. Here the white lines represent the result from
the transform and the dotted line represents the predicted third line.

e Found Sideline: where two of the three lines are found and match well to
actual lines, but the third line is predicted such that the estimated centre line
erroneously corresponds to one of the sidelines, rather than the centre line; an
example is shown in Figure 7.19. Here the white lines represent the result
from the transform, the dotted line represents the predicted third line, while
the black line corresponds to a line that appears in the AHT but that isn’t in
the set from the acquisition output. In this case it is the other sideline.

e Found Pole: where the centre line in the result corresponds with a pole edge
rather than the centre line in the image, an example is shown in Figure 7.20;
the line styles are as before.

e Not Found: where no result is found by the acquisition routine, an example is
shown in Figure 7.21, where the lines found by the AHT are shown in black,
but they don’t fit the line model sufficiently for a match.

e Found Incorrect: where a result is found but it does not correspond to the
actual lines. This would typically lock onto straight-line sections produced by
the insulators on a pole top; an example is shown in Figure 7.22. As with
previous examples, the white and dotted lines represent the result and black

lines are other lines in the AHT.

Figure 7.17: An Example of a “Found All Correct” Result.
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Figure 7.19: An Example of a “Found Sideline” Result.

Figure 7.21: An Example of a “Not Found” Result.
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Figure 7.22: An Example of a “Found Incorrect” Result.

The acquisition routine was tested on five image sequences: a straight flight down
the lines, the UAV flying down following a sinusoidal path and three sequences
taken from an early version of the on-line version of the tracking software, where
different strength wind gusts were applied to the UAV. The results for the five

runs are as follows:

Number Found

Found 'Found 2' Found Found Not Found
Correct Correct Sideline Pole Found Incorrect

Result Type

Figure 7.23: The Results from Testing the Acquisition Routine.

The desired result, “Found All Correct”, occurs 45% of the time. A “Found 2
Correct” result is just as good for starting tracking as a “Found All Correct” result;
a “Found Sideline” result would not be useful for starting the early tracker, but the
incorporation of sideline detection into the tracker, as described in section 7.4,
allows such a result to successfully start tracking. If these two result types are
included, tracking would be successfully started 74% of the time. A “Found Pole”
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result will often be able to switch to the lines and so may or may not be a valid
start to tracking; if “Found Pole” results are included as valid, tracking would be
started successfully 83% of the time. If the acquisition routine returns a “Not
Found”, the only option is to look at the next frame, until the lines are found. The
only time a problem is faced is when a “Found Incorrect” result starts tracking the
wrong features in the image. There will be some “Found Pole” results that cause
the system to only track the pole and not switch to the centre line. As described in
the next section, it was necessary to extend the acquisition routine in order to

alleviate this problem.

7.3.4 Implementation of the Repeat Acquisition Routine

If the acquisition routine is run on successive frames, it would be expected that
the actual lines will appear in approximately the same place in each frame
whereas results associated with the background or the insulators on top of the
poles will appear in different places in subsequent frames. In order to eliminate
the incorrect results, it was decided to repeat the acquisition routine on successive

frames and look for matching results.

If we take a pessimistic view of “Found Pole”, and only accept “Found All
Correct”, “Found 2 Correct”, and “Found Sideline” results as valid results to start
tracking, then a valid result is obtained 74% of the time; this means that 26% of
the time the result is invalid or non-existent, of which 10% are invalid. If adjacent
frames are compared and return a “Found” result and the two results are similar,
i.e. the lines appear in about the same place then, most of the time, they are valid
results. The chances of getting three invalid results, which match to each other, in
a row is 0.1%, and so requiring three matching acquisitions in a row should
almost always give a valid result. In order to implement this, a count variable is
used, if the results match, this is incremented; otherwise, it is decremented. Using
the count allows hypothesis testing. If a match for the lines is found, it is uncertain
whether it is a true or false match. Looking at subsequent frames allows the
testing of the hypothesis that the match is a true match. If the subsequent frames
return similar matches, then this indicates that the match is a true match. If the

count goes below zero then the acquisition routine starts again but if the count
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reaches three, the result is used to start tracking. Figure 7.24 shows the operation

of the repeat acquisition routine.

Acquisition

[ Move to the next frame |

Store Result

gl

W
[ Move to the next frame |

[ Acquisition ] |

result been found
which could be the

N
No
Decrement count

Does
this result match
with the stored
result?

No Yes

Decrement count

Store Resuit

Increment count

Is count<0?

Is count>=37?

Yes
v
Use the stored
result as the lines

End

Figure 7.24: Repeat Acquisition Flowchart.
7.3.5 Results from Repeated Acquisition

Due to the nature of the repeated acquisition routine, it has to give a “Found”
result eventually. The only time that this would not happen is if the tracker were
to lose the lines close to the end of a line and attempt to re-acquire them; in this
case, the UAV may reach the end of a line before successful acquisition occurs. In
practice, the UAV could be made to hover above the lines until they are re-

acquired. This, however, is not an option for off-line testing as image sequences
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are used. What is of interest in this case is the number of frames that it takes to
acquire the lines. In the ideal case, this will be three frames; it is not possible to
acquire the lines in less than three frames due to the nature of the repeated
acquisition routine. In addition, the number of invalid results also needs to be
found. In order to test these, the repeat acquisition routine was run on the five test
sequences, starting the routine at each frame of each sequence. The number of
frames required to acquire the lines from each starting frame was recorded, along
with whether the routine finished or ran out of frames; this only happened towards
the end of each sequence. From these the mean number of frames for acquisition
could be calculated, along with the percentage of acquisitions that happened in
only three frames. The results of the test showed that the mean number of frames
for acquisition is 7.4 and 50% of the acquisitions happened in 3 frames. In total,
87% of the results gave valid matches to the lines, while 13% had locked onto the
distant pole. The acquisition routine returned no results associated with the

background or insulators.

7.4 Rule-based Tracker

7.4.1 Problems with the Early Tracker

The results in section 7.2 exhibit a number of tracking problems. The main
problem occurs when the tracker thinks that one of the sidelines is the centre line
and so tracks it as if it were the centre line, an example of which is shown in
Figure 7.25a. Other problems include the tracker losing the lines altogether and,
very occasionally, when the tracker thinks that the centre line and one of the
sidelines are the two sidelines. The centre line is then predicted incorrectly to be
mid-way between them, as shown in Figure 7.29. In addition the optimum size of

the search-squares needs to be chosen.

7.4.1.1 Sideline Tracking Detection

In this section a fuzzy logic rule is developed to detect erroneous tracking of a
sideline. If only the centre line and one sideline are found (white), there are two

possibilities as to why:
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e The tracker has locked onto the left hand sideline and believes the centre line
is the right hand line, as shown in Figure 7.25a, so the predicted left hand line
(dotted) doesn’t correspond to any of the actual lines. The mirror image of this
can also occur.

e One of the sidelines is missing from the AHT. As shown in Figure 7.25b, only
the centre line and the other sideline (white) have been found while the

predicted third line (dotted) is close to the position of the actual line in the

image.

Figure 7.25: Possible Causes of only Finding One Sideline: a: Tracking Sideline, b: Other
Sideline Missing from the AHT.

Figure 7.26: Fourth Line Predictions for the Case where Only One Sideline is Found: a:
Tracking Sideline, b: Other Sideline Missing from the AHT.
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The two patterns in Figure 7.25 are indistinguishable from the tracker’s point of
view so it is necessary to search for a fourth line (dash-dotted), which could be the

missing sideline, as shown in Figure 7.26.

This fourth line, or “extra line” as it is referred to in the software, is predicted
from the two lines that the tracker has found, in a similar fashion to predicting a
missing sideline. Analysis in section 4.2.2 indicates that lateral displacement of
the UAV relative to the overhead lines causes them to appear closer together in
the image. In cases where the tracker had locked onto a sideline the “extra line”
was found experimentally to appear at approximately 0.8 times the distance
between the centre line and the sidelines in the tracker. The 6 and p values are,
therefore, multiplied by 0.8 In the case where the left hand line is missing, the
position of the extra line is given by (7.7); if the right hand line is missing, the

mirror image is used, and the position of the extra line is given by (7.8).
Be =O'8*((2*0r)+00) pe =0°8*((2*pr)+pc) (7'7)
6, =08%((2%6)+6,) p,=08*(2*p)+p.) (78)

In this case it can be seen that when the tracker has locked onto the left-hand
sideline (Figure 7.26a), the extra line appears in about the right place to be a
match for the right-hand line, whereas in case b the extra line doesn’t correspond
with anything in the image. In order to discriminate between the two cases, it is

necessary to look at subsequent frames.

Ideally, each time only a sideline and the centre line are found, it would be
possible to place each instance into one of the two groups: “Tracking Sideline”
and “Tracking Centre Line”, but in practice there is a third “Not Sure” group. The
three groups: “Tracking Sideline Very Likely”, “Not Sure” and “Tracking Centre
Line Very Likely” form a fuzzy set, as discussed in Chapter 2. A simple fuzzy

logic rule can be used to detect which group an individual instance belongs to.
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Figure 7.27: Fuzzy Membership Function for the Sideline Detection and its Piecwise Linear
Approximation.

When this two-line case occurs, a count variable, Ngp, is set to 0. Figure 7.27
shows how the fuzzy set membership function, psit, changes with the value of
NEeL. In order to de-fuzzify the set, the membership function is approximated by a
piecewise-linear ps t function. If a match is found in subsequent frames for the
fourth line, this value is incremented, otherwise it is decremented. In addition if
the - third line reappéars in the transform and the tracker finds it, Ngg is
decremented. What this does is to test the hypothesis that the tracker is tracking a
sideline rather than the centre line. When the extra line is found, this reinforces
the hypothesis, while failing to find the extra line or re-acquiring the missing
sideline tends to disprove the hypothesis and indicates that the tracker is actually
tracking the centre line and the sideline has merely disappeared from the
transform. Two threshold values are defined for the piecewise linear p function:
Tv. and Ty. While To<NgL<Ty remains the case, the system remains in the not sure
state. If Ng, <= Ty then the system enters the Tracking Centre Line Very Likely
state and the tracking of the fourth line is stopped and if Ng, >= Ty then the
system enters the Tracking Sideline Very Likely state and switches to the centre
line. It was found that Ty=-3 and Tu=3 were sufficient to separate the two cases.

In the case where the sideline is being tracked the tracker switches as shown in
Figure 7.28
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Figure 7.28: Switching Lines When a Sideline is being Tracked.
7.4.1.2  Detection of the Loss of the Centre Line or Loss of the Lines

There are two other problem cases. The first is loss of the centre line, i.e. what the
tracker thinks are the two sidelines, are in fact the centre line and a sideline, as
shown in Figure 7.29. In Figure 7.29 the white lines correspond to the lines the
tracker thinks are the sidelines, while the dotted line corresponds to the predicted

centre line.

Figure 7.29: Example Case where the Tracker Thinks that the Centre Line and a Sideline
Correspond to the Two Sidelines.

The second problem is a loss of the lines, defined as finding no lines or just one
line. Finding only one line is insufficient for tracking, as it could easily

correspond to a line from the background.
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When these cases are detected, fuzzy logic rules, similar to the sideline rule are
invoked. In the case of a missing centre line, the groups are “Correct Tracking
Very Likely”, “Not Sure” and “Incorrect Tracking Very Likely”. In the case of
finding no more than one line, the groups are “Correct Tracking Very Likely”,
“Not Sure” and “Lines Lost Very Likely”. In these cases we are starting with the
count variables, Ny, (lines lost) or Nyr (incorrect tracking) equal to 0. Tracking
continues into subsequent frames, and if they give the same conclusion, then the
appropriate count is incremented, if not it is decremented. Again there are upper
and lower threshold values (T, and Ty) that define the “Not Sure” region. It was
found that T\=0 and Ty=5 were sufficient to separate the two cases for both

incorrect tracking and losing the lines.

7.4.1.3 Selection of the Optimum Search-square Size

It was necessary to select optimum search-square sizes. If the search-squares are
too small, then some matches won’t be made as the UAV moves to one side. On
the other hand if the search-squares are too big the tracker is more likely to switch
to an incorrect line. This most often happens if the centre line and pole are not
quite co-linear and the centre line disappears for a frame-the tracker then switches
to the pole. An example of this happening is shown in Figure 7.30 where the
white lines indicate the tracker’s output that correspond to lines from the AHT,
while the black lines indicate other lines present in the AHT, which aren’t used by
the tracker. These lines are correctly found by the Hough transform and
correspond to image features, it is just that they are not selected as matches for the

lines by the tracker. An example of the search-squares superimposed on an AHT

is shown in Figure 7.31.

Figure 7.30: Images of the Lines with the Tracker Output Superimposed when the Tracker
Switches from the Centre Line to the Pole,
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Figure 7.31: Tracking Squares Superimposed on an AHT.

The first part of the selection process involved selecting the minimum search
square size. In order to do this the Rule-based tracker was run off-line with
minimum search square sizes varying from 3x3 - 25x25 pixels on two wind
sequences. These sequences include both the situation where the tracking switches
to the pole and the situation where the UAV is displaced laterally. If the search
square is too large then the tracker is more likely to switch to the pole and if the
search square is too small then tracking breaks down as the UAV moves laterally.
The optimum search square size is a compromise between these two and can be
determined by looking at the resulting processed image frames and tracking data
to see where the tracker has estimated the line positions. The optimum minimum

search square size was found to be 15x15 pixels.

After the minimum search square size had been chosen, it was necessary to select
the maximum search square size. Again the rule-based tracker was run off-line on
the same two image sequences, this time varying the maximum search square size
from 17x17-45x45 pixels. If one of the lines has been missing for a few frames
and continues to be predicted, the prediction may well drift away from the actual
line. When the actual line reappears in the AHT, the search square can at times be
too small to enclose and recapture it. The results showed that, with smaller
maximum search square sizes, the line is occasionally not recaptured. This is
shown in Figure 7.32a. With a larger maximum search square size, the line is
recaptured as shown in Figure 7.32b. With a maximum search square size above
35x35 pixels, there was no difference in the results, and so there is little point
using a larger maximum search square size; for these reasons, the maximum

search square size was set at 35x35 pixels.

144



Chapter 7 Tracking

Figure 7.32: Finding Maximum Search-square Size; the Maximum Search-square Sizes used
are: a: 33x33 pixels, b: 35x35 pixels.

7.4.2 Implementation of the Rule-based Tracker

Testing of the rule-based tracker was done in a similar manner to the early tracker.
It was coded in MATLAB and run off-line on the same image sequences as were
used for testing the acquisition routine. Once the off-line version of the tracker
was working, it was ported into C++ and incorporated into the test rig control

software.

Figure 7.33 shows the operation of the rule-based tracker. A state machine is used
in the program in order to control which parts of the tracker run. This state
machine is shown in Figure 7.36. The repeated acquisition process is described in
section 7.3, while the image processing, search of the AHT and third line
prediction are as described in section 7.2; their flowcharts are shown in Appendix
C. Flowcharts showing the operation of the Fuzzy Logic rules are in Figure 7.34
and Figure 7.35.
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Figure 7.33: Flowchart for the Rule-based Tracker.
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Figure 7.36: State Transition Diagram showing how the Tracker State Changes.

7.4.3 Results from the Rule-based Tracker

In order to test the new tracker, the UAV was flown along the lines, and its lateral

displacement recorded. This was done with no wind, a wind gust and a larger

wind gust: these gusts are of the same strength as used to test the early tracker. It

would be expected that with the first two cases should give similar results to the

previous tracker, because there is a relatively low incidence of losing the line.

This confirmed in Figure 7.37 and Figure 7.38.
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Figure 7.37: Lateral Displacement of the UAV with Rule-based Tracker Subject to No Wind.
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Figure 7.38: Lateral Displacement of the UAV with Rule-based Tracker in Response to a
Pulse Wind Gust.
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Figure 7.39: Lateral Displacement of the UAV with Rule-based Tracker in Response to a

Large Pulse Wind Gust.

The large wind gust result should be improved, because the sideline detection

should detect if the system locks onto a sideline. This is confirmed in Figure 7.39,

which shows that the new tracker detects the sideline lock when the lines are re-

acquired and switches tracking to the centre line (solid). The dash-dotted lines

show the path of the UAV with the previous tracker where the sidelines were

followed. It can also be seen that the new rules reduce oscillation around the line.

However there remains the problem of the tracker locking on to the pole at the

end of the run, shown by the UAV moving away from the centre line.

7.4.4 Height Tracking

The test-rig used for this project does not have height adjustment but an
opportunity arose during the project to test the rule-based tracker on an
experimental facility that has this degree of freedom. The software was ported
onto the Air Vehicle Simulator (AVS) [39, 40] at the Autonomous Systems
Laboratory, CSIRO, Australia and tested there by Dr Dewi Jones. The AVS is
essentially a larger scale version of the laboratory test-rig described in Chapter 5,
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measuring approximately ten metres long by eight metres wide by six metres
high. This operates in a large shed and the simulated vehicle consists of a pod
suspended from four winches; movement of the winches moves the pod. The pod
can be moved in the X, Y and Z directions and carries a camera, pitched down by
20° from the horizontal, which captures 640x480 grey-scale images of the line.
Also on-board the pod is a computer to process the images. The results of the
image processing are transmitted to the control computer via radio LAN. The
central control computer simulates the UAV, closes the control loop and
calculates the required winch positions, which are sent to microcontrollers that
control the winches. Figure 7.40 shows the AVS pod above a model power line.
Rocks are placed around the line to provide a cluttered background in order to test
its effect. It should also be noted that the floor is reflective and produces difficult

lighting conditions.

Figure 7.40: The AVS Pod suspended above a Model Power Line.

The UAV model was also ported onto the AVS software and vision feedback used
to track the pod’s lateral displacement from the centre line position. The average
distance between the sidelines and the centre line was used for tracking the height
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of the pod. Calibration was performed using the AVS; yielding the following
equations for the lateral displacement, X, (7.9) and the height, Z (7.10).

X =-0.34315+(0.0012288p, ) +(0.00404016, ) (7.9)

35.308

Z =-0.56246 + (7.10)

where:
pc and O, are the r and q values associated with the centre line

d is the average distance between the sidelines and the centre line
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Figure 7.41: Results of tracking both Lateral Displacement and Height on the AVS; Sample
N’ indicates distance along the lines.

Figure 7.41 shows how well the pod lateral position and height as measured by
the AVS (solid) matches to the demand (dotted); the dash-dotted line shows the
measurement of lateral displacement and height from the visual tracker. It can be
seen that the vision output for the lateral displacement is noisier than the
measured position. The UAV is able to re-align with the lines. With the height
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measurement it can be seen that the position follows the demanded height well
although the output from the tracker is quite noisy, particularly at the end of the
run. This is due to the AVS pod pitching as it comes to a stop. It is to be expected
that the vision output for the height would be more noisy than the lateral
displacement as it is calculated from the difference between points in the AHT
and so there will be a larger error than for the lateral displacement, which is
calculated from the position of the point representing the centre line. It can be
seen from the vision height measurement during the small wind gust that there is
some effect on the height measurement from the lateral displacement. This
coupling would be expected because the lines appear closer together as the UAV
is displaced laterally. This was predicted in section 4.2.2. Looking at the lateral
displacement results, there is a distinct offset between the AVS and vision

measurement; this is probably due to an offset in the line position.

More details of work done with the AVS can be found in [3] but this summary
shows that the tracker software is capable of operating in far less benign
conditions than the laboratory test-rig at Bangor. It also shows that information on
height and lateral displacement can be extracted from the image and used for two

degree-of-freedom visual servoing.

7.5 Kalman Filter

The trackers described so far in this thesis do not include any kind of filter
algorithm. Predictive filtering is a powerful tool and an essential component of
any practical visual servoing system. Filtering introduces a priori knowledge

about the system dynamics and basically has two functions:

e [t places dynamic constraints on the possible motion of the features between

one image frame and the next.
e It allows better predictions, based on past measurements and the internal

dynamic model of where image features will be located in future frames.

Filtering therefore contributes a great deal to the robustness of a tracker and it is

somewhat remarkable that the preceding results have been obtained without its
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inclusion. Nevertheless, improved robustness is still a necessary goal and this

section considers the addition of a Kalman filter to the tracking algorithm.

7.5.1 Description of the Kalman Filter Tracker

The Kalman Filter is a recursive filter as discussed in section 2.4. It gives an
optimal solution if the errors in the measurements being filtered have a Gaussian
distribution. With other error distributions, the Kalman filter can still give good
results but in order to use it in these situations, the errors are assumed to be

Gaussian.

For this application Kalman filters are used to filter the p and 0 values of each
line. It should be noted that the Kalman filter is include in addition to the fuzzy

logic rules described in section 7.4. The Kalman filter has four stages:

e Calculate the Kalman gain: this determines the fraction of the estimate that is
from the prediction and the fraction from the measurement.

e Update the estimate.

e Update the error (variance) associated with the estimate.

e Calculate the prediction for the next frame and its associated error (variance).

Using equations from [46], at sample k the Kalman gain is given by
K, =P,H[(H,P,H] +R,)" (7.11)

where:

Py is the error covariance matrix associated with the prediction

Hy is matrix giving the ideal connection between the measurement and the state
vector

Ry is the error covariance matrix associated with the measurement

The estimate is given by

%, =%; +K,(z, -H,%;) (7.12)
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where:
X; is the prediction vector

Z is the measurement vector

The variance associated with the estimate is given by:
P, =(I-K,H,)P; (7.13)

where;

I is the identity matrix

The prediction and its associated variance are given by:
i;+l = (Pkik
P =9, P0; +Q, (7.14)

where:
@y is the matrix relating the current estimate to the next estimate.

Qx is the error covariance matrix associated with @y

In our Kalman filters X, X~ and z represent the estimate, prediction and
measurement of p or 6, and are scalars. Ideally, in this application the
measurement should be equal to the state vector, as it is the measurement that is

being filtered. For this reason H is equal to 1. There is now a measure of the
accuracy of the prediction: the variance of the prediction, P, . This can be used to

set the search square size. As 99.7% of results are within three standard deviations

of the mean, the search-square size, Sss, is calculated using:

Ses = ceilll+(6* /BT ) (7.15)

The Kalman filter equations (7.11), (7.12) and (7.13) become for 0; there is an
identical Kalman filter for p:
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—_ Pk_
g P +R,

(7.16)

6, =0; +K,(0,.-6;) 1.17)
P =(I-K,)P (718

For the early tracker and rule-based tracker, the predictor, ¢, used was a zero order
predictor. This type of predictor is known as a trivial predictor and simply uses
the current measurement as the prediction. This predictor works well when the
UAYV isn’t moving laterally. When the UAV is moving laterally, the zero order
predictor is not as good as the lines do not appear in the same place in consecutive
frames. However it still works if the UAV doesn’t move too far between frames.
Prediction can be improved for these situations by changing to a first order

predictor. A first order predictor is of the form:

6,., =6, +—6£UT
ou

op
=p, +—UT (7.19
Pra = Py U ( )

where:
U is the UAV lateral velocity

T is the sample time

0 and % are the Jacobian relating the speed to 6 and p
ou ou

It is possible to estimate the velocity of the UAV from the changing 6 and p
values. This allows the predictor to be simplified as it gives an estimate of the
velocity in Hough co-ordinates, meaning that there is no need to calculate the
Jacobian. When the UAV moves laterally, the values of 8 and p change for the
three lines by amounts A8 and Ap respectively. Assuming that the speed of the
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UAYV changes little from frame to frame to frame, the predictior in equation (7.19)

becomes:

6,,, =6, +A0

Pin =Px+4p (7220)

A higher order predictor could be used. This would be based on the UAV model
described in Chapter 3 and could predict where the UAV would be based on

known control inputs. Such a predictor would be complex to implement as the

UAYV motion is described in a Cartesian reference frame, while the Kalman filter

is carried out in the AHT’s reference frame. In order to use such a second order

predictor, the two have to be related by the appropriate Jacobian, which includes

that of the Hough transform. Moving to higher order predictors increases the

complexity and is subject to the law of diminishing returns.

It was decided to use a first order predictor. In order to perform this with the

Kalman filter equations, the prediction and estimate have to be put in normal form

for this step. For 0 the predictor, ¢, is:

1 A@
¢=[0 1] (7.21)

There is an equivalent predictor for p.

Equation (7.14) becomes:

(6. |_[1 a0]é;
1 0 1 1

P, o]=[1 AB][P; 0][1 A0]+[Q o] a.22)
0o of [0 1o ofo 1]]0 0
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Testing of the first order predictor showed it worked well. When one of the lines
was missing from the AHT, meaning that its position was estimated from the
other two, the calculated values of A8 and Ap were found to be a poor predictor
for that line. It was found that better results could be obtained by estimating the
values of A9 and Ap for the missing line from the values of AO and Ap for the
other two lines. This is done by taking the average of A@ and Ap for the other two

lines. For example, if the right line is missing, ABg and Apg are given by:

Ab, =A_0C%_A_€L_ Ap, =APC_;AP_L_ (7.23)

7.5.2 Implementation of the Kalman Filter Tracker

The matrix equations were easy to code in MATLAB as it has matrix support, but
C++ does not have this support natively. To allow for easy coding, the matrix

equations were broken down into scalar equations. Equation (7.22) becomes:
ékj,, = é,, + A8
Poa=F+0 (7.24)

In addition to the equations for the Kalman filter, it is necessary to measure the
error variances associated with the measurement (R) and the prediction (Q). In
order to obtain an estimate of R, ten processed frames were selected from the
image sequences used to test the trackers. These had the output lines from the
AHT superimposed on them along with a marker of the image centre. Lines were
marked onto the images, showing an estimate of the line position by eye. An

example of this is shown in Figure 7.42
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Figure 7.42: Example Frame Used to Measure R.

The difference between the p and 0 values for each line in each of the ten frames
was recorded. The variance was then calculated for both 0 and p. The values of R

were as follows and are used in all the Kalman filter tests:
0: R=3.9°
p: R=3.13pixel’ (7.25)

These values of the measurement apply when all three lines are found in a frame.
However, during normal operation, lines are missing from some frames. In these
cases, the measured value of R in (7.25) will not be representative of the error
present in any estimate used as the measurement. The value of R needs to vary
with time to reflect the effect on the error caused by the estimation of line

positions.

In the case where one line is missing from the AHT, its position is estimated from
the positions of other two. The value of R associated with the estimated line will
be higher than the measured values as the error in the estimated position is higher
than if it were present in the transform. The value of R for an estimated line
position is calculated by adding up the standard deviations of the line positions the
estimate is calculated from. For an estimated centre line, Rc is calculated by
equation (7.26) and when the sideline is estimated, R is given by (7.27) for an
estimated left line and (7.28) for an estimated right line.
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R. =(JR, +yR.} (1.26)

R, =(2*JR: )+ R ] @27

k=N 029

If more than one line is missing, then line positions are not estimated and instead,
the prediction from the previous frame is carried forward. In this case, in order to
indicate the higher error, twice the standard deviation is assumed. R is calculated

using:
R=4*R, .. (1.29)

where:

Rper is the measured value of R given in (7.25)

To measure the value of Q the off-line tracker was programmed to record the
prediction used and the actual change in the estimates of p and 0. The error
between the two was recorded for each frame. A program was then written in
MATLAB to extract the prediction errors and calculate the variance for both 6 and

p. The values of Q were as follows and are used in all the Kalman filter tests:
0: Q=1.16%
p: Q=0.791pixel® (7.30)

Testing of the Kalman filter tracker was done in a similar manner to the rule-
based tracker. It was first coded in MATLAB and run off-line on the same image
sequences as were used for the rule-based tracker. Once the off-line version of the
tracker was working, it was ported into C++ and incorporated into the test rig
control software and Figure 7.43 shows its operation. The repeated acquisition
process is as described in section 7.3, while the image processing, search of the

AHT and third line prediction are again as described in section 7.2. The fuzzy
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logic rules are as described in section 7.4. A flowchart showing the operation of

the Kalman filter itself is shown in Figure 7.44.

v
| | Repeated Acquisition | |

»

Process Frame and
| Timer Wait | Search for points in HT

Predict third line if
necessary

[ ] Apply Kalman Fitter| |

Apply Sideline Detection
Fuzzy Logic Rule

!

Apply Lose Lines and Lose
Centre Line Fuzzy Logic Rules

v

[ Ensure Search Square boundaries remain within HT |

| Pass conductor positions to control system

Have
the lines or the
centre line been
lost?

Yes

No

Has
the end of the lines been
reached?

No

Figure 7.43: Flowchart for the Kalman Filter Tracker.
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| Calculate Kalman Gains (K) for Each Line]

| Update Position Estimate for Each Line |

y

| Update the Estimate Variance (P) for Each Line|

| Calculate the Predictor for Each Line

line missing from the Yes—j

easurement?

Calculate the Predictor for the
missing line from the other two.

No |

Calculate the Prediction of the Line
Positions in the Next Frame

v

Calculate the Variance of the
Prediction (P ) for Each Line

Figure 7.44: Flowchart for the Kalman Filter.

7.5.3 Results with Kalman Filter Tracker

In order to test the Kalman filter tracker, the UAV was flown along the lines, and
its lateral displacement recorded. This was done with no wind, a wind gust and a
large wind gust: again these gusts are of the same strength as used to test the early

tracker (see section 7.2.3).

Figure 7.45 shows that the UAV tracks the lines well with the Kalman filter
tracker. The results with the Kalman filter tracker (solid) are very similar to those
obtained with the rule-based tracker (dash-dotted). It should be noted that the
Kalman filter tracker does include the fuzzy logic rules. This would be expected
because there is a plain background to the lines and so there is little noise and only
small UAYV lateral velocity, so there is little opportunity for the Kalman filter to

show an advantage.
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Figure 7.45: Lateral Displacement of the UAV with Kalman Filter Tracker Subject to No
Wind.
In order to see the effect of the Kalman filter, it is necessary to look at the
estimate of the lateral displacement of the UAV from the Kalman filter tracker,
rather than the measured UAV position from the test rig, and compare it to the
unfiltered lateral displacement estimate from the Rule-based tracker. Figure 7.46
shows that the output from the Kalman filter tracker (solid) generally has less high
frequency content compared to the Rule-based tracker output (dash-dotted). This
can be seen more clearly by zooming in on the area of the plot that doesn’t include

the sections affected by the poles at either end of the run, as shown in Figure 7.47.
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Figure 7.46: Estimated Lateral Displacement of the UAV from the Kalman Filter Tracker
Output with the UAV Subject to No Wind.
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Figure 7.47: Estimated Lateral Displacement of the UAV from the Kalman Filter Tracker
Output with the UAV Subject to No Wind (Zoomed In).
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Figure 7.48: Lateral Displacement of the UAV with Kalman Filter Tracker in Response to a
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Figure 7.49: Lateral Displacement of the UAV with Kalman Filter Tracker in Response to a

Large Pulse Wind Gust.
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Figure 7.48 shows that the results when a wind gust is applied (solid) are similar
to with those from the rule-based tracker (dash-dotted) and Figure 7.49 shows that
this is true for a large wind gust too.

While the tracker, with or without the Kalman filter, gives good results on the
plain background currently in use, there should be a difference when a cluttered
background is used. Inclusion of the Kalman filter should produce a tracker that is

more resilient to background noise, but time did not allow this to be investigated.

7.6 Conclusions

A successful tracker has been developed. The lines are tracked well from frame to
frame, giving a good basis to build on but there are a few problems that need to be
dealt with. The major problem is the effect of the pole as the UAV approaches it.
Possible solutions to this include using a fraction of the values of the sidelines in
the prediction of the centre line. This would help as it would tend to keep the line
pattern more symmetrical; when the tracker locks onto the pole, the line pattern
becomes quite non-symmetric. This could make use of the symmetry measure
from the acquisition routine and may form part of the Kalman filter predictor.
Another possibility is to incorporate more fuzzy logic in order to detect if the pole
is being tracked and attempt to switch back to the centre line. It may also be
possible to incorporate a model of the pole into the tracker and track this instead

of (or as well as) the lines, as the UAV approaches the pole.

Tracking could be improved by the use of a particle filter [43, 58]. This uses a
series of particles to represent the error probability density function, allowing
more complex error probability density functions to be represented than Gaussian
errors. Particle filters also allow for tracking more than one possible match. When
this happens, the true match gets stronger, while false matches die away. This
would allow for multiple-hypothesis testing as to the possible location of the lines
in the image; allowing the multiple possible matches produced by the acquisition
to be tested and tracked rather than only looking at the “best” match. Multiple-
hypothesis testing should also help when the tracker is used in the real

environment where the background contains clutter. The effect of a cluttered
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background needs to be investigated. Other possible lines of investigation include
the affine techniques described by Shapiro [59], more fuzzy logic, neural
networks [60] and the use of optical flow to detect the upcoming pole.
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8.1 Introduction

Chapter 7 discussed control of the lateral displacement and height of the UAV
using visual servoing. The geometric analysis in Chapter 4 showed that lateral
displacement, yaw and roll could be measured from the position of the centre line
in the image while the height and pitch could be measured from the average
distance between the outer lines and the centre line. Chapter 4 also showed that in
order to track lateral displacement, yaw and roll, two cameras were required. In
this chapter, control of multiple axes is discussed. This will focus on the use of
two cameras to provide information on the lateral displacement, yaw and roll of
the UAV.

In order to do this the two-camera assembly was fitted to the test-rig and the
multiple computer version of the tracking software was used, as described in
section 5.6. The vision part of this software used the Kalman filter based tracker
described in section 7.5, while the control part of the sofiware used the UAV
model described in Chapter 3. The equations used to extract the lateral
displacement, yaw and roll are described in this chapter. The code for the control

and vision parts of the software are given in Appendix D.

In order to build up to measuring all three axes from vision, each axis was added
in turn. To start with, the system was tested with only lateral displacement
tracking. Lateral displacement was extracted from the forward camera using the
equation (7.1) as used in Chapter 7. As the twin-camera mount is being used, the
values of Xy and X, are taken from section 4.3 rather than section 4.2.2. Testing
only the lateral displacement, initially, was done to show that the system worked
with the two-camera configuration as it did with one camera. Following this, the
system was expanded to extract both the lateral displacement and yaw from the
forward camera. This allowed control of both the lateral displacement and yaw.
As the UAV model from Chapter 3 doesn’t include a model for yaw, it was
modelled as a first order system. Finally, the system was expanded to use input

from both cameras to give the lateral displacement, yaw and roll. Note that the
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test-rig doesn’t have a roll axis so this variable can’t be controlled. An additional
complication is that on the actual UAV the same actuator will control roll and
lateral displacement (it is under-actuated). In this case, the lateral displacement
and yaw were controlled while the roll measurement was simply recorded. This
allowed the output to be assessed as to whether it could be used to control the roll

axis.

8.2 Lateral Displacement Control
8.2.1 Design

In the first test, only the lateral displacement, X, is measured using images from
the forward camera of the twin-camera mount. The measure of X is estimated

from the forward image using (8.1)

X 0+X
X=_"___Pp 3.1
2
where Xg and X, are ! and 1
P 90 opr
oxX oX

The 0 and p scaling factors are obtained from the analysis in section 4.3.

Substituting these values into (8.1) gives:

_ 0.040149; 0.0314p o

X

Lateral displacement using the twin-camera assembly could then be tested.

8.2.2 Results

In order to test the lateral displacement tracking, the same tests were used as in
Chapter 7. First the UAV was flown along the line subject to no wind gust. This

was then repeated with a small and large wind gust.
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Figure 8.1: Lateral Displacement of the U‘:V (;vith Kalman Filter Tracker Subject to No
ind.
We can see from Figure 8.1 that for most of the length of the line section tracking
is good with the twin-camera setup (solid) although the effect of switching to the
pole at the end of the run is considerably worse than with the single camera result
from section 7.5.3 (dash-dotted). Figure 8.2 shows the effect of mistaking the pole
for the centre line. The values of both 6 and p are affected by tracking the pole,
although the effect on 0 is more significant as its sign changes, which introduces a
certain amount of positive feedback. The position estimate from the twin camera
mount comes more from the 6 value than the position estimate from the single
camera, hence the larger effect. In order to show that the deviation at the end of
the run is caused by the pole, it was covered such as to blend in with the
background. The UAV was then flown along the line again. Figure 8.1 shows that
the UAV doesn’t deviate at the end of the line (dashed).
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Figure 8.3: Lateral Displacement of the UAV with Kalman Filter Tracker Subject to a Pulse
Wind Gust.

Figure 8.3 shows that with the small wind gust, the results for the two-camera

setup with the poles covered (solid) match well with the one camera system (dash-

dotted) with a pulse wind gust. Figure 8.4 shows a similar result with a large pulse

wind gust.
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Figure 8.4: Lateral Displacement of the UAV with Kalman Filter Tracker Subject to a Large
Wind Gust.

Tracking of the lateral displacement works as well with the twin-camera mount as
with the single camera mount. This is as would be expected. There is, however a

larger effect caused by switching to tracking the pole.

8.3 Lateral Displacement and Yaw Control

8.3.1 Design

In this section, the intention is to simultaneously control both the lateral
displacement, X, and the yaw, a, of the UAV. In order to do this, both the a and X
need to be extracted from the image. Also, it is necessary to model the yaw of the

rotorcraft.

8.3.1.1 Yaw Model

The yaw of the UAV would be provided by adjusting the relative speeds of the
two rotor blades. Unfortunately, the data required to model the yaw of the UAV
was not available. However, the speed of the yaw should be proportional to the
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difference in the speeds of the rotor blades, over short periods of time. Hence the
yaw position would be the integral of this. The yaw axis can be modelled as a
single integrator. It would be expected that the time to yaw through a fairly small
angle would be of the order of seconds. A better model will be built when data is

available.

Position feedback could then be used to control the yaw position of the UAV.
Position feedback is provided by the vision control, or a compass. The first order

model of the yaw of the UAV is shown in Figure 8.5

]
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Figure 8.5: First Order Yaw Model.
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Figure 8.6: Yaw Model Position Response.
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Figure 8.6 shows the response of the first order yaw model (solid) to a step input
(dashed). The first order yaw model was coded into the control part of the test rig
software (ControlThread.cpp: see Appendix D)

It should be noted that as the UAV yaws, its heading will change and so the
direction of lateral displacement on the rig will change. As the yaw is expected to
stay at around zero, the lateral displacement was kept aligned with the X axis of
the test rig rather than rotating it with the yaw of the UAV. This is something that
will have to be done in the future.

8.3.1.2 Equations to Calculate X and a from the Image

Analysis in section 4.2.2 indicates that, if roll is always zero, as it is on the test
rig, then it should be possible to extract both lateral displacement and yaw from
just the forward camera. Section 4.2.2 indicates that there is little cross coupling
between the lateral displacement (X) and yaw (o) and so their contributions to 6
and p can be added together. The values of p and 6 for any given X and a are
given in (8.3) and (8.4).

0=0,X+0,c (8.3)

p=pyX+p,a (84)

where:

0 and p are the values of 0 and p for the centre line from the forward pointing
camera.

X is the lateral displacement of the UAV

a is the yaw of the UAV

0x, px, 0 and p, are the coefficients: these are equal to the values of the slope of

the relevant graphs in section 4.3, for example 0x is equal to 29 .

It was necessary to re-arrange these equations to give X and a in terms of p and 6.

If (8.3) is re-arranged to give a this gives:
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_6-6,X

a 8.5)

a

Substituting (8.5) into (8.4) gives:

A )
p= pXX+%0—p;—XX (8.6)

Re-arranging (8.6) gives:

Sub (8.7) into (8.3) gives:

1 7]
-—— = __gl+6,a (8.8
Paex p p _pa0X ( )
) )

a a

6=0,
Px ~—

Re-arranging (8.8) gives:

This gives equations for X and o. Before these can be programmed into the
control software, the values of the coefficients need to be determined. From

analysis in section 4.3 the values are:

0x=24.9

Px = -30.7
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0.=1.30

Po=-4.66

It should be noted that while 6, is almost zero for the single camera setup, for the
twin camera, it has a significant non-zero value. Putting these values into (8.7)

and (8.9) gives:

X =0.0171p+0.06126 (8.10)

a=-0328p-0.4039 (8.11)

These equations and the first order UAV model were added to the control
software. This could then be tested.

8.3.2 Results

First the UAV was flown along the line, subject to no wind gust. Following this,

the test was repeated using a small and then a large wind gust.

Figure 8.7 shows that for the first part of the run, both the lateral displacement and
the yaw track quite well (solid), although there is a slight offset on the lateral
position. As the UAV approaches the pole at the end of the line, two-axis tracker
causes a larger lateral displacement to occur. This is because the tracker locks
onto the pole and the erroneous p and 6 values cause both lateral displacement and
yaw tracking to be affected. The rotorcraft’s yaw then compounds the effect on
the lateral displacement. Again, in order to show that it is the pole that causes the

deviation, the run was repeated with the pole covered up (dash-dotted).
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Figure 8.7: Lateral Displacement and Yaw of the UAV with Kalman Filter Tracker Subject
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Figure 8.8: Lateral Displacement and Yaw of the UAV with Kalman Filter Tracker Subject

to a Pulse Wind Gust.

178



Chapter 8 Multi-axis Control

Figure 8.8 shows that the UAV is able to restore lock onto the line after a pulse
wind gust. When the UAV is blown aside by the wind gust, it can be seen that
there is little effect on the yaw of the craft, indicating that the two axes are
independent. The UAV doesn’t drift at the end of the run because the pole had
been covered. Figure 8.9 shows the desired tracking behaviour with a large pulse

wind gust.

Lat. Disp. (m)

0 5 10 15 20 25 30 35 40

" ek e e N T
Distance Along Lines (m)

Figure 8.9: Lateral Displacement and Yaw of the UAV with Kalman Filter Tracker Subject
to a Large Pulse Wind Gust.

8.4 Lateral Displacement, Yaw and Roll Tracking
8.4.1 Design

In this section the possibility of tracking lateral displacement (X), yaw () and roll
(y) at the same time is investigated. It was shown in Chapter 4 that both cameras
were required to extract X, a and y. As the contributions to the p and 6 values
from X, a and y are independent and add together, their values can be combined to
give p and 0 for each camera. The values of p and 6 for the forward facing camera
for any given X, a and y are given in (8.12) and (8.13) while those for the
backward facing camera are given in (8.14) and (8.15).
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Pr =PixX +pr,a (8.12)

6; =0p X +6,a+6,y (8.13)

Ps = Pax X+ Pp, 0+ pg,y (8.14)
O =O0p X +6,,a+0,y (8.15)

where:

Or and pr are the values of 6 and p for the centre line from the forward pointing
camera.

O and pg are the values of 6 and p for the centre line from the backward pointing
camera.

X is the lateral displacement of the UAV

a is the yaw of the UAV

v is the roll of the UAV

Orx, Prx, OFe, Pre etc. are the coefficients: these are equal to the values of the slope

of the relevant graphs in section 4.3

It was necessary to re-arrange these equations to give X, a and y in terms of 6, pr,

0p and pg. If (8.12) is re-arranged to give X this gives:

X = Pr — Pr, X (8.16)
Prx

Substituting (8.16) into (8.13) gives:

6, =9FX(M)+ema+e,,,y (8.17)

Prx

Re-arranging for y gives:

y= 1 BF _eFX [pF —pFan_'_ZFa a (8.18)

0 Fy Prx Fy
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Substituting (8.18) and (8.16) into (8.14) gives:

P = pBX(M)+pBaa+pgy(01 ap _ ng (pF _pFaa)+ ZFa aJ (8.19)

X Fy 6 Fy Prx Fr

Re-arranging (8.19) for a gives:

6
Ps +(p87 = _ Py ]PF L O

0
o= PrxYr  Prx Fy (8.20)
PpxPra , P BrgFX Pra pBreFa
p Ba ~ + -
Prx epprX 0Fr

Substituting (8.20) into (8.12) gives:

Ppt [pByeFX —Lex JPF Lo 0
Panry Prx
_ PaxPra + pBreFXpFa _ PB,ﬂFa
Prx Or, Prx Or,

Fy

Pr =Py X + Pr, (8.21)

pBa

Re-arranging (8.21) for X gives:

«  PsOra Ps
—Ppt Psa Loy o+
pFa pFagFr

X =
PBraPrx pBrgFX pFXpBrgFa
———Ppx t -
Pra 91:7 eFrpFa

Fy

(8.22)

Substituting (8.22) and (8.20) into (8.15) and re-arranging for y gives:

—p,+ [Pga _ Py Ora JpF + Psy 0,
1 0. — Oy Pra  PraOry O,
05, ? Os, | PpaPrx - Ps,Orx _ Prx Py Ora
Pra BX O, Or, Pra

}/=
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o
p8+(p37 FX __ng Jp’:_pBr BF

_ b PrxOr,  Prx Fy (8.23)
037 Pro — Prx Pra + pBrer\’pFa _ pByeFa
Ba
Prx OryPrx O,

This gives equations for X, a and y. Before these can be programmed into the
control software, the values of the coefficients need to be determined. From

analysis in section 4.3 the values are:

Orx=24.9 Or.=1.30 0r,=0.93
prx=-30.7 PFra=-4.66 pry=0
Opx=-24.9 0p.=1.30 0py=-1.36
pex=30.7 PBa—4.66 pey=2.74

Table 8.1: Lateral Displacement, Yaw Roll Co-efficients.

Putting these values into (8.22), (8.20) and (8.23) gives:

X =0.0754p, —0.137p, —0.2220, (8.24)

a =-0.496p, +0.69p, +1.460, (8.25)

y =-0.7350, =1.85p, +3.17p, +5.460, (8.26)

These equations were added to the control software, which was then tested.

8.4.2 Results

Again the UAV was first flown along the line, subject to no wind gust and with
the poles covered. The lateral displacement and yaw were controlled by the vision
feedback, while the roll can only be measured from the images. Ideally we would
expect to get a constant zero measurement for the roll, while the lateral

displacement and yaw should track as before.
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Figure 8.10: Lateral Displacement, Yaw and Roll of the UAV with Kalman Filter Tracker
Subject to No Wind.
Figure 8.10 shows the lateral position and yaw of the UAV under vision control
(solid) and the estimate of the lateral displacement, yaw and roll of the UAV from
the image processing (dash-dotted). The UAV tracks the lines quite well. There is
some oscillation in the lateral displacement of the UAV. Yaw is around zero, as
would be expected. The estimates of the lateral displacement and yaw from the
image processing have more noise than the measured positions from the rig. There
is also a reasonable amount of noise on the roll measurement. At the very end of
the run, the tracker loses the lines, as there aren’t more lines following on from

the pole, hence the deviation from the lines at the very end of the run.

Possible causes of the oscillation in the lateral displacement and the noise are that
separating three measurements from the 8 and p values and using two cameras
brings in more noise sources. Also there will be a larger error in the 0, 05, and
psy values, compared to the values of the other coefficients because there is no roll
axis on the rig and it was necessary to make the measurements by hand. Changing
the lateral displacement causes opposite effect on the forward and backward

image while roll causes opposite but unequal effects on the two images. It may,
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therefore be the case that these two axes are not as easy to separate as separating

the yaw measurement, and so may be more sensitive to noise.

8.5 Conclusions

It can be seen from the two-axis experiment that it is possible to extract the lateral
displacement and the yaw from one camera and successfully control both axes.
This leads to a possible method of reducing the problem of the pole. It should be
possible to use the backward facing camera to obtain the yaw and lateral
displacement when the UAV approaches a pole, as the backward facing camera
won’t see the pole. When both cameras can see a clear line, it would be possible
to use an average of the X and a measurements from both cameras to control the
UAV. In order to use either of these options, a measurement of roll would have to
be made using a non-vision sensor, and the effect of the roll would have to be

subtracted from the p and 6 values from each of the cameras.

The three-axis experiment indicates that it should be possible to control all three
axes from vision, if both cameras are working, although the results are noisier
than controlling just yaw and lateral displacement. In order to fully test this, the
test-rig would need the addition of a roll axis in order to simulate the roll and thus
see the effect on the image. In addition, as the same actuator will control both roll
and lateral displacement on the UAV, there will, at times, need to be a non-zero
roll demand, in order to stop the attempt to obtain zero roll affecting lateral
displacement. A method of combining the lateral displacement and roll error

signals to feed to the actuator on the UAV will need to be developed.
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Chapter 9 Conclusions and
Future Work

9.1 Conclusions

The project has produced encouraging results for the prospect of a visually guided
UAYV to inspect electricity distribution lines. It has been shown that the three lines
do form a useful beacon for servoing the UAV. The project met its aims and has

given a good foundation on which to build an improved tracker.

A model of the UAV has been developed, although validation tests will need to be
done once a UAV has been constructed to see how well it conforms to the real
UAV. The ducted fan type of UAV described suffers from a poor wind gust
response and there is also the limitation that the model is of the laboratory
demonstrator and so is more sensitive to wind than a full size UAV would be. The
UAYV also has the limitation of having a slow response time. The tracking results
show this slow response, and indicate that a different design of UAV, with a faster
response time will very likely be needed for this project. Changing to a different
type of UAV would require a new UAV model but shouldn’t significantly affect

the operation of the vision system.

The test rig, on which experiments were performed, was constructed successfully,
although this took quite a lot of time and work. Despite its small scale, it produces
satisfactorily realistic image sequences of the overhead lines. The rig provides
good three-axis movement but it is clear that additional axes would need to be
added for future experiments. The addition of a roll axis and changing the pitch to
a controllable axis, rather than just a manually settable axis would be necessary in
order to better simulate the UAV.

The Aggregated Hough Transform was developed and shown to find the three
lines well. Within the AHT there are often lines that are not associated with the
overhead lines. These primarily come from the pole and the insulators on top of it,

when they are prominent in the image. There are occasional lines from the
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background. These don’t generally cause a problem with tracking, as they tend to
appear in areas of the AHT that the tracker doesn’t search. The exception to this is
the vertical pole, which did tend to cause tracking problems when it was not co-
linear with the centre line. When more realistic backgrounds are used, the number
of such lines will increase, and so it is predicted that tracking will be affected

more.

The use of fuzzy logic rules and a Kalman filter provided successful tracking of
the lines from frame to frame. Visual control of the lateral displacement of the
UAV was demonstrated and the UAV was able to maintain alignment with the

centre line and re-acquire the lines and return to the centre line after a wind gust.

In Chapter 8 simultaneous control of both lateral displacement and yaw was
demonstrated. This showed that both could successfully be controlled by visual
servoing with video from one camera. The possibility of extracting information
about the roll of the UAV from vision, as well as the lateral displacement and
yaw, was demonstrated using two cameras, although this gave a much noisier
result than when only the lateral displacement and yaw were tracked.
Consideration must also be given as to how to use the roll and lateral
displacement signals, because the same actuator must control both the roll and
lateral displacement axes. The experiment in section 7.4.4 showed that in addition
to extracting the lateral position of the UAV it was also possible to simultaneously
extract an estimate of the height above the lines and control both the lateral
displacement and height of the UAV simultaneously. In order to combine this and
the yaw and roll control, it would be necessary to add a height axis to the test rig

as well as a roll and pitch axis.

It has been shown that the UAV will follow the lines and that it is possible to
control multiple axes using vision feedback. Though the results of this project
demonstrate the principle of controlling the UAV using visual servoing, there are
significant problems that remain to be solved before commercial development is
appropriate. At least in the short term, it is likely that other sensors that assist
visual servoing will be needed. These could include ultrasonic, laser and

millimetre wave radar sensors. Using these would give an associated power,
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weight and cost penalty. Currently the system is run in an idealised environment
with a plain background, with the exception of the test performed on the AVS.
Tests will need to be done using cluttered backgrounds and eventually in the real
world. This will almost certainly cause tracking to be less reliable than in the

current idealised case, and so strategies to deal with this must be found.

9.2 Future Work

In order to take the project from its current early state to completion, a lot of work
is going to be required. The problems of tracking the pole and tracking problems
associated with realistic backgrounds will need to be solved. This could possibly
be done by the use of fuzzy logic rules to detect a switch followed by an attempt
to move back to the centre line. Alternatively, a percentage of the positions of the
outer two lines, when both are present, could be included in the prediction of the
centre line. A particle filter [58], the affine techniques described by Shapiro [59]
and/or the use of neural networks [60] could also help with this. Template
matching may also help with locating the pole in the image, which could allow the
system to switch back to the centre line. A possible method for locating the pole
in the image is given in [61]. The location of the pole top could also be used for
servoing the UAV. An additional line of investigation is to look at the
augmentation of information by other sensors, such as an electric field sensor to
detect the position of the lines relative to the craft, roll and pitch sensors, a
compass and radar combined with the machine vision method, thus improving the
estimates of position and leading to improved control of the UAV. The use of a
downward looking camera could be investigated. Because it would look directly
downward, it wouldn’t be affected by the distant pole. Primarily, this should give
information on the lateral displacement and yaw of the UAV. Due to the direction
this camera points, small values of roll and lateral displacement will produce the
same apparent motion in the image. Consideration would be needed in to how to
mount such a camera on to the UAV such that it has a clear view of the lines un-

obscured by the power pick up.

It is know that the ducted fan type UAV that is planned as a laboratory

demonstrator suffers from a poor wind gust response. It was chosen because it is
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convenient to have a UAV that is dynamically stable and marginally statically
stable. Further work is required to design a replacement for this UAV that is
larger, so as to be useful for inspection purposes, has a better wind gust response
and has a faster response time. It is also necessary to investigate how the effect of
a wind gust scales with the size of the UAV. It is possible that using an inherently
unstable UAV with a dedicated stabilising control system may help speed up the
response to a wind gust and allow a critically damped response, rather than the
current slow, under-damped response. Work also needs to be done to develop the

power pick-up system.

The research effort reported in this thesis has made a significant contribution to
the feasibility of the overall concept but it is clear that several other difficult areas
of work must be undertaken before a practical system for power line inspection

emerges.
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Appendix A Geometric
Analysis

A.1 Analysis for the Roll Axis

Applying equation (4.1) to a straight-line model of the centre conductor, placed at
Xw =0 and Zw = -Z;, where Z;, is the vertical height of the camera centre above
the line, generates a corresponding line in the image. Applying the Hough
Transform then gives p and 6 as a function of the camera pose. The UAV that
rolls by an angle y. Assume that the vehicle is flying along the lines at constant
speed, and so has a fixed pitch, B. Assume also that a and X, are zero. Equation

(4.1) becomes:

Xe | [t 0 0 0] 1 00 O cosy 0 siny O
Ye ] 01 0010010 -¢|] 0 1 o of
Z)g 0 01 1 0lloo1 o —siny 0 cosy O
_c 0 -— 0 0

il 2 ] 0 00 1 0 0 0 1
1 0 0 o] 0

0 cosf -sinff O « Y A1)

0 sinf cosp 0| |-Z, '

0 0 0 1] 1

This becomes

Xc [ Y, sin Bsiny ~Z, cos Bsiny ]

Y. Yycosf+Z,sinff—¢

Ze |T|Y,sinfcosy—Z, cos fcosy (A2)
-7, Yycos+Z,sinf—1¢

a1 L A |

From (A.2), using (4.2), the image co-ordinates are given by:

_lesin,Bsiny-ZL cos Bsiny an
Yycosf+Z,sinff ¢

d

X =
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Y, sin Bcosy —Z, cos Bcosy
YycosB+2Z,sinf—-£

z=-1

(A3)

Applying the Hough Transform (4.6) then gives:

0 = tan"! sz.m,b’smy—ZLcos,Bsmy = tan 307 ) oo
Y, sin fcosy ~Z, cos fcosy cosy

_/1szmﬂsmy—ZL.cos,Bsmycosy_’_l .
Y,cosf+Z,sinff—¢ Yycosf+2Z,sinf-¢

(A4)

These simplify to

=y and p=0 (A.5)

It can be seen that only 0 changes with roll angle while p is identically zero.

A.2 Analysis for the Yaw Axis

Applying equation (4.1) to a straight-line model of the centre conductor, placed at

Y, sinfsiny-2, cosﬂsin}'Sin

4

Xw =0 and Zy = -Z;, where Z_ is the vertical height of the camera centre above

the line, generates a corresponding line in the image. Applying the Hough

Transform then gives p and 0 as a function of the camera pose. The UAYV that

yaws by an angle a. Assume that the vehicle is flying along the lines at constant

speed, and so has a fixed pitch, . Assume also that y and X, are zero. Equation

(4.1) becomes:
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- - -

Xel [T 0 00100 0]t 0o 0 0
Ye ] |01 000101 0 —£f,[0 cosp -sinp 0],
Ze [7[0 0 10/1g 01 o 0 sing cosfp O
“Yello -2 00llooo 1]l0 o 0 1
| A ]t A _
[cosa —sine 0 0] [ 0
sine cosa 0 0}, 7, (A6)
0 0 1 0| |-z
| 0 0 0 1|1
This becomes
PN ~Y, sina i
Y. Y, cosacosf+Z, sinf~¢
Z. |T| Y,cosasinf-Z, cosf (A7)
-Y. _Yycosacosf+Z,sinf-¢
| A ] L A _
From (A.7), using (4.2), the image co-ordinates are given by:
x=1 Y, sina . and
Y, cosacosf+2Z,sinff—¢
) chosasm,B—ZL.cos,B (A8)
Y, cosacosB+Z,sinf-{
Applying the Hough Transform (4.6) then gives:
O=tan"’ —f’wsma and
Y, cosasinf~Z, cos B
- MY, sin B~ ] )
p= A, cosg— 2w sinf-Z,cosp) ., (A9)
Y,cosf+Z, sinfB—¢ YycosB+Z,sinf—-¢

It can be seen that both p and 0 change with yaw.
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A.3 Analysis for the Pitch Axis

If we apply equation (4.1) to a model of the centre conductor and vary the pitch
(B) of the UAV from the “normal” pitch value required for the UAV to move

forward then we get the following:

Xel[t 0 00100 011 o o o]f[o
Y, _0 00*010—2*0cosﬂ—sinﬂ0*yyy
Z; 0 0110 001 0|0 sing cosp 0| [-Z
“Tel o == 0 0

= L P | 0 00 1 0O o0 0 1 1
(A.10)
This becomes:

Y, Y,cosf+Z,sinff—4

Z. |Z| Y,sinf-Z,cosp (A.11)

-Y, _YWcos,B+ZLsin,B—€

L 2] L A J

From (A.11), using (4.2), the image co-ordinates are given by:

Y,sinff~Z, cosf
Y,cosf+Z,sinff~¢

x=0and z=-4

(A.12)

Applying the Hough Transform then gives:
6=0and p=0 (A.13)
It can be seen that the pitch of the UAV does not affect the position of the centre

line in the image, however if the same analysis is done for a sideline a lateral

distance Xg from the centre line then we get following;:
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Xc| 1 0 001 00 0171 o0 0o 0] [-x
Y, |01 00*010—3*0cos/3—sinﬂ0*YW
zIS 00110 001 0| {0 sinf cosp 0| |-2,
“fello == 0 0

=1 1° 7 jlooo 150 0 0 1 1
(A.14)
This becomes:

x.] T - X; ]

Y, Y,cosf+Z sinff—£

Z:. |7 Yy sinf—Z, cos B (A-15)

-, _Yycosp+Z, sinf-{

LA 1L A

From (A.15), using (4.2), the image co-ordinates are given by:

AX g
x= - and
Yycosf+Z,sinfB~{

Y,sinf—-Z,cos B
Yycosf+Z,sinB -4

z=-

(A.16)

Applying the Hough Transform then gives:

0 =tan™ . AX and
Y,sinf—-Z, cosf
o= AXs cos@+ ALy SNB=Z,c0B o p a17)
Y,cosp+Z, sinfB—{ Yycosf+Z,sinf-1¢

It can be seen that both p and 8 for a sideline vary with pitch angle (B).
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Shown in this appendix are graphs showing the effect of varying both roll and
lateral displacement and yaw and roll on the values of O¢ and pc and the effect of

varying both Height and Lateral Displacement on 84 and pq.

Lat. Disp. (m) 2 20 Roll (%)

Figure B.1: The effect of varying both Roll and Lateral Displacement on 0.
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Figure B.2: The effect of varying both Roll and Lateral Displacement on pc.
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Figure B.3: The effect of varying both Yaw and Roll on 0.
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Figure B.4: The effect of varying both Yaw and Roll on pc.
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Figure B.5: The effect of varying both Height and Lateral Displacement on 0.
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Height (m)

Lat. Disp. (m)

Figure B.6: The effect of varying both Height and Lateral Displacement on p,.
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Appendix C Tracking
Flowcharts

| Image Processing |

Find All Candidate Points for a Conductor in each
of the three Search Squares

v

| Remove Duplicate Points |

Is Search Square

Yes Empty?

|Increment it's size] | Contract to minimum size

l ol |

Yes
I size=max l
v

In each search Square, select the candidate
point: the point nearest the square's centre

!

| Enforce minimum distance between conductor points in AHT

Is Search Square
size>max?

Ng

Figure C.1: Flowchart showing the operation of image processing and search of the AHT
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Is only C line missing?

Yesj
Set C position to average
of L and R positions

No I

Yes—¢
Assign Symmetrically to
L line

s an extra line being
tracked?

Yes

v

Predict the location of
the extra line

| Setextra_line_countto 0 |

Is only L line missing? Yes—¢
Assign Symmetrically to
R line

s an extra line being
tracked?

Yes

i

Predict the location of
the extra line

| Setextra_line_countto 0 |

End

Figure C.2: Flowchart showing the third line prediction
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D.1 Header Files

D.1.1 ControlThread.h

#if

!defined (AFX_CONTROLTHREAD H DF15EFD5_E059 4367 _9C39_S5S4FE9FFE31B7
__INCLUDED_)

#define
AFX_CONTROLTHREAD_H__DFI5EFD5_E059_4367_9C39_54FE9FFE3IB7__INCLUDE
D

$if MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

// ControlThread.h : header file

//

#include "MapObject.h"
#include "Serial.h"

177771777777777777777777777707777707777777777/77777077/7777777777077777/7
1771771717777
// ControlThread thread

class ControlThread : public CWinThread
{

DECLARE_DYNCREATE (ControlThread)
protected:

ControlThread(); // protected constructor used by
dynamic creation

//constructor
public:

ControlThread(short x_p, short y p, short yaw_p, short x_d,
short y d, short yaw_d, MapObject* m, BOOL m_exist, Serial*
trig_s, Serial* fvis_s, Serial* bvis_s, BOOL s_exist, short x_min,
short x_max, short y_min, short y max, short yaw_min, short
yaw_max, double wind, BOOL vis_en);

// Attributes

public:
HANDLE m_hEventKill;
HANDLE m_hEventDead;

//Critical section for access to the tracking data by
external thread static CRITICAL_SECTION accessLock;

[/**Hxdrxkkxtxx Demand and Test rig output
Variables**********

//position varaibles
short x_pos, y pos, yaw_pos;

//demand variables
short x_dem, y dem, yaw_dem;
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//output variables
short x_out, yaw_out;

[/ kkkk ke kkkkkkkkkkkkkk*k*JAV Model
variableg**xkkkkkkkhkkdkkkhk

//d2theta/dt2
double d2theta;

//d_theta/dt and delayed version
double d_theta, d_theta_nl;

//theta value and delayed version
double uav_theta, uav_theta_nl;

//du/dt
double dU;

//U and delayed version
double U, outU, U_nl;

//intermediate value for pitch rate feedback
double dtfbl;

//integral of intermediate value for pitch rate feedback and
delayed version
double int_dtfbl, int_dtfbl_nl;

//pitch rate feedback value and delayed version
double dtfb2, dtfb2out, dtfb2_nl;

//double versions of demand and output variables
double temp_x_dem, temp_y_dem, temp_yaw_dem, temp_x_out,
temp_yaw_out;

//delayed values of temp_x_out and temp_yaw_out
double temp _x out nl, temp_yaw_out_nl;

//position error in x direction
double x_p err, x_p_err_nl;

//integral of position error in x direction
double int_x p err, int_x p err_nl;

[/ **FER I ARk kkkkkhkkkkk kX *Yay part of UAV
MOGE@] * * % % %k d ok sk ok de ok ok ok ok

//position error in Yaw
double yaw_p_err;

//pre-integrated yaw output
double d_yaw;

//***************************Other
Variables********************

//wind gust magnitude
double windGust;

//enable vision feedback
BOOL visionEnable;
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line

//storage for gps error data
short* gps_errors;

short last_gps_fix;

int gps_errors_length;

//error code storage
int err_code, ext_err_ code;

//tracking enable flag
BOOL trackEnable;

//gust delay count
int d_count;

//set to align with the lines before proceeding along the
BOOL align;

//position step increments
double dx, dy:

//flag to indicate if tracking has finished
BOOL finished;

//file directory for position output file
char* directory:;

//copies of position variables for external access
short ext_x pos, ext_y pos, ext_yaw_pos, ext_x_dem,

ext_y dem, ext_yaw_dem;

//Map of poles

MapObject* map;

//flag to indicate if the map has been created correctly
BOOL mExist;

//Serial Ports

Serial* sp trig;

Serial* sp_ fvis;

Serial* sp bvis;

//flag to indicate if the serial ports have been created

correctly

BOOL sExist;

//movement restrictions
short xmin, xmax, ymin, ymax, yawmin, yawmax;

//tracking status
int trackStatus:;

//copies of frequency variables for external access
unsigned int ext_c_freq, ext_v_freq;

//Control Loop Frequency in Hz

unsigned int c_frequency;

//Vision Loop Frequency in Hz

unsigned int v_frequency;

//variable to show if the system has a high performance

counter

BOOL hpc;
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//storage structure to read out frequency
LARGE_INTEGER temp_ freq;

//performance counter frequency

_int64 HPC_freq;

//storage for start time of current iteration
LARGE_INTEGER curStartTime;

//storage for start time of previous iteration
LARGE_INTEGER prevStartTime;

//difference between the start times

_int64 elapsedCounts;

//difference between the times in milliseconds
unsigned int elapsedMS;

//sampling period in milliseconds

unsigned int sampleTime;

//sampling period in seconds
double T;

//pi
double pi;

//rho and theta values from vision computers
int frho, ftheta, brho, btheta;

//tracking staus from vision computers
int vis_track_stat_f, vis_track_stat_b;

// Operations
public:

//function to run each step of the controller and UAV model

void SingleStep():

//function to allow access to the tracking data by the
interface thread

void AccessData(short* x _p, short* y p, short* yaw_p, short*
x_d, short* y d, short* yaw_d, unsigned int* freq, unsigned int*
v_freq, BOOL* fin, int* errcode);

//function to send demands to the test rig

int DataTrans():

//function to kill the control thread

void KillThread();

//apply GPS errors to position values from test rig
short GPS_Error(short value, int* count);

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(ControlThread)
public:
virtual BOOL InitlInstance():;
virtual int ExitInstance():
//}}AFX_VIRTUAL

// Implementation

public:
virtual ~ControlThread();
virtual void Delete():

// Generated message map functions
//{{AFX_MSG(ControlThread)
// NOTE - the ClassWizard will add and remove member
functions here.
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//}}AFX_MSG

DECLARE _MESSAGE_MAP ()
}:

LILITITTLTT0710770777777777707777777777770777177777777777777777777
11111111177

//{{AFX_INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations
immediately before the previous line.

#endif //
'defined (AFX_CONTROLTHREAD H__DF15EFD5_E059_4367_9C39_S4FE9FFE31B7
__INCLUDED_)

D.1.2 VisionThread.h

#if

!defined (AFX_VISIONTHREAD H__9B965A29_66B7_43D2_A212 37F70FF328FF _
_INCLUDED )

#define

AFX_VISIONTHREAD_H__9B965A29 66B7_43D2_A212_37F70FF328FF__INCLUDED

$if MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

// VisionThread.h : header file
//

#include <mil.h>

#include "ImageObject.h"
#include "EdgeMap.h"
#include "HoughTransform.h"
#include "kalman.h"

L1017077700707070707007770100707777777777777770707070777777707777777777777
17771171777
// VisionThread thread

class VisionThread : public CWinThread
{
DECLARE_DYNCREATE (VisionThread)
protected:
VisionThread();
public:
VisionThread (BOOL cap_Source, BOOL cap_Proc);

// Attributes
public:

HANDLE m_hEventKill;
HANDLE m_hEventDead;

//Critical section for access to the tracking data by

external thread
static CRITICAL_SECTION accessLock;
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//error code storage
int err_code, ext_err code;

//copy of frequency variable for external access
unsigned int ext_v_freq:

//Vision Loop Frequency in Hz
unsigned int v_frequency:
//variable to show if the system has a high performance

counter

BOOL hpc;

//storage structure to read out frequency
LARGE_INTEGER temp_freq;

//performance counter frequency

_inté4 HPC_freq;

//storage for start time of current iteration
LARGE_INTEGER curStartTime;

//storage for start time of previous iteration
LARGE_INTEGER prevStartTime;

//difference between the start times

_inté4 elapsedCounts;

//difference between the times in milliseconds
unsigned int elapsedMS;

//sampling period in milliseconds

unsigned int sampleTime;

[/ ***k*kkkkxkxHandles to Access the Frame Grabber

Card**************

MIL_ID MilApplication, /*Application identifier.*/
MilSystem, /*System identifier.*/
MilDisplay, /*Display identifier.*/
MilbDigitizer, /*Digitizer identifier.*/
MilParentBuff, /*Parent buffer which contains the

grab and display buffer.*/

image

MilGrabImage, /*Grab Image buffer identifier.*/
MilDispImage; /*Display Image buffer identifier.*/

int channel; //digitizer channel
double imScale; //image grabing scle factor

ImageObject* Sourcelmage; //image captured from digitizer

ImageObject* DestImage; //final processed image
EdgeMap* edgeMap; //Edge Map of captured image
HoughTransform* ht; //Hough Transform of captured
BOOL capSource, capProc; //whether to capture source and

processed images.

int frameNumber; //storage for current frame

number

//pointers to strings for saving image data
char *directory, *Fname, *baseFname, *extn, *Fname2,

*baseFname?2;

//strings to print rho theta values
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char* rhoOutString;
char* thetaOutString;

//external acces to rho and theta values from HT
int ext_rhoCut, ext_thetalOut;

//search squares

struct kalman lRhoKal;
struct kalman lThetaKal;
struct kalman cRhoKal;
struct kalman cThetaKal;
struct kalman rRhoKal;
struct kalman rThetaKal:;
struct kalman eRhoKal;
struct kalman eThetaKal;

//count to see if we need to switch lines
int switch_count;

//count to see if we have lost the lines
int lose count;

//count to see if we have lost the centre line
int lose_centre_count;

//count to aquire the lines
int aquire_count;

//storage for tracking status
int track_stat, ext_track stat;

// Operations
public:

//process an individual frame

void SingleStep():;

//Contrast Enhance an image

int ContEnhance (ImageObject* source);

//Edge Detector

int EdgeDetect (ImageObject* source, EdgeMap* dest, int
edgeGap, double gThres):;

//Hough Transform

int Hough Transform(EdgeMap* source, HoughTransform* dest,
int edgeGap, double threshold, int a_size):

//Superimpose the lines from an AHT on to an image (not a
true inverse)

int InvHoughTransform(HoughTransform* soruce, ImageObject*
dest);

//Track lines from frame to frame

int TrackLines (HoughTransform* source, struct kalman*
lthetakal, struct kalman* lrhokal, struct kalman* cthetakal,
struct kalman* crhokal, struct kalman* rthetakal, struct kalman*
rrhokal, struct kalman* ethetakal, struct kalman* erhokal,
int*trackStat, int* switchCount, int* loseCount, int*
loseCentreCount);

//Acquisiiton routine

int Acquisition(int* bestposition, int* bestfound,
HoughTransform* htr, int thetadiff, int rhodiff, int thetavar, int
rhovar, double sideline_fact, double centre_fact, int fnum);

//Calculate image gradient

double Grad(ImageObject* image, int xpos, int ypos, double*
dx, double* dy):
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//find a point to represent a cluster of points in AHT

unsigned int FindPoint (int* xout, int* yout, HoughTransform*
trans, int xbase, int ybase, int c_size);

//Find points in a specified area of the AHT

int FindPoints(int* outpoints, int* outnumpoints,
HoughTransform* trans, int thetabase, int rhobase, int theta_size,
int rho_size, int centre, int mode, int* HTAccessError);

//Draw a line on an image

int Drawline (ImageObject* image, int theta, int rho,
unsigned char intensityl, unsigned char intensity2);

//copy an image

int CopyImage (ImageObject* source, ImageObject* dest);

//allow access to the tracking data by external thread

void AccessData(unsigned int* v_freq, int* errcode, int*
thetaout, int* rhoout);

//allow access to the tracking status by external thread

void ReadWriteTrackStat(int* trStat, BOOL read):

//kill the thread

void KillThread():

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL (VisionThread)
public:
virtual BOOL InitInstance():
virtual int ExitInstance();
//}}AFX_VIRTUAL

// Implementation

public:
virtual ~VisionThread():;
virtual void Delete();

// Generated message map functions
//{{AFX_MSG(VisionThread)
// NOTE - the ClassWizard will add and remove member

functions here.
//} YAFX_MSG

DECLARE_MESSAGE_MAP ()
}:

LI111777777777777771777717772777777777777717717777071771717777177177
11171111777

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
immediately before the previous line,

#endif //
ldefined (AFX_VISIONTHREAD H_ 9B965A29 66B7_43D2_A212 37F70FF328FF_
_INCLUDED )

D.1.3 EdgeMap.h

// EdgeMap.h: interface for the EdgeMap class.

//
///;//////////////////////////////////////////////////////////////
/17
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#if

!defined (AFX_EDGEMAP_H__3B004A20_4348_11D7_BAAC_0004769EAS9C__ INCL
UDED_)

#define
AFX_EDGEMAP_H__3B004A20_4348_11D7_BAAC_0004769EA53C__INCLUDED_

#if MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class EdgeMap
{
//constructor/descructor
public:
EdgeMap() ;
EdgeMap (int xSize, int ySize);
virtual ~EdgeMap();

//attributes
public:
//storage for edge strength data
double** edge_strength_data;
//storage for edge angle data
double** edge_angle_data;
//storage for the thresholdded edge map
unsigned char** thres_edge_data;
//dimensions of the edge map
private:
int xsize, ysize;

/ /methods
public: .
//read the X dimension
int GetXSize();
//read the Y dimension
int GetYSize():
//set the edge map to zero
void SetZeros();
}:

#endif //
'defined (AFX_EDGEMAP H_ 3B004A20_4348_11D7_BAAC_0004769EA59C__ INCL
UDED )

D.1.4 HoughTransform.h

// HoughTransform.h: interface for the HoughTransform class.

//
[171771777717777077777070107777777707777707028777717777777777777777717
/177

#if

tdefined (AFX_HOUGHTRANSFORM H__3B004A20_4348_11D7_BAAC_0004769EA59
C__INCLUDED )

#define

AFX_HOUGHTRANSFORM_H__ 3B004A20_4348_11D7_BAAC 0004769EAS59C__INCLUD
ED

#if MSC_VER >= 1000
#pragma once

208



Appendix D C++ Source Code

#endif // _MSC_VER >= 1000

class HoughTransform
{
//constructor/destructor
public:
HoughTransform() ;
HoughTransform(int xSize, int ySize, int del_Rho, int
del_Theta);

virtual ~HoughTransform();

//attributes
public:

//storage for:

unsigned int** HT data: //Hough transform data

unsigned char** thres_ HT_data; //Thresholded Hough
transform

unsigned int** aggreg_values; //Values used in
aggregation

unsigned char** aggreg HT_data; //Aggregated Hough
transform

private:

int xsize, ysize; //size of the image that was
transformed.

int numRho, numTheta; //size of x and y axes of
hough space, theta is on x axis, rho is on y axis

int delRho, delTheta; //rho and theta
quantisation.

//methods
public:

//read the X size of the transformed image
int GetXSize();

//read the Y size of the transformed image
int GetY¥YSize():

//read the Rho size of the transform

int GetRhoSize():;

//read the Theta size of the transform

int GetThetaSize():;

//read the Rho quantisation of the transform
int GetRhoQuant ();

//read the Theta quantisation of the transform
int GetThetaQuant():

void SetZeros();
unsigned int GetMax():
}i

#endif //
!defined (AFX_HOUGHTRANSFORM_H__ 3B004A20_4348_11D7_BAAC_0004769EA59
C__INCLUDED )

D 1.5 ImageObject.h

// ImageObject.h: interface for the ImageObject class.

//

1117117 7107777777777777177777777777777777777070777777777717777771771777
/777 '
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#if

!defined (AFX_IMAGEOBJECT H__ 3B004A20_4348_11D7_BAAC_0004769EA59C__
INCLUDED )

#define

AFX_IMAGEOBJECT_H__ 3B004A20_4348_11D7_BAAC_0004769EAS9C__ INCLUDED_

#if MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class ImageObject
{
//contructor/destructor
public:
ImageObject ()
ImageObject {int xSize, int ySize):;
virtual ~ImageObject():;

//attributes
public:
//storage for the image data
unsigned char** image_data;
private:
//dimensions of the image
int xsize,ysize;
//minimum and maximum pixel values in the image
unsigned char min, max;

//methods
public:
//read the X size of the image
int GetXSize():
//read the Y size of the image
int Get¥Size();
//set all the image pixels to zero
void SetZeros();
//invert the image
void InvertImage():;
//find the minimum and maximum pixel values in the image
//exclude the edge of the image to a distance edgegap
void FindMinMax(int edgegap):
//read the minimum pixel value
unsigned char GetMin();
//read the maximum pixel value
unsigned char GetMax({();
}:

#endif // .
tdefined (AFX_IMAGEOBJECT H__ 3B004A20_4348_11D7_BAAC_0004769EA59C__
INCLUDED_)

D 1.6 kalman.h

//kalman filter data structure

struct kalman

{
int estimate; //current estimate
int prevEstimate; //previous estimate
int prediction; //prediction
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double estProb; //variance of current estimate

double predProb; //variance of prediction

double H;

double K; //Kalman Gain

int phiOffset; //cffset for generating next prediction
double Q; //variance

int measurement; //measurement

double R; //variance of measurement

D.2 Selected Functions

D.2.1 ControlThread::SingleStep

//****************************************************************
d ko k ok kok

// SingleStep
// Follow Pole Maps
// Combine Error Sources

// Send demands to test rig
//****************************************************************
L2 E X XX 2}

void ControlThread::SingleStep()
{

//Data Output file

FILE* dataOut;

//filename

char dataFName[100];

//set rho and theta quantisation
int delrho = 2;
int deltheta = 1:

double temp_ftheta, temp frho, temp_btheta, temp_ brho,
x_ht_err, yaw _ht err, roll ht_err, x ht_err2, yaw_ht_errz,
roll_ht_err2;

short store_x_out, store_yaw_out; //xout for data file

double visionFract = 0; //fraction of the feedback signal
that is from the vision feedback

if (hpc)
{

[/ xxeEkkkkkkkkkkkkdWait until the next sample
time*************

//only wait if in tracking mode
if (trackStatus == 2)
{
//read the number of ms since the previous
iteration started
QueryPerformanceCounter (&curStartTime);
elapsedCounts = curStartTime.QuadPart -
prevStartTime.QuadPart;
elapsedMS = (unsigned
int) ((1000*elapsedCounts) /HPC_freq);

//if the full sample period hsn't elapsed, then
wait for the reamaining time, rounded down to the nearest 10 ms
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if (elapsedMS < sampleTime)
{
Sleep( (sampleTime - elapsedMS)-((sampleTime
- elapsedMS)$%10));
}

//wait until end of sample time
do
{
QueryPerformanceCounter (&curStartTime);
elapsedCounts = curStartTime.QuadPart -
prevStartTime.QuadPart;
elapsedMS = (unsigned
int)MathFns::Round((1000* (double)elapsedCounts)/ (double) HPC_freq):;
}
while(elapsedMS < sampleTime);

//calculate the sampling frequency

QueryPerformanceCounter (&curStartTime) ;

elapsedCounts = curStartTime.QuadPart -
prevStartTime.QuadPart;

c_frequency = (unsigned
int)Matths::Round((double)HPC_freq/(double)elapsedCounts);

//QueryPerformanceCounter (&prevStartTime) ;

EnterCriticalSection(&ControlThread: :accesslock);

{ )

ext_c _freq = c_frequency;

}

LeaveCriticalSection(&ControlThread::accesslLock);

QueryPerformanceCounter (&prevStartTime);

}

//read position of the centre line from vision PCs
err_code = sp_fvis->VisReadData(&ftheta, &frho);
err_code = sp bvis->VisReadData(&btheta, &brho);

//read tracking status from the vision PCs
err_code = sp_fvis->VisReadTrackStat (&vis_track_stat_f);
err_code = sp_bvis->VisReadTrackStat (&vis_track stat_b);

//set tracking enable to false if necessary

if(!trackEnable)

{
sp_fvis->VisWriteTrackStat (0);
sp_bvis->VisWriteTrackStat (0);
err_code=4;

}

//perform tracking based on map
switch (trackStatus)

{

[/ xxHHkkRkkkkkkktracking not started need to intialise
tracking**********

case O:
//get the difference in the y direction to find
direction
dy = (((double)map->GetNextCoOrds () [1l]) =~
( (double)map->GetCurCoOrds () [1]));
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//set the initial demands
yaw_dem = 0;

x_dem = map->GetCurCoOrds{() [0];
y_dem = map->GetCurCoOrds () [1]:

//set the past output values to start of line x value

temp_x out_nl = 0.0033* (double)map-
>GetNextCoOrds () [0]:

temp_yaw_out_nl = 0;

//set curret output values to 0
temp_x out = 0;
temp_yaw out = 0;

//set current d2theta/dt2 to 0
d2theta = 0;

//set current and delayed d_theta/dt to 0
d_theta = 0;
d_theta_nl = 0;

//set current and delayed theta value to 0
uav_theta = 0;
uav_theta_nl = 0;

//set current duU/dt to O
du = 0;

//set current and delayed U to 0
U= 0;
U nl = 0;

//set the past error value to 0
X p_err nl = 0;

//set the past integral of position error to 0
int_ x p err nl = 0;

//set the integral of intermediate value for pitch
rate feedback and delayed version to 0

int_dtfbl = 0;

int_dtfbl nl = 0;

//set the pitch rate feedback value and delayed
version to 0

dtfb2 = 0;

dtfb2 nl = 0;

//set intermediate value for pitch rate feedback to 0
dtfbl = 0;

//set to align x before starting along the lines
align = TRUE;

//set the y difference to 5 in the correct direction.

if (dy > 0)
{
dy = 5;
}
if (dy < 0)
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{
dy = -5;
}

//initialise the floating point version of the demands
temp_x_dem (double) x_dem;
temp_y_dem (double) y_dem;

//send demands to test rig
DataTrans():

//move to the tracking state
trackStatus = 2;
break;

//*****starting new line section and so need to re-
initialise**x***

case 1:
//set demands
yaw_dem = 0;
x_dem = map->GetCurCoOrds () [0];
y_dem map->GetCurCoOrds () [1];

//set not to align x before starting along the lines
align = FALSE;

//set the y difference to 5 in the correct direction.

if (dy > 0)
{

dy = 5;
}
if (dy < 0)
{

dy = -5;

}

//initialise the floating point version of the demands
temp_x_dem (double) map->GetCurCoOrds() [0];
temp_y dem (double) map->GetCurCoOrds () [1];

//send demands to test rig
DataTrans();

//move to the tracking state
trackStatus = 2;
break;

//*******************tracking between two
pOles**kddkkhddkkhnkkh*

case 2:
//read x demand from the map
x_dem = map->GetNextCoOrds () [0];

//calculate error signal from map demand and test rig
position
if (trackEnable)

{
X_p_err = (double) (x_dem - GPS_Error (x_pos,
&d_count));
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yaw_p_err = (double) (yaw_dem - yaw_pos);
else

X _p_err = (double) (x_dem - x_pos);
yaw_p_err = (double) (yaw_dem - yaw_pos);
}

//if we are using vision feedback set vision fraction
to 1 otherwise set to 0 and reset the vision tracking

if(visionEnable && trackEnable && (x_pos < (x_dem +
600)) && (x pos > (x_dem - 600)))

{

if((vis_track stat_f==0)|{ (vis_track stat_f==4) || (vis_track_
stat_b==0) || (vis_track_stat_b==4))
{

visionFract = 0;
}
else
{

visionFract = 1;

else

visionFract = 0;
sp_fvis->VisWriteTrackStat (0);
sp_bvis->VisWriteTrackStat (0);
err_code=5;

}

//*****calculate correction factors from rho and
theta*******

//apply HT quantisation factors
temp_frho = frho * delrho;
temp_ftheta = ftheta * deltheta;
temp _brho = brho * delrho;
temp_btheta = btheta * deltheta;

//calculate x, yaw and roll errors

x_ht _err = (0.0754*temp_brho)-(0.137*temp_frho) -
(0.222*temp_ftheta);

yaw_ht _err = (0.690*temp_frho)+(l.46*temp_ftheta) -
(0.496*temp_brho);

roll _ht err = (3.17*temp_frho)+(5.46*temp_ftheta)-
(0.735*temp_btheta)-(1.85*temp_brho);

//store ht output

x_ht _err2=x_ht_err;
yaw_ht err2=yaw_ht_err;
roll ht err2=roll ht_err;

//apply vision fraction
X_ht_err*=visionFract;
yaw_ht_err*=visionFract;
roll_ht _err*=visionFract;

//******calculate correction factors from DGPS and
compass***x*x
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//apply count to metre conversion of 0.0033 to gps
error signal

X _p_err*=0.0033;

//apply gps faction

X p_err*=(l-visionFract);

//apply count to degree conversion of 90/500 to
compass error signal

yaw_p_err*=90;

yaw_p_err/=500;

//apply compass faction

yaw_p_err*=(l-visionFract):;

//*************combine error sourcegk*kkxk ki kkkk

//subtract the vision correction factor to error

signal

X_p_err-=x ht_err;

//subtract the vision correction factor to error
signal

yaw_p_err-=yaw_ht_err;

//******calculate the pitch rate feedback
fraction***x*x%

//apply the pitch rate compensator (first integrator
is already performed as part of the uav model

dtfbl=(0.04545*d_theta)+(0.1l*uav_theta)-
(10*int_dtfbl);

//apply the second integrator

int_dtfbl=int_dtfbl nl+(T*dtfbl);

//set the previous value for the next iteration

int_dtfbl nl=int_dtfbl;

//add in feedback

dtfbl=-=(0.01*dtfb2);

//apply the third integrator

dtfb2=dtfb2 nl+(T*dtfbl);

//set the previous value for the next iteration

dtfb2_nl=dtfb2;

//apply the pitch rate gain

dtfb2out = 5000 * dtfb2;

[/ *xxxx* A KKk kkk*kcombine lat. disp. error
signals****************

//add in the pitch rate feedback
x_p_err -= dtfb2out;

//apply the loop gain
X p err *= 0.1;

//apply the saturation
if (x_p err > 0.2)
{
x p err = 0.2;
}
if (x_p_err < -0.2)
{

x p err = -0.2;
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}
//*********Apply the U.A.V. model ¥k kkkkkkkdkkkkkkkhki

[/ HxkkdkkkkkxkT,at, Disp. ModelkH*kkkkkkkiokhkhkhhkkk

//d2theta integrator

//combine signals for integrator

d2theta = (1.047*x p err)+(0.0103*U)-(0.883*d_theta);
//apply the integrator

d_theta = d_theta _nl + (T*d2theta);

//set the previous value for the next iteration
d_theta_nl = d_theta;

//d_theta integrator

//apply the integrator

uav_theta = uav_theta nl + (T*d_theta);

//set the previous value for the next interation
uav_theta nl = uav_theta;

//multiply by the gain

dU = (-9.81)*uav_theta:;

//add in d_theta factor

dU-=(0.0739*d_theta);

//dU integrator

//combine signals for integrator

du-=(0.591*U); //plus is used as we are using the
inverted version of U

//apply the integrator

U =10U_nl + (T*dU);

//set the previous value for the next iteration

U nl = U;

//set the output U of the model
outU = -U;

//add wind gust position error to demand if necessary
if(trackEnable)
{
//increment count variable
d_count++;
//add in offset if time reached
if ((d_count >= 175)&&(d_count <= 250))
{
U += windGust;
}
}

//U integrator

//apply the integrator

temp_x out = temp x out_nl + (T*outU);

//set the previous value for the next iteration
temp_x_out_nl = temp_x_out;

//*******************Yaw
Model * * & d & ok ok ok ok ke k ko ke dook ok okok

d_yaw = yaw_p_err - temp_yaw_out;

//apply yaw integrator

temp_yaw_out = temp_yaw_out_nl + (T*d_yaw);
//set the previous value for the next iteration
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temp_yaw_out_nl = temp_yaw_out;

[/ **Fx xR RIHEARXEE*Qutput Data to

Righdkhhdkdkhkdokx

* %k k Kk

//convert x output position back to counts

X_out

//convert yaw output position back to counts

= (short) (temp_x out/0.0033);

yaw_out = (short) (temp_yaw_out/90*500);

//increment y demand 1f necessary, if finished, set

demand as map coo

if (((y_dem < map->GetNextCoOrds()[1l]) && (dy >=0))

((y_dem > map->Ge
{

}

rdinate
tNextCoOrds () [1]) && (dy < 0)))

temp_y_dem += dy;
y_dem = (short)temp_y dem;

y_dem = map->GetNextCoOrds () [1];

//store output values
store_x_out = x_out;
store_yaw_out = yaw_out;

//send demands to test rig
DataTrans():

//if we have reached a pole, set move to next pole

state

if (align)

{

>= (map->GetNextC
>GetNextCoOrds () |

else

}

break;

if ((y_dem == map->GetNextCoOrds() [1])&&((x_out

oOrds () [0] - 5))&&(x_out <= (map-
01 + 5))))
{
trackStatus = 3;
}

if (y_dem == map->GetNextCoOrds() [1l])

{
trackStatus = 3;

}

//*****reach a pole, move to next line section, or stop if

last pole*****

case 3:

//enable tracking in second section
trackEnable = TRUE;

//if we have another line section then change to

initialisation st

ate to track along next line section

if (map->Advance(} == 0)
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{
trackStatus = 1;

}

//if no more line sections, then stop tracking
else
{
EnterCriticalSection(&ControlThread: :accessLock);
{
finished = TRUE;
}
LeaveCriticalSection(&ControlThread: :accessLock);
}
break;
default:
break:
}
//write external variables to be read by dialog process.
EnterCriticalSection(&ControlThread: :accessLock);
{

ext _x pos X_pos;
ext_y pos = y_pos;
ext_yaw_pos = yaw_pos;
ext_x_dem = x_out;
ext_y_dem = y_dem;
ext_yaw_dem = yaw_out;
ext_v_freq = v_frequency;
ext_err code = err_code;
}
LeaveCriticalSection(&ControlThread: :accessLock);

D.2.2 VisionThread::SingleStep

//****************************************************************
* % % K

// Single Step

// Process an individual frame and track the lines from the

previous frame.
//****************************************************************

* k ok k

void VisionThread: :SingleStep()

{
int old track _stat=0;

int err;
int deltheta = 0;
int delrho = 0;

int bestFound = 0;
int bestPosition[6]:

char Fname3[100];
char £n[100];

if (hpc)
{
//read the number of ms since the previous iteration
started
QueryPerformanceCounter (&curStartTime);
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elapsedCounts = curStartTime.QuadPart -
prevStartTime.QuadPart;

elapsedMS = (unsigned
int) ((1000*elapsedCounts) /HPC_freq):

//if the full sample period hsn't elapsed, then wait
for the remaining time, rounded down to the nearest 10 ms
if (elapsedMS < sampleTime)
{
Sleep((sampleTime - elapsedMS)-((sampleTime -
elapsedMS) %10));
}

//wait until end of sample time
do
{
QueryPerformanceCounter (&curStartTime);
elapsedCounts = curStartTime.QuadPart -
prevStartTime.QuadPart;
elapsedMS = (unsigned
int) ((1000*elapsedCounts) /HPC_freq);
}
while (elapsedMS < sampleTime):;

//calculate the sampling frequency
QueryPerformanceCounter (&curStartTime);
elapsedCounts = curStartTime.QuadPart -
prevStartTime.QuadPart;
v_frequency = (unsigned
int)MathFns: :Round ( (double) HPC_freq/ (double)elapsedCounts);
EnterCriticalSection(&VisionThread: :accessLock):;
{
ext_v_freq = v_frequency;
}
LeaveCriticalSection(&VisionThread: :accesslLock);
QueryPerformanceCounter (&prevStartTime) ;

}

//read current tracking status, in case it has changed
EnterCriticalSection(&VisionThread: :accessLock);
{
track_stat = ext_track_stat;
}

LeaveCriticalSection (&VisionThread: :accessLock);

//set error code for this iteration to O
err_code = 0;

//Set the file names for saving images.
frameNumber++;

strcpy(Fname, baseFname);
strcpy(Fname2, baseFname2);
strcpy(Fname3, baseFname2);
sprintf (fn, "%04d", frameNumber) ;
strcpy(extn, ".tif");

strcat (Fname, £fn):

strcat (Fname, extn);

strcat (Fname2, fn);

strcat (Fname2, extn);

strcat (Fname3, £fn);

strcat (Fname3, "_2");
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strcat (Fname3, extn):;

// Grab an image.
MdigGrab (MilDigitizer, MilGrablImage);

//save the image biffer if required
if (capSource)
{

MbufSave {Fname,MilGrabImage) ;

}

//Copy the image to the processing array

MbufGet (MilGrabImage, Sourcelmage->image_datal[0]):

//Contrast Enhance the image
ContEnhance (SourcelImage) ;

//Copy image from source to destination
CopyImage (SourceImage, DestImage);

//Perform Edge Detection

EdgeDetect (Sourcelmage, edgeMap, 2, 1495.575);

//Calculate Hough Transform

err _code = Hough_ Transform(edgeMap, ht, 2, 0.475, 9);

//Calculate Inverse Hough Transform
InvHoughTransform(ht, DestImage);

if (capProc)

{

MbufPut (MilDispImage, DestImage->image_data([0]);//save

the image biffer if required
MbufSave (Fname2,MilDispImage);
}

//store the tracking status so we can see if it has changed

old_track_stat=track_stat;

//read theta and rho gquantisation
deltheta = ht->GetThetaQuant ():;
delrho = ht~>GetRhoQuant():;

//*************Aquire the lines********************

if (track_stat==0)

{
//clear the kalman filter values
1ThetaKal.prediction = 0;
1RhoKal.prediction = 0;
1ThetaKal.prevEstimate = 0;
1RhoKal.prevEstimate = 0;
1ThetaKal.predProb = DEFRTHETA;
1RhoKal.predProb = DEFRRHO;
1ThetaKal.phiOffset = 0;
1RhoKal.phiOffset = 0;

cThetaKal.prediction = 0;
cRhoKal.prediction = 0;
cThetaKal.prevEstimate = 0;
cRhoKal.prevEstimate = 0;
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cThetaKal.predProb =

DEFRTHETA;

cRhoKal.predProb = DEFRRHO;

cThetaKal.phiOffset
cRhoKal.phiOffset

rThetaKal.prediction

0:

0;

0:

rRhoKal.prediction = 0;
rThetaKal.prevEstimate = 0;

rRhoKal.prevEstimate
rThetaKal.predProb =

0;
DEFRTHETA;

rRhoKal.predProb = DEFRRHO;

rThetaKal.phiOffset
rRhoKal.phiOffset

//acquire the lines

Acquisition(bestPosition,

0;:
0;

&bestFound, ht, THETADIFF,

RHODIFF, THETAVAR, RHOVAR, FS, FC, frameNumber);

//if a set of lines are found, set then as the

prediction
if (bestFound==1)

{

1ThetaKal.prediction
1RhoKal.prediction
1ThetaKal.prevEstimate

bestPosition[0];
bestPosition([1];
bestPosition(0];

1RhoKal.prevEstimate = bestPositionfl1];
1ThetaKal.predProb = DEFRTHETA;
1RhoKal.predPrcb = DEFRRHO;
1ThetaKal.phiOffset = 0;

1RhoKal.phiOffset

0:

cThetaKal.prediction = bestPosition([2)};

cRhoKal.prediction

bestPosition[3];

cThetaKal.prevEstimate = bestPosition[2];
CRhoKal.prevEstimate = bestPosition[3];
cThetaKal.predProb = DEFRTHETA;
cRhoKal.predProb = DEFRRHO;

cThetaKal.phiOffset
cRhoKal,phiOffset

rThetaKal.prediction
rRhoKal.prediction

0;

0;

bestPosition[4];
bestPosition[5];

rThetaKal.prevEstimate = bestPosition[4);

rRhoKal.prevEstimate

bestPosition{5];

rThetaKal.predProb = DEFRTHETA;
rRhoKal.predProb = DEFRRHO;

rThetaKal.phiOffset
rRhoKal.phiQOffset

0;

0;

aquire_count=1;

track_stat=4;
}
DrawLine(DestImage,
delrho*thoKal.prediction, 255,
DrawLine (DestImage,
delrho*rRhoKal.prediction, 255,
DrawLine(DestImage,
delrho*cRhoKal.prediction, 255,
}

deltheta*lThetaKal.prediction,
0);

deltheta*rThetaKal.prediction,
0);

deltheta*cThetaKal.prediction,
128);
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//*****if we have found the lines then re-aquire them to
check they are consistant****

else if(track_stat==4)
{
//acquire the lines
Acquisition(bestPosition, &bestFound, ht, THETADIFF,
RHODIFF, THETAVAR, RHOVAR, FS, FC, frameNumber):;

//if we haven't found a match
if (bestFound==0)
{

if (agquire_count>0)

{

aquire count--;
track_stat=0;

//if we've found some lines
if (bestFound==1)
{
//check that the new line positions are similar
to the previous

if ( (bestPosition[0]<(1ThetaKal.prediction+10))&& (bestPositio
n{0]>(1lThetaKal.prediction~
10)) && (bestPosition[1]<(1RhoKal.prediction+10))é&& (bestPosition([1l]>
(1RhoKal.prediction-
10)) && (bestPosition[2]<(cThetaKal.prediction+10))&& (bestPosition[2
1> (cThetaKal.prediction-
10)) && (bestPosition[3]<(cRhoKal.prediction+10)) &&(bestPosition([3]>
{cRhoKal.prediction-
10) ) && (bestPosition[4]<(rThetaKal.prediction+10)) && (bestPosition[4
1> (rThetaKal.prediction-
10)) && (bestPosition[5]<(rRhoKal.prediction+10)) && (bestPosition[5]}>
(rRhoKal.prediction-10)))
{
//if so then save the new position
1ThetaKal.prediction = bestPosition{0]};
1RhoKal.prediction = bestPosition[1l];
1ThetaKal.prevEstimate = bestPosition[0];
1RhoKal.prevEstimate = bestPosition([1];
1lThetaKal.predProb = DEFRTHETA;
1RhoKal.predProb = DEFRRHO;
1ThetaKal.phiOffset = 0;
1RhoKal.phiOffset = 0;

cThetaKal.prediction = bestPosition(2];
cRhoKal.prediction = bestPosition[3];
cThetaKal.prevEstimate = bestPosition[2];
cRhoKal.prevEstimate = bestPosition[3]:;
cThetaKal.predProb = DEFRTHETA;
cRhoKal.predProb = DEFRRHO;
cThetaKal.phiOffset = 0;
cRhoKal.phiOffset = 0;

rThetaKal.prediction = bestPosition([4];
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rRhoKal.prediction = bestPosition{5]};
rThetaKal.prevEstimate = bestPosition[4];
rRhoKal.prevEstimate = bestPosition(5];
rThetaKal.predProb = DEFRTHETA;
rRhoKal.predProb = DEFRRHO;
rThetaKal.phiOffset = 0;
rRhoKal.phiOffset = 0;

agquire_count++;

}

//if not then decrement the count and re-aquire
if necessary
else
{
if (aquire count>0)

{

aquire_count--;

track_stat=0;

DrawLine (DestImage,
deltheta*1ThetaKal.prediction, delrho*lRhoKal.prediction, 255, 0):

DrawLine (DestImage,
deltheta*rThetaKal.prediction, delrho*rRhoKal.prediction, 255, 0);

Drawline (DestImage,
deltheta*cThetaKal.prediction, delrho*cRhoKal.prediction, 255, 0);

//if we've found three valid sets of lines then
move to tracking mode.
if (aquire_count>=3)
{
aquire count=0;
track_stat=1;

}

//****************Track the lines************************

else if ((track stat==1)]| (track_stat==2) || (track_stat==3))
{
err = TrackLines(ht, &lThetaKal, &lRhoKal, &cThetakKal,
&cRhoKal, &rThetaKal, &rRhoKal, &eThetaKal, &eRhoKal, &track_stat,
&switch_count, &lose_count, &lose_centre_count);
if (err == 2)
{
err_code += 4;
}
DrawlLine (DestImage, deltheta*cThetaKal.measurement,
delrho*cRhoKal.measurement, 255, 0);
Drawline (DestImage, deltheta*cThetaKal.estimate,
delrho*cRhoKal.estimate, 255, 255);

//Draw Outer Lines on output image

Drawline (DestImage, deltheta*lThetaKal.measurement,
delrho*1RhoKal.measurement, 255, 0);
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DrawLine (DestImage, deltheta*lThetaKal.estimate,
delrho*l1RhoKal.estimate, 255, 255);

DrawLine (DestImage, deltheta*rThetaKal.measurement,
delrho*rRhoKal.measurement, 255, 0):

DrawLine (DestImage, deltheta*rThetaKal.estimate,
delrho*rRhoKal.estimate, 255, 255);

if((track_stat==2) || (track_stat==3))

{

DrawLine (DestImage,
deltheta*eThetaKal.measurement, delrho*eRhoKal.measurement, 192,
0);

DrawlLine (DestImage, deltheta*eThetaKal.estimate,
delrho*eRhoKal.estimate, 192, 192);

} .
}

//if necessary, update the tracking status
EnterCriticalSection({&VisionThread: :accessLock);

{
if (ext_track_stat == old_track_stat) //if the status

hasn't been changed externally

{
if (old_track_stat!=track_stat) //if the status

has been changed
{
ext_track_stat = track_stat; //update the
status

}
}

LeaveCriticalSection(&VisionThread::accessLock);

//Draw the found Centre line on the output image
//Copy processed image to the display buffer
MbufPut (MilDispImage, DestImage->image_data[0]);

//Write rho and theta values on to output image
sprintf(thetaOutString, "Theta: %d", cThetaKal.estimate);
sprintf (rhoOutString, "Rho: %d", cRhoKal.estimate);

MgraText (M_DEFAULT, MilDispImage, 0, DestImage->GetYSize()-
32, rhoOutString); .

MgraText (M_DEFAULT, MilDisplImage, 0, DestImage->GetY¥YSize()-
16, thetaOutString);

//save the image biffer if required
if (capProc)
{

MbufSave (Fname3,MilDispImage):
}

//save error code, and centre line rho and theta.
EnterCriticalSection(&VisionThread: :accessLock);
{

ext_err code = err_code;
ext_thetaOut = cThetaKal.estimate;
ext_rhoOut = cRhoKal.estimate;

}
LeaveCriticalSection(&VisionThread: :accesslock);
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D.2.3 VisionThread::ContEnhance

//****************************************************************
%k Kk

// Contrast Enhance an image by Contrast Stretching
// writes new image over the top of the old one

// input/output: source
//****************************************************************

* % ke *
int VisionThread: :ContEnhance (ImageObject* source)
{

int max,min;

int xsize,ysize;

int 1i,3:

double mulfact,tempval;

int tempval2;

//find max and min values in the image
source->FindMinMax (15) ;
max = source->GetMax():
min = source->GetMin();

//calculate the multiplication factor
mulfact = 255/ ((double) (max-min));

//read image sizes
xsize = source->GetXSize():
ysize = source->GetYSize();

//step through each pixel in the image to calculate the new
pixel values
for(j =0 ; j < ysize ; j++)
{
for{(i = 0 ; i < xsize ; i++)
{
//subtract minimum pixel value and convert pixel
value to double
tempval = (double) (source->image_data(j]l[i] -

min);

//multiply the pixel value by the multiplication
factot

tempval *= mulfact;

//round the new value to the nearest integer

tempval2 = MathFns::Round(tempval);

//ensure that the resulting pixel value is in the
range 0-255

if (tempval2 > 255)
{ tempval2 = 255;
if(tempvalz < 0)
{ tempval2 = 0;
}/write new pixel value to the image
} source->image_datal[j] [i]=(unsigned char)tempval?2;

}
return(0);

226



Appendix D C++ Source Code

D.2.4 VisionThread::EdgeDetect

//****************************************************************

J Kk k k
Edge Detector

Perform sobel edge detector with non-maximum suppression
input: source: input image

//
//
//
//
//
//

edgeGap: avoid looking at the edge of the image
gThres: gradient threshold to use

output: dest: output edge map

//****************************************************************

d ok Kk

int VisionThread::EdgeDetect (ImageObject* source, EdgeMap* dest,
int edgeGap, double gThres)

{

double dx=0; //value of dI/dx

double dy=0; //value of dI/dy

double g=0; //value of square of image gradient

double gl,g2; //values of ajacent squares of image gradient
double ang=0; //value of angle

int i, j:

int XSize, YSize;

//clear the edge map
dest->SetZeros():;

//check that the edge gap is at least 1
if (edgeGap < 1)
{
edgeGap = 1;
}

//read the size of the image to be edge detected
XSize = source->GetXSize():;
YSize = source->GetYSize();

//check that the edge map is the right size.
if((XSize != dest->GetXSize())!||(¥Size != dest->Get¥Size()))
{
return(l);
}

//*************perform edge filtering********************

//step through all required pixels
for(j = edgeGap ; j < (YSize-edgeGap) ; Jj++)
{
for(i = edgeGap ; i < (XSize-edgeGap) ; i++)
{
//find image gradient at point of interest.
g=Grad (source, i, j, &dx, &dy) ;

//if the edge is sufficiently strong, record it

in the edge map

if (g > gThres)
{
if (dx == 0)
{
ang = -pi/2;
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}
else
{
ang = atan(dy/dx):
}
//record edge value and angle
dest->edge_strength_data[j] [i]=g;
dest->edge_angle_data(j]l [i]=ang;

}
//*************apply non_maximum suppression**************

//step through all required pixels
for(j = edgeGap ; j < (YSize-edgeGap) :; j++)
{
for(i = edgeGap ; i < (XSize-edgeGap) ; i++)
{
//read the gradient value and angle from edge map
g=dest->edge_strength_datal[j][i];
ang=dest->edge_angle _datal[j][i]:
if (g>gThres) //if the gradient is larger than
the threshold
{
//only set edge pixel if it is local

maximum
if ((ang < (pi/4)) && (ang >= -(pi/4)))
{
//read the values of adjacent pixels
gl=dest->edge_strength_datalj] [i-1];
g2=dest->edge_strength _data[j] [i+1];
//set the output to 255 if it local
maximum

if((g>=gl)&&(g>g2))
{
dest->thres_edge_data[j] [1]=255;
}
}
if (((ang >= (pi/4)) && (ang < (17*pi/36)))
[l ((ang < -(pi/4)) && (ang > -(17*pi/36))))
{
//read the values of adjacent pixels
gl=dest->edge_strength datal[j-1](i];:
g2=dest->edge_strength data[j+1]([i];
//set the output to 255 if it local
maximum
if((g>=gl) &&(g>g2))
{
dest->thres_edge_data[j] [11=255;
}

}
}

return(0);
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D.2.5 VisionThread::Hough_Transform

//****************************************************************
o % %

// Perform hough transform

// Calculate an aggregated Hough transform (AHT) of an edge map.
// inputs: source: input: edge map

// edgeGap: amount of the edge of the edge map
that should not be processed.

// threshold: value for thresholding the HT

// a_size: size of the masks used for aggregation

// output: dest: output Hough transform
// error codes:

// 0 successs

// 1 Hough Transform wrong size.

// 2 Error accessing Hough Transform
//****************************************************************

¥* %k ek

int VisionThread::Hough Transform(EdgeMap* source, HoughTransform*
dest, int edgeGap, double threshold, int a_size)
{

unsigned char edgePixel;

double ang=0;

double rho=0;

int angIndex, rholndex;

int i, j, k;

int Theta, Rho, Thetal, Rhol, Theta2, Rho2;

int XCentre, YCentre, XSize, YSize, delRho, delTheta,
ThetaSize, RhoSize, ThetaCentre, RhoCentre;

unsigned int HTMax, HTThres, value;

int ha_size;

int ¢_numpoints = 81;

int numpoints = 81;

int points[162];

//error checking
int err = 0;
int errCode = 0;

//clear the hough transform
dest->SetZeros():;

//check that the edge gap is at least 1
if (edgeGap < 1)
{
edgeGap = 1;
}

//check that the threshold is in range 0 to 1
if (threshold < 0)

{ threshold = 0;

;f (threshold > 1)

i threshold = 1;

//check that the aggregation mask size is odd and >=3
if (a_size < 3)
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{
a_size = 3;
}
if ((a_size%2) != 1)
{
a_size++;
}

ha_size = a_size/2;

//read size info

XSize = source->GetXSize():;

YSize = source->Get¥YSize();

XCentre = MathFns::Round((double)XSize/2);
YCentre = MathFns::Round{(double)YSize/2):;
delTheta = dest=->GetThetaQuant ();

delRho = dest->GetRhoQuant():

ThetaSize = dest->GetThetaSize():

RhoSize = dest->GetRhoSize():;

ThetaCentre = ThetaSize/2;

RhoCentre = RhoSize/2;

//check that the Hough transform is the right size.
if ((XSize != dest->GetXSize()) || (YSize != dest->GetY¥Size()))
{

return(l);

}

[/ ***xxxxxxkxxxxxkx*calculate the hough
transform***kkkkkkkkkkk

//step through all required pixels
for(j = edgeGap ; j < (YSize-edgeGap) ; j++)
{
for(i = edgeGap ; i < (XSize-edgeGap) ; it+)
{
//read whether current pixel is an edge
edgePixel = source->thres_edge _data[j][i];
ang = source->edge_angle _data[j][i]:

//if the edge is sufficiently strong, record it
in the hough transform

if (edgePixel == 255)

{

//quantise angle

angIndex=MathFns::Round((180*ang/pi) /delTheta)+ThetaCentre;
//calculate rho
rho=((j-YCentre)*sin(ang) )+ ( (i~
XCentre) *cos(ang));

rhoIndex=MathFns: :Round (rho/delRho) +RhoCentre;
(dest->HT_datalrhoIndex] [angIndex])++;

}
}

//read the max value from the Hough transform
HTMax = dest->GetMax|();

//set the limits on the Hough Transform threshold
if (HTMax<5)

{
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HTMax=5;
}
if (HTMax>25)
{
HTMax=25;
}
//calculate the threshold to use
HTThres = (unsigned
int) (MathFns: :Round(threshold* (double) HTMax}));
//check that this value is greater than 0 (if 0 will get
image full of lines)
if (HTThres < 1)
{
HTThres = 1;
}

//*****************threshold the Hough
Transform** % %k kkddk d k& &k kkkk

//step through all required pixels
for(j = 0 ; j < RhoSize ; j++)
{
for(i = 0 ; i < ThetaSize ; i++)
{
//threshold each pixel
if (dest->HT_data[j]l [i] >= HTThres)
{
dest->thres_HT data[j][i]=255;
}

}

//******************aggregate the Hough
Transform*****************

//step through all required pixels
for(j = ha_size ; j < (RhoSize - ha_size) ; j++)
{
for(i = ha_size ; i < (ThetaSize - ha_size) ; i++)
{
//if the current "pixel" is in the tranform
if (dest->thres_HT_data[j][i] == 255)
{
//find a point to represent the cluster of
points
value = FindPoint (&Theta, &Rho, dest, (i -
ha_size), (j - ha_size), a_size);

//save the representitive value associated
with the cluster
dest->aggreg_values[Rho] [Theta] = value;

//set the representative point to 0 so it
isn't picked up when finding points in it's vacinity
dest->aggreg_HT_data[Rho] [Theta] = 0;

//find any points around the current
representative point

numpoints = c_numpoints;

FindPoints(points, &numpoints, dest,
(Theta-ha_size), (Rho - ha_size), a_size, a_size, 0, 2, &err);
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if (err !'= Q)
{
errCode |= 2;

}

//if there are no other representitive
points in the vicinity then set this point in the transform

if (numpoints == 0)

{

err=dest->aggreg HT_data[Rho] [Theta]

= 255;

}

//if there are other points then find the
strongest one and remove all others

else
{
Rhol = Rho;
Thetal = Theta;
for (k = 0 ; k < numpoints ; k++)

{
//read point from the list
Rho2 = points([2*k];
Theta2 = points([2*k+1];
//if 1 is larger than 2 set 2 to

0
if (dest-
>aggreg_values[Rhol] [Thetal] > dest->aggreg_values[Rho2] [Theta2])
{
dest-
>aggreg_HT data[Rhol] [Thetal] = 255;
dest-
>aggreg HT_data[Rho2) [Theta2] = 0;

}
else //otherwise set 2 as the
new 1
{
Rhol = Rho2;
Thetal = Theta2;

}
}

return(erxCode) ;

D.2.6 VisionThread::Acquisition

//****************************************************************
% de % Kk

// Acquisition function

// find the overhead lines in the image using a model of their
expected position

// inputs: htr: the hough transform to be searched

// thetadiff, rhodiff, thetavar, rhovar, sideline_fact,
centre_fact:
// the parameters of the line model

// outputs: bestposition is the best position in form
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// » [lefttheta leftrho centretheta centrerho
righttheta rightrhol]
// bestfound states whether a match has been found 1:

found 0: not found

// return value contains the error code*/
//****************************************************************

% % %k

int VisionThread::Acquisition(int* bestposition, int* bestfound,
HoughTransform* htr, int thetadiff, int rhodiff, int thetavar, int
rhovar, double sideline_fact, double centre_fact, int fnum)
{

FILE* file;

char fname[100]:;

char fn[100];

int err, err2, errCode;

int i, 3, k;

int numTheta, numRho, h_numTheta, h_numRho;

int threefound;

int leftfound, rightfound;

int maxthetadiff, minthetadiff, maxrhodiff, minrhodiff;

int tempthetadiff, temprhodiff;

int leftdist, rightdist, centredist[100];
int symmetry([100];

int cbestval, cbestnum;

double wvalue{[l100];

int numpositions, positions_alloc;
int positions[1000];
positions_alloc = 100;
numpositions = 0;

int numpoints:;
int points[400];
numpoints = 200;

errCode=0;

numTheta=htr->GetThetaSize();
numRho=htr->GetRhoSize ()
h_numRho = numRho/2;

h _numTheta = numTheta/2;

//find points in the hough transform

err=FindPoints (points, &numpoints, htr, (-h_numTheta), (-
h_numRho), numTheta, numRho, 1, 2, &err2);

if (err2 != 0)

{

errCode |= 2;
}
if (err !'= 0)
{

errCode |= 4;

}

//set best position to 0
bestposition[0]=0;
bestposition[1]=0;
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bestposition(2]=0;
bestposition(31=0;
bestposition([4]=0;
bestposition([5]=0;
positions[0]=0;
positions{1]=0;
positions[2]=0;
positions[3]=0;
positions[4]=0;
positions([5]=0;
positions[6]=0;
positions[7]=0;
positions[8]=0;
positions{[9]=0;

//set the flag to see if we have a three line position to 0
threefound=0;

//set the flag for finding a 'best' position to 0
*bestfound=0;

[/ **xxkkxkxxxxk*xfind all possible centre lines in the
transform*********

if (numpoints>0)
{
//step through all points assume each may be the
centre line
for{(i = 0 ; i < numpoints; i++)
{
//set max and min rho and theta differences
maxthetadiff=thetadiff+thetavar;
minthetadiff=thetadiff-thetavar;
maxrhodiff=rhodiff+rhovar;
minrhodiff=rhodiff-rhovar;

//assume the current point is the centre line
positions[(10*numpositions)+2]=points[2*i};
positions[ (10*numpositions)+3]=points[(2*i)+1];

//set temporary values for the left and right
lines.

positions{10*numpositions]=points([2*i];

positions([ (10*numpositions)+l]=points[(2*i)+1];

positions[ (10*numpositions)+4]=points{2*i];

positions[(10*numpositions)+5]=points[(2*i)+1];

positions[(10*numpositions)+6]=0;

positions[(10*numpositions)+7]={(int) {(pow(rhodiff,2))+(pow(t
hetadiff,2))); :

positions[(10*numpositions)+8]=(int) ( (pow(rhodiff,2))+(pow(t
hetadiff,2)));
positions[ (10*numpositions)+9]=0;

//set found flags to O
leftfound=0;
rightfound=0;

//check all other points in the transform to see

if they may be on of the sidelines
for(j = 0 ; j < numpoints ; j++)
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{

//calculate the distances between the two
points being compared

tempthetadiff=points[2*i]-points[2*j];

temprhodiff=points[(2*i)+1]-
points[(2*j)+1];

//if the 'j' point is within the acceptable
area for the left line then record it as such

if ((tempthetadiff<=maxthetadiff) && (tempthetadiff>=minthetadi
ff)&& (temprhodiff<=maxrhodiff) && (temprhodiff>=minrhodiff))
{

//record that we have found a
possible left line

leftfound=1;

//calculate it's distance from the
ideal

leftdist=(int) (pow( (tempthetadiff-
thetadiff),2)+pow((temprhodiff-rhodiff),2));

//if this is the best left line so
far, record it

if (leftdist<positions([(10*numpositions)+7})

{
positions[l10*numpositions]=points([2*j];
positions[{10*numpositions)+l])=points[(2*j)+1];

positions[(10*numpositions)+7])=1leftdist;
}
}
//if the 'j' point is within the acceptable
area for the right line then record it as such
if ((tempthetadiff>=(-
maxthetadiff))&& (tempthetadiff<=(-minthetadiff))&& (temprhodiff>=(-
maxrhodiff)) && (temprhodiff<=(-minrhodiff}))
{
//record that we have found a
possible left line
rightfound=1;
//calculate it's distance from the
ideal

rightdist=(int) (pow((tempthetadiff+thetadiff), 2)+pow((temprh
odiff+rhodiff),2));
//if this is the best right line so
far, record it
if (rightdist<positions[(10*numpositions)+8]})
{
positions{(10*numpositions)+4]l=points[2*j];
positions{ (10*numpositions)+5]=points[(2*j)+1];
positions[(10*numpositions)+8]=rightdist;

}
}
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//if we have found a possible position
if((leftfound==1) || (rightfound==1))

{
*bestfound=1;

//calculate the probability measure and set
the bothlines flag
if((leftfound==1)&&(rightfound==1)) //both
lines found
{
positions[(10*numpositions)+9]=1;

symmetry[numpositions]=(int) (pow((positions{10*numpositions]
-positions[(10*numpositions)+2)+positions[(10*numpositions)+4]-
positions{(10*numpositions)+2]),2)+pow{ (positions[ (10*numpositions
y+1]1-
positions{(10*numpositions)+3]+positions[(10*numpositions)+5]-
positions{(10*numpositions)+3}),2)):
} .
else if(leftfound==1) //only
left line found
{
positions{(10*numpositions)+9]=2;

symmetry[numpositions]=(int) (pow((abs(thetadiff)+abs (positio

ns[10*numpositions]-
positions{ (10*numpositions)+2]+thetadiff)), 2)+pow((abs(rhodiff)+ab
s (positions[ (10*numpositions)+1]-
positions{(l0*numpositions)+3]+rhodiff)),2));

}

else if(rightfound==1) //only
right line found

{
positions[(10*numpositions)+9]=3;

symmetry[numpositions]=(int) (pow{ (abs(thetadiff)+abs(positio
ns{ (10*numpositions)+2]-
positions[(10*numpositions)+4]+thetadiff)),2)+pow((abs(rhodiff)+ab
s(positions{ (10*numpositions)+3]-
positions[{(10*numpositions)+5]+rhodiff}),2));
}

centredist [numpositions]=(int) (pow(positions[(10*numposition
s)+2],2)+pow(positions | (10*numpositions)+3}1,2)):

value[numpositions]=(symmetry[numpositions]*(l+(sideline_fac
t* (positions [ (10*numpositions)+7]+positions{(10*numpositions)+8]))
+(centre_fact*centredist[numpositions]))}:

positions[(10*numpositions)+6]=(int)value[numpositions];
numpositions++;
}
}

//find the ‘'best' position, if available
if ((*bestfound)==1)
{
//set the current best as the first poisition
cbestval=positions([6];
cbestnum=0;
. //compare to remaining positions
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for(k = 1 ; k < numpositions ; k++)
{
//if the current best is not as good as the
one it is being compared to
if (cbestval>positions[(10*k)+6])
{
cbestnum=k;
cbestval=positions[(10*k)+6];

}

//store the best position
bestposition[0]=positions[10*cbestnum];
bestposition[l]=positions[(10*cbestnum)+1];
bestposition[2])=positions[(10*cbestnum)+2];
bestposition{3]=positions[(10*cbestnum)+3];
bestposition[4]=positions[(10*cbestnum)+4};
bestposition[5)=positions[ (10*cbestnum)+5];

//if we haven't found a three line position, then
estimate three lines from two that have been found

//if the left hand line is found, estimate the
right hand line

if (positions[ (10*cbestnum)+9]}==2)

{

bestposition[4]=bestposition(2]+bestposition{[2]-
bestposition[0];

bestposition[5]=bestposition[3])+bestposition[3]~-
bestposition[l]:
}
//if the right hand line is found, estimate the
left hand line
if (positions[ (10*cbestnum)+9]==3)

{

bestposition[0]=bestposition[2]+bestposition[2]-
bestposition([4]:

bestposition([l]=bestposition[3]+bestposition[3]-
bestposition([5];
}
}
}

//ensure that search window doesn't go outside the hough
transform
if(bestposition[0]>(h_numTheta-AQ EDGE_GAP))
{
bestposition[0]=h_numTheta-AQ_EDGE_GAP;
}
if (bestposition[0]<(AQ_EDGE_GAP-h_numTheta))
{
bestposition[0]=AQ_EDGE_GAP-h numTheta;
}
if (bestposition[1]>(h_numRho-AQ EDGE_GAP))
{ .
bestposition([l]=h_numRho-AQ_ EDGE_GAP;

}
if (bestposition[1]<(AQ_EDGE_GAP-h_numRho))
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{ bestposition[1]=AQ_ EDGE_GAP-h_numRho;
;f(bestposition[Z]>(h_numTheta-AQ_EDGE_GAP))
{ bestposition{2]=h_numTheta-AQ EDGE_GAP;
;f(bestposition[2]<(AQ_EDGE_GAP—h_numTheta))
{ bestposition[2]=AQ EDGE_GAP-h_numTheta;
;f(bestposition[3]>(h_numRho-AQ_EDGE_GAP))

( bestposition[3}=h_numRho-AQ EDGE_GAP;
;f(bestposition[3]<(AQ_EDGE_GAP-h_numRho))

{ bestposition[3]=AQ EDGE_GAP-h_numRho;
;f(bestposition[4]>(h_numTheta-AQ_EDGE_GAP))
{ bestposition[4]=h_numTheta-AQ EDGE_GAP;
if(bestposition[4]<(AQ_EDGE_GAP-h_numTheta))
{ bestposition([4]=AQ EDGE_GAP-h_ numTheta;
;f(bestposition[5]>(h_numRho-AQ_EDGE_GAP))

{ bestposition[5]=h_numRho-AQ EDGE_GAP;
;f(bestposition[5]<(AQ_EDGE~GAP-h_numRho))

{ bestposition[5]=AQ EDGE_GAP-h_numRho;

}

return (errCode) ;

D.2.7 VisionThread::TrackLines

//****************************************************************
* %k k

// Track Lines

// Interpret and track points from the AHT

// inputs: source: the AHT

// i/o: lthetakal, lrhokal, cthetakal, crhokal, rthetakal,
rrhokal, ethetakal, erhokal:

// structures to hold the Kalman filter data
// switchCount, loseCount, loseCentreCount:
// fuzzy count values

// error codes:
// 0 success

// 2 Error accessing Hough Transform
//****************************************************************

% %k ok

int VisionThread::TrackLines(HoughTransform* source, struct
kalman* lthetakal, struct kalman* lrhokal, struct kalman¥*
cthetakal, struct kalman* crhokal, struct kalman* rthetakal,
struct kalman* rrhokal, struct kalman* ethetakal, struct kalman*
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erhokal, int*trackStat, int* switchCount, int* loseCount, int*
loseCentreCount)
{

int err,err?2;

int errCode = 0;

int i, 3, k:

FILE* dataOut;

char dataFName[100];

//search square sizes

int 1_rect_theta_size, 1_rect_rho_size, c_rect_theta_size,
c_rect_rho_size, r_rect_theta_size, r_rect_rho_size,
e _rect_theta_size, e_rect_rho_size;

//half the search square sizes

int h_1 rect_theta_size, h_l_rect_rho_size,
h_c_rect_theta_size, h_c_rect_rho_size, h_r_rect_theta_size,
h_r rect_rho_size, h_e_rect_theta_size, h_e_rect_rho_size;

//dimensions of ht
int theta, rho, htheta, hrho;

//allocate storage for points found in hough transform
int numlpoints, numcpoints, numrpoints, numepoints;

int lpoints([600]:;

int cpoints([600];

int rpoints[600];

int epoints[600};

numlpoints = numcpoints = numrpoints = numepoints = 200;

//calculate the square sizes as 3* the standard deviation

1_rect_theta_size = (int)ceil (1+(6*sqrt(lthetakal-
>predProb)));

1_rect_rho_size = (int)ceil(1+(6*sgrt(lrhokal->predProb)));

c_rect_theta_size = (int)ceil (1+{6*sqrt(cthetakal-
>predProb)));

c_rect_rho_size = (int)ceil(1l+(6*sqrt(crhokal->predProb)));

r_rect_theta_size = (int)ceil(1+(6*sqrt(rthetakal-
>predProb)));

r_rect_rho_size = (int)ceil (1+(6*sqrt (rrhokal->predProb)));

e_rect_theta_size = (int)ceil(l+(6*sqgrt(ethetakal-
>predProb)));
e_rect_rho_size = (int)ceil(l+(6*sqrt(erhokal~>predProb)));

//calculate the half square sizes

h_1 rect_theta_size=1_rect_theta_size/2;
h_1 rect_rho_size=1_rect_rho_size/2;
h_c_rect theta_size=c_rect_theta_size/2;
h_c_rect_rho_size=c_rect_rho_size/2;

h_r rect_theta_size=r_rect_theta_size/2;
h_r_rect_rho_size=r_rect_rho_size/2;
h_e_rect_theta_size=e_rect_theta_size/2;
h_e_rect_rho_size=e_rect_rho_size/2;
//get HT dimensions

theta = source->GetThetaSize();

rho = source->GetRhoSize();

htheta = MathFns::Round((double)theta/2);
hrho = MathFns::Round({(double)rho/2);

//find points in the hough transform
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err=FindPoints(lpoints, &numlpoints, source, (lthetakal- '
>prediction)-h_l1 rect_theta_size, (lrhokal->prediction)-
h_1 rect_rho_size, 1_rect_theta_size, 1_rect_rho_size, 1, 3,
serr?);
if (err2 !'= 0)
{
errCode |= 2;
}
err=FindPoints (cpoints, &numcpoints, source, (cthetakal-
>prediction)~h_c_rect_theta_size, (crhokal->prediction)-
h_c_rect_rho_size, c_rect_theta_size, ¢ _rect_rho_size, 1, 3,
serr2);
if (err2 != 0)
{
errCode |= 2;
}
err=FindPoints (rpoints, &numrpoints, source, (rthetakal-
>prediction)-h_r rect_theta_size, (rrhokal->prediction) -
h_r rect_rho_size, r_rect_theta_size, r_rect_rho_size, 1, 3,
serr2);
if (err2 !'= 0)
{
errCode |= 2;
}
if ((*trackStat==2) || (*trackStat==3))
{
err=FindPoints(epoints, &numepoints, source,
(ethetakal->prediction)-h_e_rect_theta_size, (erhokal-
>prediction)-h_e rect rho_size, e_rect_theta_size,
e rect_rho_size, 1, 3, &err2);
if (err2 != 0)
{
errCode |= 2;
}
}

//save data to file
strcpy (dataFName, directory):
strcat (dataFName, "\\points.txt"):;
dataOut=fopen(dataFName, "a");
fprintf (dataOut, "Frame %d:\n", frameNumber):;
fprintf (dataCut, "\tRaw Points: Track Status %d\n",
*trackStat);
fprintf(dataOut, "\t\tLeft Points:\n");
for(i = 0 ; i < numlpoints ; i++)
{
fprintf (dataout, "\t\t\tTheta: %d Rho: %d\n",
lpoints([3*i], lpoints[3*i+1]);
}
fprintf (dataOut, "\n\t\tCentre Points:\n");
for(i = 0 ; i < numcpoints ; i++)
{
fprintf (dataOut, "\t\t\tTheta: %d Rho: %d\n",
cpoints[3*i), cpoints[3*i+l1]):
}
fprintf(dataOut, "\n\t\tRight Points:\n");
for(i = 0 ; i < numrpoints ; i++)
{
fprintf (dataOut, "\t\t\tTheta: %d Rho: %d\n",
rpoints{3*i]l, rpoints[3*i+l]);

}
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if(((*trackStat)==2)1{| ((*trackStat)==3))
{
fprintf(dataOut, "\n\t\tExtra Points:\n");
for(i = 0 ; i < numepoints ; i++)
{
fprintf (dataOut, "\t\t\tTheta: %d Rho: %d\n",
epoints([3*i]), epoints[3*i+l]);
}

}
fprintf (dataOut, "\n");

//*******xremove duplicate points (that appear in more than
one search square) ****xx*%

//for all points
i=0;
while (i < numcpoints)
{
3=0;
while(j < numrpoints)
{
//if points match
if ((cpoints[3*i] == rpoints[3*j]) &&
(cpoints[3*i+l] == rpoints[3*j+1l]))
{
//if centre point is less respresentative
remove it
if (cpoints{3*i+2] > rpoints[3*j+2])
{
numcpoints--;
for(k = 1 ; k < numcpoints ; k++)
{
cpoints[3*k] = cpoints[3*(k+1)];
cpoints[3*k+1]

cpoints[3*(k+1)+1];

cpoints[3*k+2]
cpoints[3* (k+1)+2];

}
i--; //as we will increment i as we

leave the loop, we need to decrement it as all the points in i
have moved
break; //as point removed from c, we
don't need to test it against the rest of r
}
//otherwise remove the point from the right
search square
else
{
numrpoints--;
for(k = j ; k < numrpoints ; k++)
{
rpoints[3*k] = rpoints[3*(k+1)]:
rpoints{3*k+1}

rpoints[3* (k+1)+1];

rpoints[3*k+2]
rpoints([3* (k+1)+2]);

J++;
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i++;
}
i=0;
while (i < numcpoints)
{
=1
while(j < numlpoints)
{
//if points match
if ((cpoints[3*i] == lpoints[3*j]) &&
(cpoints[3*i+1] == lpoints[3*j+1l]))
{
//if centre point is less respresentative
remove it
if (cpoints[3*i+2] > lpoints[3*j+2})
{
numcpoints--;
for(k = 1 ; k < numcpoints ; k++)
{
cpoints[3*k] = cpoints[3*(k+1)];
cpoints[3*k+l] =
cpoints([3*(k+1)+1];
cpoints[3*k+2] =
cpoints([3* (k+1)+2];
}

i--; //as we will increment i as we
leave the loop, we need to decrement it as all the points in i
have moved
break; //as point removed from c, we
don't need to test it against the rest of r
}
//otherwise remove the point from the left
search square
else
{
numlpoints--;
for(k = j ; k < numlpoints ; k++)
{
lpoints[3*k] = lpoints[3*(k+1)];
lpoints[3*k+1l] =
lpoints({3* (k+1)+1]};
lpoints[3*k+2] =

lpoints[3* (k+1)+2};

j++:
}
i++;
}
i=0;
while(i < numlpoints)
{
J=0;
while(j < numrpoints)
{
//if points match
if((lpoints([3*i] == rpoints[3*j]) &&
(lpoints[3*i+1] == rpoints[3*j+1]))
{
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//if left point is less respresentative
remove it
if(lpoints{3*i+2] > rpoints{3*j+2])
{
numlpoints--;
for(k = 1 ; k < numlpoints ; k++)
{
lpoints[3*k] = lpoints[3*(k+1l)];
lpoints[3*k+1] =
lpoints[3*(k+1)+1];
lpoints[3*k+2] =
lpoints[3*(k+1)+2];
}
i--; //as we will increment i as we
leave the loop, we need to decrement it as all the points in i
have moved
break; //as point removed from 1, we
don't need to test it against the rest of r
}
//otherwise remove the point from the right
search square
else
{
numrpoints--;
for(k = j ; k < numrpoints ; k++)
{
rpoints{3*k] = rpoints{3*(k+1)]:
rpoints[3*k+1l} =
rpoints{3* (k+1)+1];
rpoints[3*k+2] =
rpoints[3* (k+1)+2];

j++;
}
i++;
}

//remove duplicate points from the extra square
if(((*trackStat)==2) ]| ((*trackStat)==3))
{
i=0;
while(i < numcpoints)
{
3=0;
while(j < numepoints)
{
//if points match
if((cpoints[3*i] == epoints([3*j]) &&
(cpoints[3*i+1] == epoints[3*j+1])) //if points match
' {
//if centre point is less
respresentative remove it
if(cpoints[3*i+2] > epoints{3*j+2])
{
numcpoints--;
for(k = i ; k < numcpoints ;
k++)

{
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cpoints[3*k] =
cpoints[3* (k+1)];

cpoints[3*k+1])
cpoints([3*(k+1)+1];

It

cpoints[3*k+2]

cpoints([3* (k+1)+2];
}

i--; //as we will increment 1 as
we leave the loop, we need to decrement it as all the points in i

have moved
break; //as point removed from

c, we don't need to test it against the rest of r

}

//otherwise remove the point from the
extra search square

else

{
numepoints--;
for(k = j ; k < numepoints ;
k++)

{
epoints[3*k] =

epoints[3* (k+1)1;

epoints[3*k+1]
epoints3* (k+1)+1];

fl

epoints{3*k+2]
epoints[3* (k+1)+2];

J++;
}
i++;
}
i=0;
while (i < numrpoints)
{
j=1:
while(j < numepoints)
{
//if points match
if ((rpoints[3*i] == epoints[3*j]) &&
(rpoints[3*i+1] == epoints[3*j+1]))
{

//if right point is less
respresentative remove it
if (rpoints{3*i+2] > epoints([3*j+2])
{

numrpoints--;
for(k = i ; k < numrpoints ;
k++)
{
rpoints[3*k] =

rpoints[3* (k+1)];
rpoints[3*k+1] =

rpoints[3* (k+1)+1];
rpoints([3*k+2] =

rpoints[3* (k+1)+2];
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i--; //as we will increment i as
we leave the loop, we need to decrement it as all the points in i
have moved
break; //as point removed from
c, we don't need to test it against the rest of r
}
//otherwise remove the point from the
extra search square
else
{
numepoints=--;
for(k = j ; k < numepoints ;
k++)
{
epoints{3*k] =
epoints[3* (k+1)1];

epoints[3*k+1]
epoints[3* (k+1)+1];
epoints[3*k+2]

epoints[3* (k+1)+2};

J++;
}
i++;
}
i=20;
while(i < numlpoints)
{
jo=0;
while(j < numepoints)
{
//if points match
if ((lpoints[3*i] == epoints[3*]j]) &&
(lpoints[3*i+l] == epoints[3*j+l1l]))
{
//if left point is less
respresentative remove it
if (lpoints[3*i+2] > epoints([3*j+2])
{
numlpoints--;
for(k = 1 ; k < numlpoints ;
k++)
{
lpoints[3*k] =
lpoints[3*(k+1)]:
lpoints[3*k+1]

lpoints([3* (k+1)+1];
lpoints[3*k+2]

lpoints{3* (k+1)+2];
}
i--; //as we will increment i as
we leave the loop, we need to decrement it as all the points in i
have moved
break; //as point removed from
1, we don't need to test it against the rest of r
}
//otherwise remove the point from the
extra search square
else
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k++)

numepoints-~;

for(k = j ; k < numepoints

{
epoints[3*k] =

epoints([3*(k+1)]};

epoints[3*k+1]

epoints([3* (k+1)+1};

[

epoints[3*k+2]

epoints|[3* (k+1)+2];

}

J++;

i++;

[/ ****kkkkkkkkrecord the 'best' point for each
line******************

//if only 1 point then it is the best
if (numlpoints == 1)

{

}

lthetakal->measurement = lpoints[0];
lrhokal->measurement = lpoints[1l];
lthetakal->R = DEFRTHETA;

lrhokal->R = DEFRRHO;

//if more than 1 then pick the best
if (numlpoints > 1)

{

remove the first

of points

//repeat as long as we have more than 1 point
while (numlpoints > 1)
{

//if the first point is worse than the second,
and move the second to become the new first

if (lpoints[2] > lpoints[5])
{
lpoints[0]=1points[3]:
lpoints[l]l=1lpoints[4];
lpoints{2]=lpoints([5]:;
}

.
’

//as we have removed a point, reduce the number

numlpoints=-;

//move the remaining points down

for(i =1 ; i < numlpoints ; i++)

{

lpoints[3*i]=1lpoints[3*(i+1)];
lpoints[3*i+l]=lpoints[3*(i+1)+1]);
lpoints[3*i+2]=1lpoints([3*(i+1)+2];
} .
}
//record the best point
lthetakal->measurement = lpoints[0];
lrhokal->measurement = lpoints([1l];
lthetakal->R = DEFRTHETA;

lrhokal->R = DEFRRHO;
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}

//if only 1 point then it is the best

if (numcpoints == 1)

{
cthetakal->measurement = cpoints[0];
crhokal->measurement = cpoints[l]:
cthetakal->R = DEFRTHETA;
crhokal->R = DEFRRHO;

}

//if more than 1 then pick the best

if (numcpoints > 1)

{
//repeat as long as we have more than 1 point
while (numcpoints > 1)

{
//if the first point is worse than the second,

remove the first and move the second to become the new first
if (cpoints[2] > cpoints[5])
{
cpoints([0]=cpoints[3];
cpoints[l]=cpoints[4];
cpoints[2]=cpoints[5];
}
//as we have removed a point, reduce the number
of points
numcpoints--;
//move the remaining points down
for(i = 1 ; i < numcpoints ; i++)
{
cpoints[3*i]=cpoints[3*(i+l)];
cpoints[3*i+l]=cpoints{3*(i+1)+1];
cpoints([3*i+2]=cpoints[3* (i+1)+2];
}

}

//record the best point
cthetakal->measurement = cpoints[0];
crhokal->measurement = cpoints[1];
cthetakal->R = DEFRTHETA;
crhokal->R = DEFRRHO;

}

//if only 1 point then it is the best

if (numrpoints == 1)

{
rthetakal->measurement = rpoints[0];
rrhokal->measurement = rpoints[1]:;
rthetakal->R = DEFRTHETA;
rrhokal->R = DEFRRHO;

}

if (numrpoints > 1)

{
//repeat as long as we have more than 1 point

while (numrpoints > 1)

{
//if the first point is worse than the second,

remove the first and move the second to become the new first
if (rpoints{2] > rpoints([5])
{
rpoints[0]=rpoints[3];
rpoints[1l]=rpoints{4];
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rpoints[2]=rpoints[5];

}

//as we have removed a point, reduce the number

of points

numrpoints~-;

//move the remaining points down

for(i =1 ; i < numrpoints ; i++)

{
rpoints[3*i]=rpoints([3*(i+l1)];
rpoints[3*i+l])=rpoints[3*(i+1)+1];
rpoints{3*i+2]=rpoints([3* (i+1)+2];

}

}

//record the best point
rthetakal->measurement = rpoints[0];
rrhokal->measurement = rpoints(1];
rthetakal->R = DEFRTHETA;
rrhokal->R = DEFRRHO;

}

//if an extra line is being tracked then record its position
if (((*trackStat)==2)1] ((*trackStat)==3))
{
//if only 1 point then it is the best
if (numepoints == 1)
{
ethetakal->measurement = epoints[0]:
erhokal->measurement = epoints[1]:;
ethetakal->R = DEFRTHETA;
erhokal->R = DEFRRHO;
}
//if more than 1 then pick the best
if (numepoints > 1)
{

//repeat as long as we have more than 1 point
while (numepoints > 1)

{
//if the first point is worse than the

second, remove the first and move the second to become the new

first
if (epoints{2] > epoints[5])
{
epoints[0]=epoints[3];
epoints([l]=epoints[4]:
epoints([2]=epoints[5];
}
//as we have removed a point, reduce the
number of points
numepoints--;
//move the remaining points down
for(i = 1 ; i < numepoints ; i++)
{
epoints([3*i]=epoints[3*(i+1)]);
epoints{3*i+l]=epoints{3*(i+1)+1];
epoints[3*i+2]=epoints{3*(i+1)+2];
}

}

//record the best point
ethetakal->measurement = epoints{0];
erhokal->measurement = epoints[1];
ethetakal->R = DEFRTHETA:
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erhokal->R = DEFRRHO;

}

//save kalman filter data to file
fprintf(dataOut, "\tKalman Filter Data: Track Status %d\n",
*trackStat);
fprintf (dataOut, "\t\tLeft Line: numlpoints:
$d\n",numlpoints);
fprintf(dataout, "\t\t\tTheta: %d %d %d %f $f %f 3f %d %f %d
$f\n", lthetakal->estimate, lthetakal->prevEstimate, lthetakal-
>prediction, lthetakal->estProb, lthetakal->predProb, lthetakal-
>H, lthetakal->K, lthetakal->phiOffset, lthetakal->Q, lthetakal-
>measurement, lthetakal->R);
fprintf (dataOut, "\t\t\tRho: %d %d %d %f %f %f ¥f %d %f %d
$£f\n", lrhokal->estimate, lrhokal->prevEstimate, lrhokal-
>prediction, lrhokal->estProb, lrhokal->predProb, lrhokal->H,
lrhokal->K, lrhokal->phiOffset, lrhokal->Q, lrhokal->measurement,
lrhokal->R);
fprintf (dataOut, "\t\tCentre Line: numcpoints:
$d\n",numcpoints) ;
fprintf (dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %¥d
$f\n", cthetakal->estimate, cthetakal->prevEstimate, cthetakal-
>prediction, cthetakal->estProb, cthetakal->predProb, cthetakal-
>H, cthetakal->K, cthetakal->phiOffset, cthetakal->Q, cthetakal-
>measurement, cthetakal->R);
fprintf (dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
$f\n", crhokal->estimate, crhokal->prevEstimate, crhokal-
>prediction, crhokal->estProb, crhokal->predProb, crhokal->H,
crhokal->K, crhokal->phiOffset, crhokal->Q, crhokal->measurement,
crhokal->R);
fprintf(dataOut, "\t\tRight Line: numrpoints:
$d\n",numrpoints);
fprintf (dataOut, "\t\t\tTheta: %d %d %d %f %f $f %f %d $f %d
$f\n", rthetakal->estimate, rthetakal->prevEstimate, rthetakal-
>prediction, rthetakal->estProb, rthetakal->predProb, rthetakal-
>H, rthetakal->K, rthetakal->phiOffset, rthetakal->Q, rthetakal-
>measurement, rthetakal->R);
fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d $f %d
$f\n", rrhokal->estimate, rrhokal->prevEstimate, rrhokal-
>prediction, rrhokal->estProb, rrhokal->predProb, rrhokal->H,
rrhokal->K, rrhokal->phiOffset, rrhokal->Q, rrhokal->measurement,
rrhokal->R);
if (((*trackStat)==2) || ((*trackStat)==3))
{
fprintf (dataOut, "\t\tExtra Line: numepoints:
$d\n",numepoints);
fprintf (dataOut, "\t\t\tTheta: %d %d %d %f %f 3f %f %d
$f %d %f\n", ethetakal->estimate, ethetakal->prevEstimate,
ethetakal->prediction, ethetakal->estProb, ethetakal->predProb,
ethetakal->H, ethetakal->K, ethetakal->phiOffset, ethetakal->Q,
ethetakal->measurement, ethetakal->R):
fprintf (dataOut, "\t\t\tRho: %d %d %d %£f %f %f %f %d
$f %d %f\n", erhokal->estimate, erhokal->prevEstimate, erhokal-
>prediction, erhokal->estProb, erhokal->predProb, erhokal->H,
erhokal->K, erhokal->phiOffset, erhokal->Q, erhokal->measurement,
erhokal->R);
}

J//*****x*x*ensure that the points conform to the minimum
distance rules****¥x*xkkx
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//ensure the two outer points are at least the required
distance away from the centre point
if (lthetakal->measurement<(cthetakal->measurement+10))
{ lthetakal->measurement=cthetakal->measurement+10;
if (lrhokal->measurement>(crhokal->measurement-8))
{ lrhokal->measurement=crhokal->measurement-8;
;f (rthetakal->measurement> (cthetakal->measurement-10))
{ rthetakal->measurement=cthetakal->measurement-10;
;f (rrhokal->measurement< {crhokal->measurement+8))
{ rrhokal->measurement=crhokal->measurement+8;

}

//ensure that the extra point is at least the required
distance away from the lines
if ((*trackStat)==3)
{
if (ethetakal->measurement<(lthetakal->measurement+8))
{
ethetakal->measurement=1lthetakal->measurement+8;
}
if (erhokal~->measurement>(lrhokal->measurement-6))
{
erhokal->measurement=1rhokal->measurement-6;
}
}

if ((*trackStat)==2)
{
if (ethetakal->measurement>(rthetakal->measurement-8))
{
ethetakal->measurement=rthetakal->measurement-8;
}
if (erhokal->measurement<(rrhokal->measurement+6))
{
erhokal->measurement=rrhokal->measurement+6;
}
}

//****xx%%if points are missing, then Kalman Filter may use
spurious data, therefore use the prediction as the
measurement ¥ **x*

if (numlpoints==0)

{
lthetakal->measurement=1thetakal->prediction;
lrhokal->measurement=1rhokal->prediction;
lthetakal->R=4*DEFRTHETA;
1lrhokal->R=4*DEFRRHO;

}

if (numcpoints==0)
{
cthetakal->measurement=cthetakal->prediction;
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crhokal~->measurement=crhokal->prediction;
cthetakal->R=4*DEFRTHETA;
crhokal~>R=4*DEFRRHO;

}

if (numrpoints==0)

{
rthetakal->measurement=rthetakal->prediction;
rrhokal->measurement=rrhokal->prediction;
rthetakal->R=4*DEFRTHETA;
rrhokal~>R=4*DEFRRHO;

}

if (((*trackStat)==2)]| ((*trackStat)==3))
{
if (numepoints==0)
{
ethetakal->measurement=ethetakal->prediction;
erhokal->measurement=erhokal->prediction;
ethetakal->R=4*DEFRTHETA;
erhokal->R=4*DEFRRHO;

}

//****if 2 points found, use those to predict the third
point****

//if centre point missing, average the other 2
if ((numcpoints == 0) && (numlpoints > 0) && (numrpoints >
0))
{
cthetakal-
>measurement=MathFns: :Round{ ( (double)lthetakal-
>measurement+ (double) rthetakal->measurement)/2);
crhokal->measurement=MathFns: :Round( ( (double) lrhokal~
>measurement+ (double) rrhokal->measurement)/2);
cthetakal->R=pow( (sgrt (1thetakal->R)+sqrt(rthetakal-
>R)),2):
crhokal->R=pow ( (sqrt (lrhokal->R) +sqrt (rrhokal->R)),2);
}

//if right point missing calculate from other two
if ( (numrpoints == 0) && (numlpoints > 0) && (numcpoints >
0))
{
rthetakal->measurement=cthetakal-
>measurement+cthetakal->measurement-lthetakal->measurement;
rrhokal->measurement=crhokal->measurement+crhokal-
>measurement-lrhokal->measurement;
rthetakal->R=pow( (2*sqgrt (cthetakal->R)+sqrt(lthetakal~-
>R)),2);
rrhokal->R=pow( (2*sqrt (crhokal->R)+sqrt (1rhokal~
>R))12);

//if left point missing calculate from other two
if ((numlpoints == 0) && (numrpoints > 0) && (numcpoints >
0))
{
lthetakal->measurement=cthetakal-~-
>measurement+cthetakal->measurement-rthetakal->measurement;
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lrhokal->measurement=crhokal->measurement+crhokal-
>measurement~rrhokal->measurement;
lthetakal->R=pow({2*sqrt (cthetakal->R) +sqrt (rthetakal-
>R}),2);
lrhokal->R=pow ( (2*sqrt (crhokal->R) +sgrt (rrhokal-
>R)),2);
}

//save kalman filter data to file
fprintf(dataOut, "\n\tKalman Filter Data: Track Status
$d\n", *trackStat):
fprintf (dataCut, "\t\tLeft Line: numlpoints:
%d\n", numlpoints);
fprintf (dataOut, "\t\t\tTheta: %d %d %d %f %f %f $f %d %f %d
$f\n", lthetakal->estimate, lthetakal->prevEstimate, lthetakal-
>prediction, lthetakal->estProb, lthetakal->predProb, lthetakal-
>H, lthetakal->K, lthetakal~->phiOffset, lthetakal->Q, lthetakal-
>measurement, lthetakal->R);
fprintf (dataOut, "\t\t\tRho: %d %d %d %f %$f %f %f %d %$f %d
%f\n", lrhokal->estimate, lrhokal->prevEstimate, lrhokal-
>prediction, lrhokal->estProb, lrhokal->predProb, lrhokal->H,
lrhokal->K, lrhokal->phiOffset, lrhokal->Q, lrhokal->measurement,
lrhokal=->R);
fprintf (dataOut, "\t\tCentre Line: numcpoints:
$d\n", numcpoints) ;
fprintf (dataOut, "\t\t\tTheta: %d %d %d %f $f %f %f %d %f %d
$f\n", cthetakal->estimate, cthetakal->prevEstimate, cthetakal-
>prediction, cthetakal->estProb, cthetakal->predProb, cthetakal-
>H, cthetakal->K, cthetakal->phiOffset, cthetakal->Q, cthetakal-
>measurement, cthetakal->R);
fprintf (dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
$f\n", crhokal->estimate, crhokal->prevEstimate, crhokal-
>prediction, crhokal->estProb, crhokal->predProb, crhokal->H,
crhokal->K, crhokal->phiOffset, crhokal->Q, crhokal->measurement,
crhokal->R) ;
fprintf (dataOut, "\t\tRight Line: numrpoints:
$d\n", numrpoints);
fprintf (dataOut, "\t\t\tTheta: %d %d %d %f %f %f $f %d %f sd
$f\n", rthetakal->estimate, rthetakal->prevEstimate, rthetakal-
>prediction, rthetakal->estProb, rthetakal->predProb, rthetakal-
>H, rthetakal->K, rthetakal->phiOffset, rthetakal->Q, rthetakal-
>measurement, rthetakal->R):;
fprintf (dataOut, "\t\t\tRho: %d %d %d %f %f %f $f %d %f %d
$£f\n", rrhokal->estimate, rrhokal->prevEstimate, rrhokal-
>prediction, rrhokal->estProb, rrhokal->predProb, rrhokal->H,
rrhokal->K, rrhokal->phiOffset, rrhokal->Q, rrhokal->measurement,
rrhokal->R);
if (((*trackStat)==2) || ((*trackStat)==3))
{
fprintf (dataOut, "\t\tExtra Line: numepoints:
$d\n", numepoints);
fprintf({dataOut, "\t\t\tTheta: %d %d %d %f %f $f 3f %d
$f %d %f\n", ethetakal->estimate, ethetakal->prevEstimate,
ethetakal->prediction, ethetakal->estProb, ethetakal->predProb,
ethetakal->H, ethetakal->K, ethetakal->phiOffset, ethetakal->Q,
ethetakal->measurement, ethetakal->R);
fprintf (dataOut, "\t\t\tRho: %d %d %d %f %f %f %f 3d
$f %d %$f\n", erhokal->estimate, erhokal->prevEstimate, erhokal-
>prediction, erhokal->estProb, erhokal->predProb, erhokal->H,
erhokal->K, erhokal->phiOffset, erhokal->Q, erhokal->measurement,
erhokal->R);
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}

[/ *HFH xSk Kk kkkkkkkkk*kApply Kalman
Filter bkt ook ook ok ok oo ok ok sk ok sk ok ke ok ke ok

//Compute Gain

lthetakal->K=1lthetakal->predProb*lthetakal->H/(lthetakal-
>H*1lthetakal->predProb*lthetakal->H+1lthetakal->R);

lrhokal=->K=lrhokal->predProb*lrhokal->H/(lrhokal->H*1lrhokal-
>predProb*lrhokal~->H+1lrhokal->R);

cthetakal->K=cthetakal->predProb*cthetakal~>H/(cthetakal-
>H*cthetakal->predProb*cthetakal->H+cthetakal->R);

crhokal->K=crhokal->predProb*crhokal->H/ (crhokal->H*crhokal-
>predProb*crhokal~>H+crhokal->R);

rthetakal->K=rthetakal->predProb*rthetakal->H/ (rthetakal-
>H*rthetakal->predProb*rthetakal->H+rthetakal->R);

rrhokal->K=rrhokal->predProb*rrhokal~>H/ (rrhokal->H*rrhokal~-
>predProb*rrhokal->H+rrhokal->R);

if(((*trackStat)==2) | ((*trackStat)==3))
{
ethetakal->K=ethetakal->predProb*ethetakal-
>H/ (ethetakal->H*ethetakal->predProb*ethetakal->H+ethetakal~->R);
erhokal->K=erhokal->predProb*erhokal->H/ (erhokal-
>H*erhokal->predProb*erhokal->H+erhokal->R):
}

//Update Estimate

lthetakal->estimate=MathFns: :Round(lthetakal~
>prediction+(lthetakal->K* (lthetakal->measurement-(lthetakal-
>H*1thetakal->prediction)))):

lrhokal->estimate=MathFns::Round(lrhokal-
>prediction+ (lrhokal->K* (lrhokal->measurement-(lrhokal->H*1lrhokal-
>prediction)))):

cthetakal->estimate=MathFns: :Round(cthetakal-
>prediction+ (cthetakal->K* (cthetakal->measurement-(cthetakal-
>H*cthetakal->prediction)))):;
crhokal->estimate=MathFns::Round (crhokal-
>prediction+ (crhokal->K* (crhokal->measurement-(crhokal->H*crhokal~-
>prediction)))):;

rthetakal->estimate=MathFns: :Round(rthetakal-
>prediction+ (rthetakal->K* (rthetakal->measurement~(rthetakal-
>H*rthetakal->prediction})));

rrhokal->estimate=MathFns: :Round(rrhokal-
>prediction+(rrhokal->K* (rrhokal->measurement- (rrhokal->H*rrhokal-
>prediction)))):

if{((*trackStat)==2)| ((*trackStat)==3))
{
ethetakal->estimate=MathFns::Round(ethetakal~
>prediction+(ethetakal->K* (ethetakal->measurement-(ethetakal-
>H*ethetakal->prediction)))):
erhokal->estimate=MathFns::Round(erhokal-~
>prediction+(erhokal=->K* (erhokal->measurement- (erhokal->H*erhokal~
>prediction))));
}
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//Update Estimate Variance
lthetakal->estProb=(1l-(lthetakal->K*lthetakal-
>H) ) *1lthetakal->predProb;
lrhokal->estProb=(1~(lrhokal->K*1lrhokal->H))*1lrhokal-
>predProb;

cthetakal->estProb=(1-(cthetakal->K*cthetakal-
>H) ) *cthetakal->predProb;
crhokal->estProb=(1-(crhokal->K*crhokal->H) ) *crhokal-
>predProb;

rthetakal->estProb=(1~(rthetakal->K*rthetakal-
>H) ) *rthetakal->predProb;
rrhokal->estProb=(1-(rrhokal->K*rrhokal->H) ) *rrhokal-
>predProb;

if(((*trackStat)==2)|((*trackStat)==3))
{
ethetakal->estProb=(1-(ethetakal->K*ethetakal-
>H) ) *ethetakal->predProb;
erhokal->estProb=(1-(erhokal->K*erhokal->H)) *erhokal-
>predProb;
}

//calculate phi offset

lthetakal->phiOffset=1thetakal~->estimate~lthetakal-
>prevEstimate;

lrhokal->phiOffset=1rhokal->estimate-lrhokal->prevEstimate;

cthetakal->phiOffset=cthetakal->estimate-cthetakal-
>prevEstimate;
crhokal->phiOffset=crhokal~>estimate-crhokal->prevEstimate;

rthetakal->phiOffset=rthetakal->estimate~-rthetakal-
>prevEstimate;
rrhokal->phiOffset=rrhokal->estimate-rrhokal->prevEstimate;

if(((*trackStat)==2) | ({(*trackStat)==3))
{
ethetakal->phiOffset=ethetakal->estimate-ethetakal-
>prevEstimate;
erhokal->phiOffset=erhokal->estimate-erhokal-
>prevEstimate;

}

//predict phi offset if one line is missing
if ((numcpoints == 0) && (numlpoints > 0) && (numrpoints >
0))
{
cthetakal->phiOffset=MathFns::Round((lthetakal-
>phiOffset+rthetakal->phiOffset)/2);
crhokal->phiOffset=MathFns: :Round( (lrhokal-
>phiOffset+rrhokal->phiOffset)/2);
}

if ((numrpoints == 0) && (numlpoints > 0) && (numcpoints >
0))
{
rthetakal->phiOffset=MathFns: :Round{ (lthetakal-
>phiOffset+cthetakal->phiOffset)/2);
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rrhokal->phiOffset=MathFns::Round((lrhokal-
>phiOffset+crhokal->phiOffset)/2);
}

if ((numlpoints == 0) && (numrpoints > 0) && (numcpoints >

0))
{
lthetakal->phiOffset=MathFns::Round((cthetakal-

>phiOffset+rthetakal->phiOffset)/2);
lrhokal->phiOffset=MathFns::Round((crhokal-
>phiOffset+rrhokal->phiOffset) /2);
}

//Project Ahead

lthetakal~->prediction=MathFns: :Round(lthetakal~-
>phiOffset+lthetakal->estimate):

lthetakal->predProb=1lthetakal->estProb+lthetakal->Q;

lrhokal->prediction=MathFns::Round(lrhokal-
>phiOffset+lrhokal->estimate);

lrhokal->predProb=1lrhokal->estProb+lrhokal->Q;

cthetakal->prediction=MathFns: :Round(cthetakal-
>phiOffset+cthetakal->estimate);
cthetakal->predProb=cthetakal->estProb+cthetakal->Q;
crhokal->prediction=MathFns::Round (crhokal-
>phiOffset+crhokal~>estimate);
crhokal->predProb=crhokal->estProb+crhokal->Q:

rthetakal->prediction=MathFns::Round(rthetakal-
>phiOffset+rthetakal->estimate);
rthetakal->predProb=rthetakal->estProb+rthetakal->Q;
rrhokal->prediction=MathFns::Round (rrhokal-
>phiOffset+rrhokal->estimate);
rrhokal->predProb=rrhokal->estProb+rrhokal->Q;

if (((*trackStat)==2) ]| ((*trackStat)==3))

{
ethetakal->prediction=MathFns::Round(ethetakal-

>phiOffset+ethetakal->estimate);

ethetakal->predProb=ethetakal->estProb+ethetakal->Q;

erhokal->prediction=MathFns::Round(erhokal-
>phiOffset+erhokal->estimate);
erhokal->predProb=erhokal->estProb+erhokal->Q;
}

//update previous estimate
lthetakal->prevEstimate=1lthetakal->estimate;
lrhokal->prevEstimate=lrhokal->estimate;

cthetakal->prevEstimate=cthetakal->estimate;
crhokal->prevEstimate=crhokal->estimate;

rthetakal->prevEstimate=rthetakal->estimate;
rrhokal->prevEstimate=rrhokal->estimate;

if (((*trackStat)==2)| ((*trackStat)==3))

{
ethetakal->prevEstimate=ethetakal->estimate;
erhokal->prevEstimate=erhokal->estimate;
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//save kalman filter data to file
fprintf (dataOut, "\n\tKalman Filter Data after KF: Track
Status %d\n", *trackStat):;
fprintf(dataOut, "\t\tLeft Line: numlpoints:
$d\n",numlpoints);
fprintf (dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d
$f\n", lthetakal->estimate, lthetakal->prevEstimate, lthetakal=~
>prediction, lthetakal->estProb, lthetakal->predProb, lthetakal-
>H, lthetakal->K, lthetakal->phiOffset, lthetakal->Q, lthetakal-
>measurement, lthetakal->R);
fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
$f\n", lrhokal->estimate, lrhokal->prevEstimate, lrhokal-
>prediction, lrhokal->estProb, lrhokal->predProb, lrhokal->H,
lrhokal->K, lrhokal->phiOffset, lrhokal->Q, lrhokal->measurement,
lrhokal->R);
fprintf(dataOut, "\t\tCentre Line: numcpoints:
%d\n", numcpoints);
fprintf (dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %$f %d
$f\n", cthetakal->estimate, cthetakal->prevEstimate, cthetakal-
>prediction, cthetakal->estProb, cthetakal->predProb, cthetakal-
>H, cthetakal->K, cthetakal->phiOffset, cthetakal->Q, cthetakal-
>measurement, cthetakal=->R);
fprintf(dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f d
$f\n", crhokal->estimate, crhokal->prevEstimate, crhokal-
>prediction, crhokal->estProb, crhokal->predProb, crhokal->H,
crhokal->K, crhokal->phiOffset, crhokal->Q, crhokal->measurement,
crhokal->R) ;
fprintf (dataOut, "\t\tRight Line: numrpoints:
$d\n", numrpoints);
fprintf (dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d
$f\n", rthetakal->estimate, rthetakal->prevEstimate, rthetakal-
>prediction, rthetakal->estProb, rthetakal->predProb, rthetakal-
>H, rthetakal->K, rthetakal->phiOffset, rthetakal->Q, rthetakal-
>measurement, rthetakal->R);
fprintf(dataOut, "\t\t\tRho: %d %d %d $%f f %f %f %d %f %d
$f\n", rrhokal->estimate, rrhokal->prevEstimate, rrhokal-
>prediction, rrhokal->estProb, rrhokal->predProb, rrhokal->H,
rrhokal->K, rrhokal->phiOffset, rrhokal->Q, rrhokal->measurement,
rrhokal->R);
if (((*trackStat)==2) || ((*trackStat)==3))
{
fprintf (dataQut, "\t\tExtra Line: numepoints:
$d\n", numepoints) :
fprintf (dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d
$f %d %f\n", ethetakal->estimate, ethetakal->prevEstimate,
ethetakal~->prediction, ethetakal->estProb, ethetakal->predProb,
ethetakal~>H, ethetakal->K, ethetakal->phiOffset, ethetakal->Q,
ethetakal->measurement, ethetakal->R);
fprintf (dataOut, "\t\t\tRho: %d %d %d %f %f %f $f %d
%f %d %f\n", erhokal->estimate, erhokal->prevEstimate, erhokal-
>prediction, erhokal->estProb, erhokal->predProb, erhokal->H,
erhokal->K, erhokal->phiOffset, erhokal->Q, erhokal->measurement,
erhokal->R) ;
}

//*******************Apply Fuzzy Logic**********************

//if right point missing set tracking mode to 3 and set up
extra point if necessary

if ((numrpoints == 0) && (numlpoints > 0) && (numcpoints > 0)
&& ((*trackStat) !=3))
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(*trackStat)=3;
ethetakal->prediction=MathFns::Round(0.8* (lthetakal~
>prediction+lthetakal->prediction-cthetakal->prediction));
erhokal->prediction=MathFns: :Round{(0.8* (1rhokal-
>prediction+lrhokal->prediction-crhokal->prediction)):;
ethetakal->prevEstimate=MathFns::Round(0.8* (lthetakal~-
>prediction+lthetakal->prediction-cthetakal->prediction));
erhokal->prevEstimate=MathFns::Round(0.8* (1lrhokal-
>prediction+lrhokal->prediction-crhokal->prediction));
ethetakal->estimate=MathFns::Round(0.8* (lthetakal-
>prediction+lthetakal->prediction-cthetakal->prediction));
erhokal~->estimate=MathFns: :Round(0.8* (lrhokal-
>prediction+lrhokal~->prediction-crhokal->prediction)):;
ethetakal->predProb=pow(0.8* (2*sqrt (lthetakal-
>predProb) +sqrt (cthetakal->predProb)),2);
erhokal->predProb=pow (0.8* (2*sgrt (1rhokal-
>predProb) +sqrt (crhokal->predProb)),2);
ethetakal->phiOffset=0;
erhokal->phiOffset=0;
*switchCount=0;
numepoints=-1;

}

//if left point missing set tracking mode to 2 and set up
extra point if necessary
if ({(numlpoints == 0) && (numrpoints > 0) && {(numcpoints > 0)
&& ((*trackStat)!=2))
{
(*trackStat)=2;
ethetakal->prediction=MathFns::Round(0.8* (rthetakal-
>prediction+rthetakal->prediction-cthetakal->prediction));
erhokal->prediction=MathFns::Round(0.8* (rrhokal-
>prediction+rrhokal->prediction-crhokal->prediction));
ethetakal->prevEstimate=MathFns::Round(0.8* (rthetakal-
>prediction+rthetakal->prediction-cthetakal->prediction));
erhokal->prevEstimate=MathFns::Round(0.8* (rrhokal-
>prediction+rrhokal->prediction-crhokal->prediction));
ethetakal->estimate=MathFns::Round(0.8* (rthetakal-
>prediction+rthetakal->prediction-cthetakal->prediction));
erhokal->estimate=MathFns::Round(0.8* (rrhokal-
>prediction+rrhokal->prediction-crhokal->prediction));
ethetakal->predProb=pow (0.8* (2*sqrt (rthetakal-
>predProb) +sqrt (cthetakal->predProb)),2);
erhokal->predProb=pow (0.8* (2*sqrt (rrhokal-
>predProb) +sqrt (crhokal->predProb)),2);
ethetakal->phiCffset=0;
erhokal->phiOffset=0;
*switchCount=0;
numepoints=-1;
}

//adjust fuzzy value associated with switching from the
sideline
if (((*trackStat)==2)1]| ((*trackStat)==3))
{
//if the extra point is present then increment the
extra point count
if (numepoints>0)
{
(*switchCount) ++;
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count,

0))

line

}

}

//if the extra point is not present then decrement the
extra point count

if (numepoints==0)
{
(*switchCount) --;

}

//if we have all three lines decrement extra point
if -3 then set to =3;

if ((numlpoints > 0) & (numrpoints > 0) & (numcpoints >

{

(*switchCount)--;

}

//if we find an extra point 3 times in a row, we are
probably on a side line, therefore we need to switch to the centre

if(((*trackStat)==2)&&((*switchCount)>=3))

{

lthetakal->estimate=cthetakal->estimate;
lthetakal->prevEstimate=cthetakal->prevEstimate;
lthetakal->prediction=cthetakal->prediction;
lthetakal->estProb=cthetakal->estProb;
lthetakal->predProb=cthetakal->predProb;
lthetakal->H=cthetakal->H;
lthetakal->K=cthetakal=->K;
lthetakal->phiOffset=cthetakal->phiOffset;
lthetakal->Q=cthetakal->Q;
lthetakal->measurement=cthetakal->measurement;
lthetakal->R=cthetakal~>R;
lrhokal->estimate=crhokal->estimate;
lrhokal->prevEstimate=crhokal->prevEstimate;
lrhokal->prediction=crhokal~>prediction;
lrhokal->estProb=crhokal->estProb;
lrhokal->predProb=crhokal->predProb;
lrhokal->H=crhokal->H;
lrhokal->K=crhokal->K;
lrhokal->phiOffset=crhokal->phiOffset;
lrhokal->Q=crhokal->Q;
lrhokal->measurement=crhokal->measurement;
lrhokal->R=crhokal->R;

cthetakal->estimate=rthetakal->estimate;
cthetakal->prevEstimate=rthetakal->prevEstimate;
cthetakal->prediction=rthetakal->prediction;
cthetakal->estProb=rthetakal->estProb;
cthetakal->predProb=rthetakal->predProb;
cthetakal->H=rthetakal->H;
cthetakal->K=rthetakal->K;
cthetakal->phiOffset=rthetakal->phiOffset;
cthetakal->Q=rthetakal->Q;
cthetakal->measurement=rthetakal->measurement;
cthetakal->R=rthetakal->R;
crhokal->estimate=rrhokal->estimate;
crhokal->prevEstimate=rrhokal->prevEstimate;
crhokal->prediction=rrhokal->prediction;
crhokal->estProb=rrhokal->estProb;
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}

crhokal->predProb=rrhokal->predProb;
crhokal->H=rrhokal->H;
crhokal->K=rrhokal->K;
crhokal->phiOffset=rrhokal->phiOffset;
crhokal->Q=rrhokal=->Q;
crhokal~>measurement=rrhokal->measurement;
crhokal->R=rrhokal->R;

rthetakal->estimate=ethetakal->estimate;
rthetakal->prevEstimate=ethetakal->prevEstimate:;
rthetakal->prediction=ethetakal->prediction;
rthetakal->estProb=ethetakal->estProb;
rthetakal->predProb=ethetakal->predProb;
rthetakal->H=ethetakal->H;
rthetakal->K=ethetakal->K;
rthetakal->phiOffset=ethetakal->phiOffset;
rthetakal->Q=ethetakal->Q;
rthetakal->measurement=ethetakal->measurement;
rthetakal->R=ethetakal->R;
rrhokal->estimate=erhokal->estimate;
rrhokal->prevEstimate=erhokal->prevEstimate;
rrhokal->prediction=erhokal->prediction;
rrhokal->estProb=erhokal->estProb;
rrhokal->predProb=erhokal->predProb;
rrhokal->H=erhokal=->H;
rrhokal~>K=erhokal->K;
rrhokal->phiOffset=erhokal->phiOffset;
rrhokal->Q=erhokal->Q;
rrhokal->measurement=erhokal->measurement;
rrhokal->R=erhokal->R;

*trackStat=1;

if(((*trackStat)==3)&&((*switchCount)>=3})

{

rthetakal->estimate=cthetakal->estimate;
rthetakal->prevEstimate=cthetakal->prevEstimate;
rthetakal->prediction=cthetakal->prediction;
rthetakal->estProb=cthetakal->estProb;
rthetakal->predProb=cthetakal->predProb;
rthetakal->H=cthetakal->H;
rthetakal->K=cthetakal->K;
rthetakal->phiOffset=cthetakal->phiOffset;
rthetakal->Q=cthetakal=->Q;
rthetakal->measurement=cthetakal->measurement;
rthetakal->R=cthetakal->R;
rrhokal->estimate=crhokal->estimate;
rrhokal->prevEstimate=rrhokal->prevEstimate;
rrhokal->prediction=crhokal->prediction;
rrhokal->estProb=crhokal->estProb;
rrhokal->predProb=crhokal->predProb;
rrhokal->H=crhokal~>H;
rrhokal->K=crhokal->K;
rrhokal->phiOffset=crhokal->phiOffset;
rrhokal->Q=crhokal->Q;
rrhokal->measurement=crhokal->measurement;
rrhokal->R=crhokal->R;

cthetakal->estimate=1thetakal->estimate;
cthetakal->prevEstimate=lthetakal->prevEstimate;
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}

cthetakal->prediction=1lthetakal->prediction;
cthetakal->estProb=lthetakal->estProb;
cthetakal->predProb=lthetakal->predProb;
cthetakal=->H=1thetakal->H;
cthetakal->K=1lthetakal->K;
cthetakal->phiOffset=1lthetakal->phiOffset;
cthetakal->Q0=lthetakal~>Q;
cthetakal->measurement=1lthetakal->measurement;
cthetakal->R=1lthetakal->R;
crhokal->estimate=lrhokal->estimate;
crhokal->prevEstimate=lrhokal->prevEstimate;
crhokal->prediction=lrhokal->prediction;
crhokal->estProb=1lrhokal->estProb;
crhokal->predProb=1lrhokal->predProb;
crhokal=->H=1rhokal->H;
crhokal->K=1rhokal->K;
crhokal->phiOffset=1rhokal->phiOffset;
crhokal->Q=1rhokal->Q;
crhokal->measurement=lrhokal->measurement;
crhokal->R=1rhokal->R;

lthetakal~->estimate=ethetakal->estimate;
lthetakal->prevEstimate=ethetakal->prevEstimate;
lthetakal->prediction=ethetakal->prediction;
lthetakal->estProb=ethetakal->estProb;
lthetakal->predProb=ethetakal->predProb;
lthetakal->H=ethetakal->H;
lthetakal->K=ethetakal->K;
lthetakal->phiOffset=ethetakal->phiOffset;
lthetakal->Q=ethetakal->Q:;
lthetakal->measurement=ethetakal->measurement;
lthetakal->R=ethetakal->R;
lrhokal->estimate=erhokal->estimate;
lrhokal->prevEstimate=erhokal->prevEstimate;
lrhokal->prediction=erhokal->prediction;
lrhokal->estProb=erhokal->estProb;
lrhokal->predProb=erhokal->predProb;
lrhokal->H=erhokal->H;
lrhokal->K=erhokal->K;
lrhokal->phiOffset=erhokal->phiOffset;
lrhokal->Q=erhokal=->Q;
lrhokal->measurement=erhokal->measurement;
lrhokal->R=erhokal->R;

*trackStat=1;

//if we have failed to find an extra line to the side3 times
in a row then we can assume that we are tracking on the centre
line and the side line has dissappeared

if{(((*trackStat)==2)]| ((*trackStat)==3))&&((*switchCount)<=

-3))
{

}

*trackStat=1;

//if we have not found the centre line increment centre lose
count else decrement it
if (numcpoints == 0)

{

(*loseCentreCount) ++;
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else

(*loseCentreCount)--;
if ((*loseCentreCount)<0)
{
(*loseCentreCount)=0;
}
}

//if we have not found the centre line for 5 frames set to
re aquire the lines
if ((*loseCentreCount)>=5)

{
*trackStat=0;

*loseCentreCount=0;
}

//if we have only found 1 or 0 line(s) increment a count

if (((numlpoints >= 0) && (numrpoints == 0) && (numcpoints ==
0)) 1| ({numlpoints == 0) && (numrpoints >= 0) && (numcpoints ==
0))} 1] ({numlpoints == 0) && (numrpoints == 0) && ({(numcpoints >=
0)))

{
(*loseCount) ++;
}
else
{
(*loseCount) --;
if ((*loseCount)<0)
{
(*loseCount)=0;
}
}

//if we have only found 1 or 0 line(s) for 5 frames set to
re aquire the lines
if ((*loseCount)>=5)
{
*trackStat=0;
*loseCount=0;

}

//save kalman filter data to file

fprintf(dataCut, "\n\tKalman Filter Data after fuzzy rules:
Track Status %d\n", *trackStat):

fprintf(dataOut, "\t\tLeft Line: numlpoints:
%d\n", numlpoints) ;

fprintf (dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d
$f\n", lthetakal->estimate, lthetakal->prevEstimate, lthetakal-
>prediction, lthetakal->estProb, lthetakal->predProb, lthetakal-
>H, lthetakal->K, lthetakal->phiOffset, lthetakal->Q, lthetakal-
>measurement, lthetakal->R);

fprintf (dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
$f\n", lrhokal->estimate, lrhokal->prevEstimate, lrhokal-
>prediction, lrhokal->estProb, lrhokal->predProb, lrhokal->H,
lrhokal->K, lrhokal->phiOffset, lrhokal->Q, lrhokal->measurement,
lrhokal->R);

fprintf (dataOut, "\t\tCentre Line: numcpoints:
%d\n", numcpoints) ;
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fprintf (dataOut, "\t\t\tTheta: %d %d %d %f %f %f %$f 3%d %f %d
$f\n", cthetakal->estimate, cthetakal->prevEstimate, cthetakal-
>prediction, cthetakal->estProb, cthetakal->predProb, cthetakal-
>H, cthetakal->K, cthetakal->phiOffset, cthetakal->Q, cthetakal-
>measurement, cthetakal->R);

fprintf (dataOut, "\t\t\tRho: %d %d %d %f %f $f %f %d %f %d
$f\n", crhokal->estimate, crhokal->prevEstimate, crhokal-
>prediction, crhokal->estProb, crhokal->predProb, crhokal->H,
crhokal->K, crhokal->phiOffset, crhokal->Q, crhokal->measurement,
crhokal~->R);

fprintf (dataOut, "\t\tRight Line: numrpoints:
$d\n", numrpoints) ;

fprintf(dataOut, "\t\t\tTheta: %d %d %d %f %f %f %f %d %f %d
$f\n", rthetakal->estimate, rthetakal->prevEstimate, rthetakal-
>prediction, rthetakal->estProb, rthetakal->predProb, rthetakal-
>H, rthetakal~->K, rthetakal->phiOffset, rthetakal->Q, rthetakal-
>measurement, rthetakal->R);

fprintf (dataOut, "\t\t\tRho: %d %d %d %f %f %f %f %d %f %d
$f\n", rrhokal->estimate, rrhokal->prevEstimate, rrhokal-
>prediction, rrhokal->estProb, rrhokal->predProb, rrhokal->H,
rrhokal->K, rrhokal->phiOffset, rrhokal->Q, rrhokal->measurement,
rrhokal->R);

if(((*trackStat)==2) ]| ((*trackStat)==3})

{

fprintf(dataOut, "\t\tExtra Line: numepoints:
%d\n", numepoints) ;

fprintf (dataOut, "\t\t\tTheta: %d %d %d %f $f %f %f %d
%f %d $f\n", ethetakal->estimate, ethetakal->prevEstimate,
ethetakal->prediction, ethetakal->estProb, ethetakal->predProb,
ethetakal->H, ethetakal->K, ethetakal->phiOffset, ethetakal->Q,
ethetakal->measurement, ethetakal->R):

fprintf (dataQut, "\t\t\tRho: %d %d %d %f %f %f %f %d
$f %d %f\n", erhokal->estimate, erhokal->prevEstimate, erhokal-
>prediction, erhokal->estProb, erhokal->predProb, erhokal->H,
erhokal->K, erhokal->phiOffset, erhokal->Q, erhokal->measurement,
erhokal=->R) ;

}

//calculate the square sizes

1_rect_theta_size = (int)ceil(l+(6*sqgrt(lthetakal-
>predProb))):;

1 _rect_rho_size = (int)ceil (1+(6*sqrt(lrhokal->predProb)});

c_rect_theta_size = (int)ceil(1+(6*sqrt(cthetakal-
>predProb)));

c_rect_rho_size = (int)ceil(l+(6*sqrt(crhokal->predProb)));

r_rect_theta_size = (int)ceil(l+(6*sqrt(rthetakal-
>predProb))); _

r_rect_rho_size = (int)ceil(1+(6*sqrt(rrhokal->predProb)));

e_rect_theta_size = (int)ceil(1+(6*sqrt(ethetakal-
>predProb))):;
e _rect_rho_size = (int)ceil (1+(6*sqrt (erhokal->predProb)));

//calculate the half square sizes
h_l_rect_theta_size=l_rect_theta_size/2;
h_1_rect_rho_size=1_rect_rho_size/2;
h_c_rect_theta_size=c_rect_theta_size/2;
h_c_rect_rho_size=c_rect_rho_size/2;

h_r rect_theta_size=r_rect_theta_size/2;
h_r_rect_rho_size=r_rect_rho_size/2;
h_e_rect_theta_size=e_rect_theta_size/2;
h_e_rect_rho_size=e_rect_rho_size/2;
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//ensure the two outer points are at least the required
distance away from the centre point

if (lthetakal->prediction<(cthetakal->prediction+10}))

{ lthetakal->prediction=cthetakal->prediction+10;

;f (lrhokal->prediction>(crhokal~>prediction-8))

{ lrhokal->prediction=crhokal->prediction-8;

;f (rthetakal->prediction>(cthetakal->prediction-10))

{ rthetakal->prediction=cthetakal->prediction-10;

;f (rrhokal->prediction<(crhokal->prediction+8))

{ rrhokal->prediction=crhokal->prediction+8;

}

//ensure that the extra point is at least the required
distance away from the lines
if ((*trackStat)==3)
{
if (ethetakal->prediction<(lthetakal->prediction+8))
{
ethetakal->prediction=1lthetakal->prediction+8;
}
if (erhokal->prediction>(lrhokal->prediction-6))
0 v
erhokal->prediction=lrhokal->prediction-6;
}
}

if ((*trackStat)==2)

{ if (ethetakal->prediction>(rthetakal->prediction-8))
{ ethetakal->prediction=rthetakal->prediction-8;
;f (erhokal->prediction<(rrhokal->prediction+6))
{ erhokal->prediction=rrhokal->prediction+é6;

} }

//ensure that search window doesn't go outside the hough
transform

if (lthetakal->prediction>(htheta-h_l_rect_theta_size))

{ lthetakal->prediction=htheta-h_l_rect_theta_size;
if(lthetakal—>prediction<(h_l_rect_theta_size—htheta))

{ lthetakal->prediction=h_l_rect_theta_size-htheta;
;f(1rhokal—>prediction>(hrho—h_l_rect_rho_size))

{ lrhokal->prediction=hrho-~h_l_rect_rho_size;
;f(1rhoka1->prediction<(h_l_rect_rho_size-hrho))
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$d\n",
/*
Size:
Size:

Size:

{ lrhokal->prediction=h_l_rect_rho_size~hrho;
if(cthetakal->prediction>(htheta—h_c_rect_theta_size))
{ cthetakal->prediction=htheta-h_c_rect_theta_size;
;f(cthetakal->prediction<(h_c_rect_theta_size—htheta))
{ cthetakal->prediction=h_c rect_theta_size-htheta;
;f(crhoka1—>prediction>(hrho-h_c_rect_rho_size))

{ crhokal->prediction=hrho-h_c_rect_rho_size;
if(crhokal—>prediction<(h_c_rect_rho_size-hrho))

{ crhokal~>prediction=h_c_rect_rho_size-hrho;
if(rthetakal->prediction>(htheta-h_r_rect_theta_size))
{ rthetakal->prediction=htheta-h_r_rect_theta_size;
if(rthetakal—>prediction<(h_r_rect_theta_size—htheta))
{ rthetakal->prediction=h_r rect_theta_size-htheta;
if(rrhokal->prediction>(hrho—h_r_rect_rho_size))

{ rrhokal->prediction=hrho-h_r rect rho_size;
;f(rrhokal->prediction<(h_r_rect_rho_size-hrho))

{ rrhokal->prediction=h_r_rect_rho_size-hrho;
if(ethetaka1->prediction>(htheta—h_e_rect_theta_size))
{ ethetakal->prediction=htheta-h_e_rect_theta_size;
if(ethetakal->prediction<(h_e_rect_theta_size-htheta))
{ ethetakal->prediction=h_e_rect_theta_size-htheta;
if(erhokal->prediction>(hrho-h_e_rect_rhqnsize))

{ erhokal->prediction=hrho-h_e_rect_rho_size;
if(erhokal—>prediction<(h_e_rect_rho_size—hrho))

{ erhokal->prediction=h_e_ rect_rho_size-hrho;

}

//save fianl points to file

fprintf(dataOut, "\tFinal Square Centres: Track Status
*trackStat);

fprintf (dataOut, "\t\tLeft Line:\n\t\t\tTheta: %d Rho:
$d\n\n", sSquares[0], sSquares[1l], sSquares|[2]);

$d

fprintf(dataOut, "\t\tCentre Line:\n\t\t\tTheta: %d Rho:

$d\n\n", sSquares[3], sSquares[4], sSquares([5]);

%d

fprintf (dataOut, "\t\tRight Line:\n\t\t\tTheta: %d Rho: %d

$d\n\n", sSquares[6], sSquares[7], sSquares|[8]);
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if (((*trackStat)==2) || ((*trackStat)==3))
{
fprintf (dataOut, "\t\tExtra Line:\n\t\t\tTheta: %d
Rho: %d Size: %d\n",extraSquare[0], extraSquare[l],
extraSquare[2]):
y*/

fclose(dataOut) ;

return (errCode);

D.2.8 VisionThread::Grad

//****************************************************************
% %k %k

// Image Gradient Function

// Calculate the gradient at a pixel in the image

// inputs: image: the image we want the gardient of

// xpos, ypos: position in the image that we want the
gradient

// outputs: dx, dy: gradients in x and y direction

// return value: magnmitude of the gradient
//****************************************************************

* %k %k Kk

double VisionThread::Grad(ImageObject* image, int xpos, int ypos,
double* dx, double* dy)
{

double mag,xh,yv,xd,yd,d1,d2;

//calculate the gradient components

xh = (((double)image->image_data[ypos] [xpos+l]) -
((double)image->image datal[ypos] [xpos-1]))/2; //calculate the
portion of dI/dx due to horizontal

yv = (((double)image->image_datalypos+l] [xpos]) -
((double)image~>image_data[ypos-1][xpos]))/2; //calculate the
portion of dI/dy due to vertical

dl = (((double)image->image data[ypos+l] [xpos+l]) -
((double) image->image_data[ypos-1] [xpos-1]))/4;

d2 = (((double)image->image_data[ypos-1] [xpos+1]) -
((double) image->image data[ypos+l] [xpos-1]))/4;

//calculate the gradients

xd = dl1+d2;

yd = d1-d2;

*dx = (xh+xd)/2; //calculate dI/dx
*dy = (yv+yd)/2; //calculate dI/dy
mag = ((*dx)*(*dx)) + ((*dy)*(*dy)):

return (mag);

D.2.9 VisionThread::FindPoint

//****************************************************************
LE & 24
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// Find Point

// Find a point to represent a cluster of points

// inputs: trans: the hough transform that the point is to be
found in

// xbase, ybase: position of the aggregation square

// c size: size of the aggregation square

// outputs: xout, yout: the position of the representative cluster

// return value is a representative value
//****************************************************************

* k %k K
unsigned int VisionThread::FindPoint{(int* xout, int* yout,
" HoughTransform* trans, int xbase, int ybase, int c_size)
{
unsigned int value = 0;
int xsum = 0;
int ysum = 0;
int num = 0;
for(int j =
{

ybase ; j < (ybase + c_size) ; j++)

for(int i = xbase ; i < (xbase + c_size) ; it++)
{
if (trans->thres_HT data[j]{i] == 255)
{
xsum += i;
ysum += j;
num++;
value++;

}
*xout = MathFns::Round((double)xsum / (double)num);

*yout = MathFns::Round((double)ysum / (double)num);
return(value);

D.2.10VisionThread::FindPoints

//****************************************************************
* &k k

// find points in the region of a point
// inputs: trans: the hough transform to be searched for points

// thetabase, rhobase: position of the search square
// theta_size rho_size: search square size

// centre sets the centre point that thetabase and
rhobase are relative to:

// 0 = top left corner

// 1 = image centre

// mode sets whether only the position is recorded, or

whether the square of the distance from the point and the search
square centre is also recorded:

// 2 = position only
// 3 = position and distance
// note that in mode 2 outpoints must contain twice as

many elements as outnumpoints, in mode 3 there needs to be 3 times
as many elements as outnumpoints

// outputs: outpoints: the points found in the region of the
transform

// 9utnumpoints: the number of points found

(/ if there is an error accessing the HT, HTAccessError
is set to 2, otherwise it is 0
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// returns 0 if successful
// returns number of extra memory elements required if not

successful
//****************************************************************
% % 4k

int VisionThread::FindPoints(int* outpoints, int* outnumpoints,
HoughTransform* trans, int thetabase, int rhobase, int theta_size,
int rho_size, int centre, int mode, int* HTAccessError)
{

unsigned char tempElement = 0;

int num = 0;

int over = 0; :

int theta, htheta, rho, hrho, thetacentre, rhocentre;

//get HT dimensions

theta = trans->GetThetaSize():

rho = trans->GetRhoSize();

htheta = MathFns::Round((double)theta/2);
hrho = MathFns::Round((double)rho/2);

//clear HT Access error code
*HTAccessError = 0;

//if we are working releative to the image centre then
adjust the base.
if (centre == 1)
{
thetabase += htheta;
rhobase += hrho;
}

//calculate the search square centre
thetacentre = thetabase + (theta_size/2);
rhocentre = rhobase + (rho_size/2):

//for all points in the search square
for(int j = rhobase ; j < (rhobase + rho_size) ; j++)
{
for(int i = thetabase ; i < (thetabase + theta_size)

~e

it++)
{ (] (]
tempElement = trans->aggreg_HT data([j][i):
if (tempElement == 1)
{ ,
*HTAccessError = 2;
}
//if a point is found
if (tempElement == 255)
{
//record the points
if (centre == 1)
{
ocutpoints[mode*num] = i-htheta;
outpoints[mode*num+1} = j-hrho;

else
{
outpoints[mode*num] = i;
outpoints[mode*num+l] = j;
}
if (mode == 3)
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{
outpoints[mode*num+2] = ((i-
thetacentre)* (i-thetacentre) )+ ((j-rhocentre)* (j-rhocentre));
}
//if the buffer is full, record the amount
of extra space required
if (num < ((*outnumpoints)-1))
{
num++;

over++;

}
}
*outnumpoints = num;
return(over);

268



10.

11.

12,

13.

14.

15.

16.

Bibliography

Golightly, I.T. and Jones, D.1., Visual control of an unmanned aerial
vehicle for power line inspection. in Proc. IEEE Int Conf Advanced
Robotics (ICAR 2005). 2005. Seattle, USA: pp. 288-295.

Jones, D., Golightly, 1., Roberts, J., Usher, K. and Earp, G., Power line
inspection - a UAV concept. in IEE Forum on: Autonomous Systems. 20035.
London, UK.

Jones, D., Golightly, 1., Roberts, J. and Usher, K., Modeling and Control
of a Robotic Power Line Inspection Vehicle. in Proc. IEEE International
Conference on Control Applications (CCA 2006). 2006. Munich,
Germany.

Jones, D.1., Aerial Inspection of Overhead Power Lines using Video:
Estimation of Image Blurring due to Vehicle and Camera Motion. Proc.
IEE Vision, Image Signal Processing, 2000. 147(2): pp. 157-166.

Jones, D.I. and Earp, G.K., Requirements for aerial inspection of overhead
electrical power lines. in 12th International Conference on Remotely
Piloted Vehicles. 1996. Bristol: pp. Paper 4.

Jones, D.I. and Earp, G.K., Camera sightline pointing requirements for
aerial inspection of overhead power lines. Electric Power Systems
Research, 2001. §7: pp. 73-82.

Jones, D.1., Whitworth, C.C., Earp, G.K. and Duller, A.W.G., 4
Laboratory Test-Bed for an Automated Power Line Inspection System.
Control Engineering Practice, 2005. 13(7): pp. 835-851.

Golightly, I. and Jones, D., Corner detection and matching for visual
tracking during power line inspection. Image and Vision Computing,
2003. 21(9): pp. 827-840.

Whitworth, C.C., Duller, A.W.G., Jones, D.I. and Earp, G.K., derial Video
Inspection of Overhead Power Lines. Power Engineering Journal, 2001.
15(1): pp. 25-32.

Robertson, A.C., Stuart, J. and Wagner, R.A., Vertical take-off flying
platform, in U. S. Patent, 1960: U.S.A.

Sherman, D., Vidal, G., Marchica, G. and Johnson, R., University of
Central Florida: Technical report: AUVS International Aerial Robotics
Competition. in AUVSI '96 Proceedings. 1996: pp. 955-64.

Prouty, R.W., Helicopter Performance, Stability and Control. 1995,
Malabar, Florida: Krieger.

Ando, S., 4 Simple Theory on Hovering Stability of One Ducted Fan
VTOL. Transactions - Japan Society for Aeronautical and Space Sciences,
1987. 29(86): pp. 242-250.

Hamel, T. and Mahony, R., Visual Servoing of an Under-Actuated
Dynamic Rigid-Body System: An Image-Based Approach. IEEE
Transactions on Robotics and Automation, 2002. 18(2): pp. 187-198.
Mahony, R. and Hamel, T., Image-Based Visual Servo Control of Aerial
Robotic Systems Using Linear Image Features. IEEE Transactions on
Robotics and Automation, 2005. 21(2): pp. 227-239.

CAA, CAP 722: Unmanned Aerial Vehicle Operations in UK Airspace -
Guidance. TSO, 2004,

269



Bibliography

17.

18.
19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

Williams, M., Investigation of Machine Vision and Path Planning
Methods for use in an Autonomous Unmanned Air Vehicle, Ph.D. Thesis,
School of Informatics, University of Wales, Bangor, Bangor, U.K., 2000.
CAA, CAP 658: Model Aircraft: A Guide to Safe Flying. TSO, 2003.
Austin, R.G. and Earp, G., Power Line Inspection by UAV - A Business
Case. in Proc. 19th International Conference on Unmanned Air Vehicle
Systems. 2004. Bristol U.K.: pp. 14.1-14.13.

Espiau, B., Chaumette, F. and Rives, P., 4 New Approach to Visual
Servoing in Robotics. IEEE Transactions on Robotics and Automation,
1992. 8(3): pp. 313-326.

Chaumette, F., Image Moments: A General and Useful Set of Features for
Visual Servoing. IEEE Transactions on Robotics, 2004. 20(4): pp. 713-
723.

Hill, J. and Park, W.T., Real time control of a robot with mobile camera.
in Proc. 9th ISIR. 1979. Washington D.C., USA: pp. 223-246.
Hutchinson, S., Hager, G.D. and Corke, P.I., 4 Tutorial on Visual Servo
Control. IEEE Transactions on Robotics and Automation, 1996. 12(5): pp.
651-670.

Davison, A.J. and Murray, D.W., Simultaneous localization and map-
building using active vision. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2002. 24(7): pp. 865-80.

Carelli, R., Kelly, R., Nasisi, O.H., Soria, C. and Mut, V., Control based
on perspective lines of a non-holonomic mobile robot with camera-on-
board. International Journal of Control, 2006. 79(4): pp. 362-371.
Dickmanns, E.D., Expectation-based, multi-focal, saccadic (EMS) vision
Jor ground vehicle guidance. Control Engineering Practice, 2002. 10: pp.
907-915.

Dickmanns, E.D., The development of machine vision for road vehicles in
the last decade. in Proc. IEEE Intelligent Vehicle Symposium. 2003.
Piscataway, NJ, USA: pp. 268-281.

Hofmann, U., Rieder, A. and Dickmanns, E.D., Radar and vision data
Jusion for hybrid adaptive cruise control on highways. Machine Vision
and Applications, 2003. 14(1): pp. 42-49.

Kiy, K.I. and Dickmanns, E.D., 4 color vision system for real-time
analysis of road scenes. in Proc. IEEE Intelligent Vehicles Symposium.
2004. Parma, Italy: pp. 54-59.

Ollero, A. and Merino, L., Control and perception techniques for aerial
robotics. Annual Reviews in Control, 2004. 28(2): pp. 167-178.
Kontitsis, M., Valavanis, K.P. and Garcia, R., 4 simple low cost vision
system for small unmanned VTOL vehicles. in Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems. 2005: pp.
3480-3486.

Hrabar, S., Sukhatme, G.S., Corke, P., Usher, K. and Roberts, J.,
Combined optic-flow and stereo-based navigation of urban canyons for a
UAV. in Proc. IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2005: pp. 3309-3316.

Megjias, L., Saripalli, S., Campoy, P. and Sukhatme, G.S., Visual Servoing
of an Autonomous Helicopter in Urban Areas using Feature Tracking.
Journal of Field Robotics, 2006. 23(3): pp. 185-199.

270



Bibliography

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.
45.
46.
47.
48.

49.

50.

Amidi, O., Kanade, T. and Fujita, K., 4 Visual Odometer For Autonomous
Helicopter Flight. Robotics and Autonomous Systems, 1998. 28(3): pp.
185-193.

Amidi, O., Kanade, T. and Miler, R., Vision-Based Autonomous
Helicopter Research at Carnegie Mellon Robotics Institute 1991-1997. in
American Helicopter Society. 1998: pp. 1-12.

Del-Cerro, J., Aguirre, 1. and Barrientos, A., Development of a Low Cost
Autonomous Minihelicopter for Power lines Inspections. in Mobile
Robots; Telemanipulator and Telepresence Technologies. 2001. Boston,
MA: pp. 1-7.

Campoy, P., Barrientos, A., Garcia, P.J., Cerro, J. and Aguirre, 1., An
autonomous helicopter guided by computer vision for visual inspection of
overhead power cable. in Sth International Conference on Live
Maintenance. 2000. Madrid, Spain.

Mejias, L., Campoy, P., Usher, K., Roberts, J. and Corke, P., Two Seconds
to Touchdown - Vision-Based Controlled Forced Landing. in Proc.
IEEE/RSJ Conf Intelligent Robotics & Systems. 2006. Beijing, China.
Usher, K., Winstanley, G., Roberts, J., Overs, L. and Corke, P., 4AVS:
Air/Aqua Vehicle Simulator, Technical Report, CSIRO, Kenmore, QLD,
2005

Usher, K., Winstanley, G., Corke, P., Stauffacher, D. and Carnie, R., 4ir
Vehicle Simulator: an Application for a Cable Array Robot. in Proc. IEEE
Int. Conf. on Robotics and Automation (ICRA2005). 2005. Barcelona,
Spain: pp. 2241-2246.

Davison, A.J., Modelling the world in real time: how robots engineer
information. Philosophical Transactions of the Royal Society of London
Series A-Physical Sciences & Engineering, 2003. 361(1813): pp. 2875-
2890. ~

Kalman, R.E., 4 New Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME Journal of Basic Engineering, 1960.
82(Series D): pp. 35-45.

Gordon, N.J., Salmond, D.J. and Smith, A.F.M., Novel Approach to
nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings-F,
1993. 140(2): pp. 107-113.

El-Hawary, M.E., Electric Power Applications of Fuzzy Systems. 1998:
IEEE Press.

Yen, J. and Langari, R., Fuzzy Logic: Intelligence, Control and
Information. 1999: Prentice-Hall.

Brown, R.G. and Hwang, P.Y.C., Introduction to Random Signals and
Applied Kalman Filtering. 3rd Ed. ed. 1997: Wiley.

Phillips, C.L. and Harbor, R.D., Feedback Control Systems. 4th Ed. ed.
2000: Prentice-Hall.

Gonzalez, R.C. and Woods, R.E., Digital Image Processing. World
Student Series. 1993: Addison-Wesley.

Short Brothers and Harland Ltd, Cathode ray tube displays for the
transition and landing of V.T.O.L. aircraft, Short Brothers and Harland,
Castlereagh, 1961

Ryu, J., Rossetter, E.J. and Gerdes, J.C., Vehicle Sideslip and Roll
Parameter Estimation using GPS. in AVEC 2002 6th Int. Symposium on
Advanced Vehicle Control. 2002. Hiroshima, Japan.

271



Bibliography

51
52.

53.
54.
55.
56.
57.
58.
39.
60.

61.

Ogata, K., Modern Control Engineering. 3rd ed. 1997: Prentice-Hall.
Jackson, L.B., Digital Filters and Signal Processing. 2nd ed. 1989:
Kluwer.

Hough, P.V.C., Methods and Means for Recognising Complex Patterns, in

U.S. Patent No, 1962: US.A. ,
Sobel, I.LE., Camera Models and Machine Perception, Ph.D. Thesis,

Electrical Engineering Dept., Stanford University, Stanford, CA, 1970.

Haralick, R.M. and Shapiro, L.G., Computer and Robot Vision. Vol. 1.
1992: Addison-Wesley.

Canny, J., A Computational Approach to Edge Detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1986. 8(6)
The Mathworks, MATLAB Image Processing Toolbox Edge Detector:
edge.m V5.0.2, 2005

Doucet, A., de Freitas, N. and Gordon, N., Sequential Monte Carlo
Methods in Practice. 2001: Springer.

Shapiro, L.S., Affine analysis of image sequences. 1995: Cambridge
University Press.

Omidvar, O. and Elliott, D.L., Neural Systems for Control. 1997, San
Diego: Academic Press.

Jones, D.1., Whitworth, C.C. and Duller, A.W.G., Image Processing

Methods for the Visual Location of Power Line Poles. in Proc. 7th irish

Machine Vision Conference (IMVIP2003). 2003. Portrush, Northern
Ireland: pp. 177-184.

272





