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Editorial foreword

It is no longer necessary to explain the word 'mechatronics'. The world has become

accustomed to the blending of mechanics, electronics and computer control. That does

not mean that mechatronics has lost its 'art'.

The addition of vision sensing to assist in the solution of a variety of problems is

still very much a 'cutting edge' topic of research. Peter Corke has written a very clear

exposition which embraces both the theory and the practical problems encountered in

adding vision sensing to a robot arm.

There is great value in this book, both for advanced undergraduate reading and for

the researcher or designer in industry who wishes to add vision-based control.

We will one day come to expect vision sensing and control to be a regular feature

of mechatronic devices from machine tools to domestic appliances. It is research such

as this which will bring that day about.

John Billingsley

University of Southern Queensland,

Toowoomba, QLD4350

August 1996
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Author's Preface

Outline

This book is about the application of high-speed machine vision for closed-loop po-

sition control, or visual servoing, of a robot manipulator. The book aims to provide

a comprehensive coverage of all aspects of the visual servoing problem: robotics, vi-

sion, control, technology and implementation issues. While much of the discussion

is quite general the experimental work described is based on the use of a high-speed

binary vision system with a monocular 'eye-in-hand' camera.

The particular focus is on accurate high-speed motion, where in this context 'high

speed' is taken to mean approaching, or exceeding, the performance limits stated by

the robot manufacturer. In order to achieve such high-performance I argue that it is

necessary to have accurate dynamical models of the system to be controlled (the robot)

and the sensor (the camera and vision system). Despite the long history of research in

the constituent topics of robotics and computer vision, the system dynamics of closed-

loop visually guided robot systems has not been well addressed in the literature to

date.

I am a confirmed experimentalist and therefore this book has a strong theme of

experimentation. Experiments are used to build and verify models of the physical

system components such as robots, cameras and vision systems. These models are

then used for controller synthesis, and the controllers are verified experimentally and

compared with results obtained by simulation.

Finally, the book has a World Wide Web home page which serves as a virtual

appendix. It contains links to the software and models discussed within the book as

well as pointers to other useful sources of information. A video tape, showing many

of the experiments, can be ordered via the home page.

Background

My interest in the area of visual servoing dates back to 1984 when I was involved in

two research projects; video-rate feature extraction1, and sensor-based robot control.

At that time it became apparent that machine vision could be used for closed-loop

control of robot position, since the video-field rate of 50 Hz exceeded the position

setpoint rate of the Puma robot which is only 36 Hz. Around the same period Weiss

and Sanderson published a number of papers on this topic [224–226,273] in particular

concentrating on control strategies and the direct use of image features — but only

in simulation. I was interested in actually building a system based on the feature-

extractor and robot controller, but for a number of reasons this was not possible at that

time.

1This work resulted in a commercial unit — the APA-512 [261], and its successor the APA-512+ [25].

Both devices are manufactured by Atlantek Microsystems Ltd. of Adelaide, Australia.
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In the period 1988–89 I was fortunate in being able to spend 11 months at the

GRASP Laboratory, University of Pennsylvania on a CSIRO Overseas Fellowship.

There I was able to demonstrate a 60 Hz visual feedback system [65]. Whilst the

sample rate was high, the actual closed-loop bandwidth was quite low. Clearly there

was a need to more closely model the system dynamics so as to be able to achieve

better control performance. On return to Australia this became the subject of my PhD

research [52].

Nomenclature

The most commonly used symbols used in this book, and their units are listed below.

Note that some symbols are overloaded in which case their context must be used to

disambiguate them.

v a vector

vx a component of a vector

A a matrix

x̂ an estimate of x

�x error in x

xd demanded value of x

AT transpose of A

αx, αy pixel pitch pixels/mm

B viscous friction coefficient N m s rad

C camera calibration matrix (3 4)

C q q̇ manipulator centripetal and Coriolis term kg m2 s

ceil x returns n, the smallest integer such that n x

E illuminance (lux) lx

f force N

f focal length m

F f -number

F q̇ friction torque N.m

floor x returns n, the largest integer such that n x

G gear ratio

φ luminous flux (lumens) lm

φ magnetic flux (Webers) Wb

G gear ratio matrix

G q manipulator gravity loading term N.m

i current A

In n n identity matrix

j 1

J scalar inertia kg m2

x



J inertia tensor, 3 3 matrix kg m2

AJB Jacobian transforming velocities in frame A to frame B

k K constant

Ki amplifier gain (transconductance) A/V

Km motor torque constant N.m/A

K forward kinematics

K 1 inverse kinematics

L inductance H

L luminance (nit) nt

mi mass of link i kg

M q manipulator inertia matrix kg m2

Ord order of polynomial

q generalized joint coordinates

Q generalized joint torque/force

R resistance Ω
θ angle rad

θ vector of angles, generally robot joint angles rad

s Laplace transform operator

si COM of link i with respect to the link i coordinate frame m

Si first moment of link i. Si misi kg.m

σ standard deviation

t time s

T sample interval s

T lens transmission constant

Te camera exposure interval s

T homogeneous transformation
ATB homogeneous transform of point B with respect to the

frame A. If A is not given then assumed relative to world

coordinate frame 0. Note that ATB
BTA

1
.

τ torque N.m

τC Coulomb friction torque N.m

v voltage V

ω frequency rad s

x 3-D pose, x x y z rx ry rz
T comprising translation

along, and rotation about the X, Y and Z axes.

x y z Cartesian coordinates

X0, Y0 coordinates of the principal point pixels
ix iy camera image plane coordinates m
iX iY camera image plane coordinates pixels
iX camera image plane coordinates iX iX iY pixels
i �X image plane error

xi



z z-transform operator

Z Z-transform

The following conventions have also been adopted:

Time domain variables are in lower case, frequency domain in upper case.

Transfer functions will frequently be written using the notation

K a ζ ωn K
s

a
1

1

ω2
n

s2 2ζ
ωn

s 1

A free integrator is an exception, and 0 is used to represent s.

When specifying motor motion, inertia and friction parameters it is important

that a consistent reference is used, usually either the motor or the load, denoted

by the subscripts m or l respectively.

For numeric quantities the units radm and radl are used to indicate the reference

frame.

In order to clearly distinguish results that were experimentally determined from

simulated or derived results, the former will always be designated as 'measured'

in the caption and index entry.

A comprehensive glossary of terms and abbreviations is provided in Appendix

A.
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Chapter 1

Introduction

1.1 Visual servoing

Visual servoing is a rapidly maturing approach to the control of robot manipulators

that is based on visual perception of robot and workpiece location. More concretely,

visual servoing involves the use of one or more cameras and a computer vision system

to control the position of the robot' s end-effector relative to the workpiece as required

by the task.

Modern manufacturing robots can perform assembly and material handling jobs

with speed and precision, yet compared to human workers robots are at a distinct dis-

advantage in that they cannot ' see' what they are doing. In industrial applications,

considerable engineering effort is therefore expended in providing a suitable work

environment for these blind machines. This entails the design and manufacture of

specialized part feeders, jigs to hold the work in progress, and special purpose end-

effectors. The resulting high non-recurrent engineering costs are largely responsible

for robots failing to meet their initial promise of being versatile reprogrammable work-

ers [84] able to rapidly change from one task to the next.

Once the structured work environment has been created, the spatial coordinates

of all relevant points must then be taught. Ideally, teaching would be achieved using

data from CAD models of the workplace, however due to low robot accuracy manual

teaching is often required. This low accuracy is a consequence of the robot' s tool-tip

pose being inferred from measured joint angles using a model of the robot' s kine-

matics. Discrepancies between the model and the actual robot lead to tool-tip pose

errors.

Speed, or cycle time, is the critical factor in the economic justification for a robot.

Machines capable of extremely high tool-tip accelerations now exist but the overall

cycle time is dependent upon other factors such as settling time and overshoot. High

1



2 Introduction

speed and acceleration are often achieved at considerable cost since effects such as

rigid-body dynamics, link and transmission flexibility become significant. To achieve

precise end-point control using joint position sensors the robot must be engineered to

minimize these effects. The AdeptOne manipulator for instance, widely used in high-

speed electronic assembly, has massive links so as to achieve high rigidity but this is

at the expense of increased torque necessary to accelerate the links. The problems of

conventional robot manipulators may be summarized as:

1. It is necessary to provide, at considerable cost, highly structured work environ-

ments for robots.

2. The limited accuracy of a robot frequently necessitates time-consuming manual

teaching of robot positions.

3. Mechanical dynamics in the robot' s structure and drive train fundamentally con-

strain the minimum cycle time.

A visually servoed robot does not need to know a priori the coordinates of its

workpieces or other objects in its workspace. In a manufacturing environment visual

servoing could thus eliminate robot teaching and allow tasks that were not strictly

repetitive, such as assembly without precise fixturing and with incoming components

that were unoriented or perhaps swinging on overhead transfer lines.

Visual servoing also provides the potential to relax the mechanical accuracy and

stiffness requirements for robot mechanisms and hence reduce their cost. The defi-

ciencies of the mechanism would be compensated for by a vision sensor and feedback

so as to achieve the desired accuracy and endpoint setting time. Jägersand [133] for

example shows how positioning accuracy of a robot with significant backlash was im-

proved using visual servoing. Such issues are significant for ultra-fine pitch electronic

assembly [126] where planar positioning accuracy of 0.5µm and rotational accuracy

of 0.1 will be required and settling time will be significant. Moore' s Law1 provides

an economic motivation for this approach. Mechanical engineering is a mature tech-

nology and costs do not decrease with time. Sensors and control computers on the

other hand have, and will continue to, exhibit dramatic improvement in performance

to price ratio over time.

Visual servoing is also applicable to the unstructured environments that will be

encountered by field and service robots. Such robots must accomplish tasks even

though the exact location of the robot and workpiece are not known and are often not

practicably measurable. Robotic fruit picking [206], for example, requires the robot

whose location is only approximately known to grasp a fruit whose position is also

unknown and perhaps varying with time.

1Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor

chips would double approximately every 18 months.
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The use of vision with robots has a long history [291] and today vision systems

are available from major robot vendors that are highly integrated with the robot' s pro-

gramming system. Capabilities range from simple binary image processing to more

complex edge- and feature-based systems capable of handling overlapped parts [35].

The common characteristic of all these systems is that they are static, and typically im-

age processing times are of the order of 0.1 to 1 second. In such systems visual sensing

and manipulation are combined in an open-loop fashion, 'looking' then 'mo ving'.

The accuracy of the 'look-then-mo ve' approach depends directly on the accuracy

of the visual sensor and the robot manipulator. An alternative to increasing the accu-

racy of these sub-systems is to use a visual-feedback control loop which will increase

the overall accuracy of the system. Taken to the extreme, machine vision can provide

closed-loop position control for a robot end-effector — this is referred to as visual

servoing. The term visual servoing appears to have been first introduced by Hill and

Park [116] in 1979 to distinguish their approach from earlier 'blocks world' experi-

ments where the robot system alternated between picture taking and moving. Prior to

the introduction of this term, the less specific term visual feedback was generally used.

For the purposes of this book, the task in visual servoing is to use visual information to

control the pose2 of the robot' s end-effector relative to a target object or a set of target

features (the task can also be defined for mobile robots, where it becomes the control

of the vehicle's pose with respect to some landmarks). The great benefit of feedback

control is that the accuracy of the closed-loop system can be made relatively insen-

sitive to calibration errors and non-linearities in the open-loop system. However the

inevitable downside is that introducing feedback admits the possibility of closed-loop

instability and this is a major theme of this book.

The camera(s) may be stationary or held in the robot' s 'hand'. The latter case,

often referred to as the eye-in-hand configuration, results in a system capable of pro-

viding endpoint relative positioning information directly in Cartesian or task space.

This presents opportunities for greatly increasing the versatility and accuracy of ro-

botic automation tasks.

Vision has not, to date, been extensively investigated as a high-bandwidth sensor

for closed-loop control. Largely this has been because of the technological constraint

imposed by the huge rates of data output from a video camera (around 107 pixels s),

and the problems of extracting meaning from that data and rapidly altering the robot' s

path in response. A vision sensor's raw output data rate, for example, is several orders

of magnitude greater than that of a force sensor for the same sample rate. Nonetheless

there is a rapidly growing body of literature dealing with visual servoing, though dy-

namic performance or bandwidth reported to date is substantially less than could be

expected given the video sample rate. Most research seems to have concentrated on

the computer vision part of the problem, with a simple controller sufficiently detuned

to ensure stability. Effects such as tracking lag and tendency toward instability have

2Pose is the 3D position and orientation.
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Figure 1.1: General structure of hierarchical model-based robot and vision sys-

tem. The dashed line shows the 'short-circuited' information flow in a visual

servo system.

been noted almost in passing. It is exactly these issues, their fundamental causes and

methods of overcoming them, that are the principal focus of this book.

Another way of considering the difference between conventional look-then-move

and visual servo systems is depicted in Figure 1.1. The control structure is hierarchi-

cal, with higher levels corresponding to more abstract data representation and lower

bandwidth. The highest level is capable of reasoning about the task, given a model

of the environment, and a look-then-move approach is used. Firstly, the target loca-

tion and grasp sites are determined from calibrated stereo vision or laser rangefinder

images, and then a sequence of moves is planned and executed. Vision sensors have

tended to be used in this fashion because of the richness of the data they can produce

about the world, in contrast to an encoder or limit switch which is generally dealt with

at the lowest level of the hierarchy. Visual servoing can be considered as a 'lo w level'

shortcut through the hierarchy, characterized by high bandwidth but moderate image

processing (well short of full scene interpretation). In biological terms this could be

considered as reactive or reflexive behaviour.

However not all ' reactive' vision-based systems are visual servo systems. Anders-

son' s well known ping-pong playing robot [17], although fast, is based on a real-time

expert system for robot path planning using ball trajectory estimation and consider-

able domain knowledge. It is a highly optimized version of the general architecture
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shown in Figure 1.1.

1.1.1 Related disciplines

Visual servoing is the fusion of results from many elemental disciplines including

high-speed image processing, kinematics, dynamics, control theory, and real-time

computing. Visual servoing also has much in common with a number of other ac-

tive research areas such as active computer vision, [9, 26] which proposes that a set

of simple visual behaviours can accomplish tasks through action, such as control-

ling attention or gaze [51]. The fundamental tenet of active vision is not to interpret

the scene and then model it, but rather to direct attention to that part of the scene

relevant to the task at hand. If the system wishes to learn something of the world,

rather than consult a model, it should consult the world by directing the sensor. The

benefits of an active robot-mounted camera include the ability to avoid occlusion, re-

solve ambiguity and increase accuracy. Researchers in this area have built robotic

'heads' [157, 230, 270] with which to experiment with perception and gaze control

strategies. Such research is generally motivated by neuro-physiological models and

makes extensive use of nomenclature from that discipline. The scope of that research

includes visual servoing amongst a broad range of topics including 'open-loop' or

saccadic eye motion, stereo perception, vergence control and control of attention.

Literature related to structure from motion is also relevant to visual servoing.

Structure from motion attempts to infer the 3D structure and the relative motion be-

tween object and camera, from a sequence of images. In robotics however, we gen-

erally have considerable a priori knowledge of the target and the spatial relationship

between feature points is known. Aggarwal [2] provides a comprehensive review of

this active field.

1.2 Structure of the book

Visual servoing occupies a niche somewhere between computer vision and robotics

research. It draws strongly on techniques from both areas including image processing,

feature extraction, control theory, robot kinematics and dynamics. Since the scope is

necessarily broad Chapters 2–4 present those aspects of robotics, image formation

and computer vision respectively that are relevant to development of the central topic.

These chapters also develop, through analysis and experimentation, detailed models of

the robot and vision system used in the experimental work. They are the foundations

upon which the later chapters are built.

Chapter 2 presents a detailed model of the Puma 560 robot used in this work that

includes the motor, friction, current, velocity and position control loops, as well as

the more traditional rigid-body dynamics. Some conclusions are drawn regarding the
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significance of various dynamic effects, and the fundamental performance limiting

factors of this robot are identified and quantified.

Image formation is covered in Chapter 3 with topics including lighting, image

formation, perspective, CCD sensors, image distortion and noise, video formats and

image digitization. Chapter 4 discusses relevant aspects of computer vision, building

upon the previous chapter, with topics including image segmentation, feature extrac-

tion, feature accuracy, and camera calibration. The material for Chapters 3 and 4 has

been condensed from a diverse literature spanning photography, sensitometry, video

technology, sensor technology, illumination, photometry and photogrammetry.

A comprehensive review of prior work in the field of visual servoing is given in

Chapter 5. Visual servo kinematics are discussed systematically using Weiss's taxon-

omy [273] of image-based and position-based visual servoing.

Chapter 6 introduces the experimental facility and describes experiments with a

single-DOF visual feedback controller. This is used to develop and verify dynamic

models of the visual servo system. Chapter 7 then formulates the visual servoing

task as a feedback control problem and introduces performance metrics. This allows

the comparison of compensators designed using a variety of techniques such as PID,

pole-placement, Smith' s method and LQG. Feedback controllers are shown to have

a number of limitations, and feedforward control is introduced as a means of over-

coming these. Feedforward control is shown to offer markedly improved tracking

performance as well as great robustness to parameter variation.

Chapter 8 extends those control techniques and investigates visual end-point damp-

ing and 3-DOF translational manipulator control. Conclusions and suggestions for

further work are given in Chapter 9.

The appendices contain a glossary of terms and abbreviations and some additional

supporting material. In the interests of space the more detailed supporting material

has been relegated to a virtual appendix which is accessible through the World Wide

Web. Information available via the web includes many of the software tools and mod-

els described within the book, cited technical reports, links to other visual servoing

resources on the internet, and errata. Ordering details for the accompanying video

tape compilation are also available. Details on accessing this information are given in

Appendix B.



Chapter 2

Modelling the robot

This chapter introduces a number of topics in robotics that will be called upon in later

chapters. It also develops models for the particular robot used in this work — a Puma

560 with a Mark 1 controller. Despite the ubiquity of this robot detailed dynamic

models and parameters are difficult to come by. Those models that do exist are incom-

plete, expressed in different coordinate systems, and inconsistent. Much emphasis in

the literature is on rigid-body dynamics and model-based control, though the issue of

model parameters is not well covered. This work also addresses the significance of

various dynamic effects, in particular contrasting the classic rigid-body effects with

those of non-linear friction and voltage saturation. Although the Puma robot is now

quite old, and by modern standards has poor performance, this could be considered

to be an 'implementation issue'. Structurally its mechanical design (revolute struc-

ture, geared servo motor drive) and controller (nested control loops, independent axis

control) remain typical of many current industrial robots.

2.1 Manipulator kinematics

Kinematics is the study of motion without regard to the forces which cause it. Within

kinematics one studies the position, velocity and acceleration, and all higher order

derivatives of the position variables. The kinematics of manipulators involves the

study of the geometric and time based properties of the motion, and in particular how

the various links move with respect to one another and with time.

Typical robots are serial-link manipulators comprising a set of bodies, called links,

in a chain, connected by joints1. Each joint has one degree of freedom, either transla-

tional or rotational. For a manipulator with n joints numbered from 1 to n, there are

1Parallel link and serial/parallel hybrid structures are possible, though much less common in industrial

manipulators. They will not be discussed in this book.

7
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Figure 2.1: Different forms of Denavit-Hartenberg notation.

n 1 links, numbered from 0 to n. Link 0 is the base of the manipulator, generally

fixed, and link n carries the end-effector. Joint i connects links i and i 1.

A link may be considered as a rigid body defining the relationship between two

neighbouring joint axes. A link can be specified by two numbers, the link length

and link twist, which define the relative location of the two axes in space. The link

parameters for the first and last links are meaningless, but are arbitrarily chosen to be

0. Joints may be described by two parameters. The link offset is the distance from one

link to the next along the axis of the joint. The joint angle is the rotation of one link

with respect to the next about the joint axis.

To facilitate describing the location of each link we affix a coordinate frame to

it — frame i is attached to link i. Denavit and Hartenberg [109] proposed a matrix
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method of systematically assigning coordinate systems to each link of an articulated

chain. The axis of revolute joint i is aligned with zi 1. The xi 1 axis is directed along

the common normal from zi 1 to zi and for intersecting axes is parallel to zi 1 zi.

The link and joint parameters may be summarized as:

link length ai the offset distance between the zi 1 and zi axes along the

xi axis;

link twist αi the angle from the zi 1 axis to the zi axis about the xi axis;

link offset di the distance from the origin of frame i 1 to the xi axis

along the zi 1 axis;

joint angle θi the angle between the xi 1 and xi axes about the zi 1 axis.

For a revolute joint θi is the joint variable and di is constant, while for a prismatic

joint di is variable, and θi is constant. In many of the formulations that follow we use

generalized coordinates, qi, where

qi
θi for a revolute joint

di for a prismatic joint

and generalized forces

Qi
τi for a revolute joint

fi for a prismatic joint

The Denavit-Hartenberg (DH) representation results in a 4x4 homogeneous trans-

formation matrix

i 1Ai

cosθi sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1

(2.1)

representing each link' s coordinate frame with respect to the previous link' s coordinate

system; that is
0Ti

0Ti 1
i 1Ai (2.2)

where 0Ti is the homogeneous transformation describing the pose of coordinate frame

i with respect to the world coordinate system 0.

Two differing methodologies have been established for assigning coordinate frames,

each of which allows some freedom in the actual coordinate frame attachment:

1. Frame i has its origin along the axis of joint i 1, as described by Paul [199]

and Lee [96,166].
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2. Frame i has its origin along the axis of joint i, and is frequently referred to as

'modified Denavit-Hartenberg' (MDH) form [69]. This form is commonly used

in literature dealing with manipulator dynamics. The link transform matrix for

this form differs from (2.1).

Figure 2.1 shows the notational differences between the two forms. Note that ai is

always the length of link i, but is the displacement between the origins of frame i and

frame i 1 in one convention, and frame i 1 and frame i in the other2. This book

will consistently use the standard Denavit and Hartenberg methodology3.

2.1.1 Forward and inverse kinematics

For an n-axis rigid-link manipulator, the forward kinematic solution gives the coordi-

nate frame, or pose, of the last link. It is obtained by repeated application of (2.2)

0Tn
0A1

1A2
n 1An (2.3)

K q (2.4)

which is the product of the coordinate frame transform matrices for each link. The

pose of the end-effector has 6 degrees of freedom in Cartesian space, 3 in translation

and 3 in rotation, so robot manipulators commonly have 6 joints or degrees of free-

dom to allow arbitrary end-effector pose. The overall manipulator transform 0Tn is

frequently written as Tn, or T6 for a 6-axis robot. The forward kinematic solution

may be computed for any manipulator, irrespective of the number of joints or kine-

matic structure.

Of more use in manipulator path planning is the inverse kinematic solution

q K 1 T (2.5)

which gives the joint coordinates required to reach the specified end-effector posi-

tion. In general this solution is non-unique, and for some classes of manipulator no

closed-form solution exists. If the manipulator has more than 6 joints it is said to be

redundant and the solution for joint coordinates is under-determined. If no solution

can be determined for a particular manipulator pose that configuration is said to be

singular. The singularity may be due to an alignment of axes reducing the effective

degrees of freedom, or the point T being out of reach.

The manipulator Jacobian matrix, Jθ, transforms velocities in joint space to veloc-

ities of the end-effector in Cartesian space. For an n-axis manipulator the end-effector

2It is customary when tabulating the 'modified' kinematic parameters of manipulators to list ai 1 and

αi 1 rather than ai and αi.
3It may be argued that the MDH convention is more 'logical', but for historical reasons this work uses

the standard DH convention.
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Cartesian velocity is

0ẋn
0Jθq̇ (2.6)

tn ẋn
tnJθq̇ (2.7)

in base or end-effector coordinates respectively and where x is the Cartesian velocity

represented by a 6-vector [199]. For a 6-axis manipulator the Jacobian is square and

provided it is not singular can be inverted to solve for joint rates in terms of end-

effector Cartesian rates. The Jacobian will not be invertible at a kinematic singularity,

and in practice will be poorly conditioned in the vicinity of the singularity, resulting

in high joint rates. A control scheme based on Cartesian rate control

q̇ 0J 1
θ

0ẋn (2.8)

was proposed by Whitney [277] and is known as resolved rate motion control. For

two frames A and B related by ATB n o a p the Cartesian velocity in frame A may

be transformed to frame B by
Bẋ BJA

Aẋ (2.9)

where the Jacobian is given by Paul [200] as

BJA f ATB
n o a T p n p o p a T

0 n o a T (2.10)

2.1.2 Accuracy and repeatability

In industrial manipulators the position of the tool tip is inferred from the measured

joint coordinates and assumed kinematic structure of the robot

T̂6 K̂ q
meas

Errors will be introduced if the assumed kinematic structure differs from that of the ac-

tual manipulator, that is, K̂ K . Such errors may be due to manufacturing tolerances

in link length or link deformation due to load. Assumptions are also frequently made

about parallel or orthogonal axes, that is link twist angles are exactly 0 or exactly

90 , since this simplifies the link transform matrix (2.1) by introducing elements

that are either 0 or 1. In reality, due to tolerances in manufacture, these assumption

are not valid and lead to reduced robot accuracy.

Accuracy refers to the error between the measured and commanded pose of the

robot. For a robot to move to a commanded position, the inverse kinematics must be

solved for the required joint coordinates

q6 K̂ 1 T
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Joint α ai di θmin θmax

1 90 0 0 -180 180

2 0 431.8 0 -170 165

3 -90 20.3 125.4 -160 150

4 90 0 431.8 -180 180

5 -90 0 0 -10 100

6 0 0 56.25 -180 180

Table 2.1: Kinematic parameters and joint limits for the Puma 560. All angles in

degrees, lengths in mm.

While the servo system may move very accurately to the computed joint coordinates,

discrepancies between the kinematic model assumed by the controller and the actual

robot can cause significant positioning errors at the tool tip. Accuracy typically varies

over the workspace and may be improved by calibration procedures which seek to

identify the kinematic parameters for the particular robot.

Repeatability refers to the error with which a robot returns to a previously taught

or commanded point. In general repeatability is better than accuracy, and is related to

joint servo performance. However to exploit this capability points must be manually

taught by 'jogging' the robot, which is time-consuming and takes the robot out of

production.

The AdeptOne manipulator for example has a quoted repeatability of 15 µm but

an accuracy of 76 µm. The comparatively low accuracy and difficulty in exploiting re-

peatability are two of the justifications for visual servoing discussed earlier in Section

1.1.

2.1.3 Manipulator kinematic parameters

As already discussed the kinematic parameters of a robot are important in comput-

ing the forward and inverse kinematics of the manipulator. Unfortunately, as shown

in Figure 2.1, there are two conventions for describing manipulator kinematics. This

book will consistently use the standard Denavit and Hartenberg methodology, and the

particular frame assignments for the Puma 560 are as per Paul and Zhang [202]. A

schematic of the robot and the axis conventions used is shown in Figure 2.2. For zero

joint coordinates the arm is in a right-handed configuration, with the upper arm hori-

zontal along the X-axis and the lower arm vertical. The upright or READY position4 is

defined by q 0 90 90 0 0 0 . Others such as Lee [166] consider the zero-angle

pose as being left-handed.

4The Unimation VAL language defines the so called 'READY position' where the arm is fully extended

and upright.
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Figure 2.2: Details of coordinate frames used for the Puma 560 shown here in its

zero angle pose (drawing by Les Ewbank).

The non-zero link offsets and lengths for the Puma 560, which may be measured

directly, are:

distance between shoulder and elbow axes along the upper arm link, a2;

distance from the elbow axis to the center of spherical wrist joint; along the

lower arm, d4;

offset between the axes of joint 4 and the elbow, a3;
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offset between the waist and joint 4 axes, d3.

The kinematic constants for the Puma 560 are given in Table 2.1. These param-

eters are a consensus [60, 61] derived from several sources [20, 166, 202, 204, 246].

There is some variation in the link lengths and offsets reported by various authors.

Comparison of reports is complicated by the variety of different coordinate systems

used. Some variations in parameters could conceivably reflect changes to the design or

manufacture of the robot with time, while others are taken to be errors. Lee alone gives

a value for d6 which is the distance from wrist center to the surface of the mounting

flange.

The kinematic parameters of a robot are important not only for forward and inverse

kinematics as already discussed, but are also required in the calculation of manipula-

tor dynamics as discussed in the next section. The kinematic parameters enter the

dynamic equations of motion via the link transformation matrices of (2.1).

2.2 Manipulator rigid-body dynamics

Manipulator dynamics is concerned with the equations of motion, the way in which

the manipulator moves in response to torques applied by the actuators, or external

forces. The history and mathematics of the dynamics of serial-link manipulators are

well covered by Paul [199] and Hollerbach [119]. There are two problems related to

manipulator dynamics that are important to solve:

inverse dynamics in which the manipulator' s equations of motion are solved for

given motion to determine the generalized forces, discussed further in Section

2.5, and

direct dynamics in which the equations of motion are integrated to determine the

generalized coordinate response to applied generalized forces discussed further

in Section 2.2.3.

The equations of motion for an n-axis manipulator are given by

Q M q q̈ C q q̇ q̇ F q̇ G q (2.11)

where

q is the vector of generalized joint coordinates describing the pose of the

manipulator

q̇ is the vector of joint velocities;

q̈ is the vector of joint accelerations

M is the symmetric joint-space inertia matrix, or manipulator inertia tensor
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C describes Coriolis and centripetal effects — Centripetal torques are pro-

portional to q̇2
i , while the Coriolis torques are proportional to q̇iq̇ j

F describes viscous and Coulomb friction and is not generally considered

part of the rigid-body dynamics

G is the gravity loading

Q is the vector of generalized forces associated with the generalized coor-

dinates q.

The equations may be derived via a number of techniques, including Lagrangian

(energy based), Newton-Euler, d'Alembert [96, 167] or Kane's [143] method. The

earliest reported work was by Uicker [254] and Kahn [140] using the Lagrangian

approach. Due to the enormous computational cost, O n4 , of this approach it was

not possible to compute manipulator torque for real-time control. To achieve real-

time performance many approaches were suggested, including table lookup [209] and

approximation [29,203]. The most common approximation was to ignore the velocity-

dependent term C, since accurate positioning and high speed motion are exclusive

in typical robot applications. Others have used the fact that the coefficients of the

dynamic equations do not change rapidly since they are a function of joint angle, and

thus may be computed at a fraction of the rate at which the equations are evaluated

[149, 201,228].

Orin et al. [195] proposed an alternative approach based on the Newton-Euler (NE)

equations of rigid-body motion applied to each link. Armstrong [23] then showed how

recursion might be applied resulting in O n complexity. Luh et al. [177] provided a

recursive formulation of the Newton-Euler equations with linear and angular velocities

referred to link coordinate frames. They suggested a time improvement from 7 9s for

the Lagrangian formulation to 4 5ms, and thus it became practical to implement 'on-

line'. Hollerbach [120] showed how recursion could be applied to the Lagrangian

form, and reduced the computation to within a factor of 3 of the recursive NE. Silver

[234] showed the equivalence of the recursive Lagrangian and Newton-Euler forms,

and that the difference in efficiency is due to the representation of angular velocity.

“Kane's equations” [143] provide another methodology for deriving the equations

of motion for a specific manipulator. A number of 'Z' variables are introduced which,

while not necessarily of physical significance, lead to a dynamics formulation with low

computational burden. Wampler [267] discusses the computational costs of Kane's

method in some detail.

The NE and Lagrange forms can be written generally in terms of the Denavit-

Hartenberg parameters — however the specific formulations, such as Kane's, can have

lower computational cost for the specific manipulator. Whilst the recursive forms

are computationally more efficient, the non-recursive forms compute the individual

dynamic terms (M, C and G) directly.
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Method Multiplications Additions For N=6

Mul Add

Lagrangian [120] 32 1
2 n4 86 5

12n3 25n4 66 1
3n3 66,271 51,548

171 1
4 n2 53 1

3 n 129 1
2 n2 42 1

3 n

128 96

Recursive

NE [120]

150n 48 131n 48 852 738

Kane [143] 646 394

Simplified

RNE [189]

224 174

Table 2.2: Comparison of computational costs for inverse dynamics from various

sources. The last entry is achieved by symbolic simplification using the software

package ARM.

A comparison of computation costs is given in Table 2.2. There are considerable

discrepancies between sources [96, 120, 143, 166, 265] on the computational burdens

of these different approaches. Conceivable sources of discrepancy include whether

or not computation of link transform matrices is included, and whether the result is

general, or specific to a particular manipulator.

2.2.1 Recursive Newton-Euler formulation

The recursive Newton-Euler (RNE) formulation [177] computes the inverse manipu-

lator dynamics, that is, the joint torques required for a given set of joint coordinates,

velocities and accelerations. The forward recursion propagates kinematic informa-

tion — such as angular velocities, angular accelerations, linear accelerations — from

the base reference frame (inertial frame) to the end-effector. The backward recursion

propagates the forces and moments exerted on each link from the end-effector of the

manipulator to the base reference frame5. Figure 2.3 shows the variables involved in

the computation for one link.

The notation of Hollerbach [120] and Walker and Orin [265] will be used in which

the left superscript indicates the reference coordinate frame for the variable. The

notation of Luh et al. [177] and later Lee [96,166] is considerably less clear.

5It should be noted that using MDH notation with its different axis assignment conventions the Newton

Euler formulation is expressed differently [69].



2.2 Manipulator rigid-body dynamics 17

joint i−1 joint i joint i+1

link i−1

link i

T
i−1

T
iai

X i

Yi
Z i

ai−1

Z
i−1

X
i−1

Y
i−1

p*
v
i

.
vi

.ω
i

ω
i

n   f
i i

N   F
i i

v
i

.
vi

_ _
i+1 i+1

n      f

s
i

Figure 2.3: Notation used for inverse dynamics, based on standard Denavit-

Hartenberg notation.

Outward recursion, 1 i n.

If axis i 1 is rotational

i 1ωi 1
i 1Ri

iωi z0q̇
i 1

(2.12)

i 1ω̇i 1
i 1Ri

iω̇i z0q̈
i 1

iωi z0q̇
i 1

(2.13)

i 1vi 1
i 1ωi 1

i 1 p
i 1

i 1Ri
ivi (2.14)

i 1v̇i 1
i 1ω̇i 1

i 1 p
i 1

i 1ωi 1
i 1ωi 1

i 1 p
i 1

i 1Ri
iv̇i (2.15)
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If axis i 1 is translational

i 1ωi 1
i 1Ri

iωi (2.16)

i 1ω̇i 1
i 1Ri

iω̇i (2.17)

i 1vi 1
i 1Ri z0q̇

i 1

ivi
i 1ωi 1

i 1 p
i 1

(2.18)

i 1v̇i 1
i 1Ri z0q̈

i 1

iv̇i
i 1ω̇i 1

i 1 p
i 1

2 i 1ωi 1
i 1Riz0q̇

i 1

i 1ωi 1
i 1ωi 1

i 1 p
i 1

(2.19)

iv̇i
iω̇i si

iωi
iωi si

iv̇i (2.20)

iFi mi
iv̇i (2.21)

iNi Ji
iω̇i

iωi Ji
iωi (2.22)

Inward recursion, n i 1.

i f
i

iRi 1
i 1 f

i 1

iF i (2.23)

ini
iRi 1

i 1ni 1
i 1Ri

i p
i

i 1 f
i 1

ip
i

si
iF i

iN i (2.24)

Q
i

ini
T iRi 1z0 if link i 1 is rotational

i f
i

T
iRi 1z0 if link i 1 is translational

(2.25)

where

i is the link index, in the range 1 to n

Ji is the moment of inertia of link i about its COM

si is the position vector of the COM of link i with respect to frame i

ωi is the angular velocity of link i

ω̇i is the angular acceleration of link i

vi is the linear velocity of frame i

v̇i is the linear acceleration of frame i

vi is the linear velocity of the COM of link i

v̇i is the linear acceleration of the COM of link i

ni is the moment exerted on link i by link i 1
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f
i

is the force exerted on link i by link i 1

Ni is the total moment at the COM of link i

F i is the total force at the COM of link i

Q
i

is the force or torque exerted by the actuator at joint i
i 1Ri is the orthonormal rotation matrix defining frame i orientation with re-

spect to frame i 1. It is the upper 3 3 portion of the link transform

matrix given in (2.1).

i 1Ri

cosθi cosαi sinθi sinαi sin θi

sinθi cosαi cosθi sinαi cosθi

0 sinαi cosαi

(2.26)

iRi 1
i 1Ri

1 i 1Ri
T (2.27)

ip
i

is the displacement from the origin of frame i 1 to frame i with respect

to frame i.

ip
i

ai

di sinαi

di cosαi

(2.28)

It is the negative translational part of i 1Ai
1.

z0 is a unit vector in Z direction, z0 0 0 1

Note that the COM linear velocity given by equation (2.14) or (2.18) does not need

to be computed since no other expression depends upon it. Boundary conditions are

used to introduce the effect of gravity by setting the acceleration of the base link

v̇0 g (2.29)

where g is the gravity vector in the reference coordinate frame, generally acting in the

negative Z direction, downward. Base velocity is generally zero

v0 0 (2.30)

ω0 0 (2.31)

ω̇0 0 (2.32)

2.2.2 Symbolic manipulation

The RNE algorithm is straightforward to program and efficient to execute in the gen-

eral case, but considerable savings can be made for the specific manipulator case. The

general form inevitably involves many additions with zero and multiplications with 0,
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1 or -1, in the various matrix and vector operations. The zeros and ones are due to

the trigonometric terms6 in the orthonormal link transform matrices (2.1) as well as

zero-valued kinematic and inertial parameters. Symbolic simplification gathers com-

mon factors and eliminates operations with zero, reducing the run-time computational

load, at the expense of a once-only off-line symbolic computation. Symbolic manip-

ulation can also be used to gain insight into the effects and magnitudes of various

components of the equations of motion.

Early work in symbolic manipulation for manipulators was performed with spe-

cial tools generally written in Fortran or LISP such as ARM [189], DYMIR [46] and

EMDEG [40]. Later development of general purpose computer algebra tools such as

Macsyma, REDUCE and MAPLE has made this capability more widely available.

In this work a general purpose symbolic algebra package, MAPLE [47], has been

used to compute the torque expressions in symbolic form via a straightforward im-

plementation of the RNE algorithm. Compared to symbolic computation using the

Lagrangian approach, computation of the torque expressions is very efficient. These

expressions are in sum of product form, and can be extremely long. For example the

expression for the torque on the first axis of a Puma 560 is

τ1 C23 Iyz3 q̈2

sx1
2m1 q̈1

S23 Iyz3 q̇2
3

Iyy2 C2
2q̈1

C2 Iyz2 q̈2

and continues on for over 16,000 terms. Such expressions are of little value for on-line

control, but are appropriate for further symbolic manipulation to analyze and interpret

the significance of various terms. For example the symbolic elements of the M, C and

G terms can be readily extracted from the sum of product form, overcoming what is

frequently cited as an advantage of the Lagrangian formulation — that the individual

terms are computed directly.

Evaluating symbolic expressions in this simple-minded way results in a loss of

the factorization inherent in the RNE procedure. However with appropriate factoriza-

tion during symbolic expansion, a computationally efficient form for run-time torque

computation can be generated, see Section 2.6.2. MAPLE can then produce the 'C'

language code corresponding to the torque expressions, for example, automatically

generating code for computed-torque control of a specific manipulator. MAPLE is

also capable of generating LATEX style equations for inclusion in documents.

6Common manipulators have link twists of 0 , 90 or 90 leading to zero or unity trigonometric

results.
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As discussed previously, the dynamic equations are extremely complex, and thus

difficult to verify, but a number of checks have been made. The equations of motion of

a simple two-link example in Fu et al. [96] was computed and agreed with the results

given. For the Puma 560 this is prohibitive, but some simple checks can still be per-

formed. The gravity term is readily extracted and is simple enough to verify manually.

The manipulator inertia matrix is positive definite and its symmetry can be verified

symbolically. A colleague [213] independently implemented the dynamic equations

in MAPLE, using the Lagrangian approach. MAPLE was then used to compute the

difference between the two sets of torque expressions, which after simplification was

found to be zero.

2.2.3 Forward dynamics

Equation (2.11) may be used to compute the so-called inverse dynamics, that is, ac-

tuator torque as a function of manipulator state and is useful for on-line control. For

simulation the direct, integral or forward dynamic formulation is required giving joint

motion in terms of input torques.

Walker and Orin [265] describe several methods for computing the forward dy-

namics, and all make use of an existing inverse dynamics solution. Using the RNE

algorithm for inverse dynamics, the computational complexity of the forward dynam-

ics using 'Method 1' is O n3 for an n-axis manipulator. Their other methods are

increasingly more sophisticated but reduce the computational cost, though still O n3 .

Featherstone [89] has described the 'articulated-body method' for O n computation

of forward dynamics, however for n 9 it is more expensive than the approach of

Walker and Orin. Another O n approach for forward dynamics has been described

by Lathrop [160].

2.2.4 Rigid-body inertial parameters

Accurate model-based dynamic control of a manipulator requires knowledge of the

rigid-body inertial parameters. Each link has ten independent inertial parameters:

link mass, mi;

three first moments, which may be expressed as the COM location, si, with

respect to some datum on the link or as a moment Si misi;

six second moments, which represent the inertia of the link about a given axis,

typically through the COM. The second moments may be expressed in matrix

or tensor form as

J

Jxx Jxy Jxz

Jxy Jyy Jyz

Jxz Jyz Jzz

(2.33)
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Parameter Value

m1 13.0

m2 17.4

m3 4.80

m4 0.82

m5 0.35

m6 0.09

Table 2.3: Link mass data (kg).

where the diagonal elements are the moments of inertia, and the off-diagonals

are products of inertia. Only six of these nine elements are unique: three mo-

ments and three products of inertia.

For any point in a rigid-body there is one set of axes known as the principal axes

of inertia for which the off-diagonal terms, or products, are zero. These axes

are given by the eigenvectors of the inertia matrix (2.33) and the eigenvalues are

the principal moments of inertia. Frequently the products of inertia of the robot

links are zero due to symmetry.

A 6-axis manipulator rigid-body dynamic model thus entails 60 inertial parame-

ters. There may be additional parameters per joint due to friction and motor arma-

ture inertia. Clearly, establishing numeric values for this number of parameters is

a difficult task. Many parameters cannot be measured without dismantling the robot

and performing careful experiments, though this approach was used by Armstrong et

al. [20]. Most parameters could be derived from CAD models of the robots, but this

information is often considered proprietary and not made available to researchers. The

robot used in this work, the Puma 560, was designed in the late 1970' s and probably

predates widespread CAD usage. There is also a considerable literature regarding esti-

mation of inertial parameters from online measurement of manipulator state and joint

torques [130].

Tarn and Bejczy [245, 247], Armstrong [22] and Leahy [161, 165, 257] have all

reported successful model-based control of the Puma 560, yet there is significant dif-

ference in the parameter sets used. This may in fact indicate that the rigid-body effects

do not dominate the dynamics of this robot, or that “some feedforward is better than

no feedforward”. This issue will be revisited in Section 2.4. Comparisons of the

published model data are complicated by the different coordinate frames, kinematic

conventions and measurement units used in the original reports. The first step is to

convert all reported data to a common set of units and coordinate frames, and these

data are reported and compared in [60, 61]. Some data sets are to be preferred to

others due to the methodologies used to obtain them. The remainder of this section

comprises an abbreviated report of that comparison work and tabulates the preferred
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Parameter Value

sx1
-

sy1
-

sz1
-

sx2
-363.8

sy2
6

sz2
77.4

sx3
0

sy3
-14

sz3
70

sx4
0

sy4
-19

sz4
0

sx5
0

sy5
0

sz5
0

sx6
0

sy6
0

sz6
32

Table 2.4: Link COM position with respect to link frame (mm).

inertial parameter values.

Link mass data for joints 2-6 given in Table 2.3 are based on the results of Arm-

strong et al. [20] who actually disassembled the robot and weighed the links. The often

cited data of Tarn et al. [246] is based on estimated mass from models, dimensional

data and assumed mass distribution and densities, which is likely to be less accurate.

A similar approach appears to have been taken by Paul et al. [204]. Armstrong how-

ever does not give a value for m1, so Tarn's value is presented in the table. It can be

shown however that the parameter m1 does not appear in the equations of motion —

it is not a base parameter [148, 153].

Link center of gravity data given in Table 2.4 is again based on Armstrong et al.

who measured the COM of the disassembled links on a knife-edge. Tarn et al.' s data

is again an estimate based on models of the arm structure.

It is difficult to meaningfully compare these data sets, and contrast them with those

for the robot used in this work. The approach proposed here is to compare the gravity

loading terms for joints 2 and 3 — those links for which gravity load is significant.

A small number of gravity load coefficients encapsulate a larger number of mass and

COM parameters. The gravity loadings are readily generated from the symbolic torque
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Parameter Armstrong Tarn RCCL

g1 -0.896 -0.977 -0.928 (CP30/g)

g2 0.116 0.235 0.0254 (CP21/g)

g3 0 -0.00980

g4 0 0

g5 -2.88e-3 0.34e-3 -2.88e-3 (CP50/g)

g6 0 0

g7 -0.104 -0.112 0.104 (CP22/g)

g8 3.80 5.32 -3.79 (CP20/g)

Table 2.5: Comparison of gravity coefficients (N.m) from several sources.

equations established earlier, and are given by

τg3

g
m6 m5 m4 D4 sz3m3 m4sy4 S23

m3 m4 m5 m6 A3 m3sx3 C23

sz4m4 sy5m5 sy6 m6C6 C23S4

S23S5sy6 m6S6

sz6m6 sz5m5 C23S5 C4 S23C5

S6 sy6 m6C23C4C5
τg2

g
m2sx2 m2 m3 m4 m5 m6 A2 C2

sy2m2S2
τg3

g
(2.34)

where Ai and Di are kinematic constants, Ci cosθi and Si sinθi. These may be

written more succinctly in terms of a number of coefficients which are functions of

link mass, center of gravity and some kinematic length parameters;

τg3

g
g1S23 g2C23 g3C23S4 g4S23S5S6

g5 S5C4C23 S23C5 g6C5C4C23S6 (2.35)
τg2

g
g7S2 g8C2

τg3

g
(2.36)

These coefficients are evaluated and compared in Table 2.5 along with those used

by the RCCL robot control package [115, 175]. There is close agreement between

the magnitudes of the coefficients from Armstrong and those used in RCCL. Different

kinematic conventions used by RCCL, or the sign of the gear ratios, may explain

the difference in sign for the joint 2 coefficients g7 and g8. The RCCL values were
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Figure 2.4: Measured and estimated gravity load on joint 2, τg2
θ2 , for θ3

π 2. Torque measurements (shown dotted) are derived from measured motor

current and corrected to eliminate the effect of Coulomb friction. Also shown is

the estimated gravity load based on maximum likelihood fit (dot dash), parameter

values of Armstrong (solid) and Tarn (dashed).

determined using an experimental procedure similar to that described by Lloyd [175]

for a Puma 2607.

Figure 2.4 shows the joint 2 torque due to gravity, versus changing shoulder joint

angle. The shoulder joint was moved forward and backward over the angular range

at very low speed to eliminate any torque component due to viscous friction. Joint

torque is derived from measured motor current using motor torque constants from Ta-

ble 2.14. The Coulomb friction effect is very pronounced, and introduces significant

hysteresis in the torque versus angle plot. The torque in Figure 2.4 has been cor-

rected for Coulomb friction using the identified friction parameters from Table 2.12,

but some hysteresis remains at q2 π. It is speculated that this is due to position-

dependent Coulomb friction effects outside the range of joint angles over which the

friction estimation experiments were conducted.

A maximum likelihood fit to the experimental data is also shown in the figure. It

can be seen that the estimated torque using Armstrong' s data is slightly lower than

7John Lloyd, private communication.
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Parameter β (N.m) φ (rad)

Armstrong 46.1 2.6e-3

Tarn 61.8 19.5e-3

Max.Likelihood 52.9 -10.8e-3

Table 2.6: Comparison of shoulder gravity load models in cosine form.

Parameter Value

Jxx1
-

Jyy1
0.35†

Jzz1
-

Jxx2
0.130

Jyy2
0.524

Jzz2
0.539

Jxx3
0.066

Jyy3
0.0125

Jzz3
0.086

Jxx4
1.8e-3

Jyy4
1.8e-3

Jzz4
1.3e-3

Jxx5
0.30e-3

Jyy5
0.30e-3

Jzz5
0.40e-3

Jxx6
0.15e-3

Jyy6
0.15e-3

Jzz6
0.04e-3

Table 2.7: Link inertia about the COM (kg m2). -This value, due to Armstrong,

is in fact the inertia about the link frame Jyy1
m1 s2

x1
s2

z1
not about the COM.

that measured, while that based on Tarn's data is somewhat higher. The gravity load

may be written in the form

τg2
βcos θ2 φ (2.37)

where β is the magnitude and φ the phase. The coefficients for the various forms

are compared in Table 2.6, and in terms of magnitude the maximum likelihood fit is

bracketed by the models of Tarn and Armstrong, as is also evident from Figure 2.4.

Despite the previous objections to the methodology of Tarn et al. their data gives a fit

for the gravity load of joint 2 that is as good as that of Armstrong.

Link inertia about the center of gravity is given in Table 2.7, based largely on Arm-

strong. Armstrong' s data for links 1 to 3 was determined experimentally, while that for
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the wrist links was estimated. However Armstrong' s value of Jyy1
8 is in fact the inertia

measured about the link frame, Jyy1
Jyy1

m1 s2
x1

s2
z1

, not the COM as indicated

in [20], since the two inertial components cannot be separated by measurements at the

link9.

2.2.5 Transmission and gearing

For a G:1 reduction drive the torque at the link is G times the torque at the motor. The

inertia of the motor at the link is amplified by G2, as is the viscous friction coefficient.

For rotary joints the quantities measured at the link, subscript l, are related to the

motor referenced quantities, subscript m, as shown in Table 2.8. The manipulator gear

ratios10 given in Table 2.9 are derived from several sources [20,190,262].

The design of the robot' s wrist is such that there is considerable coupling between

the axes, that is, rotation of one motor results in the rotation of several wrist links. The

relationship between link and motor angles is clearly expressed in matrix form

θm Gθl θl G 1θm (2.38)

where

G

G1 0 0 0 0 0

0 G2 0 0 0 0

0 0 G3 0 0 0

0 0 0 G4 0 0

0 0 0 G45 G5 G5 0

0 0 0 G46 G6 G56 G6 G6

(2.39)

G 1

1
G1

0 0 0 0 0

0 1
G2

0 0 0 0

0 0 1
G3

0 0 0

0 0 0 1
G4

0 0

0 0 0 G45
G4

1
G5

0

0 0 0 G46 G56 G45
G4

G56
G5

1
G6

(2.40)

The cross-coupling ratios have been determined from examination of the engineering

drawings and correspond with the numerical values given by [262]. These have also

been verified experimentally.

8Jzz1 in the source paper, due to different coordinate conventions used.
9B. Armstrong, private communication.

10The sign of the ratio is due to the convention for direction of rotation of the motor (defined by the

digital position-loop encoder counter, see Section 2.3.6), and the convention for direction of link rotation

which is defined by the kinematic model. Negative motor current results in positive motor torque.
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Jl G2Jm

Bl G2Bm

τCl
GτCm

τl Gτm

θ̇l θ̇m G

θ̈l θ̈m G

Table 2.8: Relationship between load and motor referenced quantities for gear ratio G.

Joint Gear ratio

G1 -62.6111

G2 107.815

G3 -53.7063

G4 76.03636

G5 71.923

G6 76.686

G45 1 G5

G46 1 G6

G56 13 72

Table 2.9: Puma 560 gear ratios.

2.2.6 Quantifying rigid body effects

The numeric values of the inertial parameters obtained above may be substituted into

the equations of motion. With some manipulation this allows the various dynamic

effects to be quantified and the bounds due to change in configuration established. For

instance Figures 2.5, 2.6 and 2.7 show respectively the inertia at joint 1 and 2 and the

gravity load at joint 2, all plotted as functions of manipulator configuration.

There are two components of inertia ' seen' by the motor. One is due to the rotating

armature, and the other due to the rigid-body dynamics of the link reflected through

the gear system. The total inertia sets the upper bound on acceleration, and also affects

the dynamics of the axis control loop. It is insightful to plot total inertia normalized

with respect to the armature inertia, Jm, since this clearly shows the inertia compared

with the unloaded (η 1) case. The normalized inertia is defined to be

ηii q 1
Mii q

G2
i Jmi

(2.41)

where M is the manipulator inertia matrix from (2.11), and Jmi and Gi are the motor

armature inertia and the reduction gear ratio respectively for joint i. The normalized
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inertial coupling is defined to be

ηi j q
Mi j q

G2
i Jmi

(2.42)

The normalized diagonal and off-diagonal inertia elements for Puma joints 1 and 2 are

shown in Figures 2.5 and 2.6 as a function of configuration. The off-diagonal terms

are relatively small in magnitude compared to the diagonal values. The rigid-body

dynamic equations from Section 2.2 can be used to compute the minima and maxima

of the normalized inertias, and these are summarized in Table 2.10. The variation is

most pronounced for the waist and shoulder joints. Gravity load, plotted in Figure 2.7

for joint 2, shows that gravity torque is significant compared to the torque limit of the

actuator. The relative significance of various dynamic terms is examined further in

Section 2.4.

2.2.7 Robot payload

The inertia of the load, in this work a camera, has been computed from mass and

dimensional data assuming uniform mass distribution within each of the camera body

and lens. The results are tabulated in Table 2.11. The camera inertia when referred to
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Quantity Minimum Maximum Max/Min

η11 2.91 6.35 2.2

η12 -0.75 0.75 -

η22 2.57 3.24 1.3

η33 1.63 -

η44 1.01 -

η55 1.01 -

η66 1.00 -

Table 2.10: Minimum and maximum values of normalized inertia, based on pre-

ferred armature inertia data from Table 2.13.

Component Value

mlens 0 270 kg

mcam 0 155 kg

Izz 1 0 10 3 kg m2

Ixx 6 2 10 3 kg m2

I1 0 417 kg m2

η5 0 034

η6 0 005

η1 0 532

Table 2.11: Mass and inertia of end-mounted camera. Inertia Ixx and Izz are com-

puted with respect to the center of the robot wrist, see Figure 4.11. I1 is camera

inertia with respect to the joint 1 axis at maximum arm extension. ηi is the nor-

malized camera inertia with respect to joint i, that is, Icam G2
i Jmi

.

the wrist motors and normalized is insignificant. However the inertia contribution to

joint 1 when the arm is fully extended, I1, is significant.

2.3 Electro-mechanical dynamics

This section provides details about the dynamic effects due to the robot' s control elec-

tronics, actuators and mechanical transmission. These effects are at least as significant

as the rigid-body effects just reviewed though they are less well covered in the litera-

ture, perhaps due to the robot specific nature of these effects.
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Figure 2.8: Typical friction versus speed characteristic. The dashed lines depict

a simple piecewise-linear friction model characterized by slope (viscous friction)

and intercept (Coulomb friction).

2.3.1 Friction

Dynamic effects due to the transmission or drive system are significant, particularly

as the drive train becomes more complex. The addition of gears to amplify motor

torque leads to increased viscous friction and non-linear effects such as backlash and

Coulomb friction.

For a geared manipulator, such as the Puma, friction is a dominant dynamic char-

acteristic. A typical friction torque versus speed characteristic is shown in Figure 2.8.

The dashed line represents the simple friction model

τ f Bθ̇ τc (2.43)

where slope represents viscous friction, and offset represents Coulomb friction. The

latter is frequently modelled by the non-linear function

τc

0 if q̇ 0

τc if q̇ 0

τc if q̇ 0

(2.44)

and in general τc τc . Static friction, or stiction, is the torque that is necessary to

bring a stationary joint into motion, and can be considerably greater than the Coulomb
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friction value. The more complex model, represented by the solid line, is significant

only for very low velocities [22]. The negative slope can be attributed to the Stribeck

effect due to mixed lubrication — the load is partially, but increasingly, lifted by

lubricant, resulting in decreasing friction. This negative slope characteristic can result

in instability with simple PID joint control schemes at low velocity. When the contact

is fully lubricated viscous friction is evident.

The friction parameters discussed represent total lumped friction due to motor

brushes, bearings and transmission. They are dependent upon many factors including

temperature, state of lubrication, and to a small extent shaft angle. Armstrong [21,

22] provides detailed investigations of the low speed and angular dependence of joint

friction for a Puma 560 manipulator.

Classic techniques for determining friction are based on the simple piecewise-

linear friction model of (2.43). A joint is moved at constant velocity and the average

torque (typically determined from motor current) is measured. This is repeated for a

range of velocities, both positive and negative, from which the slope (viscous friction

coefficient) and intercepts (Coulomb friction torques) can be determined. Measure-

ment of joint friction characteristics using this approach have been previously reported

for a Puma 260 [175] and a Puma 560 [173].

The friction values for the robot used in this work have been determined exper-

imentally and are summarized in Table 2.12. Coulomb friction and viscous friction

were determined by measuring average joint current for various joint speeds over a

short angular range about the vertical 'READY' position. This was done to eliminate

the torque component due to gravity which would otherwise influence the experiment.

A typical plot of current versus velocity is shown in Figure 2.9. Given knowledge of

the motor torque constant from Table 2.14, viscous and Coulomb friction values may

be determined from the slope and intercept respectively. A robot 'work out' program

was run prior to the measurements being taken, so as to bring joints and lubricant up

to ' typical' working temperature. There is no evidence of the negative slope on the

friction curve at the velocities used here. The lowest velocity in each test was 5 /s at

the link, which is approximately 5% and 2% of the peak velocities for the base and

wrist joints respectively.

From Table 2.12 it is clear that some friction parameters show considerable de-

pendence on the direction of rotation. Statistical analysis of the mean and variance

of the sample points [266] for positive and negative velocity for each joint indicate

that at the 95% confidence level the friction values are not equal, apart from viscous

friction values for joints 1 and 6. Armstrong [22] showed statistically that Coulomb

and viscous friction had separate values for positive and negative velocities. For linear

system design and simulation the mean viscous friction value will be used.

Stiction, τs, was measured by increasing the joint current until joint motion oc-

curred11. For those joints subject to gravity load the robot was positioned so as to

11Taken as increasing encoder value for 5 consecutive sample intervals.
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velocity for joint 2. Experimental points and lines of best fit are shown.

Joint τs τC B τs τC B B

1 0.569 0.435 1.46e-3 -0.588 -0.395 -1.49e-3 1.48e-3

2 0.141 0.126 0.928e-3 -95.1e-3 -70.9e-3 -0.705e-3 0.817e-3

3 0.164 0.105 1.78e-3 -0.158 -0.132 -0.972e-3 1.38e-3

4 14.7e-3 11.2e-3 64.4e-6 -21.8e-3 -16.9e-3 -77.9e-6 71.2e-6

5 5.72e-3 9.26e-3 93.4e-6 -13.1e-3 -14.5e-3 -71.8e-6 82.6e-6

6 5.44e-3 3.96e-3 40.3e-6 -9.21e-3 -10.5e-3 -33.1e-6 36.7e-6

Table 2.12: Measured friction parameters — motor referenced (N.m and

N.m.s/rad). Positive and negative joint velocity are indicated by the superscripts.

The column B is the mean of B and B .

eliminate gravity torque. The average stiction over 20 trials was taken. The standard

deviation was very high for joint 1, around 16% of the mean, compared to 5% of the

mean for the wrist joints.
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2.3.2 Motor

The Puma robot uses two different sizes of motor — one for the base axes (joints 1-3)

and another for the wrist axes (joints 4-6). Data on these motors is difficult to find,

and the motors themselves are unlabelled. There is speculation about the manufacturer

and model in [12], and it is strongly rumoured that the motors are ' specials' manufac-

tured by Electrocraft for Unimation. It is conceivable that different types of motor

have been used by Unimation over the years. Tarn and Bejczy et al. [245, 247] have

published several papers on manipulator control based on the full dynamic model, and

cite sources of motor parameter data as Tarn et al. [246] and Goor [102]. The former

has no attribution for motor parameter data quoted, while the latter quotes “manufac-

turer' s specifications” for the base motors only. The source of Tarn's data for the wrist

motors [247] is not given. Kawasaki manufacture the Puma 560 under licence, and

data on the motors used in that machine was provided by the local distributor. Those

motors are Tamagawa TN3053N for the base, and TN3052N for the wrist. However

some of these parameters appear different to those quoted by Tarn and Goor.

A complete block diagram of the motor system dynamics is shown in Figure 2.10

and assumes a rigid transmission. The motor torque constant, Km, is a gain that relates

motor current to armature torque

τm Kmim (2.45)

and is followed by a first-order stage representing the armature dynamics

Ωm
τ

Je f f s B
(2.46)

where Ωm is motor velocity, Je f f the effective inertia due to the armature and link, and

B the viscous friction due to motor and transmission. The so-called mechanical pole

is given by

pm
B

Je f f

(2.47)

Coulomb friction, τc, described by (2.44), is a non-linear function of velocity that

opposes the armature torque. The friction and inertia parameters are lumped values

representing the motor itself and the transmission mechanism. Finally, there is a re-

duction gear to drive the manipulator link.

An equivalent circuit for the servo motor is given in Figure 2.11. This shows motor

impedance comprising resistance, Rm, due to the armature winding and brushes, and

inductance, Lm, due to the armature winding. Rs is the shunt resistor which provides

the current feedback signal to the current loop. The electrical dynamics are embodied

in the relationship for motor terminal voltage

Vm sKmΘ sLmIm Rs Rm Im Ec (2.48)
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Figure 2.11: Schematic of motor electrical model.

which has components due to back EMF, inductance, resistance and contact potential

difference respectively. The latter is a small constant voltage drop, typically around 1

to 1.5V [146], which will be ignored here. The so-called electrical pole is given by

pe
Rm

Lm
(2.49)

2.3.2.1 Inertia

As mentioned earlier there are two components of inertia ' seen' by the motor. One is

due to the the rigid-body link dynamics ' reflected' through the gear system, and the
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Parameter Armstrong Tarn Kawasaki Preferred

Jm1 291e-6 198-6 200e-6 200e-6

Jm2 409e-6 203e-6 200e-6 200e-6

Jm3 299e-6 202e-6 200e-6 200e-6

Jm4 35e-6 18.3e-6 20e-6 33e-6

Jm5 35e-6 18.3e-6 20e-6 33e-6

Jm6 33e-6 18.3e-6 20e-6 33e-6

Table 2.13: Comparison of motor inertia values from several sources — motor

referenced (kg m2).

other due to the rotating armature. The total inertia sets the upper bound on accelera-

tion, and also affects the location of the mechanical pole by (2.47).

Several sources of armature inertia data are compared in Table 2.13. Armstrong' s

[20] values (load referenced and including transmission inertia) were divided by G2
i ,

from Table 2.9, to give the values tabulated. These estimates are based on total inertia

measured at the joint with estimated link inertia subtracted, and are subject to greatest

error where link inertia is high. From knowledge of motor similarity the value for mo-

tor 2 seems anomalous. Values given by Tarn [246] are based on an unknown source

of data for armature inertia, but also include an estimate for the inertia of the shafts

and gears of the transmission system for the base axes. These inertia contributions are

generally less than 2% of the total and could practically be ignored. The very different

estimates of armature inertia given in the literature may reflect different models of mo-

tor used in the robots concerned. The preferred values for the base axes are based on

a consensus of manufacturer values rather than Armstrong, due to the clearly anoma-

lous value of one of his base motor inertia estimates. Inertia of the drive shaft, flexible

coupling and gear will be more significant for the wrist axes. Frequency response

measurements in Section 2.3.4 are consistent with the higher values of Armstrong and

therefore these are taken as the preferred values.

Change in link inertia with configuration, as shown in Figure 2.5, has a significant

effect on the dynamics of the axis control loop. The mechanical pole of the motor and

link is

pm
Bm

η q Jm
(2.50)

The variation of the mechanical pole, due to configuration change, represents a sig-

nificant challenge for control design if it is to achieve stability and performance over

the entire workspace. It is clear from (2.41) that without gearing this effect would be

far more significant, making independent joint control generally infeasible for direct-

drive robots.
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Parameter Armstrong Paul [204] CSIRO Preferred

Load test Back EMF

Km1
0.189 0.255 0.223 0.227 0.227

Km2
0.219 0.220 0.226 0.228 0.228

Km3
0.202 0.239 0.240 0.238 0.238

Km4
0.075 0.078 0.069 0.0675 0.0675

Km5
0.066 0.070 0.072 0.0718 0.0718

Km6
0.066 0.079 0.066 0.0534 0.0534

Table 2.14: Measured motor torque constants - motor referenced (N.m/A).

2.3.2.2 Torque constant

For a permanent magnet DC motor the torque and back EMF are given by [146]

τ
Z

2π
φ im Kmim (2.51)

Eb

Z

2π
φθ̇ Kmθ̇ (2.52)

where φ is the magnetic flux due to the field, Z the number of armature windings, and

θ the motor shaft angle. If a consistent set of units is used, such as SI, then the torque

constant in N.m/A and back-EMF constant in V.s/rad will have the same numerical

value.

Armature reaction is the weakening of the flux density of the permanent magnet

field, by the MMF (magneto-motive force measured in Amp�ere-turns) due to armature

current. This could potentially cause the torque constant to decrease as armature cur-

rent is increased. However according to Kenjo [146] the flux density increases at one

end of the pole and decreases at the other, maintaining the average flux density. Should

the flux density become too low at one end of the pole, permanent de-magnetization

can occur. A frequent cause of de-magnetization is over-current at starting or dur-

ing deceleration. A reduction of flux density leads to reduction of torque constant by

(2.51).

Table 2.14 compares measurements of torque constants of the robot used in this

work, with those obtained by other researchers for other Puma 560 robots. The values

in the column headed 'CSIRO load test' were obtained by a colleague using the com-

mon technique of applying known loads to robot joints in position control mode and

measuring the current required to resist that load. Values in the column headed 'Arm-

strong' were computed from the maximum torque and current data in [20]. Tarn [245]

gives the torque constant for the base axis motors as 0.259 N m A (apparently from

the manufacturer's specification). The Kawasaki data indicate torque constants of

0.253 and 0.095 N m A for base and wrist motors respectively.
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Figure 2.12: Measured joint angle and voltage data from open-circuit test on joint 2.

Considerable variation is seen in Table 2.14, but all values for the base motor

are less than Tarn's value. This may be due to loss of motor magnetization [60] in

the robots investigated, compared to the “as new” condition of the servo motors12.

Another source of error is the measurement procedure itself — since the joint is not

moving, the load torque is resisted by both the motor and the stiction mechanism.

Lloyd [175] used an elaborate procedure based on the work involved in raising and

lowering a mass so as to cancel out the effects of friction.

In this work a different approach is used, based on the equivalence of the motor

torque constant and the back EMF constant from (2.51) and (2.52). This technique is

well known for bench testing of motors and involves driving the motor, as a generator,

at constant speed with another motor — however for a motor fitted to a robot this is

not practical. A novel approach using a system identification technique allows this

test to be applied in situ where the motors are back-driven as the links are manipulated

manually. At open-circuit, that is im 0, the motor terminal voltage from (2.48) is

equal to the back EMF

vm Kmθ̇ (2.53)

The experimental procedure is simpler and less time consuming than the conven-

12Field magnetization decreases with time, and current overload or abrupt power shut-down events.
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tional load-test approach. The motor is disconnected from the power amplifier13 and

a time history of terminal voltage and motor shaft angle or velocity is recorded, see

Figure 2.12, as the joint is moved around by hand. The problem is transformed into

one of establishing the relationship between back EMF and motor shaft speed, which

is immune to the effects of static friction.

If the motor contains a tachometer then solution of (2.53) is straightforward, but

requires accurate knowledge of the tachometer gain. In the more common situation

where the robot motor does not incorporate a tachometer, velocity must be estimated

from the derivative of measured joint angle. Using a 2-point derivative approxima-

tion14 equation (2.53) can be written in ARX form as

Vm

Km

T
1 z 1 Θ (2.54)

to facilitate parameter identification. In this work MATLAB and the System Identifi-

cation Toolbox [174] function arx() were used to fit a model of the form

Vm b1 z 1b2 Θ (2.55)

to the measured data using a batch least-squares procedure. The magnitude of the

estimated coefficients b̂1 and b̂2, ideally the same from (2.54), agreed to within 0 3%.

From these identified coefficients the torque constant is taken as being

Km

T b̂1 b̂2

2
(2.56)

The results of this experimental procedure are summarized in the rightmost col-

umn of Table 2.14, and the results from this method agree with the load-test method

on the same robot to within 2%. The armature reaction effect, if present, would be

expected to give open-circuit values of Km that were consistently greater than the load

test values, due to field weakening in the latter case. There is no evidence of this being

a significant effect.

The considerable discrepancy with the load-test method for joint 6 is due to cross-

coupling in the wrist mechanism. In the load-test procedure, a torque applied to link 6

is transferred to the all the wrist motors. The torque relationship following from (2.38)

is

τm G 1τl (2.57)

where τm is the vector of motor torques, τl the vector of torques applied to the links.

Using knowledge of the gear ratios from Table 2.9 a unit torque applied to link 6

results in motor torques of

τm 0 0 0 0 000138 0 002510 0 013040 (2.58)

13Removing the fuse isolates the motor from the power amplifier.
14The use of other derivative approximations such as 3-point and 5-point derivatives has not been

investigated.
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Axis Low speed. ARX Kawasaki Tarn

expt. expt.

Base 2.1 - 1.6 1.6

Wrist 6.7 5.1 3.83 -

Table 2.15: Comparison of measured and manufacturer's values of armature re-

sistance (Ω). Experimental results obtained using (2.59) and (2.61).

Only 83% of the applied torque is transferred to joint 6, 16% to joint 5 and around 1%

to joint 4. Thus the torque constant will be overestimated, the true value being 83% of

the experimental value or 0 0548. This is close to the value determined directly by the

open-circuit method. The values determined by means of the back EMF test will be

chosen as the preferred values since the methodology is free from the errors present

in the load test approach.

2.3.2.3 Armature impedance

Figure 2.11 shows the motor armature impedance Rm sLm, where Rm is the resistance

due to the armature winding and brushes, and Lm is inductance due to the armature

winding. For the Puma 560 armature inductance is low (around 1mH [247]) and of

little significance since the motor is driven by a current source.

Armature resistance, Rm, is significant in determining the maximum achievable

joint velocity by (2.74) but is difficult to measure directly. Resistance measurement of

a static motor exhibits a strong motor position dependence due to brush and commu-

tation effects. A conventional locked-rotor test also suffers this effect and introduces

the mechanical problem of locking the motor shaft without removing the motor from

the robot. Measurements on a moving motor must allow for the effect of back EMF.

Combining (2.48) and (2.45) and ignoring inductance we can write

vm

vs

Rm Rs

Rs

K2
mθ̇

Rsτm
(2.59)

where the second term represents the effect of back EMF, which may be minimized

by increasing the torque load on the motor, and reducing the rotational speed. vm

and vs are directly measurable and were fed to an FFT analyzer which computed

the transfer function. The system exhibited good coherence, and the low frequency

gain was used to estimate Rm since Rs is known. The resistance values for the base

and wrist motors determined in this fashion are summarized in Table 2.15 along with

manufacturer's data for the ' similar' Kawasaki Puma motors. The experiments give

the complete motor circuit resistance including contributions due to the long umbilical

cable, internal robot wiring, and connectors.
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It is possible to simultaneously estimate Rm and Lm using the back EMF constant

already determined, and time records of motor terminal voltage, current and shaft an-

gle. First it is necessary to compute the motor voltage component due only to armature

impedance

v̂Zm vm Km
ˆ̇θ (2.60)

by subtracting the estimated back EMF. Equation (2.48) may be rewritten in discrete-

time ARX form as

VZm Rm Rs Im
Lm

T
1 z 1 Im

Rm Rs
Lm

T

Lm

T
z 1 Im (2.61)

and a parameter identification technique used as for the torque constant case. For joint

6 the identification results in estimates of Rm 5 1Ω and Lm 0 83 mH. The induc-

tance is of a similar order to that reported by Tarn et al. [247], but the resistance esti-

mate is somewhat lower than that obtained using the low-speed test described above.

Given the approximations involved in the low-speed test, (2.59), the result from (2.61)

is to be preferred, although the experimental procedure is less convenient.

2.3.2.4 MATLAB simulation model

The model of armature motion including friction and stiction that has been developed

is a simplified version of that proposed by Hill [117] for simulation of radio-telescope

antennae. Like a geared robot these antennae have high levels of friction relative

to maximum torque. The armature motion is modelled by a non-linear system with

two states corresponding to the motor being stationary or moving. If the motor is

stationary the applied torque must exceed the stiction torque for motion to commence.

If the speed falls below a threshold ε then the motor enters the stationary state.

Ω 0 if stationary
1

Js B
τ τC if moving

(2.62)

Hill' s approach is somewhat more sophisticated and requires a fixed step integration

algorithm. The algorithm is implemented as a MATLAB `S-function' and is available

for use in SIMULINK [182] models. It works satisfactorily with the built in variable-

length-step integration routines.

2.3.3 Current loop

The Unimate current loop is implemented in analog electronics on the so called analog

servo board, one per axis, within the controller backplane. A block diagram of the
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Figure 2.13: Block diagram of motor current loop. Eb is the motor back EMF, Vm

motor terminal voltage, and RA the amplifier's output impedance.

Unimate current loop is shown in Figure 2.13. The transfer function of the block

marked compensator was determined from analysis of schematics [255] and assuming

ideal op-amp behaviour. The compensator includes an integrator, adding an open-loop

pole at the origin in order to achieve Type 1 system characteristics in current following.

The remaining dynamics are at frequencies well beyond the range of interest, and will

be ignored in subsequent modelling. The voltage gain of the block marked power

amplifier, k, has been measured as approximately 50.

Current feedback is from a shunt resistor in series with the motor, see Figure 2.11.

The shunts are 0 2Ω and 0 39 Ω for the base and wrist joints respectively. The high

forward path gain, dominated by the compensator stage, results in the closed-loop

gain, Ki, being governed by the feedback path

Ki
Im

VId

1

6 06 Rs

(2.63)

The measured frequency response of the joint 6 current loop is shown in Figure

2.14, and the magnitude and phase confirm the analytic model above. The response

is flat to 400 Hz which is consistent with Armstrong' s [22] observation that current

steps to the motor settle in less than 500 µs. The use of a current source to drive the

motor effectively eliminates the motor' s electrical pole from the closed-loop transfer

function.

The measured current-loop transconductance of each axis is summarized in Table

2.16. The gains are consistently higher than predicted by (2.63), but no more than
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Figure 2.14: Measured joint 6 current-loop frequency response Im VId
.

Joint Ki A V immax A

1 -0.883 8.83

2 -0.877 8.77

3 -0.874 8.74

4 -0.442 4.42

5 -0.442 4.42

6 -0.449 4.49

Table 2.16: Measured current-loop transconductances and estimated maximum

current. The measurement is a lumped gain from the DAC terminal voltage to

current-loop output.

expected given the tolerance of components used in the various gain stages15. The

maximum current in Table 2.16 is estimated from the measured transconductance and

the maximum current-loop drive of vid 10 V.

15The circuitry uses only standard precision, 10%, resistors.
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2.3.4 Combined motor and current-loop dynamics

The measured transfer function between motor current and motor velocity for joint

6 is given in Figure 2.15, along with a fitted transfer function. The transfer function

corresponds to a linearization of the non-linear model of Figure 2.10 for a particular

level of excitation. The fitted model is

Ωm

VId

24 4

31 4
rad s V (2.64)

which has a pole at 5Hz. From Figure 2.10 and (2.63) the model response is given by

Ωm

VId

KmKi

Je f f s Be f f

(2.65)

where Je f f and Be f f are the effective inertia and viscous friction due to motor and

transmission. From the measured break frequency and Armstrong' s inertia value from

Table 2.13 the estimated effective viscous friction is

Be f f 33 10 6 31 4 1 04 10 3 N m s radm (2.66)
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Substituting these friction and inertia values into equation (2.65) gives

Ωm

VId

KmKi

33 10 6 s 1 04 10 3
(2.67)

Equating the numerator with (2.64), and using known Ki from Table 2.16 leads to an

estimate of torque constant of 0 060 which is similar to the value determined earlier

in Table 2.14.

The estimated effective viscous friction is significantly greater than the measured

value of 37 10 6 N m s rad from Table 2.12. This is a consequence of the linear

identification technique used which yields the ' small-signal' response. The effective

viscous friction includes a substantial contribution due to Coulomb friction particu-

larly at low speed. Coulomb friction may be linearized using sinusoidal or random

input describing functions giving an effective viscous damping of

Be f f B
kτC

2σθ̇
(2.68)

where σθ̇ is the RMS velocity, and k 1 27 (sinusoidal) or k 1 13 (random).

The large-signal response may be measured by step response tests, and these in-

dicate a much higher gain — approximately 200 rad s V. From (2.65) the DC gain

is
KmKi

Be f f

(2.69)

which leads to an estimate of effective viscous friction of 126 10 6 N m s rad. As

expected at the higher speed, this estimate is closer to the measured viscous friction

coefficient of Table 2.12.

2.3.4.1 Current and torque limits

Maximum motor current provides an upper bound on motor torque. When the motor

is stationary, the current is limited only by the armature resistance

imax
va

Rm
(2.70)

where va is the maximum amplifier voltage which is 40V for the Puma. From the

armature resistance data given in Table 2.15 it can be shown that the maximum current

given by (2.70) is substantially greater than the limit imposed by the current loop itself.

Maximum current is thus a function of the current loop, not armature resistance. The

sustained current is limited further by the fuses, or circuit breakers, which are rated at

4A and 2A for the base and wrist motors respectively. The fuse limits are around half

the maximum achievable by the current loop.
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Joint τIloop τ f use

1 120 56

2 200 97

3 110 52

4 22 10

5 22 10

6 21 10

Table 2.17: Maximum torque (load referenced) at current loop and fuse current

limits. All torques in N.m.

Using maximum current data from Table 2.16, and known motor torque constants,

the maximum joint torques can be computed. Table 2.17 shows these maxima for the

case of current limits due to the current loop or fuse.

2.3.4.2 Back EMF and amplifier voltage saturation

A robot manipulator with geared transmission necessarily has high motor speeds,

and thus high back EMF. This results in significant dynamic effects due to reduced

motor torque and amplifier voltage saturation. Such effects are particularly signif-

icant with the Puma robot which has a relatively low maximum amplifier voltage.

Figure 2.16 shows these effects very clearly — maximum current demand is applied

but the actual motor current falls off rapidly as motor speed rises. Combining (2.52)

and (2.48), and ignoring motor inductance since steady state velocity and current are

assumed, the voltage constraint can be written as

θ̇Km
τ

Km
RT va (2.71)

where RT is the total circuit resistance comprising armature resistance, Rm, and am-

plifier output impedance Ra. Rising back EMF also diminishes the torque available

from the actuator during acceleration

τavail va θ̇Km
Km

RT

(2.72)

However during deceleration, back EMF works to increase motor current which is

then limited by the current loop or fuse. When the frictional torque equals the available

torque

τC θ̇B va θ̇Km
Km

RT
(2.73)
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Figure 2.16: Measured motor and current loop response for a step current demand

of VId
10. Motor angle, velocity and current versus time are shown. q̇max is the

steady state velocity, and Imean is the steady state current. The finite rise-time

on the current step response is due to the anti-aliasing filter used. The sampling

interval is 5ms.

the joint velocity limit due to amplifier voltage saturation

θ̇vsat
vaKm RT τC

RT B K2
m

(2.74)

is attained. Armature resistance, RT , and friction, serve to lower this value below that

due to back EMF alone. The corresponding motor current is

ivsat
Bva KmτC

RT B K2
m

(2.75)

Experiments were conducted in which the maximum current demand was applied

to each current loop, and the motor position and current history recorded, as shown in

Figure 2.16. The initial current peak is approximately the maximum current expected
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Joint Measured Estimated

θ̇vsat ivsat θ̇vsat ivsat

1 120 2.1 149 3.2

2 163 0.26 165 1.3

3 129 0.42 152 1.7

4 406 0.56 534 0.84

5 366 0.39 516 0.75

6 440 0.29 577 0.51

Table 2.18: Comparison of experimental and estimated velocity limits due to back

EMF and amplifier voltage saturation. Velocity and current limits are estimated

by (2.74) and (2.75) respectively. Velocity in radm/s and current in Amps.

from Table 2.16, but falls off due to voltage saturation as motor speed rises. Without

this effect the motor speed would ultimately be limited by friction. Table 2.18 com-

pares computed maximum joint velocities and currents with the results of experiments

similar to that leading to Figure 2.16. The estimates for θ̇vsat are generally higher than

the measured values, perhaps due to neglecting the amplifier output resistance (which

has not been measured). Measurements for joints 2 and 3 are complicated by the ef-

fect of gravity which effectively adds a configuration-dependent torque term to (2.72).

To counter this, gravity torque was computed using (2.36) and (2.35) and the corre-

sponding current subtracted from that measured. At voltage saturation, the current is

generally around 30% of the maximum current achievable by the power amplifier.

2.3.4.3 MATLAB simulation

A complete SIMULINK model of the motor and current loop is shown in Figure 2.17.

This model is a stiff non-linear system and is thus very slow to simulate. The high-

order poles due to motor inductance and the current-loop compensator are around 300

times faster than the dominant mechanical pole of the motor. Non-linearities are intro-

duced by voltage saturation and Coulomb friction. The reduced order model, Figure

2.18, has similar non-linear characteristics but does not have the high-order poles, is

much faster to integrate, and is to be preferred for simulation purposes. Increasing the

value of Rm above that in Table 2.15 allows the model to more accurately predict the

saturation speed and current. This could be considered as allowing for the currently

unmodeled amplifier output impedance.

2.3.5 Velocity loop

Like the current loop, the Unimate velocity loop is implemented in analog electronics

on the analog servo board. A block diagram of the velocity loop is shown in Figure
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2.19, and includes the motor and current loop blocks already discussed. The gains

Kgain and Kvel are set by trimpots R31 (GAIN) and R29 (VELOCITY) respectively on

each analog servo board. The Unimation Puma does not use a tachometer to measure

motor velocity. Instead, a velocity signal is synthesized from the triangular output sig-

nal from the motor' s incremental encoder by an analog differentiator and a switching

network. The gain of the synthetic tachometer has been experimentally determined to

be

Ktach

VΩm

Ωm
34 10 3 V s radm (2.76)

with some increase in gain at frequencies below 2Hz. From Figure 2.19 the closed-

loop transfer function for the motor, current and velocity loop is

Ωm

VΩd

KgainKiKm

Js B KiKmKgainKvelKtach

B

(2.77)
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It is desirable that B B in order that the closed-loop dynamics are insensitive to

plant parameter variation, but in practice this is not the case. The adjustable gains Kgain

and Kvel provide interacting control of the DC gain and closed-loop pole location. The

measured transfer function between motor velocity and velocity demand for joint 6 is

given in Figure 2.20 and the fitted model is

Ωm

VΩd

11 9

148 6
radm s V (2.78)

Observe that the mechanical pole of the motor at 5Hz has been 'pushed out' to nearly

25 Hz by the action of the velocity loop. Substituting known numeric values16 into

(2.77) results in the transfer function

Ωm

VΩd

12 8

137
radm s V (2.79)

and compares well with the measured result (2.78). Again, this transfer function rep-

resents the small-signal response of the system.

The large signal gain for each axis has also been determined experimentally by

providing a step demand to the velocity loop and measuring the resultant slope of the

joint position versus time curve. These results, summarized in Table 2.20, are highly

dependent on the way the particular analog velocity loop has been ' tuned', as given

by (2.77). It can be seen that joint 2 has a significantly higher velocity gain than the

others, probably to compensate for its much higher gear reduction ratio.

A SIMULINK model of the velocity loop is shown in Figure 2.21. This model

makes use of the motor and current-loop model LMOTOR developed earlier.

16The gains Kgain 2 26, and Kvel 1 75 were determined by measuring the transfer function between

adjacent points in the circuitry with an FFT analyzer. Kvel 6 06Kvel where Kvel 0 288 is the gain of the

trimpot R29.
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2.3.6 Position loop

The position loop is implemented on a digital servo board — one per axis. This board

utilizes a 6503, 8-bit microprocessor clocked at 1MHz to close an axis position loop

at approximately 1kHz, and also to execute commands from the host computer [56].

Position feedback is from incremental encoders, whose characteristics are summarized

in Table 2.19, fitted to the motor shafts. The analog control signal, vDAC , is generated
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Joint Encoder resolution Counts/motor rev. Counts/radl

1 250 1000 9965

2 200 800 13727

3 250 1000 8548

4 250 1000 12102

5 250 1000 11447

6 250 500 6102

Table 2.19: Puma 560 joint encoder resolution. Note that joint 6 is generally run

in 'divide by two mode', so that the encoder count maintained by the digital servo

board is half the number of actual encoder counts. This is necessary since joint 6

can rotate through a range of more than 216 counts.

by a 12-bit DAC with a bipolar output voltage in the range -10 V to 9.995 V and drives,

via an analog compensation network, the analog velocity demand. The overall control

system structure is shown in Figure 2.22.

A block diagram of the position loop is given in Figure 2.23. The digital control

loop operates at a sample interval of Tservo 924 µs. The encoder demand, ed , is

provided by the host computer at intervals of 2N Tservo where N is in the range 2 to

7 resulting in host setpoint intervals of approximately 4.5, 7, 14, 28, 56 or 112 ms.

The microprocessor linearly interpolates between successive position setpoints, at the

servo rate. At that same rate, the microprocessor implements the fixed-gain control
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law17

vDAC
10

2048
ed em (2.80)

where ed is the desired encoder value from the interpolator, and em is the measured

encoder count. This control law has been verified by disassembly of the microproces-

sor' s EPROM and by measuring the transfer function VDAC em. The output voltage is

a velocity command which is conditioned by a phase lead network

1 3
37 3

373
(2.81)

so as to increase the closed-loop bandwidth. The gain of 1 3 was determined by analy-

sis of the circuit, but the measured gain for joint 6 was found to be 1 13. A switchable

integral action stage

I s
10 if the robot is moving, or

313
31 3

1
if the robot is 'on station'

(2.82)

is enabled by the microprocessor when the axis is within a specified range of its set-

point. Integral action boosts the gain at low frequency, increasing the disturbance

rejection.

The transfer function of the lead network (2.81) and integral stage (2.82) introduce

a gain of around 11 3 before the velocity loop. The velocity command voltage, VΩd
, is

limited by the circuit to the range 10 V, so the DAC voltage must in turn be limited

such that

vDAC
10

11 3
(2.83)

17Since the digital controller has a fixed gain, loop gain is adjusted by the velocity-loop gain control.



2.3 Electro-mechanical dynamics 55

Joint ω vDAC θ̇max θ̇max θ̇vsat

radm/s/V radm/s radm/s

1 -101 89 74%

2 -318 281 172%

3 -90.2 80 62%

4 -366 324 80%

5 -235 208 57%

6 -209 185 42%

Table 2.20: Measured step-response gains, ω vDAC, of velocity loop. Step mag-

nitude was selected so as to avoid voltage saturation effects. These gain values

include the effect of the position-loop lead network and switchable integral/gain

stage. θ̇max is the estimated maximum velocity due to the velocity loop when

vΩd
10V. Rightmost column is ratio of velocity limits due to velocity loop and

voltage saturation effects.

This limits the usable voltage range from the DAC to only 0 88 V — that is only

9% of the available voltage range, and gives an effective resolution of less than 8 bits

on velocity demand. This saturation of the velocity-loop demand voltage is readily

apparent in experimentation. From measured velocity-loop gains, ω vDAC , shown in

Table 2.20 and knowledge of maximum DAC voltage from (2.83), the maximum joint

velocities can be determined. These maxima are summarized in Table 2.20 along with

the ratio of velocity limits due to velocity loop and voltage saturation effects. For most

axes the maximum demanded joint velocity is significantly less than the limit imposed

by voltage saturation. The only exception is joint 2 which, as observed earlier, has an

abnormally high velocity-loop gain.

Root-locus diagrams for the joint 6 position loop are shown in Figures 2.24 and

2.25. For the case with no integral action the dominant pole is on the real axis due

to the open-loop pole at the origin moving toward the compensator zero, resulting in

a closed-loop bandwidth of 32 Hz. The complex pole pair has a natural frequency of

57 Hz and a damping factor of 0.62. With integral action enabled the dominant mode

is a lightly damped complex pole pair with a natural frequency of around 1.2Hz and a

damping factor of 0.25.

A SIMULINK model of the position controller is shown in Figure 2.26. The struc-

ture of the switchable integral action stage is somewhat different to Figure 2.23 but

more closely represents the actual controller, in particular with respect to 'b umpless'

switching of the integrator. This model is used extensively in later chapters when

investigating the behaviour of visual-loop closed systems.
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2.3.6.1 Host current control mode

The Unimate digital servo board also allows the motor current to be controlled

directly by the host. In this mode the DAC output voltage is connected directly to

the current loop as shown in Figure 2.27. The DAC is updated within Tservo of the

setpoint being given. This mode is useful when the host computer implements its own

axis control strategy.

2.3.7 Fundamental performance limits

A summary of the robot' s performance limits is given in Table 2.21. The velocity lim-

its are due to back EMF and voltage saturation, given previously in Table 2.18. The
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S2 is used to route the host setpoint directly to the current-loop demand via the

DAC, bypassing the velocity loop and lead compensator.

torque limits are derived from the fuse-limited current and torque constant data from

Table 2.14. Acceleration limits are estimated from the torque limits, maximum nor-

malized link inertia from Table 2.10, and armature inertia from Table 2.13. Note that

the velocity and acceleration maxima are mutually exclusive — maximum accelera-

tion can be achieved only at zero velocity or during deceleration. Maximum velocity

occurs when achievable acceleration is zero.
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Joint Motor referenced Load referenced

θ̇ τ θ̈ θ̇ τ θ̈
1 120 0.91 840 1.92 56 13

2 163 0.91 3200 1.51 97 30

3 129 0.97 3000 2.40 52 55

4 406 0.14 3800 5.34 10 49

5 366 0.14 4000 5.09 10 55

6 440 0.11 3700 5.74 10 48

Table 2.21: Summary of fundamental robot performance limits.

2.4 Significance of dynamic effects

When numeric parameters are substituted into the symbolic torque expressions from

Section 2.2.2 it becomes clear that the various torque contributions vary widely in

significance. For example, the acceleration of joint 6 exerts a very small torque on

joint 2 compared to the gravity load on that axis. While considerable literature ad-

dresses dynamic control of manipulators, less attention is paid to the significance, or

relative magnitude, of the dynamic effects. In much early work the velocity terms

were ignored, partly to reduce the computational burden, but also to acknowledge the

reality that accurate positioning and high speed motion are exclusive in typical robot

applications. Several researchers [119,153,164] have investigated the dynamic torque

components for particular robots and trajectories. Unfortunately the significance of the

torque components is highly dependent upon both robot and trajectory. Khosla [153]

for example found that, for the CMU DD-II arm, inertia torques dominate.

Recently Leahy [162] has proposed standard trajectories for the comparison of

model-based controllers for the Puma 560 robot18. Figure 2.28 shows the torque com-

ponents for the proposed test trajectory. Leahy's minimum jerk trajectory algorithm

was not available so a seventh order polynomial was used instead, and this seems to

have resulted in marginally higher peak velocities and accelerations. It is clear that

friction, gravity and inertia torques are significant. Another significant factor is torque

limitation due to voltage saturation. Figure 2.28 shows the available torque computed

as a function of joint velocity, and this limit is clearly exceeded in the middle of the

trajectory. The proposed trajectory is perhaps too close to the robot' s performance

limit to be of use as a benchmark.

Symbolic manipulation of the dynamic equations provides another way to gain

18Unfortunately the proposed standard is expressed in terms of start and finish joint angles, but does not

specify the joint angle convention used. However study of earlier work by Leahy [164] indicates that he uses

the convention of Lee [166]. Another unfortunate omission was the “minimum jerk” trajectory generator

algorithm used.
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Figure 2.28: Breakdown of torque components for Leahy' s proposed test trajec-

tory. Joints 1, 2 and 3 shown down the page. The curves are marked; T total

torque, F friction, G gravity, I inertia, and V velocity terms. The curve marked A

is the available torque due to amplifier voltage saturation, (2.72), and fuse current

limit.



60 Modelling the robot

Rank Joint 1 Joint 2 Joint 3

1 0 6916 S2 q̈2 37 23C2 8 744 S23

2 1 505C2
2 q̈1 4 182 q̈2 0 6864 q̈3

3 1 943 S3
2 C2 S2 q̇1 q̇2 8 744 S23 0 2498C4

2 q̈3

4 1 301C2
2 C3

2 q̈1 0 7698 S3 q̈2 0 3849 S3 q̈2

5 1 637C3
2 C2 S2 q̇1 q̇2 0 3849 S3 q̈3 0 1688 S4

2 q̈3

Rank Joint 4 Joint 5 Joint 6

1 0 1921 q̈4 0 1713 q̈5 0 1941 q̈6

2 0 02825 S23 S4 S5 0 02825C23 S5 0

3 0 001244 S4 S5 q̈3 0 02825C4C5 S23 0

4 0 001244 S3S4 S5 q̈2 0 001244C4C5 q̈3 0

5 0 001244 S4 S5 q̈2 0 001244C4C5 S3 q̈2 0

Table 2.22: Ranking of terms for joint torque expressions. Computed at 20%

peak acceleration and 80% peak velocity. Motor armature inertia is included.

Coefficients are shown to 4 figures.

insight into the significance of various dynamic effects. After numerical substitution

into the symbolic equations the terms in the torque expressions comprise a numeric

coefficient multiplied by a function of manipulator state variables. The magnitude of

the coefficient is related to the significance of that term to the total torque. Velocity

terms contain either a velocity squared or a product of velocities and may be signifi-

cant despite a small coefficient. The procedure introduced here involves setting joint

velocities and accelerations to nominal values prior to ranking the magnitude of the

terms. The nominal values chosen are 20% of the maximum acceleration, and 80% of

the maximum velocity as given in Table 2.21. Table 2.22 shows the 5 most significant

dynamic terms for each torque expression at the nominal velocity and acceleration.

As expected, gravity ranks highly for joints 2 and 3, followed by inertia. Joint 3 has

an off-diagonal inertial component indicating some coupling with joint 2. Joint 1 has

significant Coriolis coupling with joint 2 and to a lesser extent joint 3. The wrist joints

are dominated by inertia, with gravity and inertial coupling effects one and two orders

of magnitude down respectively.

2.5 Manipulator control

2.5.1 Rigid-body dynamics compensation

In conventional manipulator control, for instance the standard Unimate controller,

each axis is independently controlled, and torques due to inertial coupling, Coriolis,
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centripetal and gravity effects are treated as disturbances. Gearing helps to reduce the

configuration dependence of some dynamic effects, and also reduces the magnitude of

disturbance torques at the motor. The quality of trajectory tracking is directly related

to the disturbance rejection capability of the axis servo. However given knowledge

of the manipulator' s equations of motion, inertial parameters, and manipulator state it

is possible to compute the joint torque required to follow a trajectory, and explicitly

counter all the disturbance torques.

The two major forms of control incorporating manipulator dynamics that have
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been proposed [69] are:

1. Computed torque control, shown in Figure 2.29. The torque demand for the

actuators is

Q M q Kv q̇
d

q̇ Kp q
d

q q̈
d

C q q̇ q̇ F q̇ G q (2.84)

where Kp is the position gain, and Kv the velocity gain, or damping term. The

inverse dynamics are 'in the loop' and must be evaluated each servo interval,

although the coefficients of M, C, and G could be evaluated at a lower rate.

Assuming ideal modelling and parameterization, the error dynamics of the lin-

earized system are

ë Kvė Kpe 0 (2.85)

where e qd q. The error dynamics of each axis are independent and a func-

tion only of the chosen gain matrices. In the case of model error there will

be coupling between axes, and the right-hand side of (2.85) will be a non-zero

forcing function.

2. Feedforward control, shown in Figure 2.30, linearizes the dynamics about the

operating points qd , q̇d and q̈d , by providing the gross torques

Q M q
d

q̈
d

C q
d

q̇
d

q̇
d

F q̇
d

G q
d

Kv q̇
d

q̇ Kp q
d

q

(2.86)

where Kp is the position gain, and Kv is the velocity gain, or damping term. The

inverse dynamics are not 'in the loop' and can be evaluated at a lower rate, Tf f ,

than the error feedback loops, Tf b. Again assuming ideal linearization of the

plant, the error dynamics are given by

M q
d

ë Kvė Kpe 0 (2.87)

which are seen to be dependent upon manipulator configuration.

In each case the position and velocity loops are only required to handle modelling

errors and disturbances. Both techniques require accurate determination of manipu-

lator state and in particular joint velocity. Commonly, robots have only joint position

sensors so velocity must be estimated. Khosla [151] describes a “least squares digital

filter” for this purpose, but other reports on model-based control experiments do not

discuss this issue.

There is relatively little experimental evaluation of the dynamic control of robot

manipulators. One reason is the lack of manipulators for which these rigid-body dy-

namic effects are significant, though this situation has changed over the last 5 years.

Most commercial robots are characterized by high gear ratios, substantial joint fric-

tion, and relatively low operating speed — thus independent joint control suffices.



2.5 Manipulator control 63

Gravity loading is commonly countered by introducing integral action to the position

loop when near the destination.

A number of studies have investigated the efficacy of the control strategies (2.84)

and (2.86) for the Puma 560 and various direct drive robots. In general the per-

formance metric used is high-speed position tracking error. Valavanis, Leahy and

Saridis [257] reported on computed torque control for a Puma 600 robot, and found

the performance inferior to individual joint control. The discussion is not specific, but

it would seem problems in modelling, and the low sample rate may have contributed to

the result. They conclude that for such a highly geared manipulator, gravity and fric-

tion overwhelm the joint interaction forces. Later work by Leahy et al. [161,162,165]

concludes that tracking performance improves with the completeness of the dynamic

model which ultimately includes friction, velocity terms and payload mass. Leahy

also finds that computed torque control is superior to feedforward control.

As already alluded to, it is possible to compute the feedforward torque at a lower

rate than the feedback torque. Leahy [162] investigates this for feedforward torque

control and finds acceptable performance when Tf f is up to eight times longer than

Tf b. Accuracy is increased if the feedforward torque is computed at the feedback rate,

but with the feedforward torque coefficients, M q
d

, C q
d

q̇
d

, and G q
d

, evalu-

ated at the lower rate. These approaches can reduce the online computational burden.

Sharkey et al. [228] provide a stronger reason for such a control strategy. They ar-

gue that the inertial compensation need not be computed at a rate beyond the desired

closed-loop bandwidth. Inertial parameter uncertainty means that high-bandwidth

control should be restricted to local joint feedback so as to control unmodeled dynam-

ics. High-bandwidth inertial compensation, in conjunction with poor inertial models,

was found to couple noise between axes, leading to poor control.

In the last decade, with the availability of high-torque actuators, a number of ex-

perimental direct-drive robots have been built to exploit the potentially greater perfor-

mance achievable by eliminating the complex transmission. Several studies have com-

pared the two control strategies described, and Khosla [152] concludes, like Leahy,

that the computed torque scheme gives slightly better performance than feedforward

control when modelling errors are present. If an exact model is available then both

schemes would give the same results. Khosla also found that the off-diagonal terms

in the manipulator inertia matrix were significant for the CMU DD-II arm. An et

al. [11] evaluated a spectrum of control strategies for the MIT SLDD Arm, including

independent joint control, gravity feedforward, and full dynamics feedforward. They

conclude that feedforward control significantly improves following accuracy at high

speed, and that model accuracy was important. Further work [10] finds no significant

difference between feedforward and computed torque control.

A more radical approach is to design the manipulator so as to simplify the dy-

namics. The MIT 3DOF direct drive arm [287] used clever mechanical design to

ensure that the manipulator' s inertia matrix is diagonal and configuration invariant.
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This is achieved by placing all actuators remotely and transmitting the torque via

a transmission, eliminating the reaction torques transmitted between adjacent links.

This approach simplifies dynamic control, and ensures uniformity of response over

the work volume. The Minnesota direct drive arm [145] is statically balanced to elim-

inate gravity forces. The principal benefits accrue not so much from simplification of

the dynamics expressions, but from the use of smaller (and lighter) motors due to the

elimination of steady state holding torques.

2.5.2 Electro-mechanical dynamics compensation

As seen from Section 2.4 friction and voltage saturation effects are significant. The

latter cannot be compensated for — it is a fundamental constraint in motion planning

[17]. However a number of strategies have been proposed to counter friction and

include [43]:

high-gain control loops to reduce the effect of non-linearities, but with limit-

cycles as a possible consequence

adding a high frequency 'dither' signal to the torque command, at the expense

of possibly exciting high order structural dynamics, and possible fatigue of ac-

tuators and bearings;

compensation by non-linear feedforward of friction torque, which requires an

accurate model of the frictional characteristics of the joint.

Canudas De Wit [43] describes the effect of under and over compensation of esti-

mated friction on system stability for PD joint controllers. He then describes an adap-

tive compensation scheme which estimates the unknown frictional characteristics. A

major source of difficulty is noise-free determination of low velocity. He proposes

a combined feedback and feedforward compensator where the feedforward torque is

computed from measured velocity above a velocity threshold, and from desired veloc-

ity below the threshold. Experimental results confirmed the operation of the proposed

algorithm. The controllers described in Sections 8.1 and 8.2 use this technique for

friction compensation.

2.6 Computational issues

Model-based dynamic control, either by computed torque or feedforward, requires the

rapid computation of the manipulator' s inverse dynamics. Through the 1980s much

literature was devoted to ways of computing the inverse dynamics sufficiently fast

on microprocessor hardware to allow online control. The approaches have included

DSP devices [138], parallel processing, table lookup [209], and special architectures

[18,168,172,208].
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Many of the reports seem to have focussed on a target of 6-axis torque computation

time in around 1ms but this level of performance may be unwarranted. Luh et al. [177]

indicate a servo rate of at least 60 Hz is required and Paul [199] suggests a servo rate

of 15 times the highest structural resonance. However the coefficients of the dynamic

equations do not change rapidly since they are a function of joint angle and may be

computed at a fraction of the rate at which the servo equations are evaluated [201].

Sharkey et al. [228] go further and contend that it may be disadvantageous to compute

rigid-body dynamics at a high rate since the dynamic model is unlikely to be accurate

at those high frequencies. Computation of the rigid-body dynamics for all 6 joints is

also unnecessary since the dynamic effects are most significant for the base axes as

shown in Table 2.22. Another trend in the 1980s was the increasing power of general

purpose symbolic algebra packages, enabling researchers to readily manipulate the

very complex dynamic equations of motion. Symbolic simplification, in conjunction

with modern microprocessors, offers an attractive alternative to specialized hardware

architectures. The next sections review work in the areas of parallel computation and

symbolic simplification and then contrast the two approaches.

2.6.1 Parallel computation

Lathrop [159] provides a good summary of the computational issues involved and

some approaches to parallelism. A significant problem in using multiple processors

is scheduling the component computational tasks. This difficult problem is tackled in

many different ways, but is essentially an 'of f-line' process that need be done only

once. Important issues in parallelization include:

Level of decomposition. Is the minimum scheduled computation a dynamic

variable, matrix operation or scalar multiplication? As the parallelism becomes

more fine grained, interprocessor communications bandwidth will become a

limiting factor.

Utilization profile or load balancing. It is desirable to keep all processors as

fully utilized as possible.

The ' speed up' achieved, that is, the execution time ratio of the multiproces-

sor implementation to the single processor implementation. The speed-up can

never exceed the number of processors, and the ratio of speed-up to number of

processors is some indication of the benefit gained, or efficiency of multipro-

cessing.

Luh [176] demonstrated how six processors could be used to achieve a speed-up

of 2.64 for computation of the manipulator inverse dynamics. A “variable branch-

and-bound” technique was developed to schedule the computing tasks. Nigham and

Lee [194] propose an architecture based on six 68020 processors, with the parallel
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computations scheduled manually. Integer arithmetic is proposed, and with 16.7MHz

devices a time of 1.5ms is predicted, but issues such as shared resource contention

or synchronization are not discussed; nor is the improvement over single CPU perfor-

mance given. Khosla [150] also describes a manual approach to scheduling the com-

putations onto 8 processors for the NE formulation, to achieve an 81% time reduction

(speed-up of 5.3). Kasahara and Narita [144] describe an automatic approach to the

np-hard problem of multiprocessor scheduling. They show the decomposition of the

dynamics of a six-axis revolute robot into 104 computational tasks, and a maximum

speed-up of 3.53 for four CPUs.

An alternate approach is to partition the problem into one axis per processor. Un-

fortunately the recursive nature of the RNE computation is such that the inward re-

cursion for link i cannot be initiated until the outward recursion for links i 1 to n,

and inward recursion for links n to i 1, have been completed. However the inter-

action force and moment from the inward recursion can be predicted from previous

values, and this allows each joint processor to operate independently. Vuskovic [263]

investigates the errors introduced by prediction; zero-order prediction gave acceptable

results, and the error is shown to reduce with sample interval. First-order prediction

was less successful. A speed-up factor of 6 over a single processor was achieved,

without the need for complex off-line task scheduling, and in fact the processors can

operate completely asynchronously. Yii et al. [286] also describe a zero-order predic-

tive system, but provide no experimental results.

Lathrop [159] uses a directed graph to represent the RNE formulation, with groups

of parallel processors at each node. Conventional and systolic pipelined structures are

proposed with a speed-up of two orders of magnitude requiring 180 'simple' matrix-

vector processors for the 6-axis case. This approach is then extended to a new parallel

implementation which has O log2 n cost requiring 637 matrix-vector processors for

6 axes.

Hashimoto et al. [112] describe a parallel form of the RNE equations derived from

analysis of data dependency graphs. For n joints the computation can be divided into

n approximately equal parallel tasks. Later work [113] discusses the implementation

of this algorithm for 3-axis dynamic control of a Puma 560 with three transputers,

achieving a dynamics computation time of 0.66ms.

2.6.2 Symbolic simplification of run-time equations

Symbolic expansion of the equations of motion has been previously discussed in Sec-

tion 2.2.2, but the sum-of-product form is too expensive for run-time evaluation since

the inherent factorization of the RNE form has been lost, and symbolic re-factorization

is prohibitively expensive. A far better approach is to retain factors during symbolic

evaluation. In this work whenever an intermediate expression grows to become a sum

of more than one product term then that expression is replaced by a single new vari-
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Method 3-axis 6-axis

Mul Add Factors Mul Add Factors

General solution 402 345 852 738

Symbolically simplified by

MAPLE

238 108 45 538 254 106

Symbolic simplified by

MAPLE after parameter

value substitution

203 59 39 358 125 93

ARM closed form 461 352

ARM recursive form 224 174

Izaguirre and Paul [131] 331 166

Leahy [164] 304 212

Table 2.23: Operation count for Puma 560 specific dynamics after parameter

value substitution and symbolic simplification.

able, which is equated to the previous expression. Table 2.23 shows the operation

count for this factored symbolic representation for a Puma 560, as well as the number

of factors so generated. The operation count is considerably less than the general form

given in Table 2.2. Substituting numeric values for inertial parameters, many of which

are zero, reduces the operation count still further.

ARM has been used [192] to generate customized computations for both direct

and inverse dynamics. The inverse dynamics can be in closed or recursive form, the

latter being most advantageous for higher numbers of joints. The results of ARM are

compared with the results obtained using the writer' s MAPLE program in Table 2.23.

The MAPLE results compare very favorably with those of ARM for the comparable

closed form solution. ARM's factored recursive form has not been implemented with

MAPLE. Another symbolic approach generates computationally efficient forms of the

inertia and velocity terms via a Lagrangian formulation [131]. Written in LISP, the

programs read a manipulator parameter file, and write 'C' functions to compute the

M, C and G matrices as functions of manipulator state.

2.6.3 Significance-based simplification

As shown in Table 2.22 the terms in the torque expressions vary greatly in significance.

This can be seen clearly in Figure 2.31 which shows a histogram of the distribution

of these coefficient magnitudes for the Puma 560' s joint 1 torque expression. The

median coefficient magnitude is nearly four orders of magnitude below that of the

greatest coefficient. In this section we investigate the possibility of 'culling' the terms,

keeping only those that contribute ' significantly' to the total joint torque. Using the
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Figure 2.31: Histogram of log10 α1 j coefficient magnitude for τ1, normalized

with respect to the greatest coefficient, for the Puma 560. The median value is

-3.67.

nominal velocity and acceleration values as in Section 2.4 the torque expressions were

truncated at coefficient magnitude less than 5% and 1% of the greatest coefficient. The

number of remaining terms for each axis are summarized in Table 2.24. A comparison

of more elaborate culling methods is given in [53].

To investigate the effect of culling on accuracy a simple Monte-Carlo style sim-

ulation was conducted. Error statistics were collected on the difference between the

full and truncated torque expressions for N random points in manipulator state space.

The joint angles were uniformly distributed in the joint angle range, while velocity

and acceleration were normally distributed with the 2σ values equated to the limits

from Table 2.21. These results are also summarized in Table 2.24. Truncation to 5%

introduces negligible errors, except for joint 2. A good compromise would appear to

be culling to 1% significance for joint 2 and 5% for all others. At the 5% level only

4% of the terms remain in the torque expression. Online torque computation based on

these truncated torque expressions is used in the controller described in Section 8.2.

2.6.4 Comparison

To place some of these efforts in context, the execution times of the RNE formulation

for a 6-axis Puma 560 are given in Table 2.25. The matrix numeric examples by

the author were written in 'C' in a straightforward manner, while the symbolically

simplified examples were generated automatically by MAPLE with some minor code
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Joint Norig 5% significance

Nterms τd στd
max∆τ

1 1145 162 0.0027 0.0978 0.4599

2 488 8 0.0814 6.6640 22.7200

3 348 19 0.0218 0.6881 2.5660

4 81 3 -0.0002 0.0188 0.0847

5 90 4 -0.0003 0.0217 0.0891

6 18 2 0.0000 0.0010 0.0032

2170 199

Joint Norig 1% significance

Nterms τd στd
max∆τ

1 1145 333 -0.0013 0.0251 0.1024

2 488 36 0.0158 0.7514 2.8470

3 348 39 -0.0041 0.1420 0.5907

4 81 30 -0.0001 0.0027 0.0134

5 90 36 -0.0002 0.0031 0.0165

6 18 2 0.0000 0.0010 0.0032

2170 476

Table 2.24: Significance-based truncation of the torque expressions. This shows

the original number of terms in the expression, and the number after truncating to

5% and 1% of the most significant coefficient. Also shown are the mean, standard

deviation and maximum (all in N.m) of the error due to truncation, computed over

1000 random points in manipulator state space. All torques are link referenced.

massaging performed by sed scripts. Table 2.25 shows that, for the same processor,

the factored symbolic form executes approximately 3 times faster than the numeric

matrix form of (2.12) to (2.25). This ratio of 3 would be expected from examining

the operation counts summarized in Table 2.23. The fairly 'ordinary' single board

computer for robot control in this work, a 33 MHz 68030, is able to compute the

torque for the first 3 axes in only 800 µs.

In order to compare scalar and parallel implementations a computational efficiency

metric is proposed

η
n 106

N fclockT
(2.88)

where n is the number of axes, N the number of processors, fclock the CPU clock

rate, and T the execution time. Clock rate is included to enable comparison between

scalar and parallel implementations on the same CPU type, but is not meaningful in

comparison across processor types.

Table 2.26 compares two reported parallel implementations with scalar results

generated by the author from Table 2.25. The parallel implementations are shown
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Processor Approach Axes Year Time

(µs)

PDP-11/45 [177] assembler, RNE 6 1982 4500

Sun3/60 'C' general RNE 6 1988 13400

µPD77230 DSP [138] assembler, general RNE 6 1989 550

Sun4/20 (SLC)† 'C' general RNE 6 1990 1630

T800 x 3 [112] Occam parallel processing 3 1989 660

T805 25MHz 'C' + symbolic simplification 3 1989 570

T805 25MHz 'C' + symbolic simplification 6 1989 1140

68030+68882 33MHz 'C' + symbolic simplification 6 1989 1580

68030+68882 33MHz 'C' + symbolic simplification 3 1989 795

Sun4/20 (SLC) ” 6 1990 548

Sun4/20 (SLC) ” 3 1990 362

SparcStation 10 ” 6 1993 65

Table 2.25: Comparison of computation times for Puma 560 equations of motion

based on RNE formulation. The given year is an indication only of when the

particular computing technology was first introduced. Those marked with a †

were benchmarked by the writer, using the GNU C cross compiler v2.2.3 for

68030, gcc v2.4.5 for the Sparc and Helios C v2.05 for the transputer, T805.

Compiler optimization, -O, was enabled in all cases.

to make poor use of the computing hardware. This is fundamentally because they are

using additional hardware to perform arithmetic operations which can be eliminated

off-line. It can be concluded that off-line symbolic manipulation, high-level languages

and state-of-the-art computers provide a simple and powerful means of computing

manipulator dynamics at a sufficient rate. The generation of symbolically simplified

run-time code in 'C' from a Denavit-Hartenberg parameter file executes in less than

15 s on a Sun SparcStation 2. Specialized hardware or parallel software with their

inherent long development times must now be seen as an unattractive approach to the

online computation of manipulator dynamics. The off-line computational effort de-

voted to scheduling parallel computation [144, 176, 194], described in Section 2.6.1,

would perhaps have been better devoted to symbolic simplification.
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Approach CPU fclock N T n η
(MHz) (ms)

Nigham&Lee 68020 16.7 6 1.5 6 39.9

Corke 68030 33 1 2.0 6 119

Hashimoto T800 20 3 0.66 3 76

Corke T805 25 1 3.8 0.57 211

Table 2.26: Comparison of efficiency for dynamics computation. Written by the

author, see Table 2.25. Clock speed of 20MHz is assumed only.
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Chapter 3

Fundamentals of image capture

This chapter introduces some fundamental aspects of image formation and capture

that are particularly relevant to visual servoing. Cameras are often treated as black

boxes with a couple of adjustment rings, but before an image becomes available in

a framestore for computer analysis a number of complex, but frequently overlooked,

transformations occur. These processing steps are depicted in Figure 3.1 and include

illumination, lens, sensor, camera electronics and digitizer, and each will introduce

artifacts into the final digital image. Particularly important for visual servoing are the

temporal characteristics of the camera, since the camera's shutter acts as the sampler

in a visual control loop.

This chapter will systematically examine the process of image formation and ac-

quisition, generally overlooked, prior to it being digitally processed. The effects of

each stage are examined and a detailed model built up of the camera and image dig-

itizing system. A particular camera, Pulnix TM-6, and digitizer, Datacube DIGI-

MAX [73], are used as concrete examples for model development, but are typical of

CCD cameras and digitizers in general.

3.1 Light

3.1.1 Illumination

Light is radiant energy with a capacity to produce visual sensation and photometry is

that part of the science of radiometry concerned with measurement of light. Radiant

energy striking a surface is called radiant flux and is measured in watts. Radiant flux

evaluated according to its visual sensation is luminous flux and is measured in lumens.

The ratio of luminous flux to radiant flux is luminosity measured in lumens/watt. The

73
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Figure 3.1: Steps involved in image processing.

photopic1 luminosity curve for a ' standard' observer is shown in Figure 3.2.

The luminous intensity of a source is the luminous flux per unit solid angle2 mea-

sured in lumens/sr or candelas. Some common photometric units are given in Table

3.1. For a point source of luminous intensity I the illuminance E falling normally onto

a surface is

E
I

l2
lx (3.1)

where l is the distance between source and the surface. Outdoor illuminance on a

bright sunny day is approximately 10,000 lx, whereas office lighting levels are typi-

cally around 1,000 lx. The luminance or brightness of a surface is

Ls Ei cosθ nt (3.2)

1The eye' s light-adapted response using the cone photoreceptor cells. The dark adapted, or scotopic,

response using the eye' s monochromatic rod photoreceptor cells is shifted toward the longer wavelengths.
2Solid angle is measured in steradians, a sphere is 4πsr.
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Figure 3.2: CIE luminosity curve for the 'standard observer'. Peak luminosity is

673 lumens/W at a wavelength of 555 nm (green).

Quantity Unit Symbol Equivalent units

Luminous flux lumen lm

Solid angle steradian sr

Luminous intensity candela cd lm/sr

Illuminance lux lx lm/m2

Luminance nit nt lm/m2/sr

Table 3.1: Common SI-based photometric units.

where Ei is the incident illuminance at an angle θ to the surface normal.

3.1.2 Surface reflectance

Surfaces reflect light in different ways according to surface texture and wavelength

— the two extremes are specular ('glossy') and diffuse ('matte') reflection as shown

in Figure 3.3. A specular, or mirror like, surface reflects a ray of light at an angle, θr,

equal to the angle of incidence, θi. A diffuse surface scatters incident light in all direc-

tions. A Lambertian surface is a perfectly diffusing surface with a matte appearance
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Figure 3.3: Specular and diffuse surface reflectance. Length of the ray is propor-

tional to luminous intensity.

and has consistent luminance irrespective of viewing angle3. The luminous intensity

of a surface point is

I rEcosθr cd (3.3)

where E is the illuminance, and r the surface reflectivity (0 r 1). Typical reflec-

tivities are; white paper 0.68, photographic grey card 0.18, and dark velvet 0.004. The

luminance or 'brightness' of the Lambertian surface is

L
r

π
E nt (3.4)

which is independent of θi and θr. In practice, real surfaces are a combination of these

extremes and light is reflected in a lobe centered about the angle θr θi.

3.1.3 Spectral characteristics and color temperature

Many illumination sources, such as incandescent lamps and the sun, have radiation

spectra that closely approximate a blackbody radiator 4 at a temperature known as the

color temperature of the source. The color temperature of solar radiation is 6500 K,

and a standard tungsten lamp is 2585 K.

Figure 3.4 compares solar and tungsten spectra and also shows the spectral re-

sponse of the human eye and a typical silicon CCD sensor. The peak for a tungsten

lamp is in the infra-red and this radiation serves to heat rather than illuminate the

3Luminous intensity decreases with angle from the normal, but so too does the apparant area of the

light-emitting surface patch.
4The solar spectrum at ground level is substantially modified by atmospheric absorption.



3.1 Light 77

300 400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavelength (nm)

Eye

CCD

Tungsten

Sun

Figure 3.4: Blackbody emissions for solar and tungsten illumination. The pho-

topic response of the human eye and that of a typical silicon CCD sensor are

shown for comparison purposes.

Symbol Name Value

C1 3 741844 10 16W m2

C2 1 438835 10 2m K

σ Stefan-Boltzmann constant 5 669572 10 8W m2 K4

h Planck's constant 6 626197 10 34J s

k Boltzmann' s constant 1 38062 10 23J K

c Speed of light in vacuum 2 99792459 108m s

Table 3.2: Relevant physical constants.

subject — only a small fraction of the radiation is emitted in the visible spectrum.

Radiation from fluorescent tubes cannot be approximated by a blackbody curve, since

the light is due to fluorescence of various phosphors, each with a narrow spectral

emission.

The radiation spectrum of a blackbody at temperature T as a function of wave-
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length, λ, is given by Planck's radiation formula

M λ
2πhc2

λ5 ehc kλT 1

where h is Planck's constant, k is Boltzmann' s constant, and c is the speed of light.

The equation is frequently written in the form

M λ
C1

λ5 eC2 λT 1

where C1 and C2 are constants given in Table 3.2. The units of M are W m3 which

is interpreted as watts emitted per unit area per unit wavelength. The integral of this

function is the total power radiated per unit area

M tot

∞

0
M λ dλ σT 4 W m2

where σ is the Stefan-Boltzmann constant. The wavelength corresponding to peak

emission is given by Wien' s displacement law

λmax
0 0028978

T
m

The SI values of the relevant physical constants are summarized in Table 3.2.

For a given radiation spectrum, M λ , the corresponding luminous flux can be

obtained by

φtot

∞

0
M λ K λ dλ

where K λ is luminosity in lumens per watt. The energy of a photon is given by

Planck's equation

Ephot λ
hc

λ
J

and thus the photon-flux density is

nphot

∞

0

M λ
Ephot λ

dλ (3.5)

∞

0

λM λ
hc

dλ photons m2 (3.6)

Thus the number of photons per lumen for a given radiation spectrum is

∞

0

λM λ
hc

dλ
∞

0
M λ K λ dλ

photons lm
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Source Photons/lumen

Tungsten lamp at 2885 K 2 0 1016

Tungsten lamp at 3200 K 1 8 1016

Tungsten lamp at 5600 K 1 4 1016

Red LED at 670 nm 1 6 1017

Table 3.3: Photons per lumen for some typical illuminants.
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Figure 3.5: Elementary image formation, showing an inverted real image of the object.

Results for a number of standard illuminants are summarized in Table 3.3. These

values can be useful in analyzing the sensitivity of CCD sensors which are typically

quoted in terms of electrons per lux for a nominated standard illuminant. Knowing the

charge well capacity of the photosite, in electrons, allows us to estimate the luminous

flux over the photosite required for saturation.

CCD sensors are sensitive to infra-red radiation but sensitivity expressed in elec-

trons/lux cannot quantify this since electrons are generated by infra-red photons which

do not contribute to luminous flux. Infra-red filters are frequently fitted to CCD cam-

eras to prevent saturation from infra-red radiation, particularly when working with

tungsten lamps. Infra-red radiation reduces image clarity since the longer wavelengths

are focussed differently by the lens and such photons cause higher pixel cross-talk in

the sensor, see Section 3.3.

3.2 Image formation

The elementary aspects of image formation with a simple lens are shown in Figure

3.5. The positive Z-axis is the camera's optical axis. The variables are related by the
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lens law
1

zo

1

zi

1

f
(3.7)

where zo is the distance to the object, zi the distance to the image, and f the focal

length. For zo f a real inverted image is formed at zi f (limzo ∞ zi f ). For an

object at infinity the film or solid state sensor is placed on the focal plane at z f .

For near objects the image is formed behind the focal plane, so the lens must be moved

out of the camera in order to focus the image on the film or sensor.

The image height, yi, is related to the object height, yo, by the magnification

M
yi

yo

f

f zo

f

zo
(3.8)

which is negative, since zo f , representing the image inversion. Note that magnifi-

cation decreases as the object distance, zo, increases.

The f -number of a lens is the dimensionless quantity

F f d (3.9)

where d is the diameter of the lens. f -number is inversely related to the light gathering

ability of the lens. To reduce light falling on the image plane, the effective diameter

may be reduced by a mechanical aperture or iris, which increases the f -number. Illu-

minance at the image plane is reduced by F2 since it depends on light gathering area

— to increase illuminance by a factor of 2, the f -number must be reduced by a factor

of 2 or 'one stop'. The minimum f -number is marked on a lens, and is related to its

light gathering capability. The f -number graduations on the aperture control increase

by a factor of 2 at each stop. An f -number is conventionally written in the form f/1.4

for F 1 4.

The horizontal and vertical subtended angles of the cone of view, or angles of

view, are given by

θH 2 tan 1 W

2 f
(3.10)

θV 2 tan 1 H

2 f
(3.11)

where W and H are respectively the horizontal and vertical dimensions of the camera's

active sensing area. Standard 35 mm film is 24 mm 36 mm, whereas a CCD sensor

is around 10 mm 10 mm. Table 3.4 compares the angles of view for different focal

length lenses and sensor sizes. Clearly for the relatively small CCD sensor, the field

of view is much narrower compared to film. Frequently the semi-angles of view are

given which are half the angles of view given above. The angle of view is a maximum

when the lens is focussed at infinity.
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f (mm) Pulnix CCD 35 mm film

θH θV θH θV

8 44 33 132 113

25 15 11 72 51

Table 3.4: Angles of view for Pulnix CCD sensor and 35mm film. Computed for

various lenses and with CCD dimensions taken from Table 3.8

In practice, compound lenses are used, comprising a number of simple lens ele-

ments of different shapes fabricated from different glasses. This reduces the size of

the lens and minimizes aberrations, but at the expense of increased light loss due to

reflection at each optical interface.

3.2.1 Light gathering and metering

The illuminance on the image plane of a camera, Ei, is given by

Ei
πLT cos4 θ

4F2 M 1 2
lx (3.12)

where L is the scene luminance, T the transmission efficiency of the lens, M the mag-

nification, and θ is the angle from the optical axis to the image plane point5. The

cos4 θ term models the fall off in illuminance away from the optical axis of the lens.

For large object distance M 1 2 1 and the illuminance at the sensor is indepen-

dent of object distance6.

A lightmeter is a device with fixed optics that measures the radiant flux falling

on a sensor of known area A. By suitable choice of spectral characteristic the sensor

output can be interpreted as luminous flux, φ. Photographers employ two methods of

light measurement:

1. Incident light measurements measure the illuminance of the scene, and are taken

by placing the meter in front of the subject aimed at the camera. The illuminance

is given by

Es
φ
A

(3.13)

The luminance of the scene is computed using (3.4) and an assumed reflectivity

of 18%7

Ls
0 18

π
φ
A

(3.14)

5This effect is pronounced in short focal lenses since max θ W 2 f where W is the sensor width.
6This may seem counter intuitive, but as object distance increases the image size is reduced as is the

spatial integral of luminous flux.
718% 2 2 5 and corresponds to the geometric mean of the 5 stop reflectance range of ' typical' scenes.
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2. Reflected light measurements measure the luminance of the scene directly, and

are taken by placing the meter near the camera aimed at the scene. The illumi-

nation measured by the sensor (3.13) is related to the scene luminance by (3.12)

so that

Ls
4F2

πT

φ
A

(3.15)

where F and T are known characteristics of the lightmeter' s optics.

The two types of measurement are simply different scalings of the lightmeter sensor

output. A lightmeter generally returns the logarithm of luminance called exposure

value, or EV, which is related to luminance by

L k2EV (3.16)

The calculation dials on a lightmeter are a circular sliderule implementing equation

(3.12) which relates exposure time to aperture for a given scene luminance and film

sensitivity or ' speed'. Exposure of the film or sensor is

e EiTe (3.17)

in units of lux.s, where Ei is the illuminance and Te is the exposure time. The ISO film

speed, S, is determined from the exposure necessary to “discernibly fog” the film

S
0 8

e
(3.18)

The factor k in (3.16) is typically around 0 14 and results in the film exposure

being 'centered' within its dynamic range8.

An alternative approach, used by photographers, is to use a spot-reading lightmeter

to measure the brightest and darkest regions of the scene separately, and then manually

compute the required exposure.

3.2.2 Focus and depth of field

Maintaining focus over a wide range of camera-object distances is a non-trivial prob-

lem when the camera is mounted on the end of a robot. The options are to establish

a large depth of field or use a lens with servo controlled focus. The latter approach

has a number of disadvantages since such lenses are generally heavy and bulky, have

limited adjustment rates, relative rather than absolute focus setting, and target distance

must be somehow determined.

8The exposure computed on the basis of film speed is only sufficient to “discernibly fog” the film. A

good photograph requires a higher exposure, which is achieved by calculations based on a fraction of the

real luminance.
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Figure 3.6: Depth of field bounds for 8mm (solid) and 25mm lenses (dashed) at

f/1.4. Circle of confusion is 25µm ( 3 pixels) in diameter. The vertical line at

z f 1820 mm is the singularity in zF at the hyperfocal distance.

Depth of field is the range in object distance over which the lens can form an image

without significant deterioration. This is defined such that the image of a point source

object is a circle of diameter a or smaller — the so called circle of confusion. The

bounds of the acceptable focus range are given by

zN z f

z f

M f
aF

1
(3.19)

zF z f
z f

M f
aF

1
(3.20)

where zN and zF are the near and far bounds of the acceptable focus range, and z f is

the focus setting of the lens. The locus of near and far bounds for a range of focus

settings is shown in Figure 3.6. When the lens is focussed at the hyperfocal distance

z f f 1
f

aF
(3.21)
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the depth of field extends from half the hyperfocal distance to infinity. Rearranging

(3.19) and (3.20) gives the focus and aperture setting for a specified focus range

z f
2zNzF

zN zF

(3.22)

F
f 2 zF zN

2azNzF
(3.23)

The f 2 term in (3.23) means that longer focal length lenses will require a very large

f -number in order to maintain a given depth of field, and will thus have very little

illumination on the image plane.

For 35 mm film the circle of confusion diameter is typically taken as 25µm [250],

and for a CCD array is the pixel-to-pixel spacing [82] (see Table 3.8). Large depth of

field is achieved by using a small aperture, but at the expense of light falling on the

sensor. The requirement for large depth of field and short exposure time to eliminate

motion blur both call for increased ambient illumination, or a highly sensitive image

sensor.

3.2.3 Image quality

In practice the image formed by a lens is not ideal. Lenses used for imaging are usu-

ally compound lenses containing several simple lenses in order to achieve a compact

optical system. Imperfections in the shape or alignment of the simple lenses leads

to degraded image quality. Non-idealities include aberrations which lead to image

blur, and geometric distortions which cause the image to fall in the wrong place. It is

important to match the lens with the sensor size used9 , since lenses are designed to

minimize effects such as geometric distortion and vignetting only over the sensor or

film area.

3.2.3.1 Aberrations and MTF

Aberrations reduce image clarity by introducing blur. This leads to reduced contrast

on fine image detail. Common aberrations include [28]:

Spherical aberration, coma, astigmatism and field curvature which introduce

variations in focus across the scene.

Chromatic aberrations due to different wavelengths of light being focussed at

different distances from the lens.

Vignetting, where image brightness falls off at the edges of the field of view due

to the effect of the lens barrel.

9Lenses are typically manufactured for 1 2, 2 3 and 1 inch sensors.
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Diffraction due to the aperture, which will reduce the definition of the image.

The image of a point source will be an Airy pattern10 and the minimum separa-

tion at which two point sources can be discerned is

d 2 4λF (3.24)

where λ is the wavelength of the illumination (λ is often taken as 555 nm, the

eye's peak sensitivity). Diffraction effects are thus most pronounced at small

aperture or high f -number.

The effect of aberrations can be reduced by closing the aperture since this restricts

the light rays to a small central region of each optical element. However this increases

the magnitude of diffraction effects. It is generally desirable to operate between these

two extremes, where the magnitudes of the two effects are approximately equal.

In order to quantify image sharpness, the relationship between contrast and res-

olution is important. This can be considered as the magnitude of a spatial transfer

function which is generally referred to as the modulation transfer function or MTF.

Aberrations result in MTF roll-off at high spatial frequency. MTF is normally ex-

pressed as a percentage of the uniform illumination response (or DC gain). The MTF

is the magnitude of the normalized Fourier transform of the line spread function, the

distribution of intensity along a line orthogonal to the image of a line of negligible

width. A related measurement derived from the spatial square wave response is the

contrast transfer function or CTF. Useful spatial resolution is typically given in lines,

determined as the highest distinguishable line pitch in a resolution test chart. The spa-

tial resolution of the complete imaging system is obtained by multiplying the MTF

due to the lens, sensor and and analog electronics, and is discussed further in Sections

3.3.2 and 3.5.5.

The MTF at the spatial Nyquist frequency is related to the rise distance11 of an

image of a sharp edge by

MTF fs 2

1

N
(3.25)

where N is the numbers of pixels for the image intensity to rise from 10% to 90%

[121].

3.2.3.2 Geometric distortion

Unlike aberration, geometric distortion leaves the image sharp but causes it to fall

in the wrong place [28]. Geometric distortions are classified as radial or tangential.

10A finite sized disk with faint concentric circular rings, a 2D Sinc pattern.
11The spatial analog of rise time.
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Radial distortion causes image points to be translated along radial lines from the prin-

cipal point12 (outward distortion is considered positive). Tangential distortion occurs

at right angles to the radii, but is generally of less significance than radial distortion.

Radial distortion may be approximated by a polynomial [282]

∆r k1r3 k2r5 k3r7 (3.26)

where r is the distance between the image point and the principal point. The corrected,

or true, image point radius is

r r ∆r (3.27)

For Cartesian image plane coordinates, ix iy , with their origin at the principal point

the distortion may be written

∆ix ∆r
ix

r
ix k1r2 k2r4 (3.28)

∆iy ∆r
iy

r
iy k1r2 k2r4 (3.29)

The polynomial coefficients, ki, would be determined by a calibration procedure

such as described by Tsai [252] or Wong [283]. Andersson [17] mapped the distor-

tion vector at a number of points in the image in order to determine the polynomial

coefficients. Geometric distortion is generally worse for short focal length lenses.

3.2.4 Perspective transform

The simple lens from Figure 3.5 performs a mapping from 3D space to the 2D image

plane. Using similar triangles it can be shown that the coordinates of a point on the

image plane ix iy are related to the world coordinates x y z by:

ix
f x

f z
(3.30)

iy
f y

f z
(3.31)

(3.32)

which is the projective-perspective transform from the world to the image plane. Such

a transform has the following characteristics:

World lines are mapped to lines on the image plane.

Parallel world lines, not in the plane orthogonal to the optical axis, are projected

to lines that intersect at a vanishing point.

12The point where the camera' s optical axis intersects the image plane.
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Figure 3.7: Central perspective geometry.

Conics in world space are projected to conics on the image plane, for example,

a circle is projected as a circle or an ellipse.

The mapping is not one-to-one, and a unique inverse does not exist. In general

the location of an object point cannot be determined uniquely by its image. All

that can be said is that the point lies somewhere along the projecting ray OP

shown in Figure 3.5. Other information, such as a different view, or knowledge

of some physical constraint on the object point (for example we may know that

the object lies on the floor) is required in order to fully determine the object' s

location in 3D space.

In graphics texts the perspective transform is often shown as in Figure 3.7, where

a non-inverted image is formed on the image plane at z 0, from a viewpoint at

z f . This is also referred to as central projection [80]. Such a transform lacks two

important characteristics of the lens; image inversion, and a singularity at z f .

3.3 Camera and sensor technologies

Early computer vision work was based on vidicon, or thermionic tube, image sensors.

These devices were large and heavy, lacked robustness, and suffered from poor image

stability and memory effect [68]. Since the mid 1980s most researchers have used

some form of solid-state camera based on an NMOS, CCD or CID sensor.

Most visual servo work has been based on monochrome sensors, but color has

been used for example in a fruit picking robot [108] to differentiate fruit from leaves.

Given real-time constraints the advantages of color vision for object recognition may
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Figure 3.8: Notional depiction of CCD photosite charge wells and incident pho-

tons. Silicon is more transparent at long wavelengths and such photons will gen-

erate electrons deeper within the substrate. These may diffuse to charge wells

some distance away resulting in poor resolution at long wavelength.

be offset by the increased cost and high processing requirements of up to three times

the monochrome data rate.

3.3.1 Sensors

Solid state sensors comprise a number of discrete photosites or pixels — each site

accumulates a charge proportional to the illumination of the photosite integrated over

the exposure period. Line scan sensors are a 1D array of photosites, and are used in

applications where linear motion of a part can be used to build up a 2D image over

time. Area sensors are a 2D array of photosites, and are the basis of cameras for

television and most machine vision work. The following discussion will be limited to

area sensors although line-scan sensors have been used for visual servoing [271].

The most common types of solid-state area-imaging sensor are:

1. CCD (Charge Coupled Device). A CCD sensor consists of a rectangular array

of photosites each of which accumulates a charge related to the time integrated

incident illumination over the photosite. Incident photons generate electron-

hole pairs in the semiconductor material, and one of these charges, generally the

electron, is captured by an electric field in a charge well as depicted in Figure

3.8. Charge packets are moved about the chip using multi-phase clock voltages

applied to various gate electrodes. Such a transport mechanism shifts the charge
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Figure 3.9: CCD sensor architectures. Top is interline transfer, bottom is frame transfer.

from the photosite to the output amplifier. The two common architectures for

CCD sensors, shown in Figure 3.9, are:

(a) Interline transfer. At the end of each field time the odd or even photosites

transfer their charge to vertical transport registers, and are themselves dis-

charged. During the next field time, the vertical transport registers shift
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one line at a time into the horizontal transport register from where it is

shifted out at pixel rate to the amplifier.

(b) Frame transfer. At the end of each field time the odd or even photosites are

shifted into the vertical transport registers and are themselves discharged.

The charge is then rapidly shifted, typically at 100 times the line rate, into

the storage area. During the next field, the lines are sequentially loaded

into the horizontal transport register where they are shifted out at pixel rate

to the amplifier.

The common features of CCD sensors are that the photosites are sampled si-

multaneously, and are read destructively. Under high illumination the charge

wells can overflow into adjacent photosites leading to blooming. The sensor

manufacturer will quote the capacity of the charge well in terms of electrons,

commonly 105 to 106 electrons. For interline transfer devices the vertical trans-

port registers are covered by metalization to minimize the effect of light on the

stored charge, but this reduces the effective sensitive area of the device. As

shown in Figure 3.8 infra-red photons penetrate a considerable distance [121]

into the substrate and the electrons generated may be collected by charge wells

some distance away. This introduces cross-talk between pixels, where the pixel

values are not truly independent spatial samples of incident illumination.

2. NMOS, or photodiode array. Each site contains a photodiode whose junction ca-

pacitance is precharged and which photoelectrons cause to discharge. Each site

is read to determine the remaining charge after which the capacitor is recharged

by 'charge injection'. While conceptually capable of random access to pixels,

the sensor devices typically have counters to selectively output pixels in raster

scan order.

3. CID (Charge Injection Device). A CID sensor is very similar to the NMOS

sensor except that the charge at the photosite can be read non-destructively.

Charge injection clears the accumulated charge, and may be inhibited, allowing

for some control over exposure time. While conceptually capable of random

access to pixels, the sensor devices typically have counters to selectively output

pixels in raster scan order.

The most significant difference between the CCD and NMOS sensors is that the

CCD sensor samples all photosites simultaneously, when the photosite charge is trans-

ferred to the transport registers. With the other sensor types pixels are exposed over

the field-time prior to their being read out. This means that a pixel at the top of the

frame is exposed over a substantially different time interval to a pixel in the middle of

the frame, see Figure 3.10. This can present a problem in scenes with rapidly moving

targets as discussed by Andersson [17]. Andersen et al. [13] discuss the analogous



3.3 Camera and sensor technologies 91

Time

Field interval

Top row

Middle row

Bottom row

Charge
integration

Figure 3.10: Pixel exposure intervals for NMOS or CID sensor as a function of pixel row.

sampling problem for a vidicon image sensor, and propose a modified Z-transform

approach.

3.3.2 Spatial sampling

The original image function I x y is sampled by the discrete CCD photosites to form

the signal I i j , where i and j are the pixel coordinates. The Nyquist period is 2

pixels, so fine image detail, that with a period of less than 2 pixels, will result in

aliasing which is manifested visually as a Moiré fringing effect.

An ideal spatial sampler would require an infinitesimally small photosite that

would gather no light. In reality photosites have significant width and exhibit cross-

talk due to capture of photoelectrons from adjacent areas of the substrate. The spatial

frequency response of the photosite array is a function of the photosite capture pro-

file. This issue is touched on in a qualitative way by Purll [28], and some sensor

manufacturers provide experimental results on spatial frequency response, or sensor

MTF.

Consider a one dimensional sinusoidal illumination pattern as shown in Figure

3.11

I x a sin ωx φ b (3.33)

with a spatial frequency of ω and arbitrary phase φ and offset b so that illumination

I x 0 x. For pixels with active sensing width h and a spacing p, the response of

the kth pixel

I k
1

h

kp h

kp
I x dx (3.34)

a

ωh
cos ωkp φ cos ω kp h φ b (3.35)

is normalized so that response magnitude is independent of h. The camera output as a
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Figure 3.11: Camera spatial sampling in one dimension. h is the width of the

photosite and p is the pixel pitch. Each pixel responds to the spatial integral of

illumination.

function of distance, x, is piecewise constant

I x
∞

∑
k ∞

I k H x kp H x k 1 p (3.36)

where H x is the Heaviside unit-step function. This function is periodic and can be

represented by a Fourier series

I x
∞

∑
n ∞

c nω e jnωx (3.37)

where c nω is the nth Fourier coefficient given by

c nω
1

T T
I x e jnωxdx (3.38)

and T is the integral over one period T 2π ω.

MTF is the ratio of the magnitude of the fundamental component of the camera

output to the magnitude of the camera input

MTF
c ω

a
(3.39)

which can be shown to be

MTF
2

ωh
sin

wh

2

2

w
sin

ωp

2
(3.40)

Substituting fp 1 p, f ω 2π, h h p, and the normalized sampling frequency

f f fp leads to

MTF p sinc π f h sinc π f (3.41)
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and 50% pixel overlap, h 1 5.

For an ideal sampler, that is, h 0, the MTF is given by

MTF h 0 p sinc π f (3.42)

which is the expected frequency response for a sampler followed by a zero-order hold.

A sampler that integrates over the entire pixel width will have an MTF given by

MTF h 1 p sinc2 π f (3.43)
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For the pixel capture profiles shown in Figure 3.12, the corresponding spatial fre-

quency responses are given in Figure 3.13. These indicates that cross-talk and finite

pixel width cause the spatial frequency response to roll off more sharply at high spatial

frequency. The vertical lines of metalization in an interline transfer sensor reduce the

active width of the photosite, and should improve the MTF in the horizontal direction.

3.3.3 CCD exposure control and motion blur

In the discussion so far it is has been assumed that the photosites are being charged, or

integrating, for one whole field time. High-speed relative motion between the camera

and scene results in a blurred image, since the photosites respond to the integral of

illumination over the exposure period. A blurred object will appear elongated in the

direction of motion13.

In the case where an object moves more than its width during the exposure interval

the illumination will be spread over a greater number of pixels and each will ' see' less

light. That is, as the image blurs, it elongates and becomes dimmer. A machine vision

system which uses thresholding to differentiate a bright object from its background

can thus 'lose sight' of the object. In a visual servoing system this can lead to ' rough'

motion [65].

A conventional film camera uses a mechanical shutter to expose the film for a very

short period of time relative to the scene dynamics. Electronic shuttering is achieved

on CCD sensors by discharging the photosites until shortly before the end of field by

means of the anti-blooming or integration control gate. Only the charge integrated

over the short remaining period, Te, is transferred to the transport registers. The ac-

cumulated charge is reduced proportionally with the exposure time which reduces the

signal to noise ratio of the image. This effect can be countered by opening the cam-

era's aperture or providing additional scene illumination.

The timing of the Pulnix camera's integration period has been determined exper-

imentally by viewing an LED emitting a very short light pulse at a time that is ad-

justable relative to the vertical synchronization pulse. As shown in Figure 3.14 the

integration period always ends 1ms after the onset of vertical blanking.

Consider the one dimensional case of a moving object whose centroid location

on the image plane is iX t . The CCD sensor responds to the integral of the incident

illumination, so the perceived centroid will be the mean over the integration period

iX
1

Te

0

Te

iX t dt (3.44)

13It may be possible to determine the velocity of a known symmetric object from the shape of its blurred

image.
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Figure 3.14: Experimentally determined exposure interval of the Pulnix camera

with respect to vertical active timing.

If the target is moving at a constant velocity iẊ the perceived centroid will be

iX
1

Te

0

Te

iX 0 iẊt dt (3.45)

iX 0 iẊ
Te

2
(3.46)

iX Te 2 (3.47)

which lags the actual centroid by half the exposure interval. Thus for a finite exposure

interval, the actual exposure time should be taken as halfway through the exposure

period.

3.3.4 Linearity

The luminance response of a CRT monitor

LCRT vγCRT (3.48)

is highly non-linear, where v is the input signal and γCRT is a value typically in the

range 2.2 to 2.8. The camera is normally adjusted for the inverse response

v Lcam
γcam (3.49)

where Lcam is the luminance of the observed scene and γcam is chosen as 0 45 to

correct for the non-linearity of the CRT and render an image with correct contrast.

Early vacuum tube sensors such as iconoscopes in fact had the appropriate non-linear
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characteristic. Linear sensors such as the orthicon tube and CCDs require a non-linear

amplifier14.

The transfer function, or linearity of the camera's illumination response, is often

referred to as gamma, and many solid state cameras have a switch to select γcam 1

or 0 45. For machine vision work, where the image is not being displayed on a CRT,

a non-linear camera response serves no useful purpose.

3.3.5 Sensitivity

Sensitivity is the DC gain of the sensor to incident illumination. Factors contributing

to sensitivity include:

Quantum efficiency, ηq, the fraction of incident photons converted to electrons.

This quantum efficiency is typically around 80% but is a function of the semi-

conductor material and wavelength of the photon.

Area efficiency or pixel fill factor is the ratio of photosite active area to total

area

η f

pxpy

pxpy
(3.50)

where px and py are the dimensions of the active photosite sensing area. Areas

of metalization in each photosite reduce the sensitive area. Frame transfer sen-

sors have a higher area efficiency than interline transfer devices since there is

no metalized vertical transport register.

Charge transfer efficiency. Each time a packet of charge is moved about the

substrate, some charge carriers will be lost. Although this fraction is very small,

charge packets from distant photosites undergo a greater number of transfers.

As well as reducing the apparent intensity of the pixel, the 'lost' charge from

bright regions will be picked up by subsequent charge packets, thus reducing

contrast in areas of fine detail. Bright regions leaving a trail of charge behind

them result in streaking of the image.

The gain of the on-chip charge amplifier.

The gain of output amplifier within the camera electronics.

The gain of the AGC (Automatic Gain Control) stage.

14Transmission of the non-linear intensity signal has an advantageous side effect in noise reduction.

Signals corresponding to low intensity are selectively boosted by the non-linearity prior to transmission and

then reduced on display, also reducing the amplitude of additive noise in transmission.
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Figure 3.15: Experimental setup to determine camera sensitivity.

f -number grey-level sensor

luminance (lx)

f/5.6 saturated 2.0

f/8 177 0.98

f/11 120 0.52

f/16 44.2 0.25

Table 3.5: Grey level response of Pulnix TM-6, with 25mm lens, 20ms exposure

time, no AGC, γ 1, luminance 80cd m2.

Sensor sensitivity is typically quoted in units of electrons/lux, and may be found

in a data sheet. However the sensitivity or overall gain of a complete camera is rarely

given and must be determined experimentally. A suitable experimental setup is shown

in Figure 3.15 where the the camera is aimed at a uniformly illuminated grey test card

and defocused so as to eliminate the effect of fine texture.

A spot-reading meter is used to determine the luminance of the card, L, and the

mean grey-level of a small region in the center of the image, I, is taken as the camera's

response. For a range of f -number settings shown in Table 3.5 the response of the

Pulnix camera was determined to be

I
11000

F2
12 (3.51)
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Figure 3.16: Measured response of AGC circuit to changing illumination. Top

curve shows mean grey-level response. Bottom curve shows the grey-level spatial

variance.

which has the form expected by (3.12) plus a small offset. Luminance L is mea-

sured by the spot-reading meter as 80 cd m2 and if the intensity gain of the camera is

Kcam greylevel lx then from (3.12) we may write

11000 Kcam
π80

4
(3.52)

giving a camera gain of

Kcam 180 greylevel lx (3.53)

This is a lumped gain value which includes lens transmission, sensor response, and

camera and digitizer analog gain15. Extrapolating from the experimental data, satura-

tion of the digitizer will occur when the illuminance at the sensor exceeds 1.4 lx.

Let us assume that the minimum discernable grey value (due to noise) is 5, which

corresponds to an illuminance of 1 4 5 256 27 10 3 lux. Using the film speed

relationship (3.18) and an exposure interval of 40 ms we can equate this sensor to an

ISO film speed of around 730.

15DIGIMAX is set to nominal 0 dB gain, see Section 3.5.2.
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Figure 3.17: Measured response of AGC circuit to step illumination change. Top

curve is with AGC disabled, and the bottom with AGC enabled.

Cameras commonly have an automatic gain control (AGC) function which at-

tempts to maintain the 'average' grey-level in the scene. The Pulnix camera has a

quoted AGC gain range of 16 dB or 2.7 stops. Several experiments were conducted to

investigate the behaviour of the AGC circuit:

1. With constant illumination, images were captured of a grey card. As increas-

ingly large white squares were added to the card the intensity of the grey back-

ground area was reduced. The AGC strategy thus appears to be maintenance

of the mean grey-level in the scene even if this forces bright scene areas into

saturation.

2. With constant illumination and no lens fitted, images were captured with a vari-

ety of neutral density filters over the camera. The results plotted in Figure 3.16

show a plateau in the camera response for the range of illuminance levels over

which the output is held roughly constant by the AGC.

At very low illuminance the gain of the AGC is insufficient to maintain the

camera output level. In this regime it can be seen that the grey-level spatial

variance16 has increased, as the amplifier boosts the weak signal and accentuates

16The variance of pixel values within a 64 64 window centered in the image.
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the noise component.

3. The temporal response of the AGC was investigated by measuring the response

to an average illumination level which is an offset square wave. The ratio of

intensities is approximately 1.5, requiring only a 3dB gain range which is well

within the 16 dB range of the camera's AGC circuit. The response with and

without AGC is shown in Figure 3.17. The former exhibits substantial over-

shoot taking around 1s to settle. In a normal situation a bright object entering

the scene would cause only a moderate change in average illumination and this

oscillatory effect would be less marked. An AGC is a non-linear feedback sys-

tem, and the response will be related to the amplitude of the input.

3.3.6 Dark current

In addition to the photo-generated electrons, a photosite accumulates charge due to

dark current. Dark current results from random electron-hole pairs generated ther-

mally or by tunnelling and is indistinguishable from photon generated current. A

temperature rise of 7K will double the dark current [83]. To minimize accumulated

charge due to dark current, sensors designed for long exposure times are cooled. Short

exposure times reduce charge due to both dark current and illumination.

The mean dark current is determined by dark-reference photosites which are gen-

erally columns on each side of the array. These are manufactured in the normal manner

but are covered by metalization so that only dark current is accumulated. The camera

electronics use the signal from these pixels as a black reference, subtracting it from

the output of the uncovered pixels.

3.3.7 Noise

A number of factors contribute to noise in a CCD sensor:

Photon arrival statistics result in photon shot noise. Photon arrival is a random

process [221] and the probability of detecting a photon in the time interval t t

δt is proportional to the radiometric intensity Er t (W m2) at time t .

The photon-number statistics are generally modelled by a Poisson distribution

with a mean and variance

n
Er

hν
(3.54)

σ2
n n (3.55)

where ν is the photon frequency and h is Planck's constant.
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Photon conversion statistics, or photoelectron noise. A photon incident on a

sensor of quantum efficiency ηq will produce an electron with a probability of

ηq and fail to do so with a probability 1 ηq.

Dark current shot noise, due to the random thermal generation of electrons cap-

tured by the photosite.

Receiver shot and thermal noise introduced during amplification of the accu-

mulated charge. To minimize this, a high-gain low-noise amplifier is generally

fabricated on-chip with the CCD sensor.

Readout noise due to coupling of CCD clocking signals into the sensor output

signal.

Pattern noise or response non-uniformity. This is not a true noise source but

reflects a variation in gain between photosites. This effect arises from variations

in material characteristics and process variations in chip manufacture. The non-

uniformity is highly dependent on color which affects photon penetration of the

material and thus the defects encountered.

If x is the camera output signal, the signal to noise ratio

SNR
x2

Σσ2
(3.56)

is a function of the various noise sources just discussed.

The mean and variance of grey-level within a small window in the center of the

image were computed for a range of illumination levels. To achieve uniform illumi-

nation of the sensor the lens was removed and the illuminance controlled by means

of neutral density filters placed in front of the camera. The variance is plotted as a

function of the mean intensity in Figure 3.18. The variance increases linearly with

mean camera response as would be expected for photon shot noise by (3.55). The use

of short exposure times does not appear to have any significant effect on the output

noise level. The line corresponds to a SNR of 36 dB17.

If the value of each pixel within the sample window is averaged over time the

sample mean will approach the expected value given by (3.54), and the spatial variance

of the time-averaged pixels would then be due to pixel response non-uniformity. For

the brightest sample in Figure 3.18 the spatial variance falls from 3 5 to 1 0 after

averaging 100 frames.

17The digitizer quantization noise from (3.70) is insignificant compared to the noise measured here.
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Figure 3.18: Measured spatial variance of illuminance as a function of illumi-

nance. Points marked '*' are measured with a 20ms exposure time, and '+' with

a 2ms exposure time.

3.3.8 Dynamic range

The dynamic range of a CCD sensor is the ratio of the largest output signal to the

smallest discernible output. The largest signal, at saturation, is directly related to

the capacity of the charge well. At very low illumination levels the response of the

sensor is totally overwhelmed by the dark current and noise effects described above.

The smallest discernible output is thus the output noise level. For a CCD with, for

example, noise of 100 electrons and a charge well of 100,000 electrons the dynamic

range is 1000 or nearly 10 bits.

3.4 Video standards

Broadcast and closed-circuit television industries dominate the manufacture and con-

sumption of video equipment, thus most cameras used for machine vision work con-

form to television standards. The two most widely used standards are:

RS170 used in the USA and Japan with 525 line frames at 30 frames per second;
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Figure 3.19: CCIR standard video waveform, 1V peak to peak.

CCIR used in Europe and Australia with 625 line frames at 25 frames per sec-

ond.

The requirements of broadcast television are quite different to those for machine vi-

sion. Broadcast television requires low transmission bandwidth, ease of decoding in

the viewer's set and minimal human perception of flicker. Interlacing, an artifact in-

troduced to address the constraints of broadcast television is particularly problematic

for machine vision and is discussed further in Section 3.4.1. The camera frame rate,

effectively the sample rate in a visual servo system, is now a significant limiting factor

given the current and foreseeable capabilities of image processing hardware. High

frame rate and non-interlaced cameras are becoming increasingly available but are ex-

pensive due to low demand and require specialized digitization hardware. Introduction

is also hampered by a lack of suitable standards. An important recent development is

the AIA standard for cameras with digital rather than analog output, which supports

interlaced and non-interlaced images of arbitrary resolution.

A television signal is an analog waveform whose amplitude represents the spatial

image intensity I x y sequentially as v t where time is related to the spatial coordi-

nates by the rasterizing functions

x Rx t (3.57)

y Ry t (3.58)

which are such that the image is transmitted in a raster scan pattern. This proceeds

horizontally across each line, left to right, and each line from top to bottom. Between

each line there is a horizontal blanking interval which is not displayed but provides

a short time interval in which the display CRT beam can return to the left side of

screen prior to displaying the next line, and contains a synchronization pulse, to keep

the display point in step with the transmitted waveform. The video waveform for
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Figure 3.20: CCIR format interlaced video fields. Note the half line at top and

bottom which distinguishes the two field types.

one line time is shown in Figure 3.19, and details of timing are given in Table 3.6.

Typically video signals are 1V peak-to-peak. The average value of the luminance

signal is referred to as the pedestal voltage. The back-porch period is used to provide

a reference blanking level for the intensity waveform. For RS170 video the voltage

corresponding to black is raised slightly, 54 mV, above the blanking level by the black-

setup voltage.

An interlaced video signal comprises pairs of sequential half-vertical-resolution

fields, displaced vertically by one line, as shown in Figure 3.20. All even lines are

transmitted sequentially in one field, followed by all odd lines in the next field. This

artifice allows a screen update rate of 50 Hz which is above the flicker perception

threshold of human viewers. A field is not an integral number of line times — for

CCIR standard video there are 287.5 lines per field. Even fields begins with a half-

line, and odd fields end with a half-line as shown in Figure 3.20. A CCIR frame is

defined as comprising an even field followed by an odd field. Between each field there

is a vertical blanking interval, which also serves for beam retrace and synchronization.

Details of vertical waveform timing are given in Table 3.7.

A composite color signal comprises the luminance signal already described with

a superimposed suppressed-carrier chrominance signal. The chrominance signal is

phase modulated to encode the two color component signals. To demodulate this

signal the carrier signal18 must be reinserted locally. A few cycles of the carrier fre-

quency, the color burst, are transmitted during the back porch time to synchronize the

18For CCIR the color subcarrier frequency is approximately 4.34 MHz.
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Period Fraction Time (µs)

Total line (H) 1H 64.0

H blanking 0.16H 12.0 0.25

H sync pulse 0.08H 4.7 0.2

Table 3.6: Details of CCIR horizontal timing.

Period Fraction Time

Total field (V) 1V 20 ms

312.5H

Total frame 2V 40 ms

625H

Active frame time 575H

Active field time 287.5H

V blanking 25H 1.6ms

0.08V

Table 3.7: Details of CCIR vertical timing.

local color subcarrier oscillator. This method of encoding color is chosen so as to min-

imize interference with the luminance signal and to provide backward compatibility,

that is, allowing monochrome monitors to satisfactorily display a color video signal.

Bright fully-saturated regions cause the CCIR color video signal to peak at 1.23V.

3.4.1 Interlacing and machine vision

As already described a frame in an interlaced image comprises two video fields. Be-

fore the frame can be processed in a machine vision system both fields must be read

into a framestore to recreate the frame. This process is referred to as deinterlacing.

Ordinarily deinterlacing does not cause any problem, but when imaging a rapidly

moving object the time at which the field images are captured, or the type of shut-

tering used, is critical. A frame shuttered camera exposes both fields simultaneously,

whereas a field shuttered camera exposes each field prior to readout. Frame shuttering

is feasible with a frame transfer CCD sensor. The Pulnix camera used in this work

employs an interline transfer CCD sensor and is capable only of field shuttering. Fig-

ure 3.21 shows the effect of deinterlacing an image of a rapidly moving object from

a field shuttered camera. For moderate velocity the object becomes ragged around

the edges, but for high velocity it appears to disintegrate into a cloud of short line

segments. One approach to circumventing this problem is to treat the fields as frames

in their own right, albeit with half the vertical resolution. This has the advantages of

providing twice the visual sample rate, while eliminating deinterlacing which requires
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Figure 3.21: The effects of field-shuttering on an object with moderate (top) and

high (bottom) horizontal velocity.

additional hardware and increases latency.

When using video fields in this manner it should be remembered that the photosites

for the two fields are offset vertically by one line in the sensor array, and thus odd and

even field pixels correspond to vertically disparate points in the scene19 . This results

in the vertical coordinates being superimposed with a 25 Hz square wave with 1pixel

peak-to-peak amplitude. Although the image plane displacement is small, the apparent

velocity is very high, around 12 pixel s, and may cause problems with target velocity

estimators. To be rigorous when using field rate data this effect should be corrected for

(different camera calibrations made for each field) but in practice this is rarely done.

3.5 Image digitization

The digital images used in machine vision are a spatially sampled representation of

the continuous image function I x y . The first step in machine vision processing is to

digitize the analog video waveform which represents the image function. The wave-

form is sampled and quantized and the values stored in a two-dimensional memory

array known as a framestore. These samples are referred to as picture elements or

19Some cameras are able to provide an interlaced output that uses only a single field from the sensor.

That is, they output even field, even field, even field . . .
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pixels, and their magnitude is often referred to as grey-level or grey value. Each row

of data in the framestore corresponds to one line time of the analog video signal.

This section will examine the various processing stages involved in image dig-

itization, both in general terms and also with particular reference to the Datacube

DIGIMAX [73] hardware used in this work.

3.5.1 Offset and DC restoration

The analog waveform from the camera may accumulate DC offset during transmission

and amplification. DC restoration is the process of eliminating these offsets which

would otherwise be manifest as brightness offsets, introducing errors in perceived

image contrast. The waveform is sampled during the back porch period, and this

value (maintained by a sample and hold network) is subtracted from the video signal

for the next line so as to restore the DC level. Ideally the signal' s black reference

voltage is related to the output of the dark reference photosites within the camera.

The DIGIMAX digitizer allows an offset to be specified, so that the signal level

corresponding to black can be set to correspond with a grey value of 0. The Pulnix

TM-6 camera has been observed to output a black level 25 mV above blanking level,

despite its claimed CCIR output format.

3.5.2 Signal conditioning

Prior to digitization the analog signal from the camera must be filtered to reduce alias-

ing and possibly to screen out the chrominance signal from a composite video source.

The DIGIMAX has a 6th order filter with settable break frequency. For a 512 pixel

sensor a break frequency of 4.5MHz is used with a 40 dB octave rolloff. However

such a filter will have a substantial effect on frequency components within the pass

band which will be manifested in reduced contrast and blurring of fine image detail,

compounding the effect due to the camera's MTF. More importantly the signal will be

delayed due to the phase characteristic, see Figure 3.22, of the anti-aliasing filter. This

must be considered in the camera calibration process since it shifts the entire image

horizontally as shown by the step response Figure 3.23.

The signal conditioning stage may also introduce a gain, Kdig, prior to digitization

to improve the signal to noise ratio for dark scenes. The DIGIMAX digitizer allows

gain settings in the range -4 dB to +10dB in 2dB steps, which corresponds to +1.3 to

-3.3 stops at the camera.

3.5.3 Sampling and aspect ratio

At the sampler the piecewise constant output signal corresponding to the camera pho-

tosites has been degraded and ' rounded off' due to the limited bandwidth electronics
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Figure 3.24: Measured camera and digitizer horizontal timing.

and transmission. This signal must be sampled to generate the framestore pixel val-

ues I f i j where i and j are framestore row and column addresses. Importantly, the

framestore pixels, I f , are not necessarily mapped exactly onto camera pixels. In or-

der to correctly sample the camera signal and address the framestore the camera's

rasterizing functions (3.57) and (3.58) must be replicated within the digitizer. The

synchronization information within the video signal is used for this purpose.

A digitizer samples the video signal v t at a frequency fd , which is generally

an integral multiple of the horizontal synchronization pulse frequency, fh. For the

DIGIMAX digitizer [75]

fd 616 fh (3.59)

Such sampling does not necessarily align the samples with the output of spatially

adjacent photosites. Typical digitizers sample the incoming video into an array of

512 512 samples20 , so each line has 512 samples irrespective of the number of pho-

tosites per line in the sensor. Each digitized pixel is therefore not an independent

point sample of the incident illumination, an effect which has serious ramifications

for many machine vision algorithms, particularly edge detectors, which make assump-

tions about independent pixels [15]. This pixel re-sampling further reduces the MTF,

and also alters the aspect ratio of the stored image.

Figure 3.24 shows the timing waveforms measured for the Pulnix camera and

DIGIMAX. The active video time of the camera is the response of the unmasked

20Since CCIR video has 575 active lines per frame, see Table 3.7, the lowest 63 lines of the frame (11%)

are lost. More modern digitizers and framestores allow capture of an entire CCIR frame.
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Parameter Value

Sensor width 6.5 mm

Sensor height 4.8 mm

Horizontal active pixels 752 pixels

Vertical active lines 582 pixels

Pixel width (px) 8.6 µm

Pixel height (py) 8.3 µm

Table 3.8: Manufacturer's specifications for the Pulnix TM-6 camera.

pixels and is readily measured with an oscilloscope from the video waveform with the

sensor illuminated and no lens fitted21. The active video region of the DIGIMAX is

512 pixels long beginning 87 pixels after the horizontal synchronization pulse [75].

Clearly the active video times of the camera and digitizer do not overlap correctly.

As a consequence the digitized image contains a black stripe, approximately 10 pix-

els wide, on the left hand edge of the image and the same number of pixels are lost

from the right hand edge. The DIGIMAX's timing is appropriate for RS170 where the

horizontal blanking periods are shorter than for CCIR.

The camera's 752 camera pixels per line, from Table 3.8, are re-sampled at 512

points, and this ratio can also be expressed in terms of the digitizer and camera pixel

frequencies

β
fc

fd

752

512
1 47 (3.60)

Each framestore pixel thus contains information from nearly 1.5 camera photosites.

The parameter β is important for many of the camera calibration techniques dis-

cussed in Section 4.2.2, and a number of techniques have been proposed for its deter-

mination since it is highly dependent upon the camera and digitizer used. Tsai [169]

suggests observing interference patterns in the digitized image due to beating of the

camera's pixel clock with the digitizer, but no such pattern is discernible with this Pul-

nix camera. Penna [205] describes an approach based on imaging an accurate sphere,

and fitting a polynomial curve to the captured image.

An experiment to accurately determine β was conducted using the frequency ratio

measurement capability of an HP5115A Universal Counter. The camera pixel clock

and the horizontal synchronization pulse signals are both available and their ratio was

measured as
fc

fh

904 3 (3.61)

21The measured line time at 64.36 µs is slightly longer than the CCIR standard 64 µs.
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Parameter Value

αx 79.2 pixel/mm

αy 120.5 pixel/mm (frame mode)

αy 60.2 pixel/mm (field mode)

Table 3.9: Derived pixel scale factors for the Pulnix TM-6 camera and DIGIMAX digitizer.

and knowledge of DIGIMAX operation, (3.59), leads to

β
fc

fd

fc

fh

fh

fd

1 468 (3.62)

Framestore pixel aspect ratio is a function of the camera's pixel dimensions and

the sampling ratio β. The dimensions22 of the photosites, px py, for the camera used

in this work are given in Table 3.8.23 The scale factors αx and αy are readily derived

from the photosite dimensions

αx
1

β px
pixel m (3.63)

αy
1

py

pixel m (3.64)

An image on the sensor with dimensions of W H will appear in the framestore

with dimensions, in pixels, of αxW αyH. In general the aspect ratio, height/width,

will be changed by αy αx, and this has been verified experimentally as 1 52. When

processing video fields rather than frames, adjacent rows in the image are separated

by two rows on the sensor. The vertical scale factor becomes

αy
1

2py
pixel m (3.65)

and the ratio αy αx is now 0 761. These scale factors are summarized in Table 3.9.

The timing relationships just described, which are a function of the particular cam-

era and digitizer used, directly affect horizontal displacement of the image and dig-

itized image aspect ratio. Both of these factors will affect the intrinsic parameters

of the camera, and are significant in camera calibration which will be discussed in

Section 4.2.

Figure 3.25 shows the coordinate systems that will be used throughout this work.

The direction of pixel scanning within the CCD sensor eliminates the image inversion

present in the earlier lens equations (3.30) and (3.31). The world X and Y directions

22Manufacturer' s specifications do not discuss tolerance on pixel dimensions.
23Generally the pixels cells are not square though cameras with square pixels are available.
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correspond to the image plane iX and iY directions respectively. Those equations can

now be written in terms of pixel coordinates as

iX
αx f x

z f
X0 (3.66)

iY
αy f y

z f
Y0 (3.67)

(3.68)

where X0 Y0 is the pixel coordinate of the principal axis defined earlier.

3.5.4 Quantization

The final step in the digitization process is to quantize the conditioned and sampled

analog signal by means of a high-speed analog to digital converter. The sample is

quantized into an n-bit integer with values in the range 0 to 2n 1. Typically the black

reference would correspond to 0 and the peak white level to 2n 1. The quantized

signal, xq t , can be written in terms of the original signal , x t , as

xq t x t eq t (3.69)

where eq t is the quantization noise which is assumed to have a uniform distribution

over the range 1
2

1
2 and a mean square given by

e2
1

12
(3.70)
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Figure 3.26: Measured camera response to horizontal step illumination change.

Curves are f/1.4 with 4.5MHz analog filter (solid), f/1.4 with no analog filter

(dotted), and f/16 with 4.5MHz analog filter (dashed).

The signal to noise ratio is then

SNR 12x2 (3.71)

The DIGIMAX employs an 8-bit converter and for a typical pixel RMS grey-value

of 100 the SNR due to quantization would be 51 dB. To increase the SNR for low

amplitude signals a gain, Kdig, can be introduced prior to quantization, see Section

3.5.2. From Figure 3.18 it is clear that the quantization noise, (3.70), is low compared

to the total measured variance.

3.5.5 Overall MTF

The spatial step response of the entire imaging system was measured by capturing

an image of a standard test chart under various conditions. The spatial frequency re-

sponse will be reduced by all the mechanisms described above including lens aberra-

tion, aperture diffraction, pixel capture profile, analog signal processing, and digitizer

pixel re-sampling. The horizontal step responses are shown in Figure 3.26. Switch-

ing out the DIGIMAX analog filter shifts the edge by approximately 1.7 pixels24 but

24Since the phase delay of the filter, shown in Figure 3.22, is eliminated.
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Figure 3.27: Measured camera response to vertical step illumination change.

Curves are f/1.4 with 4.5MHz analog filter (solid), and f/16 with 4.5MHz analog

filter (dashed).

does not increase the edge sharpness. For both horizontal and vertical responses the

edge gradient is 50% higher at f/16 compared to f/4. As discussed in Section 3.2.3.1

the effect of aberrations is reduced as the f -number increases until the diffraction

limit, (3.24), is encountered. From this it may be concluded that the analog filter and

diffraction have minimal effect on the overall MTF which is ultimately limited by lens

aberration.

The vertical and horizontal profiles both have approximately the same edge gradi-

ent when converted from pixel units to distance units, that is, around 25 greylevel µm.

The edge width for the f/1.4 case is approximately 3.8 pixels, which from (3.25) gives

an estimated MTF at the Nyquist frequency of

MTF fs 2

1

3 8
0 26

This is low compared to the MTF plots given in Figure 3.13 and again suggests that

spatial sampling is not a limiting factor in edge resolution. There is strong evidence

to suggest that the C-mount CCTV lens25 used is the dominant source of edge blur.

25Cosmicar C814.
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zero-order hold.

These lenses are mass produced commodity items for applications such as surveillance

and are likely to be designed for low unit cost rather than image quality. It has been

suggested [52] that the format of C-mount lenses, particularly the long back-focal dis-

tance severely constrains the optical design. C-mount lenses are however commonly

used within the machine vision and robotics research community.

3.5.6 Visual temporal sampling

In a visual servo system the camera performs the function of the sampler. An ideal

visual sampler would capture the instantaneous state of the scene and in practice this

can be approximated by choice of a suitably short exposure interval. Digital control

systems, as shown in Figure 3.28, typically include an analog prefilter between the

sensor and the digitizer as an anti-aliasing device. Such filters are low-pass and de-

signed to attenuate signals above the Nyquist frequency so that, when aliased into

lower frequencies by the sampler, they will not be detrimental to the control-system

performance [95].

The effect of aliasing due to camera sampling results in the well known effect

where, in movies, the wheels on wagons can appear to rotate backward. In a visual

servo system it is difficult to conceptualize an analog prefilter — this would be some

optical device that transmitted low-frequency scene intensity change but attenuated

high-frequency change. Intuitively it can be seen that such an effect is achieved by

motion blur. A point oscillating at high frequency in the scene will appear, with a long

exposure interval, to be a blur and have little if any apparent motion. While rapidly

oscillating targets are unlikely to be encountered, camera oscillation due to manipula-

tor structural resonance is a significant issue and is discussed further in Section 8.1.4,

where it is shown that resonances exist at frequencies considerably greater than the

visual Nyquist frequency.

Simulations of camera response to sinusoidal target motion show the magnitude of

the motion detected by the camera is a complex function of target motion magnitude

and frequency as well as camera exposure interval and threshold. The simulation

models the individual photosite charge integration as the target intensity profile moves

with respect to the photosite array. The integration is performed using a large number

of time steps within each charge integration interval. The dominant characteristic for
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sinusoidal target motion up to the Nyquist frequency is a linear phase characteristic

due to the latency associated with the exposure interval given previously by (3.47).

Above the Nyquist frequency it is not possible to examine the magnitude and phase

of sinusoidal components since, due to frequency folding, the input and output fre-

quency are not equal. The approach used in simulation is to assume target motion

with a uniform spectrum above the visual Nyquist frequency and examine the RMS

magnitude of the simulated camera output which represents noise injected into the

controller by super-Nyquist target motion. The target motion

x t H r t βt (3.72)

is generated by high-pass filtering a vector of random numbers, r t . In this case

the filter selected, H , is a 6th order Type I Chebyshev filter with a break frequency

of 30 Hz and 3dB passband ripple. For small amplitude target motion the camera

output is highly dependent on where the target image lies with respect to the pixel

boundaries. To counter this the high frequency target motion is added to a ramp signal,

βt , which slowly moves the target centroid by 1pixel over the simulation interval of 64

field times. This ramp is removed before computing the RMS value of the simulated

camera output. Figure 3.29 shows the magnitude response of the camera simulated

in this manner for two different exposure intervals. It can be seen that the camera

attenuates this super-Nyquist signal and that the attenuation increases with exposure

interval. Intuitively this is reasonable since image blur will increase with exposure

interval. Figure 3.30 shows, for a constant exposure interval, the effect of varying the

threshold. The camera response is greatest for a normalized threshold of 0.5 which

is the midpoint between background and foreground intensity. Greatest attenuation

of super-Nyquist components can be achieved by using a low threshold and a long

exposure interval.

3.6 Camera and lighting constraints

This section summarizes the issues involved in the selection of camera settings and

scene illumination. The requirements for visual servoing are:

a large depth of field so as to avoid image focus problems as the camera moves

depth wise with respect to the scene;

short exposure interval to reduce motion blur and have the camera closely ap-

proximate an ideal visual sampler;

the object be of sufficient size and brightness in the image that it can be recog-

nized.
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Figure 3.29: Magnitude response of simulated camera output versus target mo-

tion magnitude for various exposure intervals: 2ms (*), 20ms (+). Dotted line

corresponds to unit gain. Threshold is 0.5.
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old for constant target motion magnitude. Exposure interval is 2ms.
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Quantity Lower bound Upper bound

focal magnification (3.8) field of view (3.10), (3.11)

length f geometric distortion

f -number depth of field (3.19), (3.20) diffraction (3.24)

F image brightness (3.12)

SNR (3.56)

exposure image brightness (3.12) image blur

interval Te SNR (3.56)

illuminance Ei image brightness (3.12) subject heating

SNR (3.56)

Table 3.10: Constraints in image formation. The relevant equations are cited.

These requirements are conflicting — for instance depth-of-field requires a small aper-

ture which combined with the need for short exposure time greatly reduces the image

intensity. Table 3.10 lists the parameters and indicates the factors that control the

upper and lower bounds of acceptable settings.

A spreadsheet, see Figure 3.31, is a convenient way to appreciate the interactions

of these parameters. The top section contains parameters of the lens and digitizer, and

these correspond to the 8mm lens used in this work.26 The next section computes the

diffraction blur by (3.24), and the hyperfocal distance for the specified diameter circle

of confusion by (3.21). The near and far focus bounds computed by (3.19) and (3.20)

are also shown. For this case a reasonable depth of field can be obtained at f/5.6 with

the focus point set to 700 mm. The diffraction effect is negligible at only 0.3pixels.

The lowest section of the spreadsheet computes field of view, object image plane

size at two settable distances from the camera; near and far. Incident lightmeter read-

ings and estimated camera grey-level response are calculated based on the distance

between object and light source. In this example the lighting system comprises two

800 W studio spot-lights situated 3m behind the camera. Given the short exposure

time and small aperture setting a significant amount of illumination is required to ob-

tain a reasonable camera response at the far object position.

3.6.1 Illumination

An 800 W photographic floodlamp with a quartz halogen bulb has a luminous effi-

ciency of 20 lm W. Assuming the emitted light is spread over π sr27 the luminous

intensity is
800 20

π
5100 cd

26Lens transmission of 80% is an estimate only.
27One quarter sphere solid angle.
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Camera and lens settings
Aperture (F) 5.6

Focal length (f) 8 mm

Lens tranmission 80 %

Exposure time (Te) 2 ms

Pixel scale (αx) 80 pixel/mm

Pixel scale (αy) 60 pixel/mm

Focus setting 700 mm

Hyperfocal distance 922 mm

Diffraction 3.79 µm = 0.30 pixels

Circle confusion diam 1 pixel

Depth of field 425 mm, to INF mm

Object apparent size
Near Far

Object range: 600 3000 mm

Object diameter (d) 50 mm = 54.1 10.7 pixel

Magnification 0.014 0.003

Framestore pixel scale factor (X) 1.08 0.21 pixel/mm

Framestore pixel scale factor (Y) 0.81 0.16 pixel/mm

FIeld of view: width 474 2394 mm

height 631 3191 mm

Illumination and object brighness
Light position -3000 mm 10186 10186 cd

Light power 1600 W 786 283 lx

Luminous efficiency 20 lm/W 393 141 nt

Sphere fraction 0.25 11.47 9.99 EV

Surface reflectance 0.5 1.26 0.45 lx

220 79 grey-levels

Figure 3.31: Spreadsheet program for camera and lighting setup. Input variables

are in grey boxes. Image plane object size and field of view are calculated for

two camera distances; near and far. Object brightness, in lightmeter units and

estimated camera grey-level, is computed based on the distance between object

and light source.
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Figure 3.32: Comparison of illuminance due to a conventional 800 W floodlamp

(dashed) and 10 camera mounted LEDs (solid) as a function of distance from the

camera. It is assumed that the LEDs are 15cd each and mounted at the camera,

and the floodlamp is 3m behind the camera and radiating light over π sr.

If the lamp is positioned 3m away from the object the illuminance will be

5100

32
570 lx

Recently high-intensity light emitting diodes (LEDs) have become available. A

typical device has an intensity of 3cd at 20 mA with a 7 beam width. At the peak

current of 100 mA the intensity would be 15 cd, and if the LED were mounted on the

camera and the object distance was 0.5m the illuminance would be 60 lx. Thus ten

camera-mounted high-power LEDs exceed the illuminance of a very hot 800 W studio

floodlamp situated some distance away. A comparison of the effective illuminance of

floodlamp and LEDs for varying object distance is given in Figure 3.32 showing that

the LEDs are competitive for target illumination up to 600 mm. These calculations

have been based on photometric units, though as shown in Figure 3.4, a tungsten lamp

and a red LED at 670 nm emit most of their radiation in a spectral region where the

sensitivity of a CCD sensor greatly exceeds that of the eye.

In the visual servoing application the camera's electronic shutter is open for only
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10% of the time28 so 90% of the scene illumination is essentially wasted. The LED

scheme can be further refined by pulsing the LED so that it is lit only while the cam-

era's electronic shutter is 'open'. At a 10% duty-cycle the LED peak current can sub-

stantially exceed the continuous rating and experiments have shown that peak currents

of 400 mA are possible. However the light output does not increase proportionally to

current and this is discussed further in Appendix E.

A pulsed LED light source has been built with a ring of 10 high-intensity LEDs

placed around the camera lens, see Figure E.1. A control box, described in Appendix

E, allows the current pulse height, width and starting time to be adjusted. The advan-

tages of this light source are that it is lightweight, rugged, has low heat output, and like

a miner' s cap-lamp directs light on the subject of interest. Its principal disadvantage

is that the light output is uneven due to the way in which the pools of light from the

individual LEDs overlap.

3.7 The human eye

The human eye has many important differences when compared to a CCD sensor.

The eye is approximately spherical with a diameter of 15 mm and light is sensed by

photoreceptors located in the retina at the back of the eye. In normal daylight con-

ditions cone photoreceptors are active and these are color sensitive: 65% sense red,

33% sense green and only 2% sense blue. The cones are approximately 3µm in di-

ameter and 34,000 of them are packed into the foveal area of the retina which is only

0.6mm in diameter. The photoreceptor density in the rest of the retina is considerably

lower. The eye has high resolution only over the foveal field of view of a few degrees

but subconscious eye motion directs the fovea over the entire field of view. The dis-

tance between the lens and retina is approximately constant at 15 mm so focussing is

achieved by muscles which change the shape of the lens.

Cone photoreceptors have a dynamic range of 600 and the pupil, equivalent to the

iris of a lens, varies in diameter from 2 to 8mm which provides for a factor of 16 (10

in older people) in dynamic range. At very low light levels the rod photoreceptors

become active and provide another factor of 20 in dynamic range. The rod sensors

are monochromatic and their density in the fovea is only 7% of that of the cones,

but increases in the peripheral region. Rod sensitivity is chemically adapted with

a time constant of tens of minutes. The overall dynamic range of the eye is thus

approximately 100,000.

The eye has three degrees of rotational motion. The muscles that actuate the hu-

man eye are the fastest acting in the body allowing the eye to rotate at up to 600 deg s

and 35,000 deg s2 for saccadic motion [270]. Smooth pursuit eye motions, involved

in tracking a moving object, operate at up to 100 deg s [214]. Rotation about the view-

28A 2 ms exposure for every 20 ms video field.
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ing axis, cyclotorsion, is limited and the maximum, ranging from 5 to 20 deg, varies

between individuals.



Chapter 4

Machine vision

Computer vision is the application of a computer system for receiving and process-

ing visual information. It comprises two broad areas: image processing and image

interpretation. The latter, often referred to as machine vision, is typically applied to

part inspection and quality control, and involves the extraction of a small number of

generally numeric features from the image. The former is the enhancement of images

such that the resulting image more clearly depicts some desired characteristics for a

human observer, and is commonly applied to medical and remote sensing imagery.

Section 4.1 introduces the conventional computer vision topics of segmentation

and feature extraction. Particular emphasis is given to binary image processing and

moment features since these provide a cost-effective and tractable solution to video-

rate image feature extraction. It is important to note that visual servo techniques based

on binary image features are equally applicable to more elaborately obtained features,

provided that the processing rate is high and the latency is low.

Section 4.2 discusses the important topics of close-range photogrammetry, camera

calibration and eye-hand calibration. These are important in understanding prior work

introduced in the next chapter, and also to complete the characterization of the camera

and digitizer used in this work.

4.1 Image feature extraction

Image interpretation, or scene understanding, is the problem of describing physical

objects in a scene given an image, or images, of that scene. This description is in

terms of, generally numeric, image features.

The principal role of image feature extraction is to reduce the camera output data

rate to something manageable by a conventional computer, that is, extracting the

'essence' of the scene. An image feature is defined generally as any measurable re-

123
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lationship in an image. Jang [135] provides a formal definition of features as image

functionals

f
Image

F x y I x y dxdy (4.1)

where I x y is the pixel intensity at location x y . The function F is a linear or

non-linear mapping depending on the feature, and may also include delta functions.

Some specific examples of image features include:

the p q th order moments

mpq
Image

xpyqI x y dxdy; (4.2)

For a binary image m00 is the object area, and m10 m01 is the centroid. Mo-

ment features, discussed further in Section 4.1.2, are widely used in visual servo

systems [17,65,88,92,116,212] due to the simplicity of computation;

template matching by cross-correlation or sum of squared differences [198] to

determine the coordinate of some distinctive pixel pattern in the image. The

pattern may be an edge, corner or some surface marking;

lengths, or orientation, of the edges of objects;

lengths, or orientation, of line segments connecting distinct objects in the scene

such as holes or corners [104, 198, 236]. Feddema [91, 92] used lines between

the centroids of holes in a gasket to determine the gasket's pose.

Two broad approaches to image feature extraction have been used for visual servoing

applications; whole scene segmentation, and feature tracking, and are described in

sections 4.1.1 and 4.1.4 respectively.

4.1.1 Whole scene segmentation

Segmentation is the process of dividing an image into meaningful segments, generally

homogeneous with respect to some characteristic. The problem of robustly segment-

ing a scene is of key importance in computer vision, and much has been written about

the topic and many methods have been described in the literature. Haralick [106]

provides a survey of techniques applicable to static images but unfortunately many

of the algorithms are iterative and time-consuming and thus not suitable for real-time

applications. In a simple or contrived scene the segments may correspond directly to

objects in the scene, but for a complex scene this is rarely the case.

The principal processing steps in segmentation, shown in Figure 4.1, are:

1. Classification, where pixels are classified into spatial sets according to 'lo w-

level' pixel characteristics.
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sensor pixel
classification

representation description

segmentation

features
pixels pixel

class
pixel sets
− regions
− boundaries

Figure 4.1: Steps involved in scene interpretation

2. Representation, where the spatial sets are represented in a form suitable for

further computation, generally as either connected regions or boundaries.

3. Description, where the sets are described in terms of scalar or vector valued

features.

Pixel values may be scalar or vector, and can represent intensity, color, range,

velocity or any other measurable scene property. The classification may take into

account the neighbouring pixels, global pixel statistics, and even temporal change in

pixel value. General scenes have too much 'clutter' and are difficult to interpret at

video rates unless pixels of 'interest' can be distinguished. Harrell [108] describes the

use of color classification to segment citrus fruit from the surrounding leaves in a fruit

picking visual servo application. Haynes [39] proposes sequential frame differencing

or background subtraction to eliminate static background detail. Allen [7, 8] uses

optical flow calculation to classify pixels as moving or not moving with respect to the

background, which is assumed stationary.

The simplest classification is into two sets, leading to binary segmentation. Com-

monly this is achieved by applying a threshold test to the pixel values, and for an

intensity image may be written

Pi j
Sb if Ii j T

S f if Ii j T

where Pi j is the pixel i j , and Sb and S f are respectively the sets of background

and foreground pixels. This technique is widely used in laboratory situations where

the lighting and environment can be contrived (for instance using dark backgrounds

and white objects) to yield high contrast, naturally distinguishing foreground objects

from the background. Many reported real-time vision systems for juggling [212],

ping-pong [17, 88] or visual servoing [65, 92, 116] use this simple, but non-robust,

approach.

Selection of an appropriate threshold is a significant issue, and many automated

approaches to threshold selection have been described [219,275]. Adaptive threshold-

ing has also been investigated, the principal problem being how to automatically rate
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Crack code vectors

Chain code
vectors

Figure 4.2: Boundary representation as either crack codes or chain code.

the ' success' or quality of a segmentation so that an automatic system may modify

or adapt its parameters [15, 156]. Corke and Anderson [54] use the capability of a

hardware region-grower to perform many trial segmentations per second, and judge

appropriate threshold from the number of regions found.

Once the pixels of interest have been identified they must be represented in some

form that allows features such as position and shape to be determined. Two basic

representations of image segments are natural: two-dimensional regions, and bound-

aries. The first involves grouping contiguous pixels with similar characteristics. Edges

represent discontinuities in pixel characteristics that often correspond to object bound-

aries. These two representations are 'duals' and one may be converted to the other,

although the descriptions used are quite different.

Edges may be represented by fitted curves, chain code or crack code, as shown

in Figure 4.2. Crack code represents the edge as a series of horizontal and vertical

line segments following the 'cracks' between pixels around the boundary of the pixel

set. Chain code represents the edge by direction vectors linking the centers of the edge

pixels. Feddema [91] describes the use of chain code for a visual servoing application.

Crack codes are represented by 2-bit numbers giving the crack direction as 90i , while

chain code is represented by 3-bit numbers giving the next boundary point as 45i .

Rosenfeld and Kak [217] describe a single-pass algorithm for extracting crack-codes

from run-length encoded image data.

The dual procedure to boundary tracing is connected component analysis (also

connectivity analysis or region growing), which determines contiguous regions of pix-

els. Pixels may be 4 way, 6 way or 8 way connected with their neighbours [217, 268].

This analysis involves one pass over the image data to assign region labels to all pixels.

During this process it may be found that two regions have merged, so a table records
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their equivalence [27,70] or a second pass over the data may be performed [217].

While edge representations generally have fewer points than contained within the

component, computationally it is advantageous to work with regions. Boundary track-

ing cannot commence until the frame is loaded, requires random-access to the image

memory, and on average 4 memory accesses to determine the location of the next

edge pixel. Additional overhead is involved in scanning the image for boundaries, and

ensuring that the same boundary is traced only once.

Next each segmented region must be described, the process of feature extraction.

The regions, in either edge or connected component representation, can be analyzed

to determine area, perimeter, extent and ' shape'.

4.1.2 Moment features

A particularly useful class of image features are moments. Moments are easy to com-

pute at high speed using simple hardware, and can be used to find the location of an

object (centroid) and ratios of moments may be used to form invariants for recogni-

tion of objects irrespective of position and orientation as demonstrated by Hu [125]

for planar objects. For a binary image the image function I x y is either 0 or 1 and the

moments describe the set of points Si, not the grey-level of those points.

From (4.2) the p q th order moment for a digitized image is

mpq ∑∑
R

xpyqI x y (4.3)

Moments can be given a physical interpretation by regarding the image function as

mass distribution. Thus m00 is the total mass of the region and the centroid of the

region is given by

xc
m10

m00
yc

m01

m00
(4.4)

For a circular object it should be noted that if it is not viewed along the surface nor-

mal, the centroid of the image (which will be an ellipse) does not correspond with the

centroid of the object. Figure 4.3 shows this in exaggerated form via geometric con-

struction, where clearly b a. The effect becomes more pronounced as the viewing

axis departs from the surface normal.

The central moments µpq are computed about the centroid

µpq ∑∑
R

x xc
p y yc

qI x y (4.5)

and are invariant to translation. They may be computed from the moments mpq by

µ10 0 (4.6)

µ01 0 (4.7)
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Figure 4.3: Exaggerated view showing circle centroid offset in the image plane.

µ20 m20
m2

10

m00
(4.8)

µ02 m02
m2

01

m00
(4.9)

µ11 m11
m10m01

m00
(4.10)

A commonly used but simple shape metric is circularity, defined as

ρ
4πm00

p2
(4.11)

where p is the region' s perimeter. Circularity has a maximum value of ρ 1 for a

circle, and a square can be shown to have ρ π 4.

The second moments of area µ20, µ02 and µ11 may be considered the moments of

inertia about the centroid

I
µ20 µ11

µ11 µ02
(4.12)

The eigenvalues are the principal moments of the region, and the eigenvectors of this

matrix are the principal axes of the region, the directions about which the region has
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Figure 4.4: Equivalent ellipse for an arbitrary region.

maximum and minimum moments of inertia. From the eigenvector corresponding to

the maximum eigenvalue we can determine the orientation of the principal axis as

tanθ
µ20 µ02 µ2

20 2µ20 µ02 µ2
02 4µ2

11

2µ11
(4.13)

or more simply

tan2θ
2µ11

µ20 µ02
(4.14)

which is the same as Hu's equation (59). Many machine vision systems compute

the so called 'equi valent ellipse' parameters. These are the major and minor radii of

an ellipse with the same area moments as the region, see Figure 4.4. The principal

moments are given by the eigenvalues of (4.12)

λ1 λ2

µ20 µ02 µ20µ02
2 4µ2

11

2
(4.15)

and the area moments of an ellipse about the major and minor axes are given respec-

tively by

Ima j
Aa2

4
Imin

Ab2

4
(4.16)

where A is the area of the region, and a and b are the major and minor radii. This can

be rewritten in the form

a 2
λ1

m00
b 2

λ2

m00
(4.17)
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The normalized moments

ηpq

µpq

µ
γ
00

γ
1

2
p q 1 for p q 2 3 (4.18)

are invariant to scale. Third-order moments allow for the creation of quantities that are

invariant with respect to translation, scaling and orientation within a plane. Hu [125]

describes a set of seven moment invariants

φ1 η20 η02 (4.19)

φ2 η20 η02
2 4η2

11 (4.20)

φ3 η30 3η12
2 3η21 η03

2 (4.21)

φ4 η30 η12
2 η21 η03

2 (4.22)

φ5 η30 3η12 η30 η12 η30 η12
2 3 η21 η03

2 (4.23)

3η21 η03 η21 η03 3 η30 η12
2 η21 η03

2

φ6 η20 η02 η30 η12
2 η21 η03

2 (4.24)

4η11 η30 η12 η21 η03

φ7 3η21 η03 η30 η12 η30 η12
2 3 η21 η03

2 (4.25)

3η12 η30 η21 η03 3 η30 η12
2 η21 η03

2

and Hall [105] demonstrates this invariance for a number of real digital images that

have been scaled, translated and rotated. Small differences are observed in the com-

puted invariants and these are attributed to the discrete nature of the data.

Region moments can also be determined from the vertices of a polygon or the

perimeter points of a boundary representation [278]. For n boundary points labelled

1 n where point P0 Pn

mpq
1

p q 2

n

∑
1

A

p

∑
i 0

q

∑
j 0

1 i j

i j 1

p

i

q

j
x

p i
y

q j∆xi ∆y
j

(4.26)

where A x ∆y y ∆x , ∆x x x 1 and ∆y y y 1. An alternative formu-

lation [278] is more suitable for computing a fixed set of moments during traversal of

a chain-coded boundary.

4.1.3 Binary region features

Binary image processing and centroid determination is commonly used in field or

frame rate vision systems for visual control. Here we look at how the estimation of

object centroid and width are affected by threshold, noise, edge gradient and pixel fill

factor. The analytic approach developed here differs from that given by Haralick and

Shapiro [107] and Ho [118] in its explicit modelling of the thresholding process.
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Figure 4.5: The ideal sensor array showing rectangular image and notation.

4.1.3.1 Effect on width measurement

Consider the sensor as a one dimensional array of light sensitive areas, each of width

p, with no gap between them as shown in Figure 4.5. The image of an object of width

w and intensity I f is formed on the array. The background intensity is Ib. The output

of a sensing site is a binary function of the average illumination over its area and the

threshold IT such that Ib IT I f . The pixel is set if the fraction of its sensing area

covered by the object exceeds

T
I f IT

I f Ib

(4.27)

The ith pixel is centered about ip where i is an integer, and spans the range i 1 2 p

to i 1 2 p. It can be shown that the binary output of the ith pixel for an edge at

position x is given by

Li x H ip x pT
p

2
(4.28)

Ri x H x ip pT
p

2
(4.29)

for the left and right hand sides of the object respectively, and where H x is the

Heaviside unit-step function. Substituting T T 1 2, the index of the leftmost and

rightmost set pixel are given by

iL x ceil
x

p
T (4.30)

iR x floor
x

p
T (4.31)
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where ceil x is the smallest integer such that ceil x x, and floor x is the largest

integer such that floor x x. The edge pixel positions are a function of the threshold

used, as well as the background and foreground intensities.

The measured, quantized, width is

W x iR x w iL x 1 (4.32)

floor
x w

p
T ceil

x

p
T 1 (4.33)

which can be simplified by substituting for distances normalized to the pixel width

x
x

p
w

w

p
(4.34)

so that (4.33) becomes

W x floor x w T ceil x T 1 (4.35)

which is a two-valued function with a period of one pixel width, as the object moves

across the sensing array. In order to understand the distribution of quantized width

estimates it is useful to substitute

x x �x (4.36)

w w �w (4.37)

where x floor x , w floor w , and �x �w 0 1 . By inspection it is clear that

for integer values of θ

floor θ x θ floor x (4.38)

ceil θ x θ ceil x (4.39)

so equation (4.35) can be rewritten as

W x floor x w T ceil x T 1 (4.40)

floor x �x w �w T ceil x �x T 1 (4.41)

w 1 floor �x �w T ceil �x T (4.42)

which is a periodic two-valued function of �x. That is, a single quantized width mea-

surement W switches between two values that bracket the actual width w . For many

measurements, and assuming a uniform distribution for �x, the expected value of W x

can be shown to be

E W w �w 2T (4.43)

w 2T (4.44)
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The average width measurement as the object moves with respect to the sensing ar-

ray is dependent upon the threshold selected. It will give an unbiased estimate of

width only when T 0, or T 1 2. From (4.27) this situation occurs only when the

intensity threshold T is midway between the foreground and background intensities.

4.1.3.2 Accuracy of centroid estimate

Using a similar approach the accuracy of centroid determination in the horizontal

direction can be derived. The quantized centroid of the object in Figure 4.5 is

x x
iR x w iL x

2
(4.45)

1

2
floor x w T ceil x T (4.46)

1

2
floor x �x w �w T ceil x �x T (4.47)

1

2
2x w floor �x �w T ceil �x T (4.48)

which is again a periodic two-valued function. The expected value of x x is

E x
1

2
2x w �w 1 (4.49)

x
w

2

1

2
(4.50)

and the true centroid is

x x
w

2
(4.51)

so the expected value of error between them is

E x x 0 (4.52)

indicating that the centroid estimate is an unbiased estimate of the centroid and unlike

the width estimate is independent of threshold.

4.1.3.3 Centroid of a disk

The centroid of a disk in the horizontal direction can be considered the weighted mean

of the centroids of each horizontal line segment comprising the image of the disk.

Intuitively we would expect that the larger the disk and the greater the number of

line segment centroids averaged, the closer that average would approach the expected

value from (4.50). Ho [118] discusses this issue and derives the approximation

σ2
XC

1

9π2

4

d

1

d3
(4.53)
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Figure 4.6: The effect of edge gradients on binarized width.

where d is the disk' s diameter. Ravn et al. [13] show a simulation of centroid variance

as a function of disk diameter which has approximately this characteristic.

4.1.3.4 Effect of edge intensity gradients

So far the the discussion has concentrated on the case where the image has a rectangu-

lar intensity profile but previous sections of this chapter have discussed mechanisms

which reduce edge sharpness as shown in Figures 3.26 and 3.27. In a visual servo

system edge gradient may be further reduced by focus errors as the object distance

varies. The resulting edge may be more accurately modelled as a trapezoidal intensity

profile as shown in Figure 4.6. Changes in threshold, ∆T , or ambient illumination,

∆Ib, will have a marked effect on the width of the binarized object,

∆W 2
∆Ib ∆T

ρ
(4.54)

where ρ is the edge gradient in units of greylevel pixel. In practice, with edge widths

of up to 5 pixels, this effect will dominate errors in the measured width of the binary

object.

4.1.3.5 Effect of signal to noise ratio

Image noise sources were discussed in Section 3.3.7. The foreground and background

image intensities should accurately be considered as random variables with known

distributions. Provided that the two means are well separated it is possible to segment

them using a fixed threshold.

Using the noise measurement data for the Pulnix camera, shown in Figure 3.18, the

maximum variance can be taken as 4greylevels2. If a normal distribution is assumed

then 99% of all pixels will be within 6greylevels of the mean. The probability of
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a pixel being greater than 10 greylevels from the mean is extremely low, around 1

pixel from the entire 512 512 pixel image.

In a scene with high contrast and a well chosen threshold, camera noise is unlikely

to be a problem. However practical issues such as uneven scene illumination or the

cos4 effect in (3.12) may bring some parts of the image close to the threshold resulting

in patches of binary pixel noise. A conservative rule of thumb would be to keep

the threshold at least 3σ above the background greylevel and at least 3σ below the

foreground greylevel, keeping in mind that σ is a function of intensity.

Camera noise on the pixels where the edge intensity crosses the threshold will

add uncertainty to the edge of the binary image and may even result in isolated noise

pixels adjacent to the edge. The probability of noise changing the threshold outcome is

inversely proportional to the edge gradient. Simple geometry results in another rule of

thumb that ρ 3σ. For worst-case observed camera variance of 4, this would require

ρ 6greylevel pixel which is easily satisfied. Figure 3.26 for example shows edge

gradients of at least 50 greylevel pixel.

Noise is manifested as single pixels of opposite color to their neighbours which

can be readily eliminated by a median filter. Such a filter sets the pixel to the median

value of all its neighbours. For a binary image such a filter can be implemented using

simple logic.

4.1.3.6 Numerical simulation

The analytic approaches of Sections 4.1.3.1 and 4.1.3.2 become intractable when try-

ing to model edge gradient, pixel fill factor and additive noise. Instead a numerical

approach has been used which models a trapezoidal intensity profile moving one pixel

across the sensing array in a large number of small steps while statistics are gathered

about the mean width and centroid error. Conclusions which can be drawn from the

simulations are:

The threshold dependence of mean width error, (4.44), is verified for a rectan-

gular intensity profile.

The effect of threshold and intensity change on mean width error, (4.54), for the

case of trapezoidal intensity profile is verified.

The mean centroid error, (4.52), is 0 and independent of threshold.

Reducing pixel fill factor, h 1, has no apparent effect on mean error or vari-

ance of width or centroid.

Additive noise has very little effect on mean centroid and width error for a well

chosen threshold. As the threshold approaches either foreground or background

intensity, mean width error increases by several pixels, but mean centroid error

is unaffected.
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As edge gradient is reduced the mean width and centroid error are unchanged,

but the variance increases.

Simulations have also been performed to examine the effect of object motion and

finite exposure time, Te, on an object with significant edge gradient or an asymmetric

intensity profile. It was found that, irrespective of intensity profile, the centroid of the

binarized blurred image is the centroid of the binarized image halfway through the

exposure interval, as derived earlier in (3.47). It should be noted in this case that the

centroid of the binary image does not correspond to the centroid of the object if the

intensity profile is asymmetric.

4.1.3.7 Summary

For accurate determination of distance with a possibly unfocussed camera it is prefer-

able to use the distance between centroids of features rather than the width of a feature.

The latter is significantly affected by variation in threshold and illumination when

edges are wide. Alexander [6] has shown, in the context of camera calibration, that

spatial aliasing due to image sharpness can in fact introduce a small but systematic

error in centroid determination. He shows how this may be minimized by introducing

diffraction blur. Given the poor edge response of the lens used in this work problems

due to excessive image sharpness are not expected to be significant. It can be con-

cluded that if centroids of image features are used it is not necessary to have a sharp

image since the centroid estimate is unbiased.

4.1.4 Feature tracking

Software computation of image moments is one to two orders of magnitude slower

than specialized hardware. However the computation time can be greatly reduced if

only a small image window, whose location is predicted from the previous centroid, is

processed [77,92,99,108,212,274]. The task of locating features in sequential scenes

is relatively easy since there will be only small changes from one scene to the next [77,

193] and total scene interpretation is not required. This is the principle of verification

vision proposed by Bolles [34] in which the system has considerable prior knowledge

of the scene, and the goal is to verify and refine the location of one or more features

in the scene. Determining the initial location of features requires the entire image to

be searched, but this need only be done once. Papanikolopoulos et al. [197] use a

sum-of-squared differences approach to match features between consecutive frames.

Features are chosen on the basis of a confidence measure computed from the feature

window, and the search is performed in software. The TRIAX system [19] is an

extremely high-performance multiprocessor system for low latency six-dimensional

object tracking. It can determine the pose of a cube by searching short check lines

normal to the expected edges of the cube.
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When the software feature search is limited to only a small window into the im-

age, it becomes important to know the expected position of the feature in the image.

This is the target tracking problem; the use of a filtering process to generate target

state estimates and predictions based on noisy observations of the target' s position

and a dynamic model of the target' s motion. Target maneuvers are generated by ac-

celeration controls unknown to the tracker. Kalata [141] introduces tracking filters

and discusses the similarities to Kalman filtering. Visual servoing systems have been

reported using tracking filters [8], Kalman filters [77, 274], AR (auto regressive) or

ARX (auto regressive with exogenous inputs) models [91, 124]. Papanikolopoulos et

al. [197] use an ARMAX model and consider tracking as the design of a second-order

controller of image plane position. The distance to the target is assumed constant and

a number of different controllers such as PI, pole-assignment and LQG are investi-

gated. For the case where target distance is unknown or time-varying adaptive control

is proposed [196]. The prediction used for search window placement can also be used

to overcome latency in the vision system and robot controller.

Dickmanns [77] and Inoue [128] have built multiprocessor systems where each

processor is dedicated to tracking a single distinctive feature within the image. More

recently, Inoue [129] has demonstrated the use of a specialized VLSI motion estima-

tion device for fast feature tracking.

4.2 Perspective and photogrammetry

The perspective transform involved in imaging was introduced in Section 3.2.4 and the

lens equations in pixel coordinates as (3.66) and (3.67). Using homogeneous coordi-

nates this non-linear transformation may be expressed in linear form for an arbitrary

camera location. Using matrix representation the overall camera transformation is:

ix
iy
iz

αx 0 X0 0

0 αy Y0 0

0 0 1 0

1 0 0 0

0 1 0 0

0 0 1 f 1

0 0 0 1

0Tc
1

x

y

z

1

(4.55)

where
αx X-axis scaling factor in pixels/mm (intrinsic)

αy Y-axis scaling factor in pixels/mm (intrinsic)

X0 image plane offset in pixels (intrinsic)

Y0 image plane offset in pixels (intrinsic)

f focal length (intrinsic)
0Tc camera position in world coordinates (extrinsic), see Figure 4.7.

The image plane coordinates in pixels are then expressed in terms of homogeneous
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coordinates as

iX
ix
iz

(4.56)

iY
iy
iz

(4.57)

in units of pixels.

Intrinsic parameters are innate characteristics of the camera and sensor, while ex-

trinsic parameters are characteristics only of the position and orientation of the cam-

era. The principal point is the intersection of the optical axis and the CCD sensor

plane, at pixel coordinates X0 Y0 .

The relevant transformations and coordinate frames are shown in Figure 4.7. cTP

is the position of the object with respect to the camera. Other relationships include

0TP
0Tc

cTP (4.58)

cTP
0Tc

1 0TP (4.59)

which allow (4.55) to be written compactly as

ix
iy
iz

C

x

y

z

1

(4.60)

where C is the camera calibration matrix, a 3 4 homogeneous transform which

performs scaling, translation and perspective. C represents the relationship between

3-D world coordinates and their corresponding 2-D image coordinates as seen by the

computer.

Equation (4.55) may be expanded symbolically. With the inverse camera position

transform represented in direction vector form cT0 n o a p we can derive

C

αx nx f X0 nz

f cz

αx ox f X0 oz

f cz

αx ax f X0az

f cz

αx cx f X0cz X0 f
f cz

αy ny f Y0 nz

f cz

αy oy f Y0 oz

f cz

αy ay f Y0 az

f cz

αy cy f Y0 cz Y0 f

f cz
nz

f cz

oz

f cz

az

f cz
1

(4.61)

4.2.1 Close-range photogrammetry

Photogrammetry is the science of obtaining information about physical objects via

photographic images, and is commonly used for making maps from aerial photographs

[282]. Close-range, or terrestrial, photogrammetry is concerned with object distances

less than 100 m from the camera. Much nomenclature from this discipline is used in

the literature related to camera calibration and 3D vision techniques.
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Figure 4.7: Relevant coordinate frames.

A metric camera is purpose built for photogrammetric use and is both stable and

calibrated. The calibration parameters include the focal length, lens distortion, and

the coordinates of the principal point. A metric camera has fiducial marks which are

recorded on the photograph such that lines joining opposite fiducial marks intersect at

the principal point.

A nonmetric camera is one manufactured for photographic use, where picture

quality, not geometry, is important. Nonmetric cameras can be calibrated and used

for less demanding photogrammetric applications such as machine vision.

4.2.2 Camera calibration techniques

Camera calibration is the process of determining the internal camera geometric and

optical characteristics (intrinsic parameters) and the 3-D position and orientation of

the camera frame relative to a certain world coordinate system (extrinsic parameters).

Frequently it is useful to empirically determine the camera calibration matrix which

relates a world coordinate system to the image plane coordinates [27] for a given

camera position and orientation.

The important characteristics of a number of calibration techniques are summa-

rized in Table 4.1. They differ in their ability to calibrate lens distortion, and the type

of calibration target required. Charts with coplanar points can be generated conve-
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Figure 4.8: The SHAPE calibration target used for intrinsic parameter determi-

nation. The surface is brushed aluminium with black marker dots at accurately

known locations on the two surfaces.
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Method Target type Distortion

Coplanar Non-coplanar

Classic nonlinear

Homogeneous transform

2 planes

2 stage

Table 4.1: Comparison of the major features of different camera calibration techniques.

niently and accurately1 using a laser printer. Circular marks are frequently used for

centroid determination but errors will be introduced if these are not viewed along the

surface normal. In that case, as shown earlier in Figure 4.3, the centroid of the image

(which will be an ellipse) will not correspond with the centroid of the marker. This

effect can be minimized by keeping the mark size small (image size of a few pixels),

using a cross shaped target, or using the corners of rectangular markers. Calibration

using non-coplanar points requires a mechanically complex calibration frame such as

that shown in Figure 4.8, or motion of a robot to position a calibration mark with re-

spect to the camera. Experiments conducted using the robot resulted in large residuals

and this is suspected to be due to low positioning accuracy. The next sections briefly

describe the different approaches to camera calibration and present some experimental

results.

4.2.2.1 Classical non-linear approach

Techniques in this category have been developed in the photogrammetric community

and are amongst the oldest published references [87, 239, 282, 283]. The camera is

described by a detailed model, with in some cases up to 18 parameters. Non-linear

optimization techniques use the calibration data to iteratively adjust the model param-

eters.

4.2.2.2 Homogeneous transformation approach

Approaches based on the homogeneous transformation [27, 243] allow direct estima-

tion of the calibration matrix C in (4.60). The elements of this matrix are composites

of the intrinsic and extrinsic parameters. Lens distortion cannot be represented in

linear homogeneous equations, but this can be corrected in a separate computational

step.

Expanding equations (4.60)-(4.57) we may write

C11x C12y C13z C14 C31
iXx C32

iXy C33
iXz C34

iX 0 (4.62)

1Less than 1% scale error measured in the paper feed direction.
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Figure 4.9: The two-plane camera model.

C21x C22y C23z C24 C31
iY x C32

iYy C33
iYz C34

iY 0 (4.63)

which relate an observed image coordinate iX iY to a world coordinate x y z . For

n observations this may be expressed in matrix form as a homogeneous equation

x1 y1 z1 1 0 0 0 0 iX1x1
iX1y1

iX1z1

0 0 0 0 x1 y1 z1 1 iY1x1
iY1y1

iY1z1

...

xn yn zn n 0 0 0 0 iXnxn
iXnyn

iXnzn

0 0 0 0 xn yn zn n iYnxn
iYnyn

iYnzn

C11

C12

...

C33

iX1
iY1

...
iXn
iYn

(4.64)

A non-trivial solution can only be obtained to within a scale factor and by convention

C34 is set equal to 1. Equation (4.64) has 11 unknowns and for solution requires at

least 5.5 observations (pairs of iX iY and x y z of non-coplanar points for solu-

tion2. This system of equations will generally be over determined, and a least squares

solution may be obtained using a technique such as singular value decomposition.

2Coplanar points result in the left-hand matrix of (4.64) becoming rank deficient.
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4.2.2.3 Two-plane calibration

The homogeneous transform approach is based on the pinhole camera model, and

cannot be readily extended to deal with lens distortions. The two plane approach has

been suggested [180] to overcome this limitation. As shown in Figure 4.9, a line in

space is defined by a point on each of two calibration planes, given by

x

y

z
k

Ak
iXn iXn 1 iY iY n iX iY 1

T
(4.65)

where Ak is the interpolation matrix for calibration plane k. The two plane method

allows for rapid computation of inverse perspective, that is, 3D lines from image plane

points. The line is obtained by interpolating the 3D world coordinates corresponding

to the image plane coordinate for the two calibration planes.

The interpolation matrix for each plane may be determined by placing a test pattern

containing an array of dots at a known distance from the camera. The order of the

interpolation should be chosen to balance computation time, accuracy and stability —

in practice second or third order is sufficient [130]. The interpolation matrix implicitly

corrects for lens distortion.

4.2.2.4 Two-stage calibration

The two-stage calibration scheme of Tsai [252] can be used to determine the intrinsic

and extrinsic camera parameters from a single view of a planar calibration target. It

relies on the so-called ' radial alignment constraint' which embodies the fact that lens

distortion acts along radial lines from the principal point. The algorithm is moderately

complex, but is claimed to execute very quickly. It does require prior knowledge of

the digitizer to camera clock ratio, β, and the pixel scaling factors αx and αy, as well as

the coordinates of the principal point. Tsai considers this latter parameter unimportant

and sets it arbitrarily to the coordinate of the center of the framestore. As found later,

the principal point for this camera and digitizer is some distance from the center.

Considerable difficulty was experienced using Tsai's method, and in particular

it proved to very sensitive to slight changes in the parameter β and principal point

coordinate. Anecdotal evidence from other researchers and also [210] suggest that

this experience is not uncommon. One possible reason for the difficulty encountered

is that the lens has insufficient radial distortion, though this would be surprising for

such a short focal length lens.

4.2.2.5 Decomposing the camera calibration matrix

The homogeneous camera calibration matrix, C, contains information about the po-

sition of the camera with respect to the world coordinate frame, as well as intrinsic
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parameters of the camera. Determining the extrinsic parameters is also referred to as

the camera location determination problem.

The line of sight of the camera in world coordinates can be determined as follows.

For a given image plane point iX iY we can write

C11
iXC31 x C12

iXC32 y C13
iXC31 z iXC34 C14 (4.66)

C21
iYC31 x C22

iYC32 y C23
iYC31 z iYC34 C24 (4.67)

which are the equations of two planes in world space, one vertical corresponding to

constant iX in the image plane, and one horizontal. The intersection of these planes

is the line in 3D space that is mapped to that image plane point3. A direction vector

parallel to this intersection line is found via cross product

x̂ ŷ ẑ

C11
iXC31 C12

iXC32 C13
iXC31

C21
iYC31 C22

iYC32 C23
iYC31

(4.68)

Substituting iX X0 and iY Y0 gives a direction vector parallel to the camera's

optical axis. However X0 and Y0 are intrinsic calibration parameters and cannot be

assumed to be the center of the sensing array [169].

Alternatively the lens law singularity may be used to define the camera's focal

plane, that is z f . The focal plane is given by

C31x C32y C33z 0 (4.69)

and the camera axis direction vector is normal to this plane, parallel to the vector

C31x̂ C32ŷ C33ẑ (4.70)

Strat [242] extends the approach of (4.69) to also determine camera position and roll

about the optical axis.

The calibration matrix, C, encodes the 6 extrinsic parameters4 and 5 intrinsic pa-

rameters: f , αx, αy, X0 and Y0. However it is not possible to uniquely determine all

the intrinsic parameters, only the products f αx and f αy
5. This leaves 10 parameters

to be determined from 11 elements of the camera calibration matrix which is over

determined, leading to difficulties in solution. Ganapathy [97] describes a sophisti-

cated procedure for determining the intrinsic and extrinsic parameters by introducing

another parameter, δ, a quality measure in units of degrees which is ideally zero. This

is interpreted as error in the orthogonality of the image plane X and Y axes. The

approach is robust to inaccuracies in the calibration matrix.

3Equations (4.66) and (4.67) represent 2 equations in 3 unknowns. From two camera views of the same

point, we are then able to solve for the 3D location of the point — the basis of stereo vision.
43D position vector and 3 angles for camera pose.
5From the symbolic expansion of (4.61) it can be seen that only the products f αx and f αy appear.
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Given a numerical value for C it is also possible using gradient search techniques

to find the values of the intrinsic and extrinsic parameters. In practice this approach is

found to be quite sensitive to choice of initial values and can settle in local minima.

4.2.2.6 Experimental results

Four images of the SHAPE calibration target, shown in Figure 4.8, were taken from

different viewpoints. Each time the focus and aperture were adjusted for image sharp-

ness and brightness. The centroid of each marker was determined to sub-pixel preci-

sion by computing an intensity weighted average of pixel coordinates in the region of

the marker. As shown in Figure 4.10 the intensity profile of a marker is a broad flat hill

not a step function, and this would be expected from the earlier discussion regarding

image MTF. The centroid determination procedure used is as follows:

1. An image display utility was used to manually determine the location of each

mark to within 5 pixels. The target was difficult to light evenly due to its com-

plex shape, making it infeasible to automatically and robustly find the markers.

2. The lowest6 intensity pixel within a 10 x 10 region of each manually selected

point was located. This point will be referred to as the center point xc yc .

3. The average background intensity, Ib, was computed from the intensity at the

four corners of a square window about the center point.

4. Average background intensity was subtracted from all pixels in the region and

the weighted average coordinates computed

x
ΣiΣ j i Ii j Ib

ΣiΣ j Ii j Ib

(4.71)

y
ΣiΣ j j Ii j Ib

ΣiΣ j Ii j Ib

(4.72)

A program was written to automate these last three steps.

Using known 3D marker location and the corresponding image plane coordinates

the calibration matrix was computed by solving (4.64) using singular value decompo-

sition. The resulting matrix was then decomposed using Ganapathy's method and the

results are summarized in Table 4.2. Residual is the maximum residual after substi-

tuting the calibration matrix parameters back into (4.64). δ is the quality factor deter-

mined by Ganapathy's algorithm and should ideally be zero. The remaining columns

show intrinsic parameters derived by Ganapathy's method. There is some variation in

the principal point coordinate and also the scale factors. However the ratio of the scale

6The calibration marks were black on white.
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Figure 4.10: Contour plot of intensity profile around a typical calibration marker.

Due to overall MTF the edges of the marker dot are not sharp.

Trial Residual δ X0 Y0 αx f αy f αy αx

(pixel) (deg) (pixel) (pixel) (pixel) (pixel)

1 0.552 -0.0277 270.1 213.7 625.7 948.9 1.52

2 0.898 0.0672 271.4 223.1 614.0 933.0 1.52

3 0.605 0.0685 278.0 205.6 617.3 938.2 1.52

4 0.639 -0.1198 275.8 196.8 616.8 939.2 1.52

mean 273.8 209.8 615.5 939.8

σ 3.2 9.7 5.0 6.6

Table 4.2: Summary of calibration experiment results.

factors is constant at 1 52 which is also the value determined in Section 3.5.3. Using

the pixel scale factor data from Table 3.8 the focal length is estimated as 7 8mm. This

is marginally lower than 8mm, the nominal focal length of the lens, but within the 4%

tolerance of ANSI Standard PH3.13-1958 “Focal Length Marking of Lenses”. The

Y-coordinate of the principal point is found to be well above the center of the pixel

array. This effect could be explained by the placement of the CCD sensor within the

camera at the appropriate point for an RS170 rather than CCIR image.
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Many researchers have observed extreme sensitivity in the camera calibration to

changes in focus and aperture setting. Changes in these settings cause lens elements to

rotate, which compounded with asymmetries in the lens alter the scaling and position

of the image. This may account for some of the variation observed since the lens was

re-adjusted for each trial.

The procedure presented is not capable of explicitly modelling geometric lens

distortion, and its effect will introduce errors into the other camera parameters. An

experiment was conducted in which an array of dots, evenly spaced across the field of

view, was imaged and their centroids computed. The magnitude of centroid deviation

from the line of best fit was less than one pixel with the largest errors occurring at the

edge of the field of view.

4.2.3 Eye-hand calibration

Robot eye to hand calibration is the process of determining the fixed transformation

between the gripper and the camera coordinate system. A number of approaches have

been described in the literature [132, 233,253]. Generally they involve the robot mak-

ing a number of moves and measuring the change in image plane coordinates of a fixed

target. A fairly complex algorithm is then applied to determine the camera transform.

Tsai's method [253] again relies on use of the planar calibration target, and given the

difficulties above, was not tried.

A more pragmatic approach is to determine the transform from the known geom-

etry of the camera, robot wrist and lens, as shown in Figure 4.11. The location of

the CCD sensor plane within the camera is not directly measurable. However the lens

manufacturer's data shows that the focal point of the lens is 17.5mm behind the mat-

ing surface, and the plane of an equivalent simple lens will be located the focal length

in front of that, see Figure 4.127. From this data the distance d2 can be inferred as

20.0mm.

The coordinate frame of the camera is also shown in Figure 4.11. The X-axis is

out of the page. The transform can be expressed in terms of elementary rotations and

translations as

6Tc TZ d1 RX 90 TZ d2

1 0 0 0

0 0 1 20

0 1 0 121

0 0 0 1

(4.73)

7A lens such as this, in which the lens plane is not within the body of the lens, and close to the image

plane, is referred to as a retrofocus lens.
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Figure 4.11: Details of camera mounting (not to scale, dimensions in mm). Robot

wrist is in the zero angle pose.
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Figure 4.12: Details of camera, lens and sensor placement.
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Chapter 5

Visual servoing

With this chapter we start the discussion about visual servoing, that is, how visual

features may be used to guide a robot manipulator or mechanism. The reported use

of visual information to guide robots, or more generally mechanisms, is quite exten-

sive and encompasses applications as diverse as manufacturing, teleoperation, missile

tracking cameras and fruit picking as well as robotic ping-pong, juggling, catching

and balancing.

Section 5.1 introduces the topic of visual servoing and introduces a consistent

terminology that will be employed throughout, allowing discussion of papers despite

the different nomenclature used by the authors. The section also introduces the two

well known approaches to visual servoing: position-based and image-based. A more

formal treatment of the fundamentals is given by Hager et al. [103].

The majority of prior work concentrates on the 'classical' issues in visual servoing,

referred to in [52] as visual servo kinematics. This is concerned with the kinematic

relationship between object pose, robot pose and image plane features without regard

to dynamic effects. However control strategies based purely on kinematic considera-

tions are only adequate for low-performance applications. Visual servo dynamics, on

the other hand, is concerned with the dynamics or motion of the visual servo system

and issues such as stability, settling time and tracking lags. This chapter concentrates

largely on kinematic issues, while the following chapters address dynamics, modelling

and control.

Section 5.2 provides a comprehensive review of prior work on the topic of vi-

sual servoing. Sections 5.3 and 5.4 discuss respectively the details of position- and

image-based techniques. Miscellaneous issues relating to implementation and archi-

An early version of this chapter was published as [59] “Visual control of robot manipulators — a

review” in K. Hashimoto, editor, Visual Servoing, volume 7 of Robotics and Automated Systems, pages

1–31. World Scientific, 1993.
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Figure 5.1: Relevant coordinate frames; world, end-effector, camera and target.

tectures are reviewed in Section 5.5. Necessarily with this structure the work of some

researchers will be referred to several times, but in different contexts.

5.1 Fundamentals

The task in visual servoing is to control the pose of the robot' s end-effector, xt6, using

visual information, features, extracted from the image2. Pose, x, is represented by a

six element vector encoding position and orientation in 3D space. The camera may

be fixed, or mounted on the robot' s end-effector in which case there exists a constant

relationship, t6xc, between the pose of the camera and the pose of the end-effector.

The image of the target3 is a function of the relative pose between the camera and the

target, cxt . The relationship between these poses is shown in Figure 5.1. The distance

between the camera and target is frequently referred to as depth or range.

The camera contains a lens which forms a 2D projection of the scene on the image

plane where the sensor is located. This projection causes direct depth information to

be lost, and each point on the image plane corresponds to a ray in 3D space. Some

additional information is needed to determine the 3D coordinate corresponding to an

image plane point. This information may come from multiple views, or knowledge of

the geometric relationship between several feature points on the target.

2The task can also be defined for mobile robots, where it becomes the control of the vehicle' s pose with

respect to some landmarks.
3The word target will be used to refer to the object of interest, that is, the object which will be tracked.
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An image feature, Section 4.1, is a scalar or vector quantity derived from some vi-

sual feature or features in the image. Commonly the coordinate of some easily distin-

guishable point, or a region centroid is used. A feature vector, f , is a one dimensional

vector containing feature information as described above. A good visual feature is one

that can be located unambiguously in different views of the scene, such as a hole in a

gasket [91,92] or a contrived pattern [71,211]. The image plane coordinates of three or

more visual features can be used to determine the pose (not necessarily uniquely, see

Section 5.3.1) of the target relative to the camera, given knowledge of the geometric

relationship between the feature points.

Robots typically have 6 degrees of freedom (DOF), allowing the end-effector to

achieve, within limits, any pose in 3D space. Visual servoing systems may control 6

or fewer DOF. Planar positioning involves only 2-DOF control and may be sufficient

for some applications. Motion so as to keep one point in the scene, the interest point,

at the same location in the image plane is referred to as fixation. Animals use fixation

to direct the high resolution fovea of the eye toward regions of interest in the scene.

In humans this low-level, unconscious, fixation motion is controlled by the brain' s

medulla region using visual feedback from the retina [5]. Keeping the target centred

in the field of view has a number of advantages that include:

eliminating motion blur since the target is not moving with respect to the cam-

era;

reducing the effect of geometric distortion in the lens by keeping the optical

axis pointed at the target;

minimizing the effect of the cos4 term in (3.12) since the angle concerned is

close to zero.

Fixation may be achieved by controlling the pan/tilt angles of the camera like a human

eye, or by moving the camera in a plane normal to the optical axis. High performance

fixation control is an important component of many active vision strategies.

In 1980 Sanderson and Weiss [223] introduced an important classification of visual

servo structures, and these are shown schematically in Figures 5.2 to 5.5. In position-

based control, features are extracted from the image and used in conjunction with a

geometric model of the target to determine the pose of the target with respect to the

camera. In image-based servoing the last step is omitted, and servoing is done on

the basis of image features directly. The structures referred to as dynamic look and

move make use of joint feedback, whereas the PBVS and IBVS structures use no joint

position information at all. It is important to note that almost none of the visual servo

systems reported in the literatue are 'visual servo' systems according to the Weiss

taxonomy, but rather are of the 'dynamic look and move' structure. However the term

'visual servoing' is widely used for any system that uses a machine vision system to

close a position-control loop.
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Figure 5.2: Dynamic position-based look-and-move structure.
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Figure 5.3: Dynamic image-based look-and-move structure.

The image-based approach may reduce computational delay, eliminate the neces-

sity for image interpretation and eliminate errors in sensor modelling and camera cal-

ibration. However it does present a significant challenge to controller design since the

plant is non-linear and highly coupled.

5.2 Prior work

This section summarizes research and applications of visual servoing, from the pi-

oneering work of the early 1970s to the present day. The discussion is generally

chronological, but related applications or approaches will be grouped together. The

reported applications are quite extensive, encompassing manufacturing, teleoperation,
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Figure 5.4: Position-based visual servo (PBVS) structure as per Weiss.
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Figure 5.5: Image-based visual servo (IBVS) structure as per Weiss.

missile tracking cameras and fruit picking as well as robotic ping-pong, juggling, and

balancing. Due to technological limitations of the time some of the significant early

work fails to meet the strict definition of visual servoing given earlier, and would now

be classed as look-then-move robot control. Progress has however been rapid, and by

the end of the 1970s systems had been demonstrated which were capable of 10 Hz

servoing and 3D position control for tracking, seam welding and grasping moving

targets.

One of the earliest references is by Shirai and Inoue [232] in 1973 who describe

how a visual feedback loop can be used to correct the position of a robot to increase

task accuracy. A system is described which allows a robot to grasp a square prism

and place it in a box using visual servoing. Edge extraction and line fitting are used

to determine the position and orientation of the box. The camera is fixed, and a servo
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cycle time of 10 s is reported.

Considerable work on the use of visual servoing was conducted at SRI Interna-

tional during the late 1970s. Early work [215, 216] describes the use of visual feed-

back for bolt-insertion and picking moving parts from a conveyor. Hill and Park [116]

describe visual servoing of a Unimate robot in 1979. Binary image processing is

used for speed and reliability, providing planar position as well as simple depth es-

timation based on the apparent distance between known features. Experiments were

also conducted using a projected light stripe to provide more robust depth determina-

tion as well as surface orientation. These experiments demonstrated planar and 3D

visually-guided motion, as well as tracking and grasping of moving parts. They also

investigated some of the dynamic issues involved in closed-loop visual control. Simi-

lar work on a Unimate-based visual-servo system is discussed later by Makhlin [179].

Prajoux [207] demonstrated visual servoing of a 2-DOF mechanism for following a

swinging hook. The system used a predictor to estimate the future position of the

hook, and achieved settling times of the order of 1s. Coulon and Nougaret [68] ad-

dress similar issues and also provide a detailed imaging model for the vidicon sensor's

memory effect. They describe a digital video processing system for determining the

location of one target within a processing window, and use this information for closed-

loop position control of an XY mechanism to achieve a settling time of around 0.2s to

a step demand.

Simple hand-held light stripers of the type proposed by Agin [3] have been used in

planar applications such as connector acquisition [187], weld seam tracking [49], and

sealant application [227]. The last lays a bead at 400 mm s with respect to a moving

car-body, and shows a closed-loop bandwidth of 4.5Hz. More recently Venkatesan

and Archibald [258] describe the use of two hand-held laser scanners for real-time

5-DOF robot control.

Gilbert [101] describes an automatic rocket-tracking camera which keeps the tar-

get centred in the camera's image plane by means of pan/tilt controls. The system

uses video-rate image processing hardware to identify the target and update the cam-

era orientation at 60 Hz. Dzialo and Schalkoff [81] discuss the effects of perspective

on the control of a pan-tilt camera head for tracking.

Weiss [273] proposed the use of adaptive control for the non-linear time varying

relationship between robot pose and image features in image-based servoing. Detailed

simulations of image-based visual servoing are described for a variety of manipulator

structures of up to 3-DOF.

Weber and Hollis [271] developed a high-bandwidth planar-position controlled

micro-manipulator. It is required to counter room and robot motor vibration effects

with respect to the workpiece in a precision manufacturing task. Correlation is used to

track workpiece texture. To achieve a high sample rate of 300 Hz, yet maintain resolu-

tion, two orthogonal linear CCDs are used to observe projections of the image. Since

the sample rate is high the image shift between samples is small which reduces the size
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of the correlation window needed. Image projections are also used by Kabuka [137].

Fourier phase differences in the vertical and horizontal binary image projections are

used for centering a target in the image plane and determining its rotation. This is

applied to the control of a two-axis camera platform [137] which takes 30 s to settle

on a target. An extension to this approach [139] uses adaptive control techniques to

minimize performance indices on grey-scale projections. The approach is presented

generally but with simulations for planar positioning only.

An application to road vehicle guidance is described by Dickmanns [76]. Real-

time feature tracking and gaze controlled cameras guide a 5 tonne experimental road

vehicle at speeds of up to 96 km h along a test track. Later work by Dickmanns

[78] investigates the application of dynamic vision to aircraft landing. Control of

underwater robots using visual reference points has been proposed by Negahdaripour

and Fox [191].

Visually guided machines have been built to emulate human skills at ping-pong

[17,88], juggling [212], inverted pendulum balancing [13,76], catching [41,220], and

controlling a labyrinth game [13]. The latter is a wooden board mounted on gimbals

on which a ball bearing rolls, the aim being to move the ball through a maze and not

fall into a hole. The ping-pong playing robot [17] does not use visual servoing, rather

a model of the ball' s trajectory is built and input to a dynamic path planning algorithm

which attempts to strike the ball.

Visual servoing has also been proposed for catching flying objects on Earth or in

space. Bukowski et al. [39] report the use of a Puma 560 to catch a ball with an end-

effector mounted net. The robot is guided by a fixed-camera stereo-vision system and

a 386 PC. Skofteland et al. [237] discuss capture of a free-flying polyhedron in space

with a vision guided robot. Skaar et al. [236] use as an example a 1-DOF robot to catch

a ball. Lin et al. [171] propose a two-stage algorithm for catching moving targets;

coarse positioning to approach the target in near-minimum time and 'fine tuning' to

match robot acceleration and velocity with the target.

There have been several reports of the use of visual servoing for grasping moving

targets. The earliest work appears to have been at SRI in 1978 [216]. Recently Zhang

et al. [290] presented a tracking controller for visually servoing a robot to pick items

from a fast moving conveyor belt (300 mm s). The camera is hand-held and the visual

update interval used is 140 ms. Allen et al. [8] use a 60 Hz fixed-camera stereo vision

system to track a target moving at 250 mm s. Later work [7] extends this to grasping

a toy train moving on a circular track. Houshangi [124] uses a fixed overhead camera

and a visual sample interval of 196 ms to enable a Puma 600 robot to grasp a moving

target.

Fruit picking is a non-manufacturing application of visually guided grasping where

the target may be moving. Harrell [108] describes a hydraulic fruit-picking robot

which uses visual servoing to control 2-DOF as the robot reaches toward the fruit

prior to picking. The visual information is augmented by ultrasonic sensors to de-
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termine distance during the final phase of fruit grasping. The visual servo gains are

continuously adjusted to account for changing camera target distance. This last point

is significant but mentioned by few authors [62,81].

Part mating has also been investigated using visual servoing. Geschke [99] de-

scribed a bolt-insertion task using stereo vision and a Stanford arm. The system

features automated threshold setting, software image feature searching at 10 Hz, and

setting of position loop gains according to the visual sample rate. Stereo vision is

achieved with a single camera and a novel mirror arrangement. Ahluwalia and Fog-

well [4] describe a system for mating two parts, each held by a robot and observed

by a fixed camera. Only 2-DOF for the mating are controlled and a Jacobian approx-

imation is used to relate image-plane corrections to robot joint-space actions. On a

larger scale, visually servoed robots have been proposed for aircraft refuelling [163]

and demonstrated for mating an umbilical connector to the US Space Shuttle from its

service gantry [71].

The image-based servo approach has been investigated experimentally by a num-

ber of researchers, but unlike Weiss they use closed-loop joint control as shown in

Figure 5.3. Feddema [90–92] uses an explicit feature-space trajectory generator and

closed-loop joint control to overcome problems due to low visual sampling rate. Ex-

perimental work demonstrates image-based visual servoing for 4-DOF. Rives et al.

[48, 211] describe a similar approach using the task function method [222] and show

experimental results for robot positioning using a target with four circle features.

Hashimoto et al. [111] present simulations to compare position-based and image-

based approaches. Experiments, with a visual servo interval of 250 ms, demonstrate

image-based servoing of a Puma 560 tracking a target moving in a circle at 30 mm s.

Jang et al. [134] describe a generalized approach to servoing on image features with

trajectories specified in feature space, leading to trajectories (tasks) that are indepen-

dent of target geometry.

Westmore and Wilson [274] demonstrate 3-DOF planar tracking and achieve a set-

tling time of around 0.5s to a step input. This is extended [269] to full 3D target pose

determination using extended Kalman filtering and then to 3D closed-loop robot pose

control [280]. Papanikolopoulos et al. [197] demonstrate tracking of a target undergo-

ing planar motion with the CMU DD-II robot system. Later work [198] demonstrates

3D tracking of static and moving targets, and adaptive control is used to estimate the

target distance.

The use of visual servoing in a telerobotic environment has been discussed by Yuan

et al. [289], Papanikolopoulos et al. [198] and Tendick et al. [249]. Visual servoing

can allow the task to be specified by the human operator in terms of selected visual

features and their desired configuration.

Approaches based on neural networks [110, 158, 183] and general learning al-

gorithms [185] have also been used to achieve robot hand-eye coordination. A fixed

camera observes objects and the robot within the workspace and can learn the relation-
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ship between robot joint angles and the 3D end-effector pose. Such systems require

training, but the need for complex analytic relationships between image features and

joint angles is eliminated.

5.3 Position-based visual servoing

A broad definition of position-based servoing will be adopted that includes methods

based on analysis of 2D features or direct pose determination using 3D sensors. The

simplest form of visual servoing involves robot motion in a plane orthogonal to the

optical axis of the camera, and can be used for tracking planar motion such as a con-

veyor belt. However tasks such as grasping and part mating require control over the

relative distance and orientation of the target.

Humans use a variety of vision-based depth cues including texture, perspective,

stereo disparity, parallax, occlusion and shading. For a moving observer, apparent

motion of features is an important depth cue. The use of multiple cues, selected ac-

cording to visual circumstance, helps to resolve ambiguity. Approaches suitable for

computer vision are reviewed by Jarvis [136]. However non-anthropomorphic ap-

proaches to sensing may offer some advantages. Active range sensors, for example,

project a controlled energy beam, generally ultrasonic or optical, and detect the re-

flected energy. Commonly a pattern of light is projected on the scene which a vision

system interprets to determine depth and orientation of the surface. Such sensors usu-

ally determine depth along a single stripe of light, multiple stripes or a dense grid of

points. If the sensor is small and mounted on the robot [3, 79, 258] the depth and ori-

entation information can be used for servoing. The operation and capability of many

commercially available active range sensors are surveyed in [33,45].

In contrast, passive techniques rely only on observation under ambient illumina-

tion to determine the depth or pose of the object. Some approaches relevant to visual

servoing will be discussed in the following sections.

5.3.1 Photogrammetric techniques

Close-range photogrammetry, introduced in Section 4.2.1, is highly relevant to the

task of determining the relative pose of a target. In order to determine the 3D relative

pose of an object, cx, from 2D image plane coordinates, f , some additional informa-

tion is needed. This data includes knowledge of the relationship between the observed

feature points (perhaps from a CAD model) and also the camera's intrinsic parame-

ters. It can be shown that at least three feature points are needed to solve for pose.

Intuitively, the coordinate of each feature point yields two equations and six equa-

tions are needed to solve for the six elements of the pose vector. In fact three feature

points will yield multiple solutions, but four coplanar points yield a unique solution.

Analytic solutions for three and four points are given by Fischler and Bolles [93] and
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Ganapathy [97]. Unique solutions exist for four coplanar, but not collinear, points

(even for partially known intrinsic parameters) [97]. Six or more points always yield

unique solutions, as well as the intrinsic camera calibration parameters.

Yuan [288] describes a general iterative solution independent of the number or

distribution of feature points. For tracking moving targets the previous solution can

be used as the initial estimate for iteration. Wang and Wilson [269] use an extended

Kalman filter to update the pose estimate given measured image plane feature loca-

tions. The filter convergence is analogous to the iterative solution.

Once the target pose relative to the camera is determined, it is then necessary to

determine the target pose relative to the robot' s end-effector. This requires robot eye-

hand calibration as discussed in Section 4.2.3.

The commonly cited drawbacks of the photogrammetric approach are the complex

computation, and the necessity for camera calibration and a model of the target. None

of these objections are overwhelming, and systems based on this principle have been

demonstrated using iteration [289], Kalman filtering [274], and analytic solution [98].

5.3.2 Stereo vision

Stereo vision [285] is the interpretation of two views of the scene taken from known

different viewpoints in order to resolve depth ambiguity. The location of feature points

in one view must be matched with the location of the same feature points in the other

view. This matching, or correspondence, problem is not trivial and is subject to error.

Another difficulty is the missing parts problem where a feature point is visible in only

one of the views and therefore its depth cannot be determined.

Matching may be done on a few feature points such as region centroids or corner

features, or on fine feature detail such as surface texture. In the absence of significant

surface texture a random texture pattern could be projected onto the scene.

Implementations of 60 Hz stereo-vision systems have been described by Anders-

son [17], Rizzi et al. [212], Allen et al. [8] and Bukowski et al. [39]. The first two

operate in a simple contrived environment with a single white target against a black

background. The last two use optical flow or image differencing to eliminate static

background detail. All use fixed rather than end-effector-mounted cameras.

5.3.3 Depth from motion

Closely related to stereo vision is monocular or motion stereo [193] also known as

depth from motion. Sequential monocular views, taken from different viewpoints, are

interpreted to derive depth information. Such a sequence may be obtained from a

robot hand-mounted camera during robot motion. It must be assumed that targets in

the scene do not move significantly between the views. Vernon and Tistarelli [259]

use two contrived trajectories — one along the optical axis, and one rotation about a
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fixation point — to construct a depth map of a bin of components. The AIS visual-

servoing scheme of Jang et al. [135] reportedly uses motion stereo to determine depth

of feature points.

Self motion, or egomotion, produces rich depth cues from the apparent motion

of features, and is important in biological vision [260]. Dickmanns [77] proposes an

integrated spatio-temporal approach to analyzing scenes with relative motion so as to

determine depth and structure. Based on tracking features between sequential frames,

he terms it 4D vision.

Research into insect vision [240] indicates that insects use self-motion to infer

distances to targets for navigation and obstacle avoidance. Compared to mammals,

insects have effective but simple visual systems and may offer a practical alternative

model upon which to base future robot-vision systems [241].

Fixation occurs when a sequence of images is taken with the camera moving so

as to keep one point in the scene, the interest point, at the same location in the image

plane. Knowledge of camera motion during fixation can be used to determine the 3D

position of the target. Stabilizing one point in a scene that is moving relative to the

observer also induces the target to stand out from the non-stabilized and blurred parts

of the scene, and is thus a basis for scene segmentation. Coombs and Brown [51]

describe a binocular system capable of fixating on a target and some of the issues

involved in control of the camera motion.

5.4 Image based servoing

Image-based visual servo control uses the location of features on the image plane

directly for feedback. For example, consider Figure 5.6, where it is desired to move

the robot so that the camera's view changes from initial to final view, and the feature

vector from f
0

to f
d
. The feature vector may comprise coordinates of vertices, or

areas of the faces. Implicit in f
d

is that the robot is normal to, and centered over the

face of the cube, at the desired distance. Elements of the task are thus specified in

image space, not world space. Skaar et al. [236] propose that many real-world tasks

may be described by one or more camera-space tasks.

For a robot with an end-effector-mounted camera, the viewpoint, and hence the

features will be a function of the relative pose of the camera with respect to the target,
cxt . In general this function is non-linear and cross-coupled such that motion of one

end-effector DOF will result in the complex motion of many features. For example,

camera rotation can cause features to translate horizontally and vertically on the image

plane. This relationship

f f cxt (5.1)

may be linearized about the operating point

δ f f Jc
cxt δcxt (5.2)
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Initial view Final view

Figure 5.6: Example of initial and desired view of a cube

where

f Jc
cxt

∂ f

∂cxt

(5.3)

is a Jacobian matrix, relating rate of change in pose to rate of change in feature space.

This Jacobian is referred to variously as the feature Jacobian, image Jacobian, feature

sensitivity matrix, or interaction matrix. Assume for the moment that the Jacobian is

square and non-singular, then

˙cxt
f J 1

c
cxt ḟ (5.4)

and a simple proportional control law

˙cxt t k f J 1
c

cxt f
d

f t (5.5)

will tend to move the robot towards the desired feature vector. k is a diagonal gain

matrix, and t indicates a time varying quantity.

Pose rates cẋt may be transformed to robot end-effector rates via a constant Ja-

cobian, t6Jc, derived from the relative pose between the end-effector and camera by

(2.10). In turn, the end-effector rates may be transformed to manipulator joint rates

using the manipulator' s Jacobian [277]

θ̇ t6J 1
θ θ t6ẋt (5.6)

where θ represents the joint angles of the robot. The complete equation is

θ̇ t k t6J 1
θ θ t6Jc

f J 1
c

cx f
d

f t (5.7)



5.4 Image based servoing 163

Such a closed-loop system is relatively robust in the presence of image distortions

[68] and kinematic parameter variations in the manipulator Jacobian [186].

A number of researchers have demonstrated results using this image-based ap-

proach to visual servoing. The significant problem is computing or estimating the

feature Jacobian and a variety of approaches will be described next.

5.4.1 Approaches to image-based visual servoing

The proposed IBVS structure of Weiss, Figure 5.5, controls robot joint angles directly

using measured image features. The non-linearities include the manipulator kinemat-

ics and dynamics as well as the perspective imaging model. Adaptive control is pro-

posed since the gain, f J 1
c θ , is pose dependent and θ is not measured. The chang-

ing relationship between robot pose and image feature change is learned during the

motion. Weiss uses independent single-input single-output (SISO) model-reference

adaptive control (MRAC) loops for each DOF, citing the advantages of modularity

and reduced complexity compared to multi-input multi-output (MIMO) controllers.

The proposed SISO MRAC requires one feature to control each joint and no coupling

between features, and a scheme is introduced to select features so as to minimize

coupling. In practice this last constraint is difficult to meet since camera rotation in-

evitably results in image feature translation.

Weiss [273] presents detailed simulations of various forms of image-based visual

servoing with a variety of manipulator structures of up to 3-DOF. Sample intervals

of 33 ms and 3ms are investigated, as is control with measurement delay. With non-

linear kinematics (revolute robot structure) the SISO MRAC scheme has difficulties.

Solutions proposed, but not investigated, include MIMO control and a higher sample

rate, or the dynamic-look-and-move structure, Figure 5.3.

Weiss found that even for a 2-DOF revolute mechanism a sample interval less than

33 ms was needed to achieve satisfactory plant identification. For manipulator control

Paul [199] suggests that the sample rate should be at least 15 times the link structural

frequency. Since the highest sample frequency achievable with standard cameras and

image processing hardware is 60 Hz, the IBVS structure is not currently practical for

visual servoing. The so called dynamic look and move structure, Figure 5.3, is more

suitable for control of 6-DOF manipulators, by combining high-bandwidth joint level

control in conjunction with a lower rate visual position control loop. The need for

such a control structure is hinted at by Weiss and is used by Feddema [91] and others

[65,111,134].

Feddema extends the work of Weiss in many important ways, particularly by ex-

perimentation [90–92] and cites the difficulties of Weiss's approach as being the as-

sumption that vision update interval, T , is constant, and significantly greater than the

sub millisecond period needed to control robot dynamics. Due to the low speed fea-

ture extraction achievable (every 70 ms) an explicit trajectory generator operating in
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feature space is used rather than the pure control loop approach of Weiss. Feature ve-

locities from the trajectory generator are resolved to manipulator configuration space

for individual closed-loop joint PID control.

Feddema [91, 92] describes a 4-DOF servoing experiment where the target was

a gasket containing a number of circular holes. Binary image processing and Fourier

descriptors of perimeter chain codes were used to describe each hole feature. From the

two most unique circles four features are derived; the coordinates of the midpoint be-

tween the two circles, the angle of the midpoint line with respect to image coordinates,

and the distance between circle centers. It is possible to write the feature Jacobian in

terms of these features, that is f Jc f , though this is not generally the case. The ex-

perimental system could track the gasket moving on a turntable at up to 1 rad s. The

actual position lags the desired position, and ' some oscillation' is reported due to time

delays in the closed-loop system.

A similar experimental setup [91] used the centroid coordinates of three gasket

holes as features. This more typical case does not allow the Jacobian to be formulated

directly in terms of the measured features. Two approaches to evaluating the Jacobian

are described. Firstly [90] the desired pose is used to compute the Jacobian, which

is then assumed constant. This is satisfactory as long as the initial pose is close to

that desired. Secondly [90, 273], the pose is explicitly solved using photogrammetric

techniques and used to compute the Jacobian. Simulation of 6-DOF image based

servoing [91] required determination of pose at each step to update the Jacobian. This

appears more involved than pure position-based servoing.

Rives et al. [48,211] describe an approach that computes the camera velocity screw

as a function of feature values based on the task function approach. The task is defined

as the problem of minimizing e cxt6 t where e is the task function. For visual

servoing the task function is written in terms of image features f which in turn are a

function of robot pose

e xt6 t C f xt6 t f
d

(5.8)

To ensure convergence C is chosen as C LT , where LT ∂ f ∂cxt6 t is referred

to as the interaction matrix, and denotes the generalized inverse. As previously it is

necessary to know the model of the interaction matrix for the visual features selected,

and interaction matrices for point clusters, lines and circles are derived. Experimental

results for robot positioning using four point features are presented [48].

Frequently the feature Jacobian can be formulated in terms of features plus depth.

Hashimoto et al. [111] estimate depth explicitly based on analysis of features. Pap-

anikolopoulos [198] estimates depth of each feature point in a cluster using an adap-

tive control scheme. Rives et al. [48, 211] set the desired distance rather than update

or estimate it continuously.

Feddema describes an algorithm [90] to select which three of the seven measurable

features gives best control. Features are selected so as to achieve a balance between
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controllability and sensitivity with respect to changing features. The generalized in-

verse of the feature Jacobian [111,134,211] allows more than 3 features to be used, and

has been shown to increase robustness, particularly with respect to singularities [134].

Jang et al. [135] introduce the concepts of augmented image space (AIS) and trans-

formed feature space (TFS). AIS is a 3D space whose coordinates are image plane co-

ordinates plus distance from camera, determined from motion stereo. In a similar way

to Cartesian space, trajectories may be specified in AIS. A Jacobian may be formu-

lated to map differential changes from AIS to Cartesian space and then to manipulator

joint space. The TFS approach appears to be very similar to the image-based servoing

approach of Weiss and Feddema.

Bowman and Forrest [36] describe how small changes in image plane coordinates

can be used to determine differential change in Cartesian camera position and this is

used for visual servoing a small robot. No feature Jacobian is required, but the camera

calibration matrix is needed.

Most of the above approaches require analytic formulation of the feature Jacobian

given knowledge of the target model. This process could be automated, but there is

attraction in the idea of a system that can 'learn' the non-linear relationship automati-

cally as originally envisaged by Sanderson and Weiss. Some recent results [123, 133]

demonstrate the feasibility of online image Jacobian estimation.

Skaar et al. [236] describe the example of a 1-DOF robot catching a ball. By ob-

serving visual cues such as the ball, the arm's pivot point, and another point on the

arm, the interception task can be specified even if the relationship between camera

and arm is not known a priori. This is then extended to a multi-DOF robot where cues

on each link and the payload are observed. After a number of trajectories the system

'learns' the relationship between image-plane motion and joint-space motion, effec-

tively estimating a feature Jacobian. Tendick et al. [249] describe the use of a vision

system to close the position loop on a remote slave arm with no joint position sensors.

A fixed camera observes markers on the arm's links and a numerical optimization is

performed to determine the robot' s pose.

Miller [185] presents a generalized learning algorithm based on the CMAC struc-

ture proposed by Albus [5] for complex or multi-sensor systems. The CMAC struc-

ture is table driven, indexed by sensor value to determine the system command. The

modified CMAC is indexed by sensor value as well as the desired goal state. Experi-

mental results are given for control of a 3-DOF robot with a hand-held camera. More

than 100 trials were required for training, and good positioning and tracking capa-

bility were demonstrated. Artificial neural techniques can also be used to learn the

non-linear relationships between features and manipulator joint angles as discussed

by Kuperstein [158], Hashimoto [110] and Mel [183].
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5.5 Implementation issues

Progress in visual servoing has been facilitated by technological advances in diverse

areas including sensors, image processing and robot control. This section summarizes

some of the implementation details reported in the literature.

5.5.1 Cameras

The earliest reports used thermionic tube, or vidicon, image sensors. These devices

had a number of undesirable characteristics such as physical weight and bulk, fragility,

poor image stability and memory effect [68].

Since the mid 1980s most researchers have used some form of solid state camera

based on an NMOS, CCD or CID sensor. The only reference to color vision for

visual servoing is the fruit picking robot [108] where color is used to differentiate fruit

from the leaves. Given real-time constraints the advantages of color vision for object

recognition may be offset by the increased cost and high processing requirements of

up to three times the monochrome data rate. Almost all reports are based on the use

of area sensors, but line-scan sensors have been used by Webber et al. [271] for very

high-rate visual servoing. Cameras used generally conform to either of the two main

broadcast standards RS170 or CCIR.

Motion blur can be a significant problem when there is relative motion between

target and camera. In conjunction with a simple binary vision system this can result in

the target being 'lost from sight' which in turn leads to ' rough' motion [17, 65]. The

electronic shuttering facility common to many CCD sensors can be used to overcome

this problem, but with some caveats, as discussed previously in Section 3.4.1.

Cameras can be either fixed or mounted on the robot' s end-effector. The benefits

of an end-effector-mounted camera include the ability to avoid occlusion, resolve am-

biguity and increase accuracy, by directing its attention. Tani [244] describes a system

where a bulky vidicon camera is mounted remotely and a fibre optic bundle used to

carry the image from near the end-effector. Given the small size and cost of modern

CCD cameras such an approach is no longer necessary. All reported stereo-based sys-

tems use fixed cameras although there is no reason a stereo-camera cannot be mounted

on the end-effector, apart from practical considerations such as payload limitation or

lack of camera system robustness.

Zhang et al. [290] observe that, for most useful tasks, an overhead camera will be

obscured by the gripper, and a gripper mounted camera will be out of focus during the

final phase of part acquisition. This may imply the necessity for switching between

several views of the scene, or using hybrid control strategies which utilize vision and

conventional joint-based control for different phases of the task. Nelson et al. [154]

discuss the issue of focus control for a camera mounted on a 'looking' robot observing

another robot which is performing the task using visual-servoing.



5.5 Implementation issues 167

5.5.2 Image processing

Vision has not been widely exploited as a sensing technology when high measurement

rates are required due to the enormous amount of data produced by vision sensors, and

the technological limitations in processing that data rapidly. A vision sensor's output

data rate (typically 6Mbyte s) is several orders of magnitude greater than that of a

force sensor for the same sample rate. This necessitates special-purpose hardware for

the early stages of image processing, in order to reduce the data rate to something

manageable by a conventional computer.

The highest speed systems reported in the literature generally perform minimal

image processing and the scenes are contrived to be simple to interpret, typically a

single white target on a black background [17,65,92,212]. Image processing typically

comprises thresholding followed by centroid determination. Selection of a threshold

is a practical issue that must be addressed and a number of techniques are reviewed by

Weszka [275].

General scenes have too much 'clutter' and are difficult to interpret at video rates.

Harrell [108] describes a vision system which uses software to classify pixels by color

so as to segment citrus fruit from the surrounding leaves. Allen et al. [7,8] use optical

flow calculation to extract only moving targets in the scene, thus eliminating station-

ary background detail. They use the Horn and Schunk optical flow algorithm [122],

implemented on a NIST PIPE [147] processor, for each camera in the stereo pair. The

stereo flow fields are thresholded, the centroid of the motion energy regions deter-

mined, and then triangulation gives the 3D position of the moving body. Haynes [39]

also uses a PIPE processor for stereo vision. Sequential frame differencing or back-

ground subtraction is proposed to eliminate static image detail. These approaches are

only appropriate if the camera is stationary but Dickmanns [77] suggests that the use

of foveation and feature tracking can be used in the general case of moving targets and

observer.

Datacube processing modules [74] have also been used for video-rate visual ser-

voing [65,71] and active vision camera control [51].

5.5.3 Feature extraction

A very important operation in most visual servoing systems is determining the coor-

dinate of an image feature point, frequently the centroid of a region. The centroid can

be determined to sub-pixel accuracy, even in a binary image, and for a circle that accu-

racy was shown, (4.53), to increase with region diameter. The calculation of centroid

can be achieved by software or specialized moment generation hardware.

There are many reports of the use of moment generation hardware to compute the

centroid of objects within the scene at video data rates [16, 94, 114, 261, 264]. Ander-

sson's system [16] computed grey-scale second order moments but was incapable of

connected-region analysis, making it unsuitable for scenes with more than one object.
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Hatamian's system [114] computed grey-scale third order moments using cascaded

single pole digital filters and was also incapable of connected-region analysis. The

APA-512 [261], described further in appendix C, combines single-pass connectivity

with computation of moments up to second order, perimeter and bounding box for

each connected region in a binary scene.

The centroid of a region can also be determined using multi-spectral spatial, or

pyramid, decomposition of the image [14]. This reduces the complexity of the search

problem, allowing the computer to localize the region in a coarse image and then refine

the estimate by limited searching of progressively higher resolution images.

Software computation of image moments is one to two orders of magnitude slower

than specialized hardware. However the computation time can be greatly reduced if

only a small image window, whose location is predicted from the previous centroid, is

processed [77,92,99,108,212,274]. The task of locating features in sequential scenes

is relatively easy since there will be only small changes from one scene to the next [77,

193] and total scene interpretation is not required. This is the principle of verification

vision proposed by Bolles [34] in which the system has considerable prior knowledge

of the scene, and the goal is to verify and refine the location of one or more features

in the scene. Determining the initial location of features requires the entire image to

be searched, but this need only be done once. Papanikolopoulos et al. [197] use a

sum-of-squared differences approach to match features between consecutive frames.

Features are chosen on the basis of a confidence measure computed from the feature

window, and the search is performed in software. The TRIAX system [19] is an

extremely high-performance multiprocessor system for low latency six-dimensional

object tracking. It can determine the pose of a cube by searching short check lines

normal to the expected edges of the cube.

When the software feature search is limited to only a small window into the im-

age, it becomes important to know the expected position of the feature in the image.

This is the target tracking problem; the use of a filtering process to generate target

state estimates and predictions based on noisy observations of the target' s position

and a dynamic model of the target' s motion. Target maneuvers are generated by ac-

celeration controls unknown to the tracker. Kalata [141] introduces tracking filters

and discusses the similarities to Kalman filtering. Visual servoing systems have been

reported using tracking filters [8], Kalman filters [77, 274], AR (auto regressive) or

ARX (auto regressive with exogenous inputs) models [91, 124]. Papanikolopoulos et

al. [197] use an ARMAX model and consider tracking as the design of a second-order

controller of image plane position. The distance to the target is assumed constant and a

number of different controllers such as PI, pole-assignment and LQG are investigated.

For the case where target distance is unknown or time-varying, adaptive control is

proposed [196]. The prediction used for search window placement can also be used to

overcome latency in the vision system and robot controller.

Dickmanns [77] and Inoue [128] have built multiprocessor systems where each
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processor is dedicated to tracking a single distinctive feature within the image. More

recently, Inoue [129] has demonstrated the use of a specialized VLSI motion estima-

tion device for fast feature tracking.

Hager's XVision4 is a portable software package for high-speed tracking of line

and region features. Its object oriented structure allows for the creation of more com-

plex features based on the inbuilt primitive features.

5.5.4 Visual task specification

Many of the visual servo systems reported are capable of performing only a single

task. This is often due to the optimization necessary given the constraints of image

processing. There has been little work on more general approaches to task description

in terms of visual features. Jang [134] and Skaar et al. [236] have shown how tasks

such as edge following or catching can be expressed in terms of image plane fea-

tures and their desired trajectories which are described algorithmically. Commercial

robot/vision systems have inbuilt language support for both visual feature extraction

and robot motion; however, these are limited to look-then-move operation since mo-

tion is based on finite duration trajectories to known or computed destination points.

Geschke [100] describes the Robot Servo System (RSS) software which facilitates

the development of applications based on sensory input. The software controls robot

position, orientation, force and torque independently, and specifications for control of

each may be given. The programming facilities are demonstrated with applications

for vision-based peg in hole insertion and crank turning. Haynes et al. [39] describe

a set of library routines to facilitate hand-eye programming for a PC connected to a

Unimate robot controller and stereo-camera system.

The use of a table-driven state machine is proposed by Adsit [1] to control a

visually-servoed fruit-picking robot. The state machine was seen to be advantageous

in coping with the variety of error conditions possible in such an unstructured work

environment. Another approach to error recovery is to include a human operator in

the system. The operator could select image features and indicate their desired config-

uration allowing the task itself to be performed under closed-loop visual control. This

would have particular advantage in situations, such as space or undersea, where there

is considerable communications time delay. Teleoperation applications have been de-

scribed by Yuan et al. [289], Papanikolopoulos et al. [198] and Tendick et al. [249].

4Available from http://WWW.CS.Yale.EDU/HTML/YALE/CS/AI/VisionRobotics/YaleTracking.html
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Chapter 6

Modelling an experimental

visual servo system

This and following chapters are concerned with the dynamic characteristics of closed-

loop visual control systems, as distinct from the kinematic control issues discussed

in the previous chapter. Researchers in robotic force control (e.g., Whitney [276],

Eppinger and Seering [85]) have demonstrated that as the bandwidth of the sensor

increases, dynamic effects in the sensor, robot and environment introduce stability

problems as attempts are made to increase the closed-loop bandwidth. Similar prob-

lems exist with high-bandwidth visual control but to date reported sample rates and

manipulator speeds have generally been so low that these problems have not been

widely appreciated. This has largely been due to technological limitations in image

processing. However in a few cases such effects have arisen but were only mentioned

in passing and not adequately investigated.

This chapter starts by examining the architecture and dynamic performance of

visual servo systems previously described in the literature, and draws some conclu-

sions about system architectural characteristics that are prerequisites to achieving

high-performance. Then the experimental hardware and software system used in this

work is introduced: a general-purpose sensor-based robot controller and a low-latency

50 Hz vision system. The system described uses a single end-effector mounted camera

(monocular eye-in-hand vision) to implement a target following or fixation behaviour

by rotating the camera using the robot' s wrist axes. It employs “simplistic computer

vision” techniques and a specialised hardware architecture to provide a high sample-

rate and minimum latency vision system. This results in an ideal testbed with which to

bring closed-loop dynamic problems to the fore, conduct modelling, and experiment

with various control strategies. The temporal characteristics of the controller hardware

and software affect the visual closed-loop dynamics and must be understood in order

171
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to explain the observed behaviour.

6.1 Architectures and dynamic performance

The earliest reference to a visual servo stability problem appears to be Hill and Park's

[116] 1979 paper which describes visual servoing of a Unimate robot and some of the

dynamics of visual closed-loop control. Stability, accuracy and tracking speed for an-

other Unimate-based visual-servo system are discussed by Makhlin [179]. Coulon and

Nougaret [68] describe closed-loop position control of an XY mechanism to achieve

a settling time of around 0.2s to a step demand. Andersen [13] describes the dynamic

control of a labyrinth game — a wooden board mounted on gimbals on which a ball

bearing rolls, the aim being to move the ball through a maze and not fall into a hole.

The ball' s position is observed at 40 ms intervals and a Kalman filter is used to re-

construct the ball' s state. State-feedback control gives a closed loop bandwidth of

1.3Hz.

Weiss [273] proposes image based visual servoing, a control strategy in which

robot joint torques are controlled by visual feature data via SISO MRAC loops. The

adaptive controllers ' track' the time-varying kinematic relationship between robot

joint angles and target features, as well as compensating for the time-varying rigid-

body manipulator dynamics. Weiss presents simulation results only, but for complex

mechanisms such as 3-DOF revolute robots he finds that visual sample rates over

300 Hz are required for stable and accurate control. The axis models used in the sim-

ulation do not include any non-linear friction terms.

Pool [206] provides a detailed description of a motion control system for a citrus

picking robot. The 2-DOF robot is hydraulically actuated and has three control modes:

velocity control for scanning the tree, position control for return after fruit picking and

visual control while reaching toward a fruit. In position control mode an inner velocity

loop was found to be necessary to counter the effects of static friction in the actuator.

The visual control mode uses visual error to control the hydraulic valve via a lead/lag

compensator — there is no inner axis velocity or position loop despite the problems

mentioned with static friction in position control mode. Acceptable static error of

6pixels was achieved without any explicit gravity compensation. The controller is

implemented digitally at 60 Hz and is synchronous with the RS170 field rate image

processing system. Surprisingly, the controller design is performed using continuous

time techniques with no modelling of latency in the vision system or controller. The

design aim was to achieve a phase lag of 10 with a fruit swinging at 1.1Hz but this

was not achieved. At that frequency the desired phase lag is equivalent to a delay of

25 ms and the vision system alone would contribute nearly 17 ms of delay (one RS170

field time), requiring very high performance servos to meet this criterion.

Important prerequisites for high-performance visual servoing are:
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a vision system capable of a high sample rate with low latency;

a high-bandwidth communications path between the vision system and the robot

controller.

Most reports make use of standard video sensors and formats and are thus limited in

sample rate to at most 60 Hz (the RS170 field rate). Weber and Hollis [271] developed

a high-bandwidth planar position-controlled micro-manipulator with a 300 Hz sample

rate by using linear rather than array sensors, dramatically reducing the number of

pixels to be processed.

For visual control [68, 116] and force control [201] it has been observed that la-

tency from sensed error to action is critical to performance. While pipelined comput-

ing systems are capable of high throughput rates (and are commonly used in image

processing) they achieve this at the expense of latency. For sensor-based systems it

may be preferable to employ parallel rather than pipelined processing. Many reports

are based on the use of slow vision systems where the sample interval or latency is

significantly greater than the video frame time. If the target motion is constant then

prediction can be used to compensate for the latency, but the low sample rate results

in poor disturbance rejection and long reaction time to target 'maneuvers'. Zhang

et al. [290] have suggested that prediction is always required for the final phase of

part grasping, since an overhead camera will be obscured by the gripper, and a gripper

mounted camera will be out of focus.

Grasping objects on a conveyor belt is an ideal application for prediction since the

target velocity is constant. Zhang et al. [290] have presented a tracking controller for

visually servoing a robot to pick items from a fast moving conveyor belt (300 mm s).

The camera is hand-held and the visual update interval used is 140 ms. A Kalman

filter is used for visual state estimation, and generalized predictive control is used

for trajectory synthesis and long-range prediction along the axis of conveyor motion.

Allen et al. [8] use a 60 Hz fixed-camera stereo vision system to track a target moving

at 250 mm s. Later work [7] extends this to grasping a toy train moving on a circular

track. The vision sensor introduces considerable lag and noise and an α β γ filter

[141] is used to smooth and predict the command signal to the robot. Houshangi [124]

uses a fixed overhead camera, and a visual sample interval of 196 ms, to enable a

Puma 600 robot to grasp a moving target. Prediction based on an auto-regressive

model is used to estimate the unknown dynamics of the target and overcome vision

system delays. Prajoux [207] describes a system to grasp a swinging object using 2-

DOF visual servoing. A predictor is used to estimate the future position of the hook,

enabling settling times of the order of 1s.

It is an unfortunate reality that most 'of f-the-shelf' robot controllers have low-

bandwidth communications facilities. In many reported visual servo systems the com-

munications path between vision system and robot is typically a serial data commu-

nications link [91, 124, 258, 280]. The Unimate VAL-II controller' s ALTER facility
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used by some researchers [198, 258] allows trajectory modification requests to be re-

ceived via a serial port at intervals of 28 ms. Tate [248] identified the transfer function

between this input and the manipulator motion, and found the dominant dynamic char-

acteristic below 10 Hz was a time delay of 0.1s. Bukowski et al. [39] describe a novel

analog interconnect between a PC and the Unimate controller, so as to overcome the

inherent latency associated with the Unimate ALTER facility.

To circumvent this communications problem it is necessary to follow the more

difficult path of reverse engineering the existing controller or implementing a custom

controller. One of the more common such approaches is to use RCCL [115] or simi-

lar [64,65] to connect a 'foreign controller' to a Puma robot' s servo system, bypassing

the native VAL based control system. This provides direct application access to the

Unimate joint servo controllers, at high sample rate, and with reduced communica-

tions latency. Visual servo systems based on RCCL have been described by Allen et

al. [8], Houshangi [124] and Corke [66]. Allen et al. use a 'high speed interface' be-

tween the PIPE vision system and RCCL, while Corke uses an Ethernet to link a Dat-

acube based vision system to a Cartesian velocity server based on RCCL. Houshangi

uses RCCL as a platform for adaptive axis control, but uses a low visual sample rate

and a vision system connected by serial link. Higher communications bandwidth can

be achieved by means of a common computer backplane. Such an approach is used by

Papanikolopoulos [197] with the Chimera multi-processor control architecture. Later

work by Corke [65], including this work, is based on a VMEbus robot controller and

Datacube vision system with a shared backplane. A similar structure is reported by

Urban et al. [256].

Less tightly coupled systems based on transputer technology have been described

by Hashimoto et al. [111], Rizzi et al. [212] and Westmore and Wilson [274]. The

vision system and robot actuators are connected directly to elements of the computa-

tional network. Hashimoto' s system closes the joint velocity control loops of a Puma

560 at 1kHz, but the visual servo sample interval varies from 85 ms to 150 ms depend-

ing upon the control strategy used. Wilson' s transputer-based vision system performs

feature tracking and pose determination, but communicates with a CRS robot via a

serial link.

The majority of reported experimental systems implement a visual feedback loop

'on top of' the robot' s existing position-control loops. This has occurred, probably,

for the pragmatic reason that most robot controllers present an abstraction of the robot

as a position-controlled device. However some researchers in visual servoing who

have 'b uilt their own' robot controllers at the axis level have all chosen to implement

axis-position control. Papanikolopoulos [197] implements custom Cartesian position

controllers based on PD plus gravity or model-based torque-feedforward techniques.

Sharkey et al. [231] control the 'Yorick' head by means of an inner high-rate position

control loop. Houshangi [124] implements adaptive self-tuning axis control with an

outer position-control loop. The redundant levels of control add to system complexity
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Figure 6.1: Photograph of VME rack. From left to right is CPU, Puma interface,

video patch panel, Datacube boards, APA-512, a gap, then the VME to Multibus

repeater.

and may impact on closed-loop performance, but this issue has not been investigated in

the literature and is discussed in Section 7.4. Hashimoto [111] and Pool [206] provide

the only known prior reports of visual servo systems based upon robot axis-velocity

control.

6.2 Experimental hardware and software

The facility used for the present visual servoing work has evolved from that developed

in the mid 1980s for investigation into robotic force control and deburring [67]. It

provides general facilities for sensor-based robot control which proved well suited

for early experimental work on visual servoing. The important components of the

experimental system are:

processor and operating system;

robot control hardware;

ARCL robot programming support software;

high-performance low-latency vision system
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Figure 6.2: Overall view of the system used for visual servo experiments.

RTVL visual servo support software.

The robot controller and vision system are individually capable of high performance,

but the significant advantage of this system is that the robot controller and vision

system share a common backplane, see Figure 6.1. This provides a high-bandwidth

visual feedback path which is in contrast to the low-speed serial links reported in much

of the visual servoing literature. The remainder of this section will briefly describe

each of these components. Additional details can be found in the Appendices.

6.2.1 Processor and operating system

The controller is built on the VMEbus [188], an old but widely used high-performance

32-bit bus, for which a large range of computing, image processing and interface mod-

ules are available. The CPU is a Motorola MV147 68030 processor card [50] running
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at 25 MHz1. It provides four serial communication lines, as well as an Ethernet in-

terface. In contrast to some systems described in the literature which are based on

multiple high-speed processors [17, 111, 274] a single processor is adequate for the

task and is far easier to program and debug.

The VxWorks [281] real-time multi-tasking operating system is used to support

software running in the target processor. VxWorks provides common Unix and POSIX

library functions, as well as its own libraries for managing tasks, semaphores, timers

and so on. It also has extensive networking functions allowing the target processor, for

instance, to access remote files via NFS. An interactive shell, accessible via rlogin

or telnet, allows task control, program loading, and inspection or modification of

global program variables.

6.2.2 Robot control hardware

A schematic of the visual servo controller system is shown in Figure 6.2, and a detailed

view of the principal robot controller modules is shown in Figure 6.3. A custom in-

terface allows the VMEbus host computer to communicate with the attached Unimate

servo system. The custom interface is connected directly to the Unimate arm-interface

board, taking over the role of the low-powered LSI-11/2 microprocessor which runs

the VAL language interpreter. The arm-interface is responsible for relaying commands

and data between the host and the individual joint position-control cards which were

described in Section 2.3.6. Controllers for Unimate robots built on similar principles

have been reported by others [115,184,262]. In this system the host is able to read the

present position of each axis, in encoder units, or specify a new setpoint. Setpoints

may be either a position demand, in encoder units, or a motor current demand, in DAC

units.

The significant point is that the position controller can only accept setpoints at

intervals of 3 5 2n ms, where n 0 1 5 . Current demand setpoints may be

issued at any time, and are passed on to the current loop in less than 1ms. Details of

the Unimate controller structure are given in Corke [56]2.

Robot motor currents are also accessible to the host computer. The motor current

shunt voltages have been tapped, and brought out to a connector on the back of the

Unimate control box. This may be connected to an 8-channel 12-bit simultaneous-

capture ADC board [72] via a bank of custom anti-aliasing filters. The filters are 4th

order Butterworth with a break frequency of 40 Hz.

The Unimate teach pendant has also been disconnected from the VAL processor

and connected to a serial port on the MV147 CPU. A small software library makes the

pendant available to application programs, and is a more convenient input device for

manual robot control than graphical jog buttons or sliders on a workstation screen.

1For some of the work described in Chapter 8 a 33 MHz processor was used instead.
2Available in an online document, see Appendix B.



178 Modelling an experimental visual servo system

CPU (MV147)

Arm
interface
board

Digital
servo
boards

A/D converter

analog filter

bus adaptor

VMEbus

Multibus

Unimate controller

Unimate interface
Multibus adaptor

Force/torque
wrist sensor
voltages

Motor
current
shunt
voltages

Figure 6.3: Robot controller hardware architecture showing datapaths from the

main VME controller to the Multibus I/O box and Unimate servo controller.

6.2.3 ARCL

ARCL [55] is a software system for manipulator control, based on the concepts of

RCCL [115]. The programmer's model is based on Cartesian coordinates represented

by homogeneous transformations. ARCL is however modular and designed for ease

of porting to different computer platforms, operating systems and robot manipulators

[64]. Portability is achieved by a number of clearly defined interfaces to, and within,

the ARCL software.

The user's application program executes concurrently with a real-time periodic

trajectory generation process which computes the next set of manipulator joint angle
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Figure 6.4: Timing of ARCL setpoint generator and servo communication processes.

setpoints. The user's program communicates with the trajectory generator by means

of a motion request queue. Various mechanisms exist to allow the user's program to

synchronize with the motion of the manipulator, and to allow sensory data to modify

the manipulator' s path. One conceptually simple, but powerful, approach to sensor-

based control is implemented by defining a position in terms of a transformation bound

to a function which reflects the value obtained by the vision system. Moving to a

position defined in terms of that transformation results in motion controlled by the

vision system.

The processing sequence of the ARCL software influences the closed-loop visual

servo model and warrants discussion at this point. The principal timing, shown in

Figure 6.4, is controlled by a periodic interrupt from a timer on the CPU card which

activates the servo communications task. That task communicates with the six digital

servo boards in the Unimate controller chassis via the arm interface board. It reads

the current encoder values, transmits the previously computed setpoints, and then acti-

vates the trajectory generator task to compute the next position setpoint. This 'double

handling' of the position setpoint data is necessary to accommodate the variable ex-

ecution time of the trajectory generation algorithm, but at the expense of increased

latency in robot response. An irregular sequence of setpoints results in undesirably

rough joint motion.

6.2.4 Vision system

The image processing subsystem, see Figure 6.1, is based on Datacube video-rate

pixel-pipelined image processing modules — VMEbus boards that perform simple

arithmetic operations on digital video data. Digital video data would exceed the band-

width of the VMEbus so separate video datapaths are established via sockets along

the front edge of each board. The user-installed patch cables between these sockets

create the video datapaths required by the application, see Figure 6.5. These inter-
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Figure 6.5: MAXBUS and VMEbus datapaths. The MAXBUS 10Mpixel s dat-

apaths are established by user-installed patch cables between board front panel

sockets.

module video datapaths are known as MAXBUS3 and carry byte-parallel pixel data

at 10 Mpixel s. Operating parameters are set, and board status monitored, by the host

computer via the VMEbus. All Datacube modules are linked by a common timing

bus, providing pixel, line and frame clocks. In this configuration the timing bus is

driven by the DIGIMAX digitizer which is synchronized to the video signal from the

Pulnix TM-6 camera which was modelled in Chapter 3. This camera employs field

shuttering and is operated with a shutter interval of 2ms unless stated otherwise.

The image processing flow, implemented using Datacube modules, is shown sche-

matically in Figure 6.6. The incoming analog video signal is digitized to form a 512

512 pixel digital image. This is thresholded by a lookup table which maps pixels to one

of two grey levels, corresponding to the binary values black or white. Binary median

filtering on a 3 3 neighbourhood is then performed to eliminate one or two pixel

noise regions which would overwhelm downstream processing elements. Another

framestore is used by the run-time software to display real-time color graphics and

performance data which are overlaid on the live or binarized camera image.

The APA-512+ [25] (for Area Parameter Accelerator) is a hardware unit designed

to accelerate the computation of area parameters of objects in a scene. Digital video

data input via MAXBUS is binarized4 and single pass connectivity analysis is per-

formed. For each region, black or white, a group of parallel ALUs compute moments

up to second order, perimeter and bounding box. The APA notifies the host by inter-

rupt or poll-able status flag when a region is completed, and the results for that region

3Trademark of Datacube Inc., Danvers MA, USA, who developed the standard and a range of conform-

ing image processing modules.
4In this system the image is binarized in the processing stages prior to the APA.
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Figure 6.6: Schematic of image processing data flow. Video data is digitized,

thresholded and median filtered prior to region feature extraction. The final data

rate is a small fraction of that from the camera and can be readily handled by a

moderately powered microprocessor. Note also the framestore used for rendering

overlay graphics.

are then available from onboard shared memory.

The APA performs very effective data reduction, reducing a 10 Mpixel s stream of

grey-scale video data input via MAXBUS, to a stream of feature vectors representing

objects in the scene. Each region is described by 48 bytes of data, so a scene with 10

regions results in a feature data rate of 24 kbyte s, or 0.4% of the incoming pixel rate.

The host processor screens the feature vectors according to their parameters (size,

shape, 'color'), and thus finds the objects of interest. Appendix C provides additional

details of APA operation.

Many of the reported visual servoing systems process complete video frames.

As discussed in Section 3.4.1 full-frame processing requires deinterlacing which in-

creases latency and can result in a ragged image of a fast moving target. Figure 6.7

compares the latency for field and frame rate processing. In this work field processing
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Figure 6.7: Comparison of latency for frame and field-rate processing. 'E' and

'O' designate even and odd fields respectively. Approach (a), as used in this work

allows the pixel transfer and processing to be overlapped, giving results within a

maximum of 20ms after pixel exposure. Approach (b) is a straightforward frame

processing strategy where both fields must be loaded into the framestore before

processing can commence. Since a CCIR frame by definition starts with an even

field an extra field delay, shown as missed field is introduced. Approach (c) is a

modification of (b) which recognizes that frame processing can commence with

the second, odd, field.

is used, allowing a 50 Hz visual sample rate by treating the interlaced camera output

as two consecutive frames of half vertical resolution.

6.2.5 Visual servo support software — RTVL

Early experimental work in visual servoing showed that quite simple applications

rapidly became bloated with detailed code to handle the requirements of vision and

robot control, graphical display, diagnostics, data logging and so on [57]. Consid-

erable work has gone into the design of the software system known as RTVL for

Real-Time Vision Library. RTVL provides extensive functions to the user's applica-

tion program encompassing visual-feature extraction, data-logging, remote variable

setting, and graphical display. The RTVL software is described in detail in Appendix

D, and a typical display is shown in Figure 6.8.
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Figure 6.8: Typical RTVL display as seen on the attached color monitor. On

the left of the display are 'watched' variables while at lower left various status

items are displayed. Top right is the current time and bottom right are activity

indicators which appear to spin, allowing a quick appraisal of system operation.

In the center can be seen the grey-scale target image with a tracking cursor. The

white square almost surrounding the target is the region in which integral action

control is enabled.

RTVL provides visual-servo-specific extensions to VxWorks and is loaded into

memory at system boot time. Visual servo applications programs are loaded subse-

quently and access RTVL via a well-defined function call interface. Internally it com-

prises a number of concurrent tasks and shared data structures. The feature extraction

process is simplistic and reports the first (in raster order) n regions which meet the

application program's acceptance criteria. These are expressed in terms of a boolean

screening function applied to all extracted regions in the scene. Typically screening is

on the basis of object color (black or white), upper and lower bounds on area, and per-

haps circularity (4.11). Functions exist to compute useful measures such as centroid,

circularity and central moments from the returned region datastructures.

Convenient control of applications is facilitated by a mechanism that allows pro-

gram variables to be registered with a remote procedure call (RPC) server. The client

is an interactive control tool running under OpenWindows on an attached workstation
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computer. A list of variables registered under the real-time system can be popped up,

and for user selected variables a value slider is created which allows that variable to

be adjusted. Variables can be boolean, integer, floating point scalar or vector. For de-

bugging and analysis RTVL provides two mechanisms for monitoring variables. One

continuously displays the values of a nominated list of variables in the graphics plane

which is superimposed on the live camera image, see Figure 6.8. Another allows vari-

ables to be timestamped and logged with low overhead into a large memory buffer.

The buffer can be written to a file via NFS and a postprocessor used to extract selected

variables. These may be displayed in tabular form or imported into MATLAB for

analysis and plotting. Most of the experimental data in this book has been obtained

using this facility.

Timestamping events within the controller is essential in understanding the tempo-

ral behavior of such a complex multi-tasking sensor-based system. It is also desirable

that the mechanism has low overhead so as not to impact on system performance. A

novel timing board has been developed that provides, via one 32-bit register, a count

of video lines since midnight. Each video line is 64 µs and this provides adequate

timing resolution, but more importantly since the count is derived from MAXBUS

horizontal synchronization signals it gives a time value which can be directly related

to the video waveform. The time value can be readily converted into frame number,

field number, field type (odd or even) and line number within the field or frame, as

well as into conventional units such as time of day in hours, minutes and seconds. A

comprehensive group of macros and functions is provided to perform these conver-

sions. For debugging and performance analysis this allows the timing of events with

respect to the video waveform to be precisely determined.

6.3 Kinematics of camera mount and lens

This section analyses two important mappings in the experimental visual servo system.

The first is the the mapping between robot wrist motion and motion of the camera

which is a function of the kinematics of the camera mounting on the end-effector. The

second is the mapping between camera motion or target motion and perceived motion

on the image plane.

6.3.1 Camera mount kinematics

To simplify analysis it is desirable to mount the camera such that camera DOF are

controlled individually by robot wrist axes. The fundamental requirement is to control

the camera's rotational velocity in the camera's coordinate frame. Traditionally the

terms camera pan and tilt are used to describe camera rotational motion. In robotic

terminology these are respectively yaw and pitch motion. Using the standard camera
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coordinate frame of Figure 3.25 the rotational rates may be expressed as ωtilt
cωx

and ωpan
cωy.

Paul and Zhang [202] give the manipulator' s Jacobian, in the T6 or wrist frame, as

t6Jθ θ J11 0

J21 J22
(6.1)

where J22 describes end-effector rotation due to wrist axis motion, and J21 describes

rotation of the end-effector due to base axis motion which is assumed zero in this case.

Consider the camera mount arrangement shown in Figure 6.9 where the camera frame

has simply been translated along the Z6 axis. Rotational velocity of the camera is

equal to the wrist' s rotational velocity. For given pan/tilt motion, and using the inverse

Jacobian given by Paul and Zhang, the required joint rates can be shown to be

θ̇4

θ̇5

θ̇6

1

S5

S6 C6

S5C6 S5C6

C5S6 C5C6

ωtilt

ωpan
(6.2)

which has two undesirable characteristics. Firstly, it is singular for θ5 0 which is in

the middle of the desired workspace, and will be poorly conditioned for camera gaze

directions in a cone around the joint 4 axis, Z3. Secondly, there is considerable cross-

coupling which requires the motion of 3 wrist axes to control the required 2-DOF of

the camera.

The camera mounting arrangement shown in Figures 6.10 and 6.11 can be seen

intuitively to couple camera pan and tilt motion to wrist axes 6 and 5 respectively. The

transformation from the T6 frame to camera frame was given in (4.73) and allows the

camera pose rate to be written in terms of a constant Jacobian and the manipulator

Jacobian

cẋ cJt6
6Jθ θ θ̇ (6.3)

1 0 0 0 121 20

0 0 1 20 0 0

0 1 0 121 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

J11 0

J21 J22
θ̇ (6.4)

With joints 1–4 stationary, θ̇4 0, this results in

ωtilt

ωpan

S6 0

0 1

θ̇5

θ̇6
(6.5)



186 Modelling an experimental visual servo system

optical axis

Zc

Yc

Z6

Z3

6X

Figure 6.9: A simple camera mount.

optical axis

Zc

Yc

Z6

6Y

Figure 6.10: Camera mount used in this work. In this pose θ6 π 2.
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Figure 6.11: Photograph of camera mounting arrangement.

which shows that the camera DOF are indeed independently controlled by the wrist

axes 5 and 6. Rearranging to the form

θ̇5

θ̇6

1
S6

0

0 1

ωtilt

ωpan
(6.6)

shows that a singularity occurs when S6 0 but this is at the edge of the work envelope

and is not a significant problem. As shown in Figure 6.10 the normal working pose

is with θ6 π 2. Camera roll, that is rotation about the optical axis, is not controlled

and the roll rate can be shown to be

ωroll C6θ̇5 (6.7)

For fixation motion where the target' s centroid is maintained at the principal point

on the image plane, camera roll is of no significance. The only disadvantage of this

mounting scheme is that it is possible for the camera and its mount to collide with

links 3 and 4, particularly when the camera is tilted upward.
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6.3.2 Modelling the lens

In a visual servoing system the lens introduces a gain relating changes in target pose to

changes in image plane displacement. Changes in this gain will affect the performance

and stability of the closed-loop system.

For fixation by translation the lens gain relates camera translation to image plane

translation. The small-signal gain of the lens is given by the Jacobian matrix5, ∂iX ∂cxt

where iX iX iY and cxt is the target' s relative pose. Recalling the lens equations

expressed in pixels (3.66) and (3.67)

iX
αx f cxt

czt f
X0

iY
αy f cyt

czt f
Y0 (6.8)

the lens gain is such that

δiX

δiY

∂iX

∂cxt

δcxt

δcyt

δczt

(6.9)

αx f
czt f

0 αx f cxt
czt f 2

0
αy f

czt f

αy f cyt
czt f 2

δcxt

δcyt

δczt

(6.10)

The rightmost column of the Jacobian gives the component of image plane motion

due to perspective dilation and contraction which will be ignored here since motion in

a plane normal to the optical axis is assumed. The lens can thus be modelled in terms

of two, distance dependent, gain terms

δiX

δiY

Klensx 0

0 Klensy

δcxt

δcyt
(6.11)

where

Klensx

αx f
czt f

Klensy

αy f
czt f

(6.12)

For brevity, the remainder of this development will be in terms of the X-direction only.

If the target distance is large, czt f , the lens gain

Klensx

αx f
czt

(6.13)

is strongly dependent on target distance.

An alternative fixation strategy is to control camera orientation, so that lens gain

relates relative camera rotation, or bearing angle, to image plane translation. The

5A simple image Jacobian as introduced in Section 5.4.
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Figure 6.12: Target location in terms of bearing angle. For rotational fixation it is

advantageous to consider the target pose, xt as a bearing angle θx x z.

small-signal gain of the lens in this case is given by the Jacobian matrix, ∂iX ∂cθt

where cθt is the target' s relative bearing as shown in Figure 6.12. From (3.66) we may

write
iX

αx f cxt tancθt

czt f
(6.14)

For small cθt , as it would be during fixation, tancθt
cθt and the lens gain is

Klensx

∂iX

∂cθt

αx f czt

czt f
(6.15)

For a large target distance, czt f , the lens gain

Klensx
αx f (6.16)

is independent of the target distance and the image plane coordinate is proportional to

the bearing angle.

With the simple lens shown in Figure 3.5 it is possible to imagine the lens being

rotated so as to keep the optical axis, for instance, pointed at the target. However for

the compound lens used in practice the situation is not so simple. It is not possible

to simply replace the compound lens with an equivalent simple lens at its lens plane.

With the mechanical camera mounting shown in Figure 4.11 the axis of rotation passes

through the body of the camera at a point determined by the camera mounting hole.

An exaggerated representation is shown in Figure 6.13 for a target at distance l which

subtends an angle cθt at the lens, and where θc the angle of camera rotation. What

is unknown is the point in the lens system, distance r from the camera rotation axis,

about which the target appears to rotate. This point is known as the nodal point of

the lens and is not generally given by the lens manufacturer. It may be determined

experimentally using a nodal slide.
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Figure 6.13: Lens center of rotation. The camera rotates about the point O, but

the image of the target rotates about the point N. θc and cθt are equivalent to xr

and xt respectively.

Application of the sine rule to the geometry shown in Figure 6.13 results in the

relationship

tancθt
l sinθc

l cosθc r
(6.17)

between the two angles and it is clear that cθt θc if r 0.

For rotational fixation the lens gain must be redefined as the apparent shift of the

target to rotation of the camera about its axis since that is the variable being controlled.

Thus

Klensx

diX

dθc

diX

dcθt

dcθt

dθc
(6.18)

and substituting from (6.16) gives

Klensx
f αx

dcθt

dθc

(6.19)

l l r cosθc

r2 l2 2 l r cosθc

(6.20)

For small camera rotations, cosθc 1, the lens gain

Klensx
f αx

l

l r
(6.21)

is dependent on target distance, but this dependence is weaker than the case for pure

translational motion, (6.13). In experiments the lens gain has been observed to lie in

the range 700 to 730 pixel rad depending on camera distance from the target. This

is considerably higher than the value of Klensx
αx f 634 pixel rad expected from

(6.16), suggesting that the effect described by (6.21) is significant for these experi-

ments in which the target is relatively close to the camera. Such experiments can be

used to estimate the nodal point: an experiment measured Klens 724 pixel rad and

l 610 mm, from which the effective radius is determined to be r 86 mm. This
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places the nodal point at approximately the glass surface on the front of the lens. It is

possible to rotate the camera about its nodal point — this simply requires coordinated

motion of all six manipulator axes. However doing so would cloud the central investi-

gation since the resulting motion would be a complex function of the dynamics of all

six axes.

6.4 Visual feedback control

The underlying robot controller accepts absolute position setpoint commands but the

vision sensor provides relative position information. In general, due to limited torque

capabilities, the robot will be unable to reach an arbitrary target position within one

setpoint interval and thus requires some 'planned' motion over many intervals. In

robotics this is the well known trajectory generation problem [199], but that approach

has a number of disadvantages in this situation:

1. to ensure ' smooth' motion over many setpoint intervals it is necessary to explic-

itly control robot acceleration and deceleration. Techniques based on polyno-

mial trajectories are well known, but add complexity to the control.

2. the target may move while the robot is moving toward its previous goal. This

necessitates evaluation of a new path while maintaining continuity of position

and its time derivatives. Such an approach has been used by Feddema [91] and

Houshangi [124].

A far simpler approach is to consider the positioning task as a control problem:

perceived error generates a velocity demand which moves the robot toward the target.

This results automatically in target following behaviour, but without the complexities

of an explicit trajectory generator. This behaviour is analogous to the way we control

cars and boats within an unstructured environment: we do not compute a sequence of

precise spatial locations, but rather a velocity which is continually corrected (steering)

on the basis of sensory inputs until the goal is achieved.

A simple visual control strategy such as fixation can be based on feedback of the

centroid of a single visual feature

ẋd F
iX iXd
iY iYd

(6.22)

where F is a 6 2 matrix which selects how the robot' s pose, x, is adjusted based

on observed, iX iY , and desired iXd
iYd image plane centroid. A single centroid

provides only two 'pieces' of information which can be used to control two robot

DOF. As described in the previous chapter additional image features can be used to

control a greater number of Cartesian DOF. In some earlier work by the author [62,65]
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the camera was translated so as to keep the target centered in the field of view. In this

chapter, in order to achieve higher performance, the last two axes of the robot are

treated as an autonomous camera 'pan/tilt' mechanism since:

relatively small rotational motion is required to follow large object excursions;

the effective field of view is much greater;

from Table 2.21 it is clear that for the Puma 560 the wrist axes have significantly

greater velocity and acceleration capability;

it is more efficient to accelerate only the camera, not the massive links of the

robot.

Visual fixation by rotation may be achieved by a proportional control strategy, where

(6.22) is written as

cẋd

0 0

0 0

0 0

0 Kpy

Kpx 0

0 0

iX iXd
iY iYd

(6.23)

This control approach produces a pose rate demand that, for a position-controlled

robot, must be integrated to determine the robot joint angle setpoints. The integration

may be performed in Cartesian or joint space. In the former, desired Cartesian velocity

is integrated

xd ẋd dt (6.24)

and the corresponding joint positions obtained using inverse kinematics

q
d

K 1 xd (6.25)

This technique has been used to implement fixation based on camera translation [62,

65], where the first three robot axes control motion of the camera in a plane normal to

the optical axis.

Alternatively the Cartesian velocity demand can be resolved to joint velocity [277]

demand

q̇
d

t6 J 1
θ q ẋd (6.26)

and then integrated

q
d

q̇
d

dt (6.27)

The latter form (6.26) is less robust since numerical errors in the computed Jacobian

result in a Cartesian velocity slightly different from that demanded, causing the robot' s
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Figure 6.14: Coordinate and sign conventions. Note that camera angle, xc, is

equal to robot angle xr.

pose to drift slowly with time. For those Cartesian DOF with visual feedback the

drift will be controlled, but as observed experimentally in planar visual servoing, the

camera drifts slowly normal to the control plane and changes orientation. Those DOF

not visually controlled would require some form of Cartesian position control loop to

arrest the drift, whereas the approach (6.24) is free from drift. Visual control using

(6.26) and (6.27) is described in Section 8.2.

The principal objective of this section is to understand the interaction of vision

system and robot electro-mechanical dynamics. To simplify this task only one camera

DOF will be controlled and it is desirable that the DOF be driven by only a single

robot axis, preferably one whose dynamics characteristics are well understood. Joint

6 was modelled in some detail in Chapter 2 and will be used to actuate the camera in

the experiments described. For 2-DOF camera control described in Section 7.5 it will

be assumed that the joint 5 dynamics are similar to those of joint 6.

Throughout this chapter the symbols xr and xt will be used to denote robot and

target pose respectively. However for 1-DOF control these will be scalars and may be

interpreted as bearing angles, see Figure 6.12.
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Figure 6.15: Block diagram of the 1-DOF visual feedback system. xt is the world

coordinate location of the target, and iXd is the desired location of the target on

the image plane. Note the two samplers in this system.

6.4.1 Control structure

The structure of the 1-DOF visual feedback controller is shown in Figure 6.15. The

target and robot pose, xt and xr respectively, are angular displacements in this exper-

iment and Figure 6.14 shows the coordinate and sign conventions used. The leftmost

summing junction represents the action of the end-effector mounted sensor which

measures relative position, that is, the target position with respect to the end-effector.

The second summing junction allows a reference input to set the desired image-plane

location of the target' s centroid. The integrator, (6.24), converts the visually generated

velocity demand into a position setpoint suitable for transmission to the robot' s digital

position loops. The inverse kinematics required by (6.25) are trivial in this case, (6.6),

due to the camera mounting arrangement used. The block labelled Gstruct s repre-

sents the mechanical dynamics of the transmission and manipulator link. Discussion

of this issue will be deferred until Section 8.1.4.

The system is multi-rate since the robot tasks and the axis controller are con-

strained by the Unimation position servos to operate at a Tr 14 ms period, while

vision processing is constrained to a Tv 20 ms period which is the CCIR video field

time. The notation zr esTr and zv esTv will be used throughout this section.

The controller is implemented by a short program which makes use of the RTVL

and ARCL libraries. In terms of implementation ẋd is a scalar global variable shared

between the vision and robot code modules. This represents a simple but effective

way of linking the subsystems running at different sample rates.
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Figure 6.16: Photograph of square wave response test configuration. Small panel

on the far wall contains the two LEDs.

100mm

Figure 6.17: Experimental setup for step response tests.

6.4.2 “Black box” experiments

In this experiment the target position is a 'visual square wave' contrived by alternating

two LEDs as shown in Figures 6.17 and 6.16. The LEDs are spaced 100 mm apart

and alternate at a low frequency, below 1Hz. The visual servoing system controls

the orientation of the end-effector mounted camera so as to keep the image of the

illuminated LED at the desired coordinate on the image plane. Only one axis, joint

6, is controlled and the magnitude of the rotation is approximately 0.17 radl. The

resultant square wave response provides a useful measure of the closed-loop system

performance. The controller proportional gain was set empirically on the basis of
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Figure 6.18: Measured response to 'visual step' demand (dashed) showing the

earliest and latest responses observed. Variation is due to the the multi-rate dis-

crete time nature of the controller. (Kp 1 3 10 4, Klens 708)

observed step response.

The visual servoing system may be considered as a 'black box', whose input is

the square wave signal to the LEDs and output is the robot' s motor angle measured by

means of its quadrature encoder signals. The input and output signals were fed to an

FFT analyzer to examine the closed-loop response. Figure 6.18 shows experimental

results for motor position response to the square wave visual input. The two curves

show the earliest and latest responses observed. It can be seen that there is consider-

able delay between the change in visual demand and the onset of robot motion and

that this delay is not constant. This variation is an artifact of the multi-rate discrete-

time nature of the system. The delay depends upon when the excitation occurs with

respect to the two samplers shown in Figure 6.15. Detailed examination of the data

for Figure 6.18 shows that the earliest response is delayed by 42 ms, and the latest by

78 ms. Assuming a uniform distribution of delay the mean is 60 ms.

The FFT analyzer can also be used to estimate the transfer function of the closed-

loop system, and this is shown in Figure 6.19. The transfer function is computed over

many cycles and thus reflects the 'average' characteristics of the system rather than

the cycle by cycle variation observed in the time response. There is evidence of a low
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Figure 6.19: Measured closed-loop frequency response of single-axis visual servo

system, Xr jω Xt jω for 'visual square wave' excitation. The periodic dips in

the magnitude response are due to the lack of excitation at these frequencies as a

result of the square wave system input. (Kp 1 3 10 4, Klens 708)

frequency pole at approximately 2Hz, and the phase response shows evidence of time

delay. A linear frequency phase plot is shown in Figure 6.20 along with a regression

fit line. This line corresponds to a delay of 58.0ms which agrees well with the mean

delay estimated from the step response measurements.

6.4.3 Modelling system dynamics

Given the experimental results just described, this section develops a detailed model

of the closed-loop system which can predict the observed responses. This exercise

will build upon the previously developed axis dynamic models, as well as knowledge

of the lens, vision system and controller architecture. The results of the modelling

exercise will be used to identify shortcomings in the present system and lead to the

development of more sophisticated visual servo controllers. A block diagram of the

visual servo controller for one axis was given in Figure 6.15. Figure 6.21 shows the

overall timing of the two discrete-time subsystems, and the communications between

them.

The effective gain of the optical system, Klens, for rotational visual servoing is
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Figure 6.20: Measured closed-loop phase response on linear frequency scale. The

superimposed regression fit has a slope of 20.9deg Hz corresponding to a delay

of 58.0ms. The line is fitted over the range 0 to 14Hz and assumes that the line

passes through -90 as it would for a single pole.

given by (6.21) and was measured for this experiment as 708 pixel rad. A CCD

camera typically responds to the integral of scene intensity over the sampling period,

whereas an ideal temporal sampler, as assumed in discrete time control design, reflects

the state of the observed system only at the sampling instant. With a sufficiently short

exposure time a CCD camera may be used to approximate ideal temporal sampling.

Figure 3.14 shows details of the exposure timing with respect to the video waveform

which is an effective timing datum.

The image is transmitted pixel serially to the vision system which processes image

data 'on the fly'. Overlapping data transfer and processing reduces latency to the min-

imum possible. Centroid data is available as soon as the region has been completely

raster scanned into the vision system at a time which is dependent on the Y coordinate

of the region. Such variable timing is not desirable in a control system so the region

centroid data is held until the following video blanking interval. Thus the camera and

vision processing may be modelled as a single time step delay,

V zv

Klens

zv
(6.28)
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Figure 6.21: Temporal relationships in image processing and robot control. The

parallel timelines represent the two discrete-time processes involved in image pro-

cessing and robot control.

as indicated in Figure 6.15.

The output of the vision subsystem is the image plane pixel error which is input to

a compensator, D zv , whose output is the task-space (Cartesian) velocity command,

ẋd . In this section simple proportional control is used

D zv Kp (6.29)

A variable delay, from 0 to 14 ms, is introduced between the output of the vision sub-

system and action being taken by the robot control process, due to the asynchronous

nature of the two processes.

Figure 6.4 shows that the robot control software implements a synchronous pipeline

passing data from trajectory generator to the axis controller. The integration and in-

verse kinematics occupy one time 'slot' and the position demand is forwarded to the

axis controller at the next time step. This 'double handling' of the data was discussed

in Section 6.2.3 and introduces an additional delay. The combined delay and inte-

gration, implemented by the 'C' program, can be written in difference equation form

as

xdk
xdk 1

ẋdk 1
(6.30)

or as the transfer function

Rinteg zr
1

zr 1
(6.31)
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Figure 6.22: SIMULINK model of the 1-DOF visual feedback controller.

Note that the integrator as implemented is scaled when compared to the transfer func-

tion of a 'F orward Rectangular Rule' [95] integrator T z 1 — this is an historical

anomaly.

From Section 2.3.6 we know that the axis controller will always endeavour to

move to the demanded position within one setpoint time interval, due to the action of

the position interpolator. For ' small' motion requests, that is those within the velocity

and acceleration limits of the axis, the axis behaviour may be modelled as a pure delay

Rservo zr
1

zr

(6.32)

allowing the robot and integrator to be modelled as

R zr

1

zr zr 1
(6.33)

The SIMULINK model of Figure 6.22 is a detailed representation of the multi-rate

system given in Figure 6.15, but ignoring manipulator structural dynamic effects by
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Figure 6.23: Multi-rate sampling example, T1 20 and T2 14.

assuming that Gstruct s 1. This model is based on the models POSLOOP, VLOOP

and LMOTOR and parameter values established in Section 2.3. The step responses of

the measured system and the model are shown together in Figure 6.26 along with that

of a single-rate approximation developed later. The model response is bounded by the

measured early and late response, and up to 0.16s is parallel to the early response but

lagging by around 9ms. This lag is due to the samplers in the simulation not being

synchronized with those in the measured system. The model response is slightly more

damped than the measured responses.

6.4.4 The effect of multi-rate sampling

Multi-rate systems in which the rates are not integrally related are difficult to analyze,

and this topic is generally given only cursory treatment in textbooks. In this section

a rather pragmatic approach will be taken to modelling the multi-rate samplers as a

single rate sampler plus a time delay. While not a precise analysis it does captures the

dominant or 'first order' characteristics of the system.

A sampler with interval T will sample at times iT where i is an integer. An edge

at time t will propagate through a single sampler at time

tT Tceil
t

T
(6.34)

where ceil x returns an integer i such that i x. This implies that an edge occurring

at the actual sampling instant will be propagated immediately.

Consider the example shown in Figure 6.23 which comprises two cascaded sam-

plers operating at intervals of T1 and T2 respectively. An edge occurring at time t0
propagates through the first and second samplers at times t1 and t2 respectively. From

(6.34) we may write

t1 T1ceil
t0

T1
(6.35)

t2 T2ceil
t1

T2
(6.36)

∆20 t2 t0 (6.37)

∆21 t2 t1 (6.38)
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Figure 6.24: Analysis of sampling time delay ∆21 for the case where T1 20ms

and T2 14ms. Top shows variation in delay versus sampling time (mean of 6ms

shown dashed), while bottom shows probability distribution.

where ∆20 is the delay of the edge from input to output, and ∆21 is the delay of the

edge through the second sampler. A numerical simulation of the delay for the visual

servo control case where T1 20 ms and T2 14 ms has been conducted. Figures 6.24

and 6.25 show ∆21 and ∆20 respectively, along with the corresponding probability

distributions of the delays. Both delay functions are periodic, with a period of 140 ms,

the least common multiple of 14 and 20. The mean delay values, marked on the

delay plots, are ∆̄20 16 ms and ∆̄21 6ms. However the mean delay is sensitive

to the relative 'phasing' of the samplers, and further simulation shows that ∆̄21 varies

periodically between 6 and 8ms as phase shift between the samplers is increased. The

mean of ∆̄21 over all phase shifts is one-half the sampler interval, or 7ms.

Clearly the principal effect of multi-rate sampling is to introduce a small time

delay. The two samplers may be approximated by a single sampler and a delay in the

range 6 to 8ms depending on phasing which is unknown6. Assuming a sampler delay

of 7ms combined with the already identified delays such as 20 ms for pixel transport,

14 ms servo communications and 14 ms robot motion delay, the total latency is 55 ms.

6Since the two sampling processes are controlled by separate and unsynchronized clocks it is likely that

the phasing will vary with time.
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Figure 6.25: Analysis of sampling time delay ∆20 for the case where T1 20ms

and T2 14ms. Top shows variation in delay versus sampling time (mean of

16ms shown dashed), while bottom shows probability distribution.

This is consistent with earlier estimates of 58 ms and 60 ms delay. Further refinement

is possible by accounting for further multi-rate effects between the 14 ms robot control

process and the 980 µs digital servo board process, but this will not be pursued further.

6.4.5 A single-rate model

To simplify analysis the system may be approximated by a single-rate model operating

with a sampling interval of Tv. As implemented V z and D z already operate at Tv,

but it is necessary to express the robot dynamics, R z , at this sampling interval

R zr
1

zr zr 1
(6.39)

1

Tr

1

zr

Tr

zr 1
(6.40)

1

Tr

1

zv

Tv

zv 1
(6.41)
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where the rightmost term, the integrator, has been changed from the robot sample

interval to the visual sample interval, and the unit delay Tr has been approximated by

Tv. Introducing the notation z zv the open-loop transfer function may be written as

V z D z R z
Klens

z
Kp

1

Tr

1

z

Tv

z 1
(6.42)

KpKlens

z2 z 1

Tv

Tr

(6.43)

The resulting single-rate closed-loop transfer function is

xr z

xt z

K

z3 z2 K
(6.44)

where

K
Tv

Tr
KpKlens (6.45)

The overall delay is Ord denominator Ord numerator , in this case three sample

periods or 60 ms. From Figure 6.21 it can be seen that these are due to pixel trans-

port, velocity computation and servo response. This 60 ms delay agrees with previous

observations of latency and the step response of this model, shown in Figure 6.26, is

seen to be bounded by the measured early and late responses. The single rate response

starts close to the early response and finishes closer to the late response, showing

that it has captured the 'average' characteristic of the real system. This model is also

slightly more damped than the measured responses. The model (6.44) is the same

as that determined by Corke and Good [62] for the case of multi-axis translational

fixation.

The single-rate open-loop model (6.43) can be used for stability analysis as well as

state-estimator and controller design using classical digital control theory. The root-

locus diagram in Figure 6.27 shows that for the known gain setting, K 0 132, the

poles are located at z 0 789, 0 528 and 0 316. The dominant pole corresponds

to a frequency of 1.9Hz which is in good agreement with the estimate of 2Hz made

earlier. This pole is very sensitive to changes in loop gain such as those caused by

variation in target distance. Figure 6.28 shows the Bode plot of the single rate model

overlaid on the experimentally determined frequency response function from Section

6.4.2.

6.4.6 The effect of camera shutter interval

Section 3.3.3 discusses the effect of motion blur in terms of shape distortion and lag-

ging centroid estimate. Figure 6.29 shows very clearly that with an exposure interval

of 20 ms the apparent area of the LED target is increased during the high velocity
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Figure 6.26: Comparison of measured and simulated step response. Measured

early and late step responses (dotted), single-rate model (solid), and the multi-

rate model (dashed). ( f 8mm, Klens 724, and Kp 1 3 10 4)

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
a
g
 A

x
is

Figure 6.27: Root-locus of single-rate model. Closed-loop poles for gain Kp
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Figure 6.28: Bode plot of single-rate model closed-loop transfer function (solid)

with measured frequency response (dotted) overlaid. Note the considerable phase

error for moderate frequency demands, eg. 1Hz. (Kp 1 3 10 4, Klens 708)

phase of the fixation motion. The camera rotation rate is 1.5 radl s and has increased

the apparent area by a factor of 2.6. The circularity, (4.11), also drops to 0.76 from its

normal value of 1.0 as the target image becomes elongated. The experimental visual

servo system uses simple criteria to identify the target region from other regions in

the scene, usually on the basis of area and circularity. These criteria must be relaxed

in order that the controller does not 'lose sight' of the target when its apparent shape

changes so dramatically.

The other effect of motion blur is to introduce a lagging centroid estimate. This

will alter the dynamics of the closed-loop system by increasing open-loop latency.

Figure 6.30 shows that the increased latency has had the expected 'destabilizing' ef-

fect, resulting in increased overshoot.

6.4.7 The effect of target range

Section 6.3.2 showed that a visual servoing system introduces a target distance depen-

dent gain due to the lens, which will affect the loop gain and stability of the closed-

loop system. Few reports on visual servoing discuss this effect, but much work is

performed with fixed camera-target distances — perhaps due to focus or depth of field
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Figure 6.29: Measured effect of motion blur on apparent target area for 'long'

exposure interval (Te 20ms). The lower plot shows the camera pan angle in

response to a step change in target position; the apparent target area at corre-

sponding times is shown in the upper plot. During the highest-velocity motion

apparent area of the LED target has increased by a factor of 2.6.

problems. This issue is mentioned by Dzialo and Schalkoff [81] in the control of a

pan-tilt camera head. Experimental results, for the case of translational fixation, have

been reported by Corke and Good [62]. Pool [206] recognized this problem in the cit-

rus picking application, as the robot approaches the fruit, and used an ultrasonic sensor

to measure range in order to modify the visual loop gain during approach motion.

Measured step responses for different camera-object distances are shown in Fig-

ure 6.31. The increased loop gain for low target range results in increased overshoot.

In this experiment, with rotational fixation motion, the distance dependence is weak.

With translational fixation this effect is much more pronounced [62]. An adaptive

controller or a self-tuning regulator could maintain the desired dynamic response as

target distance changed, and the parameter values would be a function of target dis-

tance. This introduces the possibility of determining object distance from closed-loop

dynamics using a single camera and without prior knowledge of object size.
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Figure 6.30: Measured step responses for exposure intervals of 2ms, 8ms and

20ms. The response becomes more oscillatory as the exposure interval is in-

creased. Conditions are object range 460 mm and Kp 1 4 10 4.

6.4.8 Comparison with joint control schemes

The visual servo controller and the conventional axis position controller described in

Section 2.3.6 both employ a sensor which quantizes position into unit steps: either

pixels or encoder counts. For the joint 6 visual servo experiment described in this

section, and ignoring center of rotation issues, one pixel corresponds to

1pixel
1

Klens

(6.46)

1

αx f
(6.47)

1 6 10 3 radl (6.48)

Increased angular resolution can be obtained by increasing the focal length, f , of the

lens, but at the expense of reduced field of view. The angular resolution of the axis

position controller is determined by the encoder pitch which is summarized in Table

2.19.

1encoder
2π

Nenc

1

G6
(6.49)
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Figure 6.31: Measured step response for target ranges of 395 mm, 470 mm and

890 mm. The response becomes more oscillatory as the target range is decreased.

1 6 10 4 radl (6.50)

which is one order of magnitude better than the visual servo, and this axis has the

poorest encoder resolution. However the vision system can achieve some measure of

sub-pixel precision as was discussed in Section 4.1.3. Comparable accuracy with the

axis position controller would be obtained if the centroid estimate were accurate to

0.1pixel. At the 3σ confidence level

3σXc 0 1 (6.51)

which from (4.53) would be achieved for a circular target with a diameter greater than

40 pixels.

6.4.9 Summary

This section has investigated in considerable detail the operation of a single DOF

visual-feedback control system. With simple proportional control it has been possible

to demonstrate stable and high-speed motion control at rates approaching the limits

established in Chapter 2. This has provided insights into the interaction between the
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dynamic characteristics of the robot, its controller, and the vision system. The visual

servo system has been modelled in some detail and the model validated against exper-

imental results. The actual system is multi-rate, which complicates analysis, but an

effective single-rate approximation has been developed that compares well in terms

of time and frequency response. The multi-rate sampling process was analyzed and

shown to have a first-order characteristic that is a constant delay. A number of system

characteristics that affect the dynamic response have been investigated including lens

center of rotation, exposure interval and target range.

The experimental system described is well suited for this application and is able

to minimize delay by overlapping serial pixel transport and image processing. De-

spite this, the dominant dynamic characteristic remains delay due to pixel transport,

computation and finite motion time. Some enhancements to the architecture are pos-

sible which will reduce delay but it cannot be entirely eliminated. The next chapter

will investigate more sophisticated controllers and evaluate them in terms of a defined

performance metric.



Chapter 7

Control design and

performance

Most reported visual servo systems do not perform as well as would be expected or

desired. The most obvious characteristics are slowness of motion, lag with respect

to target motion, and often significant jitter or shakiness. All of these characteristics

are indicative of poorly designed control systems, inappropriate control architectures

or both. This chapter focusses on issues of control system performance and design:

defining the control systems problem, defining performance measures, and comparing

a number of different control techniques for challenging target motion.

As shown in the previous chapters machine vision has a number of significant dis-

advantages when used as a feedback sensor: a relatively low sample rate, significant

latency (one or more sample intervals) and coarse quantization. While these character-

istics present a challenge for the design of high-performance motion control systems

they are not insurmountable.

Latency is the most significant dynamic characteristic and its sources, as discussed

previously, include: transport delay of pixels from camera to vision system, image

processing algorithms, communications between vision system and control computer,

control algorithm software, and communications with the robot. In fact problems of

delay in visual servo systems were first noted over 15 years ago [116]. If the target

motion is constant then prediction can be used to compensate for latency, but com-

bined with a low sample rate results in poor disturbance rejection and long reaction

time to target 'maneuvers', that is, unmodeled motion. Grasping objects on a conveyor

belt [290] or a moving train [7] are however ideal applications for prediction.

Franklin [95] suggests that the sample rate of a digital control system be between 4

and 20 times the desired closed-loop bandwidth. For the case of a 50 Hz vision system

this implies that a closed-loop bandwidth between 2.5Hz and 12 Hz is achievable.

211
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Figure 7.1: System block diagram of of a visual feedback control system showing

target motion as disturbance input.

That so few reported systems achieve this leads to the conclusion that the whole area

of dynamic modelling and control design has, to date, been largely overlooked.

7.1 Control formulation

Two useful transfer functions can be written for the visual servo system of Figure 7.1.

The response of image plane centroid to demanded centroid is given by the transfer

function
iX z
iXd z

V z R z D z

1 V z R z D z
(7.1)

and substituting (6.28), (6.33), and D z DN z DD z results in

iX z
iXd z

KlensTDN z

z2 z 1 DD z KlensTDN z
(7.2)

Jang [134] has shown how tasks can be expressed in terms of image plane feature

trajectories, iXd t , for which this image plane reference-following performance is

significant.

For a fixation task, where iXd is constant, iX z Xt z describes the image plane

error response to target motion, and is given by

i �X z

Xt z

V z

1 V z R z D z
(7.3)

Klensz z 1 DD z

z2 z 1 DD z KlensDN z
(7.4)

where i �X iXd
iX is the image plane error and iXd is assumed, for convenience, to

be zero. The motion of the target, xt , can be considered a disturbance input and ideally

the disturbance response, i �X z Xt z , would be zero. However with the previously

identified dynamics it is non zero and rises with frequency. To obtain better tracking
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performance it is necessary to reduce i �X z Xt z over the target motion' s frequency

range.

The steady-state value of the image plane error for a given target motion, Xt z ,

can be found by the final-value theorem

lim
t ∞

i �X t lim
z 1

z 1 i �X z (7.5)

lim
z 1

z 1
V z

1 V z R z D z
Xt z (7.6)

Using proportional control and substituting previously identified models for V z and

R z the steady-state error is

i �X ∞ lim
z 1

z 1
Klensz z 1

z2 z 1 KpKlens

Xt z (7.7)

which may be evaluated with the target motion chosen as one of

Xt z

z
z 1 for a step input

T z
z 1 2 for a ramp input

T 2

2
z z 1

z 1 3 for a parabolic input

(7.8)

For the steady-state tracking error to be zero, the numerator of (7.7) must cancel

the poles at z 1 of Xt z and retain a factor of z 1 . This numerator comprises

the poles of the robot and compensator transfer functions — the latter may be selected

to give the desired steady-state error response by inclusion of an appropriate number

of integrator terms, or z 1 factors. The number of such open-loop integrators is

referred to as the Type of the system in classical control literature. Equation (7.7)

has one open-loop integrator and is thus of Type 1 giving zero steady-state error to a

step input. The addition of an integrator to raise system Type supports the intuitive

argument of Section 6.4 which suggested that the control problem be considered as a

' steering problem', where the robot velocity, not position, be controlled.

A ramp input however will result in a finite error of T Kp pixels which can be seen

as the substantial lag in Figure 7.2. Also note that the numerator of the closed-loop

transfer function (7.4) has a zero at z 1 which acts as a differentiator. From (7.4)

compensator poles will appear as additional closed-loop zeros.

Common approaches to achieving improved tracking performance are:

1. Increasing the loop gain, Kp, which minimizes the magnitude of ramp-following

error. However for the system, (6.44), this is not feasible without additional

compensation as the root-locus plot of Figure 6.27 showed.

2. Increasing the Type of the system, by adding open-loop integrators. Type 1 and

2 systems will have zero steady-state error to a step and ramp demand respec-

tively.
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3. Introducing feedforward of the signal to be tracked. This is a commonly used

technique in machine-tool control and has been discussed, for instance, by

Tomizuka [251]. For the visual servo system, the signal to be tracked is the

target position which is not directly measurable. It can however be estimated

and this approach is investigated in Section 7.5.

7.2 Performance metrics

It is currently difficult to compare the temporal performance of various visual servo

systems due to the lack of any agreed performance measures. At best only qualitative

assessments can be made from examining the time axis scaling of published results (is

it tracking at 1mm s or 1000 mm s ?) or video tape presentations.

Traditionally the performance of a closed-loop system is measured in terms of

bandwidth. While 'high bandwidth' is desirable to reduce error it can also lead to

a system that is sensitive to noise and unmodeled dynamics. However the notion of

bandwidth is not straightforward since it implies both magnitude (3 dB down) and

phase (45 lag) characteristics. Time delay introduces a linear increase in phase with

frequency, and the Bode plot of Figure 6.28 indicates 45 lag occurs at less than 1Hz.

For tracking applications phase is a particularly meaningful performance measure —

for instance the citrus picking robot' s tracking specification was in terms of phase.

Other commonly used performance metrics such as settling time, overshoot and

polynomial signal following errors are appropriate. Note though that the feedback

system developed in the previous section has a ' respectable' square wave response but

experiments show poor ability to follow a sinusoid. Simulated tracking of sinusoidal

motion in Figure 7.2 shows a robot lag of approximately 30 and the centroid error

peaking at over 80 pixels.

In this work we choose to consider the magnitude of image plane error, either

peak-to-peak or RMS, in order to quantitatively measure performance. The RMS

error over the time interval t1 t2 is given by

η

t2

t1

iX t iXd t
2

dt

t2 t1
(7.9)

An image-plane error measure is appropriate since the fixation task itself is defined

in terms of image plane error, and is ideally zero. Image plane error is computed by the

controller and can easily be logged, and this is considerably simpler than estimating

closed-loop bandwidth.

The choice of appropriate target motion with which to evaluate performance de-

pends upon the application. For instance if tracking a falling or flying object it would

be appropriate to use a parabolic input. A sinusoid is particularly challenging since
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Figure 7.2: Simulated tracking performance of visual feedback controller, where

the target is moving sinusoidally with a period of 1.5s (0.67Hz). Note the con-

siderable lag of the response (solid) to the demand (dashed).

it is a non-polynomial with significant and persistent acceleration that can be readily

created experimentally using a pendulum or turntable. Sinusoidal excitation clearly

reveals phase error which is a consequence of open-loop latency. In the remainder of

this work a fixed frequency sinusoid

xt t M sin 4 2t (7.10)

will be used as the standard target motion. This corresponds to an object rotating on

the laboratory turntable at its maximum rotational speed of 40 rpm (0.67 rev s). The

magnitude, M, of the target motion depends on the rotational radius of the target, and

the distance of the camera. Peak angular target velocity is 4 2M rad s and can be

selected to challenge the axis capability.

7.3 Compensator design and evaluation

7.3.1 Addition of an extra integrator

A controller with improved tracking performance must incorporate at least one
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Figure 7.3: Root locus for visual feedback system with additional integrator and

proportional control. Clearly the system is unstable for any finite loop gain.

additional integrator for Type 2 characteristics. The open-loop transfer function (6.43)

becomes
KpKlens

z2 z 1 2

KpKlens

z4 2z3 z2
(7.11)

which, without additional compensation, is unstable for any finite loop gain as shown

by the root-locus in Figure 7.3.

7.3.2 PID controller

A discrete time PID compensator can be written as

D z P
T z

z 1
I

1 z 1

T
D (7.12)

z2 PT IT 2 D z PT 2D D

Tz z 1
(7.13)

where P, I and D are the proportional, integral and derivative gains respectively, and

T the sampling interval. The derivative is computed by means of a simple first-order

difference. This compensator adds a pole at z 1 which increases the Type of the
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Figure 7.4: Root locus for visual feedback system with PID controller which

places the zeros at z 0 3 and z 0 9. The closed-loop poles marked by squares

are used in the simulation of Figure 7.5.

system as desired, and allows arbitrary placement of the two zeros to shape the root

locus.

An example root locus is shown in Figure 7.4. One zero is placed close to z

1 in order to 'bend' the arms of the root locus inside the unit circle, however it is

not possible to move the dominant closed-loop poles so as to achieve a high natural

frequency. The closed-loop transfer function is

iX z

xt z

KlensTz2 z 1 2

z3 z 1 2T KlensT z2 PT IT 2 D z PT 2D D
(7.14)

which, since the system Type is 2, has a pair of closed-loop zeros at z 1. This

double differentiator causes significant overshoot in response to target acceleration —

note the initial transient in Figure 7.5. The compensator zeros could be configured as

a complex pair but must be placed close to z 1 if they are to 'capture' the open-loop

integrator poles, which would otherwise leave the unit circle rapidly.

In practice it is found that derivative gain must be limited, since the derivative term

introduces undesirable ' roughness' to the control, and this constrains the locations of

the open-loop zeros. This roughness is a consequence of numerically differentiat-

ing the quantized and noisy centroid estimates from the vision system. Åström and
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Figure 7.5: Simulated response for visual feedback system with PID controller

which places the zeros at z 0 3 and z 0 9. Closed-loop poles at z 0 85

0 20 j, equivalent damping factor ζ 0 52.

Wittenmark [24] propose filtering the derivative estimate and while this may allow

higher derivative gain this form of compensator has only limited ability to position

the closed-loop poles1. The simulation results in Figure 7.5 show the time response

of this compensator to the standard target trajectory when the closed-loop poles are

placed as marked on Figure 7.4. The motion exhibits considerable overshoot and the

peak-to-peak image plane error is approximately 90 pixels.

7.3.3 Smith's method

Smith' s method, also known as Smith' s predictor [24], was proposed in 1957 for the

control of chemical processes with significant, and known, time delays [238] and there

are some reports of its application to visual servoing [37, 229]. Consider a plant with

dynamics

H z
1

zd
H z

1

zd

B z

A z
(7.15)

1Three controller parameters (P, I and D) are insufficient to arbitrarily 'place' the five poles.
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where Ord A Ord B and d is the time delay of the system. A compensator,

D z , is designed to give desired performance for the delay-free system H z . Smith' s

control law gives the plant input as

U D Yd Y D H 1 z d U (7.16)

which can be expressed as a compensator transfer function

D z
zdA D

zd A B D B D
(7.17)

which clearly attempts to cancel the plant dynamics A z . The visual servo open-loop

model of (6.43) can be written in the form

H z
1

z2

K

z 1

1

z2
H z (7.18)

and a simple proportional compensator, D Kp, used to control the dynamics of the

first-order system H z . The resulting compensator by (7.17) is

D z
z2 z 1 Kp

z2 z 1 KKp z2 1
(7.19)

When simulated with the linear single-rate model the compensator gives the expected

performance and the pole can be positioned to give arbitrarily fast performance. How-

ever when simulated with the full non-linear multi-rate model similar to Figure 6.22

the effect of model errors became apparent. The closed-loop pole of H z could no

longer be arbitrarily positioned and attempts to place the pole at z 0 6 led to poor

dynamic response and instability. Figure 7.6 shows the response for the case of z 0 6

which shows a peak-to-peak error of nearly 70 pixels.

Sharkey et al. [229] report experimental gaze control results obtained with the

'Yorick' head. Using accurate knowledge of actuator and vision processing delays

a target position and velocity predictor is used to counter the delay and command

the position controlled actuators. They suggest that this scheme “naturally emulates

the Smith Regulator” and block diagram manipulation is used to show the similarity

of their scheme to that of Smith, however no quantitative performance data is given.

Brown [37] used simulation to investigate the application of Smith' s predictor to gaze

control by means of simulation and thus did not have problems due to plant modelling

error encountered here. He also assumed that all delay was in the actuator, not in the

sensor or feedback path.

7.3.4 State feedback controller with integral action

State-feedback control can be used to arbitrarily position the closed-loop poles of a

plant. For best tracking performance the poles should all be placed at the origin in
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Figure 7.6: Simulation of Smith's predictive controller (7.23) and detailed non-

linear multi-rate system model. Simulated response (solid) and demand (dotted).

order that the closed-loop system functions as a pure delay, but this may result in

un-realizable control inputs to the plant.

The configuration of plant, state estimator and controller are shown in Figure 7.7.

The open-loop system, V z R z is represented in state-space form as

xk 1 xk uk (7.20)

y
k

Cxk (7.21)

The estimator shown is predictive, and allows one full sample interval in which to

compute the state estimate, x̂, and the control input, u. Within the labelled com-

pensator block there is feedback of the computed plant input to the estimator. The

closed-loop compensator poles are the eigenvalues of

KeC K (7.22)

where K is the state-feedback gain matrix and Ke is the estimator gain matrix. The

separation principle [95] states that the poles of a closed-loop system with an estima-

tor is the union of the poles of the estimator and the controlled plant, and that these

may be designed independently. However there is an additional consideration that

the compensator itself must be stable, and this constrains the selection of plant and



7.3 Compensator design and evaluation 221

x̂
k 1+

Φ x̂
k

∆u
k

K
e

y
k

Cx
k

−( )
+ +=

K−

State-feedback
control

State estimator

x̂
k z

1− x̂
k 1+

Computational

delay

V z( )

R z( )

+
x

t
z( )

-

robot

vision
target

X̃
i

z( )

position

D z( )

u
˜ k

Figure 7.7: Visual feedback system with state-feedback control and estimator.

estimator pole locations. The requirement of compensator stability appears to be a

matter of some debate and is not well covered in standard texts. Simple examples

can be contrived in which an unstable plant and an unstable compensator result in a

stable closed-loop system. However Maciejowski [178] states that there is a “theo-

retical justification for preferring (open-loop) stable controllers — but there are also

powerful practical reasons for this preference”. Simulations show that while an unsta-

ble compensator may give perfectly satisfactory performance in a linear discrete-time

simulation, a more detailed simulation or the introduction of model error can induce

instability. This is believed to be related to plant non-linearity, where 'internal' signals

between the compensator and plant may result in saturation, changing the apparent dy-

namics of the plant and leading to instability.

Compensators have been designed for the single-rate approximation (6.43) using

pole placement and LQG design procedures. Åström and Wittenmark [24] describe a

procedure for designing pole placement compensators for SISO systems based on state

feedback and state estimation. Considerable experimentation was required to choose

closed-loop and estimator poles that result in a stable compensator. Franklin [95]

suggests that the estimator poles be 4 times faster than the desired closed-loop poles.

The upper limit on estimator response is based on noise rejection and modelling errors.

To reduce the degrees of freedom in the control/estimator design process the estimator

poles were placed at z 0 0 0 giving a dead-beat response. In detailed simulation and

experiment this has given satisfactory performance. Introducing an additional open-

loop integrator, and placing the closed-loop poles at z 0 6 0 4 j 0 4 results in the

compensator

D z
z2 7 01z 5 65

z3 0 6z2 0 4z 0 8
(7.23)
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Figure 7.8: Root locus for pole-placement controller. Closed-loop poles at z

0 6 0 4 j and z 0 4. Note that a pair of poles and zeros have been cancelled at

the origin.

7 01
z2 z 0 806

z 1 z 0 2 0 872 j
(7.24)

The root-locus diagram in Figure 7.8 shows that the compensator has introduced a

complex pole pair near the unit circle and has been able to achieve faster closed-loop

poles than the PID compensator of Figure 7.4. Figure 7.9 shows the simulated closed-

loop response for the standard target motion for both the single-rate model and the

detailed SIMULINK model. The simulation results are similar but the more detailed

model is somewhat rougher due to the multi-rate effects. The peak-to-peak error in

pixel space is approximately 28 pixels.

Clearly the tracking performance is greatly improved compared to simple propor-

tional control but a number of characteristics of the response deserve comment:

The error is greatest at the peaks of the sinusoid, which correspond to greatest

acceleration. The Type 2 controller has zero error following a constant velocity

target (which the slopes of the sinusoid approximate), but will have finite error

for an accelerating target.

There is considerable delay at t 0 before the robot commences moving, due
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Discrete-time linear single-rate simulation.
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Non-linear multi-rate simulation.

Figure 7.9: Simulation of pole-placement fixation controller (7.23). Simulated

response (solid) and demand (dotted). Closed-loop poles at z 0 6 0 4 j 0 4.



224 Control design and performance

0 2 4 6 8 10
-4

-2

0

2

4

Time (s)

Im
a
g
e
 p

la
n
e
 e

rr
o
r 

(p
ix

e
ls

)

0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

Time (s)

A
x
is

 v
e
lo

c
it
y
 (

ra
d
l/
s
)

Figure 7.10: Experimental results with pole-placement compensator. Note that

the target frequency in this experiment is only 0.5Hz, less than the standard target

motion frequency. Closed-loop poles at z 0 6 0 4 j 0 4.

to delay in the vision system and controller.

Once again this is a Type 2 system and the closed-loop response will include a

double differentiator. This effect is evident in the initial transient shown in the

simulated closed-loop response of Figure 7.9.

Experimental results given in Figure 7.10, for a peak axis velocity of 0.3 radl s

and target frequency of approximately 0.5Hz, show a peak-to-peak pixel error of only

6pixels. This corresponds very closely to simulation results for the same amplitude

target motion, but some low-amplitude oscillation at around 10 Hz can be observed. In

practice the compensator was ' temperamental' and difficult to initiate. For moderate

initial error the two integrators wind up and saturate the axis which leads to rather

violent oscillation. It was found best to switch to the pole-placement compensator

from proportional control once fixation had been achieved. Table 7.1 compares the

simulated RMS pixel error value of the model for the standard sinusoidal excitation at

various amplitudes. The RMS error scales almost linearly with amplitude in the first

three rows, but in the last case actuator saturation has occurred and the pixel error is

much higher. High tracking performance is achieved but with a loss of robustness to

plant saturation and some difficulty in start up.
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θpk (radl) θ̇pk radl s RMS pixel error

0.23 0.97 11.1

0.40 1.70 21.2

0.45 1.89 24.7

0.50 2.1 2100

Table 7.1: Simulated RMS pixel error for the pole-placement controller as a func-

tion of target peak velocity. Simulated using a SIMULINK model over the interval

0 to 3s, and including the initial transient. Note the very large error in the last row

— the system performs very badly once actuator saturation occurs.

Design of a state estimator and state feedback controller using the linear quadratic

Gaussian (LQG) approach has also been investigated, but is complicated by the state

transition matrix, , being singular since the delay states introduce zero eigenvalues2.

The common LQG design approaches, implemented by MATLAB toolbox functions,

are based on eigenvector decomposition and fail for the case of a singular state tran-

sition matrix. Instead, the recurrence relationship derived by Kalman [142] from dy-

namic programming

Mk 1 Q KkRKk Kk Mk Kk (7.25)

Kk 1 R Mk
1

Mk (7.26)

was used to compute the steady-state value of the state feedback gain matrix given the

state and input weighting matrices Q and R respectively. This method is numerically

less sound than other approaches but gives satisfactory results for the low order system

in this case.

As in the previous case stable estimator and closed-loop poles do not necessarily

result in a stable compensator. The design procedure requires adjustment of the el-

ements of two weighting matrices for each of the controller and estimator, resulting

in a high-dimensionality design space. Stable plants and estimators could be readily

achieved for a Type 1 system, but not for the desired case with an additional integrator

(Type 2).

7.3.5 Summary

The image plane errors for each compensator, to the same sinusoidally moving target,

are compared in Figure 7.11. The simulations are based on detailed multi-rate non-

linear models of the position and velocity loops of the Unimate Puma servo system.

2The determinant of a matrix is the product of its eigenvalues, det A ∏i ei, so any zero eigenvalue

results in a singular matrix.
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Figure 7.11: Comparison of image plane error for various visual feed-

back compensators from above. Target motion in all cases is the sinusoid

0 5sin 4 2t radm s.

The simple proportional feedback controller, while demonstrating an adequate

step response, has poor tracking performance and this may be improved by means

of a more sophisticated compensator.

The compensator design approach has followed classical linear principles of in-

creasing system Type and positioning the closed-loop poles by means of PID or pole-

placement control. The system's Type is important to the steady-state tracking error

and at least Type 2 is necessary to adequately track sinusoidal or parabolic motion.

However in the short term, tracking performance is dependent on the closed-loop pole

locations. This is illustrated quite clearly in Figure 7.12 which shows the Type 2

system from above following a target moving with triangular position profile. Ideal

tracking behaviour is observed during the regions of constant velocity demand, but

the settling time after each peak is around 300 ms, the time constant of the dominant

closed-loop poles. These closed-loop poles cannot be made arbitrarily fast and are

constrained by the practical requirement for compensator stability. Linear discrete-

time simulations indicate no difficulty with an unstable compensator, but non-linear

simulations show that the closed-loop system will be unstable. This is believed to be

due to non-linearities in the plant which change the apparent dynamics at saturation.

The addition of integrators, while raising the system Type, places stringent con-
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Figure 7.12: Simulation of pole-placement fixation controller (7.23) for triangular

target motion. Closed-loop poles at z 0 6 0 4 j 0 4.

straints on closed-loop and estimator pole locations.

Close agreement has been shown between experimental and simulation results

using both linear single-rate and non-linear multi-rate models. The controller designs

have been based on the single-rate model (6.44) and the success of the compensators

is an implicit endorsement of that model' s accuracy.

7.4 Axis control modes for visual servoing

All the experiments so far described, and those of many others, for example [8,91,134,

197,231,270], are based on an approach in which the visual servo is built 'on top of' an

underlying position-controlled manipulator. This is probably for the pragmatic reason

that most robot controllers present the abstraction of a robot as a position-controlled

device. There are some reports of the use of axis velocity control [58, 63, 111, 206],

and Weiss [273] proposed visual control of actuator torque.

This section will compare the performance of visual servo systems based around

position, velocity and torque-controlled actuators. Motion of a robot manipulator is

caused by actuators exerting torques at the joints. In conventional robot applications

where end-point position control is required, it is common to establish an abstraction
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whereby the axes are capable of following the joint angle demands of a trajectory

generator. Such an abstraction is achieved by closing a position-control loop around

the actuator.

Many robots employ a 'classic' nested control structure which is typical of ma-

chine tool controllers, commonly comprising current, velocity and position-control

loops. The nested loop, or hierarchical, control structure has a number of advantages

including:

1. The effective dynamics presented by the closed-loop system to the outer loop

are simplified and ideally independent of parameter uncertainty.

2. The dynamics presented are generally first or second order, allowing the design

to be carried out in a series of relatively simple steps using classical control

techniques. This issue is not as important as it once was, given the power of

modern control design tools and available computational hardware for imple-

menting modern control algorithms.

The Puma's velocity loop provides a good example of reducing parameter uncer-

tainty. This loop is closed around the actuator dynamics for which the pole and DC

gain are functions of inertia and friction. The high-gain velocity loop minimizes the

effect of variation in these parameters on the closed-loop dynamics. An alternative

approach, now feasible due to low-cost high-performance computing, is to feed for-

ward torque to compensate for changing inertia and friction. These estimates may be

derived from a fixed parameter model identified experimentally or from online identi-

fication and adaptation.

The next sections will examine the dynamics of a visual servo system where the

actuator is treated at various levels of abstraction: as a torque, velocity or position

source. The notation is shown in Figure 7.13, and it will be assumed that the multi-

rate effects and communications latencies of the earlier system have been eliminated

by optimization of the control architecture. The dynamics will all be formulated at the

visual sampling interval, T 20 ms. The models of actuator dynamics used are those

established earlier in Chapter 2, and the vision system is modelled as a single time

step delay V z Klens z.

7.4.1 Torque control

The action of the power amplifier's current loop allows motor current (proportional

to motor torque) to be commanded directly. From (2.65) the transfer function of the

actuator is

R s
Θm s

U s

1

s

KiKm

Jms Bm
(7.27)

where θm is the shaft angle, u t the motor current demand vid , Jm the inertia, Bm

the viscous friction, Ki the amplifier transconductance and Km the motor torque con-
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Figure 7.13: Block diagram of generalized actuator and vision system.

stant. The discrete-time transfer function is obtained by introducing a zero-order hold

network and taking the Z-transform

Θm z

U z
Z

1 e sT

s

1

s

KiKm

Js B
(7.28)

Using the model of (2.64) the discrete-time dynamics are

Θm z

U z
0 126

z 0 81

z 1 z 0 534
(7.29)

where the zero is due to the zero-order hold and sampler. Adding the vision system

delay results in the open-loop transfer function

i �X z

U z
0 126Klens

z 0 81

z z 1 z 0 534
(7.30)

and a root-locus plot is shown in Figure 7.14. Without any compensation the closed-

loop poles are limited to having a very low natural frequency.

7.4.2 Velocity control

The transfer function of the Unimate analog velocity loop is

R s
Θm s

U s

1

s

Kv

s pv
(7.31)

where u t is the velocity demand input ωd and Kv the gain of the velocity loop which

has a pole at s pv. Using the model (2.78) and a similar procedure to above, the

open-loop transfer function is

i �X z

U z
0 162Klens

z 0 39

z z 1 z 0 051
(7.32)

The velocity-loop pole is very fast with respect to the sampling interval and is thus

very close to the origin on the Z-plane. Figure 7.15 shows a root-locus plot for this

system.
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Figure 7.14: Root locus for visual servo with actuator torque controller.
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Figure 7.15: Root locus for visual servo with actuator velocity controller.
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7.4.3 Position control

As explained in Section 2.3.6 the position loop contains an interpolator which moves

the joint to the desired value over the setpoint interval of the trajectory generator, Ttg,

provided velocity and acceleration limits are not exceeded. Generally the position-

loop sample interval is an order of magnitude smaller than Ttg providing accurate

position control and good disturbance rejection. In a discrete-time system with the

same sampling interval, that is T Ttg, the position controller acts as a unit delay, and

the discrete-time dynamics are simply

Θm z

U z

1

z
(7.33)

where u t is the position demand input to the position-control loop. After introducing

the vision system delay, the open-loop transfer function is

i �X z

U z

Klens

z2
(7.34)

and Figure 7.16 shows a root-locus plot for this system.

7.4.4 Discussion

All control modes result in a broadly similar discrete-time transfer function. In partic-

ular:

1. All root-loci have a pole-zero excess of two, thus the systems will become un-

stable as gain is increased.

2. All have a transmission delay, Ord denom Ord numer , of 2 sample times.

3. The previous model (6.44) had 3 poles and a 3 sample time delay due to the

double handling of setpoint data and the multi-rate control.

4. Both torque- and velocity-control modes have one open-loop pole at z 1 giv-

ing Type 1 characteristics, that is, zero steady-state error to a step input. The

position-control mode results in a Type 0 system.

The robot' s time response to a unit step target motion is shown in Figure 7.18 for

a simple proportional controller with the gain chosen to achieve a damping factor of

0 7. The controller based on a position-mode axis has a large steady-state error since

it is only of Type 0. The velocity-mode axis control results in a significantly faster

step response than that for torque-mode.

If an integrator is added to the position-mode controller then the response becomes

similar to, but slightly faster than, the velocity mode controller as shown in Figure
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Figure 7.16: Root locus for visual servo with actuator position controller.
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Figure 7.17: Root locus plot for visual servo with actuator position controller plus

additional integrator.
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Figure 7.18: Simulation of time responses to target step motion for visual servo

systems based on torque, velocity and position-controlled axes. Proportional con-

trol with gain selected to achieve a damping factor of 0 7.

7.18. The root locus of this system, Figure 7.17, is also similar to that for velocity

mode control. The integrator has turned the position-mode controller into an 'ideal'

velocity source, just as used in the experimental system. From a control systems

perspective however there are some subtle differences between a velocity-controlled

axis and a position-controlled axis plus integrator. In particular the inner position loop

will generally be very ' tight', that is high-gain, in order to minimize position error.

For an ideal robot this is not a problem, but it will exacerbate resonance problems due

to structural and/or drive compliance. It has been shown [213] that for the case of

significant structural compliance it is preferable to use a ' soft' velocity loop in order

to increase system damping.

7.4.5 Non-linear simulation and model error

The above analysis is based on simple linear models which can mask many ' real-

world' effects such as non-linearity and parameter variation. To investigate this, for
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each system a pole-placement compensator [24] was designed to place the closed-loop

poles at z 0 6 0 4 j 0 4 0, and raise the system's Type to 2. Performance was then

simulated using a detailed non-linear multi-rate simulation model of the axis dynamics

including saturation, Coulombic and static friction.

For axis position and velocity control modes the results were similar to those for

the linear simulation case. However the torque-mode controller did not behave as

expected — the discrete-time non-linear simulation, using motor model LMOTOR,

resulted in very lightly damped oscillatory responses. This was found to be due to a

combination of non-linear friction, integral action and the relatively low sample rate.

The unmodeled dynamics, particularly stick/slip friction, are complex and have time

constants that are shorter than the visual sample interval. It is a ' rule of thumb' that

the sample rate should be 4 to 20 times the natural frequency of the modes to be

controlled. Armstrong [22] comments on oscillation at low velocity due to the inter-

action of stick/slip friction with integral control. Another cause of poor performance is

that the compensator is linear time-invariant (LTI) based on the assumption of an LTI

plant. However linearization of the friction model, (2.68), shows that pole location

has a strong dependence on shaft speed, as does plant gain. Improved torque-mode

control would require one or more of the following: a higher sample rate, friction

measurement and feedforward, adaptive, or robust control.

A more straightforward option is the use of axis velocity control. Velocity feed-

back is effective in linearizing the axis dynamics and minimizing the effect of param-

eter variation. Stable compensators were designed and simulated for velocity mode

control with Type 2 behaviour. Table 7.2 shows the RMS pixel error for the same sim-

ulation run with variations in motor parameter and velocity-loop gain settings. The

RMS pixel error is around half that of pole-placement controller, (7.23), based on a

multi-rate position-control loop for the same motion amplitude. Interestingly, the sys-

tem was robust to significant variation in dynamic parameters and became unstable

only when the velocity-loop gain was reduced, weakening its ability to mask parame-

ter variation.

7.4.6 Summary

The conclusions from this section can be summarized as follows:

1. Control of actuator torque using only the vision sensor leads to poor perfor-

mance due to the low sample rate and non-linear axis dynamics. Compensators

designed to increase performance and raise system Type are not robust with

respect to the aforementioned effects.

2. Closing a velocity loop around the actuator linearizes the axis and considerably

reduces the uncertainty in axis parameters.

3. Velocity and position mode control can be used to achieve satisfactory tracking.
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Parameter Value Change RMS pixel error

J 41 3 10 6 +25% 6.03

J 24 8 10 6 -25% 5.44

Kτ 66 8 10 3 +25% 5.42

Kτ 40 1 10 3 -25% 6.15

Kvel 0 165 -25% unstable

Kvel 0 275 +25% 6.58

Table 7.2: Effect of parameter variation on velocity mode control. Simulations

are over 3s with target motion of θt t 0 2sin 4 2t radl, and the LMOTOR

motor model for joint 6. Compensator designed to place the closed-loop poles at

z 0 6 0 4 j 0 4 0.

4. Position-mode control requires additional complexity at the axis control level,

for no significant performance improvement under visual servoing.

5. Particular implementations of axis position controllers may introduce additional

sample rates which will degrade the overall closed-loop performance.

The approaches reported in the literature are interesting when considered in the

light of these observations. Most reports have closed the visual position loop around

an axis position loop which generally operates at a high sample rate (sample intervals

of the order of a few milliseconds). There are fewer reports on the use of a visual

position loop around an axis velocity loop. Pool [206] used a hydraulic actuator which

is a 'natural' velocity source, albeit with some severe stiction effects. Hashimoto [111]

implemented a digital velocity loop on the axes of a Puma robot as did Corke [58,63].

Weiss [273] proposed visual control of actuator torque, but even with ideal actuator

models found that sample intervals as low as 3ms were required.

Earlier it was suggested that visual fixation should be viewed as a steering prob-

lem, continuously changing the robot velocity so as to move toward the goal. Com-

bined with the considerations above this suggests that axis velocity control is appro-

priate to use in a visual servo system.

7.5 Visual feedforward control

The previous sections have discussed the use of visual feedback control and explored

the limits to tracking performance. Feedback control involves manipulation of the

closed-loop poles and it has been shown that there are strong constraints on the place-

ment of those poles. Another degree of controller design freedom is afforded by ma-

nipulating the zeros of the closed-loop system, and this is achieved by the introduction
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Figure 7.19: Block diagram of visual servo with feedback and feedforward compensation.

of a feedforward term, DF z , as shown in Figure 7.19. The closed-loop transfer func-

tion becomes
i �X

xt

V z 1 R z DF z

1 V z R z D z
(7.35)

which has the same denominator as (7.4) but an extra factor in the numerator. Clearly

if DF z R 1 z the tracking error would be zero, but such a control strategy is not

realizable since it requires (possibly future) knowledge of the target position which

is not directly measurable. However this information may be estimated as shown in

Figure 7.20.

Interestingly the term visual servoing has largely replaced the older term visual

feedback, even though almost all reported visual servo systems are based on feedback

control. The remainder of this section introduces a 2-DOF visual fixation controller

using camera pan and tilt motion. Following the conclusions above, axis velocity

rather than position will be controlled. The velocity demand will comprise estimated

target velocity feedforward and image plane error feedback. A block diagram of the

controller, using the notation developed in this chapter, is shown in Figure 7.21.

The camera mounting arrangement described in Section 6.3.1 allows camera pan

and tilt to be independently actuated by wrist joints 6 and 5 respectively. The 2-DOF

fixation problem is thus considered as two independent 1-DOF fixation controllers.

For simplicity the following discussion will be for the 1-DOF case but is readily ap-

plied to the 2-DOF fixation controller.
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ward compensation.

7.5.1 High-performance axis velocity control

The experiments described so far have used the artifice of an integrator to implement a

velocity-controlled axis. This section investigates two approaches to direct axis veloc-

ity control. Such control eliminates two levels of complexity present in the previous

system: the integrator and the position loop.

7.5.1.1 Direct access to Unimate velocity loop

Modifications were made to the firmware on the UNIMATE digital servo card to allow

the host to directly command the analog velocity loop described in Section 2.3.5. As

shown in Figure 7.22 this is a simple variation of the position-control mode, but with

the velocity demand being set by the host, not the setpoint interpolator and position

loop. From the host computer's perspective this was implemented as a new setpoint

command mode, in addition to the existing position and current modes. A previously

unused command code was used for this purpose.

This modification allows 'immediate' setting of joint velocity at the video sample

rate. However the inherent velocity limit of the velocity loop (see Section 2.3.6) is

still a limiting factor and the analog loops were found to have considerable velocity
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offset.

7.5.1.2 Digital axis velocity loop

To overcome the deficiencies in the Unimate analog velocity loop a digital velocity

loop has been implemented which commands motor current directly, and operates at

the 50 Hz visual sample rate. The overall structure, for joint 6, is shown in Figure

7.23.

A key part of the control structure is the estimation of axis velocity from motor

shaft angle measurements. There is considerable literature on this topic, particularly

for the case where a discrete position sensor, such as a shaft angle encoder, is used

[30,38,155]. The two major approaches are:

1. Count the number of encoder pulses occurring in a fixed time interval, typically

the sample interval.

2. Measure the elapsed time required for a given number of encoder pulses.

The first approach is easily implemented since most axis controllers provide an en-

coder counter, for axis position measurement, which can be read periodically. The

discrete position sensor results in velocity quantization of

∆ω
∆θ
T

(7.36)

where ∆θ is the position quantization level. Velocity resolution can be improved by a

higher resolution position sensor, or a longer sampling interval.

Brown et al. [38] compare a number of approaches to velocity estimation. They

conclude that at high speed, more than 100 counts per sampling interval, estimators

based on backward difference expansions give the best result. At low speed, tech-

niques based on least squares fit are appropriate. The motor shaft velocities corre-

sponding to the 100 count limit are computed and compared with maximum motor
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Joint Counts/rev Critical vel. Percent of

(radm/s) maximum

1 1000 5.0 4%

2 800 6.3 3.8%

3 1000 5.0 3.9%

4 1000 5.0 1.2%

5 1000 5.0 1.4%

6 500 10.0 2.3%

Table 7.3: Critical velocities for Puma 560 velocity estimators expressed as an-

gular rate and fraction of maximum axis rate. These correspond to 100 encoder

pulses per sample interval (in this case 20ms). Maximum joint velocities are

taken from Table 2.21.

speed for the Puma 560 in Table 7.3 — it is clear that the backward difference estima-

tor is appropriate for the majority of the axis velocity range. Belanger [30] compares

fixed-gain Kalman filters with first-order finite difference expressions and concludes

that the Kalman filter is advantageous at short sample intervals. The Kalman filter

is an optimal least squares estimator, and this result agrees with Brown et al. In this

application however a Kalman filter will be sub-optimal, since the axis acceleration

is not a zero-mean Gaussian signal. A velocity estimator could make use of addi-

tional information such as the axis dynamic model and control input. Such estimators,

combined with controllers, have been described by Erlic [86] and DeWit [44].

Surprisingly many papers that discuss experimental implementation of model-

based control make no mention of the techniques used to estimate motor velocity,

yet from (2.84) and (2.86) it is clear that knowledge of motor velocity is required. In

this work a second-order, or 3-point, velocity estimator

ˆ̇θi
3θi 4θi 1 θi 2

2T
(7.37)

is used which can be derived from the derivative of a parabola that fits the current and

two previous position points. The discrete-time transfer function of this differentiator

is
Ω̂ z

Θ z

3

2T

z 1
3

z 1

z2
(7.38)

and its frequency response is shown in Figure 7.24. Up to 10 Hz the response closely

approximates that of an ideal differentiator.

Motor current, set via the Unimate arm interface, is proportional to velocity error

with a PI compensator to give a closed-loop DC gain of unity. A detailed SIMULINK

model, Figure 7.25, was developed and used to determine suitable values for Kv and
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the zero in the lag/lead compensator. Experimental step response results for the joint

6 axis are shown in Figure 7.28. This controller is clearly capable of driving the axis

faster than the native velocity loop limit of 2.4 radl s given in Table 2.20.

Determining the linear discrete-time dynamics Ω Ωd is difficult since from Figure

7.23 the motor and free integrator must be Z-transformed together when discretizing

the system. Instead, the transfer function Ω̂ Ωd will be determined. From (7.29) the

discrete-time transfer function of the joint 6 motor and free integrator is

Θ z

VId z
Z

1 esT

s

1

s

24 4

s 31 4 1
(7.39)

0 126
z 0 81

z 1 z 0 534
(7.40)

which combined with the velocity estimator (7.38) and PI compensator gives the open-

loop transfer function

Kv
z 0 85

z 1
KDAC

Θ z

VId z

Ω̂ z

Θ z
K

z 1
3 z 0 85 z 0 81

z2 z 0 534 z 1
(7.41)
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where K 6 02 10 4Kv. The root-locus plot of Figure 7.26 shows the closed-

loop poles for the chosen controller parameters. The dominant poles are z 0 384

0 121 0 551 j corresponding to a real pole at 7.6Hz and a lightly damped pole pair

at 15 Hz with damping factor of 0.3. The measured step response shows evidence of

this latter mode in the case of the large step demand. The closed-loop bandwidth of

nearly 8Hz is poor when compared with the native analog velocity loop bandwidth of

25 Hz, shown in Figure 2.20, but it is as high as could reasonably be expected given

the low sampling rate used. The Bode plot shown in Figure 7.27 indicates that for the

standard target motion the phase lag is approximately 18 .

7.5.2 Target state estimation

The end-effector mounted camera senses target position error directly

i �X Klens xt xr (7.42)

which may be rearranged to give a target position estimate

x̂t

i �X

Klens

xr (7.43)

in terms of two measurable quantities: i �X the output of the vision system, and xr the

camera angle which can be obtained from the servo system. Both data are required due

to the inherent ambiguity with an end-effector mounted camera — apparent motion

may be due to target and/or end-effector motion.

From earlier investigations it is known that the vision system introduces a unit

delay so the robot position, xr, should be similarly delayed so as to align the measure-

ments — this is modelled as a 1 z block in Figure 7.21. This leads to a delayed target
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position estimate requiring prediction in order to estimate the current target position

and velocity. The estimates must be based on some assumption of target motion, and

in this section constant velocity motion will be assumed for estimator design. How-

ever tracking performance will be evaluated for the standard sinusoidal test motion

(7.10) which seriously challenges that design assumption.

The problem of estimating target velocity from discrete target position measure-

ments is similar to that just discussed in Section 7.5.1.2 for determining the axis ve-

locity from noisy measurements of axis position. However the signal to noise ratio for

the vision sensor is significantly poorer than for the encoder. Target position estimates

(7.43) will be contaminated by spatial quantization noise in iXt . If video fields are

used directly there will also be a frame rate pixel jitter due to field pixel offsets, see

Section 3.4.1. The remaining sections will examine a number of different approaches

to estimating the target state in 1 dimension. Many target state estimation schemes are

possible and have been discussed in the literature — the remainder of this section will

give a brief summary of only three types and then compare their performance.

7.5.2.1 Simple differencing

The simplest velocity estimator possible is a first order difference whose transfer func-

tion is
V̂ z

Y z

1

T

z 1

z
(7.44)

A second order difference, which takes into account additional data points, is

V̂ z

Y z

1

2T

3z2 4z 1

z2
(7.45)

and was used for axis velocity control in Section 7.5.1.2.

It is possible to compute visual velocity, or optical flow directly, rather than dif-

ferentiate the position of a feature with respect to time. It is suggested [37] that the

human eye's fixation reflex is driven (to first order) by retinal slip or optical flow.

However most machine vision algorithms to compute optical flow, such as that by

Horn and Schunck [122] are based principally on a first order difference of image

intensity between consecutive frames.

7.5.2.2 α β tracking filters

α β tracking filters were developed in the mid 1950s for radar target tracking, esti-

mating target position and velocity from noisy measurements of range and bearing. In

their simplest form these are fixed gain filters based on the assumption that the target

acceleration (often referred to as maneuver) is zero. The α β filter is

x̂pk 1
x̂k T v̂k (7.46)
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x̂k 1 x̂pk 1
α yk 1 x̂pk 1

(7.47)

v̂k 1 v̂k

β
T

yk 1 x̂pk 1
(7.48)

where x̂k and v̂k are the position and velocity estimates at sample k respectively, and

yk is the measured position. The above equations may be manipulated into transfer

function form
V̂ z

Y z

β
T

z z 1

z2 α β 2 z 1 α
(7.49)

from which it is clear that this is simply a first order difference smoothed by a second

order system whose poles are manipulated by the parameters α and β. Commonly

the filter is treated as having only one free parameter, α, with β computed for critical

damping

βCD 2 α 2 1 α (7.50)

or minimal transient error performance (Benedict and Bordner criteria [31])

βBB
α2

2 α
(7.51)

Kalata [141] proposes another parameterization, and introduces the tracking param-

eter, Λ, which is the ratio of position uncertainty due to target maneuverability and

sensor measurement, and from which α and β can be determined.

The α β γ filter is a higher-order extension that also estimates acceleration,

and should improve the tracking performance for a maneuvering target. Various mod-

ifications to the basic filter have been proposed such as time varying gains [170] or

maneuver detection and gain scheduling which increases the filter bandwidth as the

prediction error increases.

7.5.2.3 Kalman filter

This filter, proposed by Kalman in 1960 [142], is an optimal estimator of system

state where the input and measurement noise are zero-mean Gaussian signals with

known covariance. A second-order model of the target position can be used whose

acceleration input is assumed to be zero-mean Gaussian. For a single DOF the filter

states are

Xk θk θ̇k
T

(7.52)

and the discrete-time state-space target dynamics are

Xk 1 Xk ωk (7.53)

yk CXk ek (7.54)
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where ωk represents acceleration uncertainty and yk is the observed target position

with measurement noise ek. For constant-velocity motion the state-transition matrix is

1 T

0 1
(7.55)

and the observation matrix

C 1 0 (7.56)

where T is the sampling interval. The predictive Kalman filter for one axis [24] is

given by

Kk PkCT CPkCT R2
1 (7.57)

X̂k 1 X̂ k Kk yk CX̂k (7.58)

Pk 1 Pk
T R1I2 KkCPk

T (7.59)

where K is a gain, P is the error covariance matrix and I2 is a 2 2 identity matrix.

R1 E ωkωT
k and R2 E e2

k are respectively the process and measurement covari-

ance estimates and govern the dynamics of the filter. In this work appropriate values

for R1 and R2 have been determined through simulation. This filter is predictive, that

is X̂ k 1 is the estimated value for the next sample interval based on measurements at

time k and assumed target dynamics.

There seems to be considerable mystique associated with the Kalman filter but this

second order filter can be expressed simply in transfer function form as

V̂ z

Y z

k2z z 1

z2 k1 2 z k2 k1 1
(7.60)

where k1 and k2 are elements of the Kalman gain matrix K. Like the α β filter

this is simply a first order difference with a second-order ' smoothing' function. The

significant difference with the Kalman filter is that the gains k1 and k2 diminish with

time according to the equations (7.57) and (7.59). This provides initial fast response

then good smoothing once the target dynamics have been estimated. However the

gain schedule is completely 'preordained'. That is, the gain trajectory is not depen-

dent upon measured target dynamics or estimation error but is entirely specified by

the filter parameters P0, R1 and R2. Berg [32] proposes a modified Kalman filter in

which online estimates of covariance are used to set the filter gain. In practice target

acceleration does not match the zero-mean Gaussian assumption and is generally cor-

related from one sample point to the next. Singer et al. [235] show how the dynamic

model may be augmented with an extra state to include acceleration and 'whiten' the

input to the model. A Wiener filter [235] is a fixed-gain filter whose gain vector is the

steady-state gain vector of the Kalman filter.

The Kalman filter equations are relatively complex and time consuming to execute

in matrix form. Using the computer algebra package MAPLE the equations were

reduced to scalar form, expressed in 'C' as shown in Figure 7.29.
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/* compute the filter gain */

den = p11 + R2;

k1 = (p11 + T * p12) / den;

k2 = p12 / den;

/* update the state vector */

x1_new = x1 + T * x2 + k1 * (y - x1);

x2_new = x2 + k2 * (y - x1);

x1 = x1_new;

x2 = x2_new;

/* update the covar matrix (symmetric so keep only 3 elements) */

p11_new = R1 + p11 + 2.0 * T * p12 + T * T * p22 -

k1 * p11 - k1 * p12 * T;

p12_new = p12 + T * p22 - k1 * p12;

p22_new = R1 + p22 - k2 * p12;

p11 = p11_new;

p12 = p12_new;

p22 = p22_new;

Figure 7.29: Simplified scalar form of the Kalman filter in 'C' as generated by MAPLE.

7.5.2.4 Estimator initiation

Both the α β and Kalman filter need to be initiated when target tracking commences.

For the Kalman filter this involves initializing the error covariance, P, generally to a

large diagonal value. Both filters require state initialization. Commonly the position

is set to the currently observed position, and the initial velocity computed from the

current and previous position.

7.5.2.5 Comparison of state estimators

Velocity estimators by definition perform differentiation, which is a noise enhancing

operation. To reduce the resultant noise a low-pass filter can be introduced, and it is

shown above that the Kalman and α β filter both have this form. The dynamics of the

filter provide a tradeoff between estimation noise and response to target acceleration.

The α β and Wiener filter are both fixed-gain filters which can be ' tuned' to meet

the needs of the application. For the situation, as in this experiment, where the robot

is fixated on a target for a long period of time the Kalman filter will converge to fixed

gains, and is thus a computationally more expensive implementation of a Wiener or

α β filter. Kalata [141] in fact shows how α and β can be related to the steady-state

Kalman gains. Singer comments that the Kalman filter is most appropriate when the
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“transient period approaches that of the tracking interval”.

The Kalman filter could perhaps be viewed as an over-parameterized tracking filter

where two covariance matrices must be selected compared to a single parameter for

the α β filter. The Kalman filter is an optimal estimator but in this application

assumptions about the plant input, zero-mean Gaussian, are violated. Compared to

the α β filter it is computationally more expensive in steady-state operation and

more difficult to tune.

A number of reports have investigated the target tracking problem and compared

different approaches. Hunt [127] is concerned primarily with position extrapolation to

cover delay in a vision/robot system and examines 5 different extrapolators spanning

linear regression through to augmented Kalman filters. Since none is ideal for all

motion she proposes to evaluate all extrapolators and select the one with minimum

prediction error in the last time step. Singer and Behnke [235] evaluate a number

of tracking filters but in the context of aircraft tracking where target acceleration is

minimal. Safadi [218] investigates α β filters designed using the tracking index

method for a robot/vision tracking application. He compares tracking performance

for sinusoidal test motion, relevant to the turntable tracking experiments used in this

work, and finds that the α β γ filter gives the best results. He implements time

varying filter gains which converge on optimal gains derived from the tracking index.

Visual servo applications using Kalman filters have been reported by Corke [63, 64],

α β filters by Allen [7] and Safadi [218], and best-fit extrapolators by Hunt [127].

As already observed the α β and Kalman filters have adjustable parameters

which govern the tradeoff between smoothness and response to maneuver. In the

experiment the robot will track an object on a turntable so phase lag in the velocity

estimate is important and will be the basis of a comparison between approaches. A

number of tracking filters have been simulated, see for example Figure 7.30, under

identical conditions, where the target follows the standard trajectory (7.10) and the

position estimates are corrupted by additive Gaussian measurement noise. It was ob-

served qualitatively that some velocity estimates were much ' rougher' than others, and

in an attempt to quantify this a ' roughness' a metric is proposed

ρ 1000

t2

t1

H v̂ t 2dt

t2 t1
(7.61)

where H is a high-pass filter selected to accentuate the ' roughness' in the velocity

estimate. In this simulation H is chosen as a 9th order Chebyshev type I digital filter

with break frequency of 5Hz and 3dB passband ripple. Initial discontinuities in the

velocity estimate, see Figure 7.30, induce ringing in the filter so the first 1 s of the

filtered velocity estimate is not used for the RMS calculation; that is t1 1s.

The results are summarized in Figure 7.31 and show the fundamental tradeoff be-

tween roughness and lag. The first- and second-order difference both exhibit low lag
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Figure 7.30: Simulated response of α β velocity estimator for α 0 65 and

Benedict-Bordner tuning. True velocity (dotted) and filter estimate (solid). Target

position is θ 0 2sin 4 2t rad. Gaussian pixel noise of variance 0.5pixel2 has

been added to the position 'measurement' data prior to velocity estimation.

and RMS estimation error, but produce the roughest velocity estimates. The α β
filters were able to give ' smooth' velocity estimates with low lag and RMS error, see

again Figure 7.30. The Benedict-Bordner criterion provide better performance for this

target motion than does critically damped tuning. The α β γ filter shows increasing

RMS error and roughness as its bandwidth is increased. All the estimators apart from

the 2nd order difference and α β γ filters assume constant target velocity. The 2nd

order difference and α β γ filters assume constant acceleration and are thus capable

of predicting velocity one step ahead. However these filters exhibit the worst rough-

ness and RMS error since the acceleration estimate is based on doubly-differentiated

position data.

The arithmetic operation counts of the various filters are compared in Table 7.4.

Computation time is not a significant issue, but for the reasons outlined above the

variable gain Kalman filter does not appear to confer sufficient advantage to warrant

the extra cost.
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Figure 7.31: Comparison of velocity estimators showing roughness and lag as

α varies. Evaluated for sinusoidal target motion at frequency of 4.2rad s, lens

gain of 640 pixel rad, and Gaussian quantization noise with standard deviation of

0.5pixel.

Filter type * +

1st order diff 1 1

2nd order diff 3 2

Kalman (matrix form) 68 78

Kalman (simplified) 15 16

α β 4 4

Table 7.4: Comparison of operation count for various velocity estimators.

7.5.3 Feedforward control implementation

This section describes the velocity feedforward controller of Figure 7.21 in more detail

and with an emphasis on implementation issues. The controller has a variable structure

with two modes: gazing or fixating. With no target in view, the system is in gaze

mode and maintains a gaze direction by closing position-control loops around each

axis based on encoder feedback. In fixation mode the controller attempts to keep the

target centroid at the desired image plane coordinate. The velocity demand comprises,



252 Control design and performance

Active
video

Pixels
exposed

Joint angles
read

Current command
sent

Pixel transport
and processing

Control law
calculation

θ

Video field time (20ms)

Time

Video blanking
time (1.6ms)

Figure 7.32: Details of system timing for velocity feedforward controller. Note

the small time delay between between the center of the pixel exposure interval

and the joint angles being read; in practice this is around 1.3ms.

for each DOF, predicted target velocity feedforward and image plane centroid error

feedback

ẋd
ˆ̇xt

iKp
i �X

iKi
i �Xdt if i �X i∆

0 otherwise
(7.62)

When the target is within a designated region about the desired image plane centroid

integral action is enabled. The integral is reset continuously when the target is outside

this region. Both α β and Kalman filters have been used for velocity estimation,
ˆ̇xt , in this work. The transition from gazing to fixation involves initiating the tracking

filters. No vision based motion is allowed until the target has been in view for at least

two consecutive fields in order to compute a crude target velocity estimate for filter

initiation. Intuitively it is unproductive to start moving upon first sighting the target

since its velocity is unknown, and the robot may start moving in quite the wrong

direction.

The pan and tilt axis axis velocities are controlled by two digital axis-velocity

loops as described in Section 7.5.1. There is explicit correction for the wrist axis

cross-coupling (2.38). The motor-referenced joint velocities are

θ̇5 G5ωtilt (7.63)

θ̇6 G6ωpan G56G6ωtilt (7.64)
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Figure 7.33: SIMULINK model FFVSERVO: feedforward fixation controller.

Figure 7.32 shows details of the timing relationships involved. The actual instant

of camera sampling is not signalled by the camera, but has been determined experi-

mentally in Figure 3.14 with respect to the video waveform. The short exposure time

is required in order that the camera approximate an ideal sampler of the visual state

which is assumed for the control design. Motion blur is not significant since fixation

keeps the target fixed with respect to the camera. The robot' s joint angles are sampled

by a task during the vertical blanking interval and combined with the image plane cen-

troid using (7.43) to estimate the target position. There is some finite time difference

between sampling the joint angles and pixel exposure. Analysis of system timestamps

indicates that this averages 1.3ms with a standard deviation of 0.11ms. It would be

possible to use first-order predictors to compute joint angles at the video sampling

instant but this has not been attempted.

A single-axis SIMULINK model, shown in Figure 7.33, was created to verify

the overall operation and to assist in initial control parameter selection. Figure 7.34

shows the simulated performance when tracking the standard target motion with peak

velocity of 1 radl s. It can be seen that the target velocity estimator is providing most

of the velocity demand, but that this feedforward signal is lagging the axis velocity by

approximately 70 ms. This is due to lag in the velocity estimator as discussed above,

and also the unit delay on position data being passed to the velocity estimator.
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Figure 7.34: Simulation of feedforward fixation controller for standard target mo-

tion. Top plot shows total axis velocity demand (solid) and estimated target ve-

locity (dashed). Bottom plot shows the target centroid error. RMS pixel error,

excluding the initial transient, is 11pixels. (iKp 0 03, iKi 0 0042.)
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Figure 7.35: Turntable fixation experiment
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7.5.4 Experimental results

A number of experiments have been conducted to investigate the performance of the

fixation controller. To achieve a particularly challenging motion for the tracking con-

troller a turntable has been built whose rotational velocity can be constant, or a revers-

ing trapezoidal profile. At maximum rotational speed of 40 rpm the former provides

targets with the standard motion described in (7.10). The reversing profile results in

target motion with a complex Cartesian acceleration profile.

In the first experiment the camera is fixated on a target rotating on a turntable as

shown in Figure 7.35. The turntable is rotating at the standard trajectory' s angular

velocity 4.2 rad s. Figure 7.36 shows the image plane coordinate error in pixels. It

can be seen that the the target is kept within 15 pixels of the reference. The earlier,

feedback-only strategy results in large following errors and a lag of over 40 . Fig-

ure 7.37 shows the measured and feedforward joint velocity for the pan and tilt axes.

The joint velocity of up to 2 radl s is close to the limit of the Unimate velocity loop,

2.3 radl s. The feedforward velocity signal has the same magnitude as the velocity de-

mand but is slightly lagging, as was the case for the simulation. The other component

of the velocity demand is provided by the PI feedback law which is necessary to

achieve zero position error tracking, since matching target and robot velocity

still allows for an arbitrary constant position error;

overcome lags in the feedforward velocity demand and the velocity loop itself;

reject the disturbance introduced by a target whose centroid lies off the optical

axis which will appear to rotate around the principal point as the camera rolls

due to motion of joints 5 and 6 by (6.7);

accommodate the pose dependent gain relating θ̇5 to tilt rate in (6.6).

The controller is quite robust to errors in the lens gain estimate used in (7.43). During

fixation the centroid error i �X is small, so minimizing the significance of errors in Klens.

A disturbance may be generated by using the teach pendant to move the first three

robot joints. The fixation controller is able to counter this disturbance but the rejec-

tion dynamics have not been investigated. The disturbance could also be countered

by feeding forward the camera pan/tilt rates due to the motion of those joints. Such a

structure would then be similar to the human eye in that the eye muscles accept feed-

back from the retina, as well as feedforward information from the vestibular system,

giving head lateral and rotational acceleration, and head position information from the

neck muscles.

Figure 7.38 shows the setup for an experiment where the camera fixates on a ping-

pong ball thrown across the system's field of view. Experimental results shown in

Figure 7.39 are obtained with the same controller as the previous experiment. The

recorded event is very brief, lasting approximately 700 ms. Tracking ceases when the
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Figure 7.36: Measured tracking performance, centroid error, for target on

turntable revolving at 4.2rad s. This data was logged by RTVL.
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Figure 7.37: Measured tracking velocity for target on turntable revolving at

4.2rad s, showing axis velocity (solid) and estimated target velocity (dashed).

Note that the Y-axis (tilt) velocity is somewhat triangular — this is due to the

1 S6 term in the tilt kinematics given by (6.6). This data was logged by RTVL.
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Tilt

Pan
Ball

Figure 7.38: Ping pong ball fixation experiment

ball disappears from view as it moves into a poorly lit region of the laboratory. From

the centroid error plot it can be seen that the robot achieves an approximately constant

centroid error of less than 30 pixels in the vertical, Y, direction in which the ball has

constant acceleration. In the horizontal, X, direction the robot is seen to have overshot

the target. The measured joint velocities show a peak of over 4 radl s on the tilt axis,

which has a limit due to voltage saturation of 5 radl s. The apparent size of the ball

(area) can be seen to vary with its distance from the camera. The tracking filter in this

case is a Kalman filter where the time varying gain is an advantage given the transient

nature of the event. The robot does not commence moving until the ball has been in

the field of view for a few field times in order for the Kalman filter state estimates to

converge.

7.6 Biological parallels

There are some interesting parallels between the control models developed here using

control system analysis and synthesis, and those proposed to explain the operation of

the human visual fixation reflex. Robinson [214] investigates the control of two human

visual behaviours, saccadic motion and smooth pursuit, and how instability is avoided

given the presence of significant delay in neural sensing and actuation 'circuits'. The

smooth pursuit reflex operates for target motion up to 100 deg s and experiments re-

veal that the response is characterized by a delay of 130 ms and a timeconstant of

40 ms. The delay is partitioned as 50 ms for the neural system and 80 ms for peripheral

(muscle) delay. Sachadic eye motions are used to direct the fovea to a point of interest

and can be considered as 'open-loop' planned moves. The neural delay for saccadic

motion is 120 ms compared to 50 ms for fixation motion, and indicates that fixation is

a lower level and more reflexive action.

For a constant velocity target the eye achieves a steady-state velocity of 90% of

the target velocity, that is, the oculomotor system is of Type 0. There is also physi-
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Figure 7.39: Measured tracking performance for flying ping-pong ball. Shown

are centroid error, link velocity and observed area of target. This data was logged

by RTVL.

ological evidence that the oculomotor control system can be considered a continuous

time system. Like the robot visual servo system discussed earlier, the eye controller is

driven by retinal position or velocity which measures directly the error between target

and eye direction. Since the system is driven by an error signal it is a negative feed-

back system which admits the possibility of stability problems. However despite the

significant delays in the sensor and actuator this feedback system is stable. To explain

how the mechanism avoided instability he proposes the existence of an inner positive-

feedback loop that cancels the effect of the potentially problematic negative-feedback

loop. This structure is shown in block diagram form in Figure 7.40. Ideally the two

feedback paths cancel so the resulting dynamics are dictated by the forward path.

Such an explanation is somewhat bizarre from a control systems point of view where

'positi ve feedback' is generally considered as something to be avoided. However the

proposed model can be interpreted, see Figure 7.41, as being structurally similar to

the velocity feedforward control described in the previous section. The effect of the



7.6 Biological parallels 259

+

X
.i

-

0.9

0.04s 1+

neural

V s( )

+

x
.
r

+

P s( )

actuator

80

50 50 30

P
2

P
1

R s( )

x
.
d

x
.
t

x̂
.

t

Figure 7.40: Proposed model of oculomotor control system after Robinson [214]

with some notational differences to conform with this work. Square boxes con-

taining numbers represent pure time delay in units of milliseconds. P1 and P2 are

adaptive gains. Actuator dynamics are taken to be P s 1.

x
r

x
.
d

X̃
i

1

z

D z( )

V z( ) R z( )
+

x
t

z( )

-

compensator

robotvision

target
position

E z( )

velocity

+

+

P z( )

target

x̂t
x̂
.

t

position
estimator

estimator

+

+

Figure 7.41: Rearrangement of Figure 7.21 to show similarity to Robinson' s pro-

posed oculomotor control system. P z is defined by (7.43) and is essentially a

summation. The path shown dotted represents the less significant feedback path,

which if eliminated results in a structure that is identical to Robinson' s.

positive feedback is to create an estimate of the target velocity, based on measured

retinal velocity and delayed eye velocity command. The feedforward controller of

Figure 7.21 is very similar except that target position is estimated from 'retinal' and

motor position information and then differentiated to form the principal component of

the motor velocity signal.

Eliminating negative feedback, as shown in the model of Figure 7.40, also elimi-

nates its benefits, particularly robustness to parameter variations. In a biological sys-

tem these variations may be caused by injury, disease or ageing. Robinson proposes

that parameter adaption occurs, modelled by the gain terms P1 and P2, and provides

experimental evidence to support this. Such 'plasticity' in neural circuits is common

to much motor learning and involves change over timescales measured in days or
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even weeks. Parameter variation again admits instability, if for instance the positive-

feedback gain is greater than the negative-feedback gain. Robinson' s paper does not

discuss the dynamics of the actuator apart from time delay, but it may be that for eye

actuation inertia forces are insignificant.

7.7 Summary

The use of machine vision for high-performance motion control is a significant chal-

lenge due to the innate characteristics of the vision sensor which include relatively low

sample rate, latency and significant quantization. Many of the reports in the literature

use low loop gains to achieve stable, but low-speed, closed-loop visual control.

The simple and commonly used proportional feedback controller, while demon-

strating an adequate step response, has poor tracking performance. Compensator

design, to improve this performance, has followed classical linear principles of in-

creasing system Type and positioning the closed-loop poles by means of PID or pole-

placement control. It has been found that the closed-loop poles cannot be made ar-

bitrarily fast and are constrained by a practical requirement for compensator stability.

This instability is believed to be due to modelling errors, or plant non-linearities which

lead to model errors at saturation.

It is difficult to quantitatively compare the performance of this system with other

reports in the literature, due largely to the lack of any common performance met-

rics. A tracking performance measure was defined in terms of image plane error for

a standard sinusoidal target motion. A number of reports on robot heads [231, 270]

cite impressive peak velocity and acceleration capabilities, but these are achieved for

saccadic not closed-loop visually guided motion. Many reports provide step response

data and this gives some measure of closed-loop bandwidth but it has been shown that

phase characteristics are critical in tracking applications.

The experimental configuration used in this work, like the majority of reported

experimental systems, implements a visual feedback loop around the robot' s exist-

ing position-control loops. However it has been shown that the redundant levels of

control add to system complexity and can reduce closed-loop performance by increas-

ing open-loop latency. Investigation of alternative control structures based on various

underlying axis-control methods concluded that axis feedback, at the least velocity

feedback, is required to give acceptable performance given the low visual sampling

rate and the non-ideality of a real robot axis.

The design constraints inherent in feedback-only control lead to the consideration

of feedforward control, which gives additional design degrees of freedom by manip-

ulating system zeros. A 2-DOF variable-structure velocity-feedforward controller is

introduced which is capable of high-performance tracking without the stability prob-

lems associated with feedback-only control. The feedforward approach effectively

transforms the problem from control synthesis to motion estimation.
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The next chapter extends the principles developed in this chapter, and applies them

to visual servoing for direct end-point control and to 3-DOF translational tracking.
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Chapter 8

Further experiments in visual

servoing

This chapter extends, and brings together, the principles developed in earlier chapters.

Two examples, both involving dynamic visual servoing, will be presented. Firstly 1-

DOF visual control of a major robot axis will be investigated with particular emphasis

on the endpoint rather than axis motion. Secondly, planar translational camera control

will be investigated which requires coordinated motion of the robot' s 3 base axes.

The simple 2-DOF control of the previous chapter effectively decoupled the dynamics

of each axis, with one actuator per camera DOF. In this case there is considerable

kinematic and dynamic coupling between the axes involved. This chapter must, by

necessity, address a number of issues in robot or motion control such as controller

structure artifacts, friction and structural dynamics. Many of these topics have been

introduced previously and will not be dealt with in great detail here; rather a ' solution'

oriented approach will be taken.

8.1 Visual control of a major axis

Previous sections have described the visual control of the robot' s wrist axes, which

are almost ideal, in that they have low inertia and friction and are free from structural

resonances in the frequency range of interest. This section investigates the application

of visual servoing to the control of a major robot axis, in this case the waist axis, and

it will be shown that the control problem is non-trivial due to ' real-world' effects such

as significant non-linear friction and structural resonances.

In this experiment the camera is mounted on the robot' s end-effector, which moves

in a horizontal plane over a worktable on which the target object sits at a location that is

263
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over target.

969mm
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Figure 8.1: Plan view of the experimental setup for major axis control.

only approximately known. The robot' s waist joint swings through approximately 30

and is visually servoed to stop with the camera directly over the target. Only 1-DOF

is controlled, so the camera's true motion is an arc and the positioning is such that the

X-coordinate of the target' s image is brought to the desired image plane location. A

schematic plan view is shown in Figure 8.1.

This experiment has some similarity with the way in which robots are used to per-

form part placement in planar assembly applications such as PCB manufacture. That

role is typically performed by high-speed SCARA robots which must move quickly

from part feeder to the part location, settle, and then release the part. Electronic as-

sembly robots such as the AdeptOne are capable of positioning accuracy of 75 µm and

end-effector speeds of 9m s.

8.1.1 The experimental setup

The camera looks downward toward the table. As the camera swings toward the target,

the target appears to move in the negative X direction with respect to the camera's co-

ordinate frame. The X component of the target' s centroid is taken as a measure of the

camera's position relative to the target. The robot arm is well extended so that a large

inertia is ' seen' by the joint 1 axis. The arm pose is θ1 18 123 0 14 90 , and

using the rigid-body dynamic model from Section 2.2.4 yields an inertia for joint 1 due

to link and armature inertias of 3 92 kg m2. The camera inertia, computed from known

mass and rotation radius, is 0.970 kg m2. The total inertia at the link is 4.89kg m2, or

in normalized form, 7 5Jm1
. In this pose the camera rotational radius1 is 969 mm and

1The distance between the joint 1 rotational axis and the optical axis of the camera.
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Time (s) θ̇pk (radl/s) θ̈pk (radl/s2)

1.0 0.98 2.95

0.8 1.23 4.60

0.6 1.64 8.18

0.5 1.96 11.8

0.4 2.45 18.4

Table 8.1: Peak velocity and acceleration for the test trajectory with decreasing durations.

was determined by a calibration procedure which measured the ratio of target centroid

displacement to joint angle rotation.

8.1.2 Trajectory generation

In this experiment the manipulator performs a large motion, and visual information

from the target is available only during the latter phase of the move. A trajectory gen-

erator is thus required to move the robot to the general vicinity of the target. The tra-

jectory used is a quintic polynomial which has the desirable characteristics of continu-

ous acceleration and computational simplicity. In terms of normalized time 0 τ 1

where τ t T and T is the duration of the motion, the joint angle is

θd τ Aτ5 Bτ4 Cτ3 F (8.1)

The coefficients are computed from the initial and final joint angles, θ0 and θ1 respec-

tively.

A 6 θ1 θ0 (8.2)

B 15 θ1 θ0 (8.3)

C 10 θ1 θ0 (8.4)

F θ0 (8.5)

Velocity is given by

dθ
dt

dθ
dτ

dτ
dt

(8.6)

1

T
5Aτ4 4Bτ3 3Cτ2 (8.7)

and in a similar fashion acceleration is shown to be

d2θ
dt2

1

T 2
20Aτ3 12Bτ2 6Cτ (8.8)
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Figure 8.2: Position, velocity and acceleration profile of the quintic polynomial.

The minimum achievable move duration will ultimately be limited by friction and

amplifier voltage and current saturation. The peak velocities and accelerations for this

trajectory have been computed for a number of time intervals, and these results are

summarized in Table 8.1. Based on the manipulator performance limits from Table

2.21 it is clear that the 0.5s trajectory is at approximately the velocity limit for joint 1,

and will be selected as the reference trajectory for this section. Figure 8.2 shows the

computed position and velocity as a function of time for a 0.5s swing over 30 .

The average joint velocity is 1 radl s which in this pose results in an average trans-

lational velocity of around 1000 mm s, the quoted limit of the Puma 560 [255]. The

peak camera translational velocity is almost 2000 mm s, which with an exposure time

of 2ms would result in a maximum motion blur of 4mm causing a lagging image cen-

troid estimate and some distortion of the target image. These effects decrease as the

robot slows down on approach to the target.

8.1.3 Puma 'native' position control

Joint position control is performed by the Unimate position control system described

previously in Section 2.3.6. The host issues setpoints computed using (8.1) at 14 ms

intervals and these are passed to the digital axis servo. This interpolates between the
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Figure 8.3: Measured axis response for Unimate position control, showing posi-

tion, velocity and acceleration: measured (solid) and demand (dotted). Data was

recorded by the RTVL system at 14ms intervals, and an off-line procedure using

5-point numerical differentiation was used to obtain the 'measured' velocity and

acceleration data. Note the step deceleration at 0.45s or 70ms before the first

zero crossing of the measured velocity. All quantities are load referenced, angles

in radians.

position setpoints emitted by the trajectory generator and closes a position loop around

the robot' s analog velocity loop at a sample rate of approximately 1kHz.

The performance of the Unimate servo system is shown in Figure 8.3 which com-

pares the demanded and measured axis position, velocity and acceleration. It can be

seen that the measured joint angle lags considerably behind the desired joint angle and

that the axis velocity has 'bottomed out' between 0.25 and 0.45s. The limiting value

of -1.6 radl s is due to velocity loop saturation. Table 2.20 predicts a velocity limit of

1.42 radl s for joint 1 which is of a similar order to that observed in this experiment2.

The position loop has very high gain and it can be shown from Section 2.3.6 that the

velocity loop demand will be saturated for position error greater than 0.018 radl or 1 .

By t 0 45 s position error is sufficiently small that the velocity demand rises above

the saturation level and the axis begins to decelerate and the acceleration plot shows

2Gain variation in the analog electronics, mentioned in Section 2.3.6, or friction variation may account

for this discrepancy.
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Figure 8.4: Measured joint angle and camera acceleration under Unimate position

control. Data was recorded with a 2-channel data-acquisition unit and the time

scales of this figure are not aligned with those of Figure 8.3. However the onset

of oscillation is around 70ms before the joint angle peak.

a step occurring at this time. Considerable deceleration can be achieved since back-

EMF acts to increase motor current which will then be limited by the current loop,

while Coulomb and viscous friction also supply decelerating torque.

Figure 8.4 shows the response of the motor joint angle and the camera acceleration

for the 0.5s trajectory recorded using a 2-channel data-acquisition unit. The joint angle

has overshot by 8 3 10 3 radl resulting in a camera overshoot of 8mm. From the plot

of camera acceleration there is clearly considerable oscillation of the camera, peaking

at 4g. The high deceleration caused by the axis controller, shown in Figure 8.3, has

excited a resonance in the manipulator structure at around 20 Hz. The large oscillation

between 0.10 and 0.15s has an amplitude of approximately 15 m s2 corresponding

to a displacement amplitude of 1mm. The lower level vibration present after 0.25s

corresponds to a displacement amplitude of around 0 3mm which is significantly less

than 1pixel. Figure 8.5 compares the displacement of the camera determined by two

different means. Over the small angular range involved in motion near the target, the

end-effector position can be related directly to link angle, θ1, by

xm rθ1 (8.9)
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where r is the radius of camera rotation. The displacement can also be determined

from the camera

xc Klens
iX (8.10)

where the lens gain, in this translational control case, will be a function of target

distance as discussed in Section 6.3.2. Lens gain was determined from the image plane

distance between the centroids of calibration markers with known spacing, resulting

in an estimate Klens 0 766 mm pixel. Figure 8.5 is derived from data logged by

the controller itself. Timestamps on target centroid data indicate the time at which

the region data was fetched from the APA-512, not when the camera pixels were

exposed. However the video-locked timestamping system allows the exposure time to

be estimated, and this is used when plotting centroid data in Figure 8.5. There is good

correspondence between the two measurements as the robot approaches the target3.

However at the peak of the overshoot the vision system indicates that the displacement

is 1.9mm greater than that indicated by the axis. Data recorded during the experiment

also indicates that joints 4 and 6 rotate by 1 5 10 3 and 6 10 4 radl during this part

of the trajectory, due to inertial forces acting on the camera. In this pose, such rotation

would tend to reduce the visually perceived overshoot. From Figure 8.5 the damped

natural frequency of the overshoot motion is approximately 7Hz and this would be

largely a function of the Unimate position loop. As discussed in Section 2.3.6 the

switchable integral action feature of the position loop4 results in a poorly-damped

low-frequency pole pair. With integral action disabled the overshoot is only 60% of

that shown in Figure 8.4 and there is no subsequent undershoot. However the axis

stops 37 10 3 radm (6 encoders) or 0.5mm short of the target due to friction effects.

8.1.4 Understanding joint 1 dynamics

The purpose of this section is to develop a simple model of the joint 1 dynamics

which includes structural resonance in the transmission and the electro-mechanical

dynamics of the motor and current loop. Figure 8.6 shows the measured frequency

response function between motor shaft angle and acceleration of the camera, for the

robot in the standard pose used for this experiment. There are 3 structural modes

in the frequency range measured: the first occurs at 19 Hz which is below the 25 Hz

visual Nyquist frequency; the others are above the Nyquist frequency and may result

in aliasing.

3There is evidence that the joint angle measurement lags approximately 2 ms behind the vision measure-

ment. This may be due to incorrect compensation of timestamped centroid data, or overhead and timing

skew in reading encoder data from the Unimate digital servo board. In addition the encoder value returned

by the servo is the value at the last clock period. Further refinement of measurement times will not be

pursued.
4Integral action is configured to switch in when the axis is within 50 encoder counts of the target which

is 0.005 radl for this axis.
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Figure 8.5: Measured tip displacement determined from axis sensing (dotted) and

end-effector mounted camera (solid).

The current-loop transfer function was measured, see Figure 8.7, and a model

fitted up to 30Hz
Ωm

VId

6 26
0 029 120

33 0 0 14 165
radm Vs (8.11)

This indicates a real pole at 5 3Hz and a lightly damped complex pole/zero pair due

to the mechanical resonance. The anti-resonance in this transfer function corresponds

to the 19 Hz resonance seen in the frequency response of Figure 8.6. It is interesting

to compare this response with the much simpler one for joint 6 shown in Figure 2.15.

The velocity-loop frequency response function was also measured, and the fitted

model is
Ωm

VΩd

3 30
0 018 117

82 0 0 31 132
radm Vs (8.12)

The structural zeros are unchanged5 by the action of the velocity loop and the struc-

tural poles are more damped. The low-frequency real pole has been pushed out to

around 13 Hz. A root-locus showing the effect of velocity feedback on the simple

model of of (8.11) is shown in Figure 8.8. The natural frequency of the resonance is

reduced marginally and for moderate gains the damping is increased.

5Within the accuracy of the estimation procedure.
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Figure 8.6: Measured frequency response function 1 jω 2Ẍcam Θm which in-

cludes arm structure and transmission dynamics. The first resonance is at 19Hz.

Good coherence was obtained above 4Hz.

The main aspects of the joint 1 dynamics are accounted for by the simple two-

inertia model shown in Figure 8.9. In this model Jm represents the motor inertia and Jl

the motor-referenced inertia of the arm and camera. Elasticity and energy dissipation

in the transmission, physically due to torsional compliance in the long vertical drive

shaft between the bull gear and link 1, are modelled by the spring K and damper B.

Motor friction is represented by Bm, and motor electrical torque is τm.

Laplace transformed equations of motion for this system may be written

s2JmΘm τm BmsΘm Bs K Θm Θl (8.13)

s2JlΘl Bs K Θm Θl (8.14)

These reduce to the transfer functions

Ωm

τm

sΘm

τm

Jls
2 Bs K

∆
(8.15)

Ωl

τm

sΘl

τm

Bs K

∆
(8.16)
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Figure 8.7: Measured frequency response function magnitude for joint 1 motor

and current loop Ωm s VId
s .

where

∆ JmJls
3 Jm Jl B BmJl s2 Jm Jl K BBm s KBm (8.17)

The transfer function from motor position to load position, measured in Figure 8.6, is

given by this simple model as

Θl

Θm

Bs K

Jls
2 Bs K

(8.18)

σ0

ζ0 ω0
(8.19)

in the shorthand notation employed previously. The numerator of the transfer function

(8.15) is the same as the denominator of (8.18) and this was observed in the measured

transfer functions shown in Figures 8.6 and 8.7. In (8.19),

σ0
K

B
(8.20)

ω0
K

Jl

(8.21)
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model. The marked closed-loop poles correspond to a loop gain of 11.5 which

places the real current loop pole at -82rad s as for the velocity-loop model (8.12).
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Figure 8.9: Schematic of simple two-inertia model.

ζ0
B

2 KJl

(8.22)

Inspection of Figure 8.6 indicates that ω0 2π 19 Hz (ω0 120 rad s) and that σ0

is at some considerably higher frequency. From (8.21) it is clear that the resonant

frequency decreases as the 'outboard' inertia, Jl , increases. The selected robot pose

has almost maximum possible inertia about the joint 1 axis thus bringing the resonance
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as low as possible.

Considering now the motor current-to-velocity transfer function measured in Fig-

ure 8.7, the model version is, from (8.15) and (8.17),

Ωm

τm

1

Bm

ζ0 ω0

σ ζ ωn
(8.23)

The experimental model (8.11) indicates that

ω0 120 (8.24)

ζ0 0 029 (8.25)

σ 33 (8.26)

ω 165 (8.27)

ζ 0 14 (8.28)

Using the previously obtained estimate of Jm Jl 7 5Jm, and the parameter value

Jm 200 10 6 kg m2, it can be deduced that

Jl 1 3 10 3 kg m2 (8.29)

K Jlω2
0 18 7N m s rad (8.30)

B 2ζ0 KJl 9 05 10 3 N m s rad (8.31)

Bm 0 032 N m s rad (8.32)

Hence σ0 K B 2069 rad s (329 Hz), too high to be revealed in the measurement

of Figure 8.6.

If there was no compliance in the transmission from motor to load, (8.15) would

reduce to

Ωm

τm

1

Jm Jl s Bm
(8.33)

1 Bm

σ1
(8.34)

where σ1 Bm Jm Jl . The real pole of the compliant system at s σ is different

from σ1. Numerical investigation shows that for for high stiffness and low damping

σ will be very close to but slightly more negative than σ1.

8.1.5 Single-axis computed torque control

As a prelude to trialing visual servo control of the waist axis, a single-axis computed-

torque velocity and position controller was implemented. Position control is necessary
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Figure 8.10: SIMULINK model CTORQUEJ1: the joint 1 computed torque controller.

for that phase of motion where the target is not visible and the polynomial trajectory

generator is providing axis setpoints. Velocity control will be used when the target is

visible. Such an axis controller can run at an arbitrary sample rate, eliminating the

multi-rate problems discussed earlier. Also, by bypassing the Unimate velocity loop,

it is possible to achieve higher speed joint motion.

A SIMULINK block diagram of the controller is shown in Figure 8.10. It is a

straightforward implementation of (2.84) where G and C are zero and M is a scalar

constant, resulting in

τd M θ̈d Kp θd θ Kv θ̇d
ˆ̇θ F ˆ̇θ (8.35)

where θ θ1 in this case. Friction feedforward, F ˆ̇θ is based on the measured axis

friction data shown in Table 2.12. A 3-point derivative (7.37) is used to estimate

velocity for friction compensation and velocity feedback.

Based on experience with the joint 5 and 6 velocity loops it seemed reasonable

to use the 20 ms visual sample interval to close the axis velocity and position loops.

However it quickly became clear when setting the control gains that it was not possi-

ble to meet the objectives of tight trajectory following and stability. The fundamental

difference between this axis and joints 5 and 6 is the resonance previously discussed.

When the resonance (8.18) was introduced into the SIMULINK model it exhibited

similar behaviour to the real robot. Paul [199] comments briefly on this issue and

suggests that the sampling rate be at least 15 times the frequency of the highest struc-

tural resonance. From Figure 8.7 the highest frequency resonant peak in the range

measured is approximately 45 Hz, which would indicate a desired sampling rate of

675 Hz. SIMULINK simulation of the controller and resonance indicated that good
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performance could be achieved at a sample rate of 250 Hz, with a noticeable improve-

ment at 500 Hz. The discontinuous nature of processes such as stick/slip and Coulomb

friction could be considered as having harmonics up to very high frequencies and is

further support for the requirement of a high sample rate.

In practice the sample rate is limited by the processor used for control. The single-

axis computed-torque function (8.35) executes in less than 400 µs including axis ve-

locity estimation and servo communications overhead, but many other processes, par-

ticularly those concerned with vision system servicing, need to run in a timely manner.

Another consideration in sampling is to avoid beating problems when the 50 Hz vision

based position-loop is closed around the axis-velocity controller. For these reasons a

sample rate of 2ms was selected, generated from a hardware counter driven by the

system's pixel clock. The computed-torque controller thus runs at exactly 10 times

the visual sampling rate.

Friction compensation would ideally make the arm appear to be frictionless if the

position and velocity feedback were disabled. In practice, by pushing the arm, it

can be seen that this ideal is approximated but there are some problems. There is a

tendency for over-compensation so that, once set moving, the arm accelerates slightly

and glides away. This clearly indicates a mismatch in friction parameters and may be

due to frictional dependence on pose, load or temperature. The effect of stiction is

also very noticeable since friction compensation provides no torque at zero velocity.

In this implementation an overall friction compensation scaling term is introduced and

in practice is set to 80%. When pushing on the arm it is necessary to 'break' stiction,

that is, provide sufficient torque to cause the joint to move, at which point friction

compensation comes into effect.

Friction compensation of this form noticeably improves performance during high-

speed motion. However initial experiments at low speed resulted in extremely poor

motion quality with pronounced stick/slip and oscillatory behaviour. At low speed,

θ̇d θ̇min, friction compensation is based on the demanded rather than estimated

joint velocity as discussed in Section 2.5.2. In practice the value of θ̇min was found to

be critical to low-speed performance and that an appropriate setting is given by

θ̇min 2∆ω (8.36)

where ∆ω is the estimated velocity 'quanta' given by (7.36) and is a function of sam-

pling interval.

Figure 8.11 shows the measured response of the axis controller to a step velocity

demand. The velocity estimate, as used in the online controller, is extremely noisy,

which imposes an upper limit on the velocity feedback gain, Kv. A single-pole digital

filter
Ω̂
Ω̂

1 λ z

z λ
(8.37)

is used to create a smoothed velocity estimate, ˆ̇θ . In practice a value of λ 0 85 is
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Figure 8.11: Measured axis velocity step response of single-axis computed-torque

control. Demand is 1radl s. Joint angle was recorded by the RTVL system

at 2ms intervals, and velocity was estimated using the same 3-point numerical

differentiation as performed in the online controller. The bottom plot is a more

detailed view of the velocity estimate after it has been 'cleaned up' off-line by the

same single-pole digital filter used online.
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Figure 8.12: Measured axis response of single-axis computed-torque control

showing axis position and velocity: measured (solid) and demand (dotted). Joint

angle was recorded by the RTVL system at 2ms intervals, and an off-line pro-

cedure using 5-point numerical differentiation was used to obtain the 'measured'

velocity data. The axis has overshot and stopped 0.005 radl short of the target.

used, giving a filter bandwidth of 13 Hz. The bottom plot in Figure 8.11 is a filtered

version from which it can be seen that there is very slight overshoot and a rise time of

around 0.1s leading to a bandwidth estimate of approximately 5Hz.

Figure 8.12 shows the performance of the computed-torque controller for the stan-

dard 0.5s swing trajectory. The computed torque controller (8.35) and the trajectory

generator (8.1), (8.7) and (8.8) are executed every 2ms. The control gains have been

set empirically so as to achieve good trajectory following with minimum overshoot.

There is again evidence of velocity saturation but at a higher speed than for the Uni-

mate's native velocity controller. The final value of the joint angle is less than the

demand since the axis has overshot and stopped due to stiction. For over-damped mo-

tion, stiction would stop the robot short of its target. Increased proportional gain, Kp,

would reduce this error but is limited in practice by stability criteria. Increasing both

Kp and Kv leads to rough motion due to noise on the velocity estimate. Integral action

was experimented with, but it was difficult to achieve both stability and accurate target

settling.

Compared to the native Unimate position and velocity loops this controller has
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Characteristic Unimate Computed-torque

sample rate position loop at 1ms in-

terval

position loop at 2ms in-

terval

velocity estimation analog synthesis from

encoder signals with

considerable low fre-

quency gain boost due to

low-pass filter

digital estimation from

encoder signals at 2ms

interval

integral action analog implementation digital implementation at

2ms interval

Table 8.2: Comparison of implementational differences between the native Uni-

mate controller and computed-torque controller implemented.

inferior low-speed performance, particularly in terms of achieving the target position.

The significant implementational differences between the two controllers are summa-

rized in Table 8.2. A number of papers [162, 247] have examined the performance of

Puma computed-torque controllers but the performance metric used is always high-

speed trajectory following error. Apart from noting this issue it will not be pursued

further since the experiment is concerned primarily with high-speed motion.

The few narrow spikes on the velocity estimate are due to timing jitter, that is,

non-uniform time steps in sampling the axis position. They are present even during

motion with no velocity feedback. Statistics show the standard deviation in sample

timing is generally 0.1ms or 5% of the sample interval. In some instances the timing

jitter is more severe due to other activity under the real-time operating system such as

interrupt level processing. First attempts at control using this high sample rate yielded

velocity plots with a marked oscillation at approximately 75 Hz. Investigation of this

phenomenon showed it to be due to interaction between the 2ms computed-torque

process requesting the axis position and the 984 µs process in the Unimate axis servo

board which updates the internal 16-bit software encoder register from the hardware

encoder counter. This was overcome by modifying the Unimate axis firmware so that

when in current control mode it will return the instantaneous encoder value, not that

obtained at the last servo clock tick.

8.1.6 Vision based control

This section introduces a hybrid visual control strategy capable of stopping the robot

directly over a randomly-placed target. The first phase of the motion is under the

control of the trajectory generator as previously. Once the target comes into view the

centroid data from the end-mounted camera is used to bring the robot to a stop over

the target. The trajectory generator and computed torque control law are executed
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Figure 8.13: Measured axis response under hybrid visual control showing po-

sition and velocity: measured (solid) and trajectory-generator demand (dotted).

Note that the axis position has settled at a negative value in order to move the ma-

nipulator over the target. The system switched to visual servoing at approximately

t 0 4s.

at a 2ms interval as in the previous section, until the target comes into view. Under

visual control the centroid and centroid velocity are estimated every 20 ms and used

to compute the axis velocity demand

θ̇d
iKp

iXd
iX iKv

i ˆ̇X (8.38)

using a simple PD control law. The computed torque control is still executed at a 2ms

interval but the axis position error and trajectory acceleration feedforward terms are

dropped giving

τd M Kv θ̇d
ˆ̇θ F ˆ̇θ (8.39)

where Kv has the same value as previously. The gains for the visual servo loop, iKp

and iKv, were set empirically and it was possible to achieve good steady-state error

performance with acceptable overshoot. Relatively high gains were possible due to

the effectiveness of the computed-torque velocity loop. Once again the high level of

friction was a problem at low speed, and attempts to achieve critical damping led to

the robot stopping short of the target. The addition of an integral term to (8.38) is
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Figure 8.14: Measured tip displacement determined from end-effector mounted

camera for hybrid visual control strategy.

helpful in the longer term in bringing the robot to the destination, but high levels of

integral gain again lead to oscillatory behaviour.

Figure 8.13 shows a typical trajectory for a target displaced approximately 20 mm

from the destination of the trajectory generator. The effect of this displacement can be

seen in the final value of the joint angle which is -0.0884 radl rather than the trajectory

generator demand of 0 radl. The target comes into view at 0.32s and the transition in

control strategies occurred 4 field times later at approximately 0.40s. The transition

is smooth, helped by the axis being velocity-limited at that point. Figure 8.14 shows

the end-point error sensed by the camera scaled into length units. The end-point has

followed an almost critically damped trajectory and by 0.60s the end-point has settled

to within 1pixel or 0.78mm of the target whose position was unknown.

8.1.7 Discussion

This section has provided a preliminary investigation into some of the issues involved

in the control, using vision and axis feedback, of a realistic robot axis. The axis cho-

sen has a number of serious non-idealities that include resonance and high levels of

stiction, viscous and Coulomb friction. A high-bandwidth velocity loop was imple-

mented using a single-axis computed-torque controller with velocity estimated from
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measured axis position. Although the wrist axes could be velocity-controlled at 50 Hz,

this axis has a number of resonances up to 45 Hz which seriously limit the achievable

closed-loop performance. The dynamics of the stick-slip and Coulomb friction effect

also have very short time constants requiring a high sample rate. The digital velocity

loop was run at 500 Hz and provided high-quality velocity control for the overlying

trajectory generator or visual feedback loop.

A challenging trajectory was chosen at the performance limit of the robot. The

Unimate axis controller, with its lower velocity capability, was unable to follow the

trajectory and accumulated increasing position error. As the axis approached the des-

tination it decelerated very rapidly, thereby exciting structural resonances in the arm.

These resonances could be detected by an accelerometer mounted on the camera and

also by their effect on the motor' s transfer function. This latter effect caused difficulty

with a 50 Hz digital velocity loop and the sample rate had to be raised to 500 Hz. The

computed-torque controller was able to achieve a more rapid response with similar

overshoot, but was more prone to stiction and currently has poor low-speed motion

capability. The hybrid controller, using visual feedback for final positioning, was able

to reliably position the robot to within 1 pixel of the centroid of a randomly placed

target.

Interestingly the visual loop, despite its low sample rate, was seemingly unaffected

by the structural resonance. This is partly due to the low displacement amplitude of

the oscillation. In the example of Section 8.1.3 the peak amplitude is only 1mm or

approximately 1.3pixels despite the significant axis acceleration step. Close inspec-

tion of the visually sensed tip displacement in Figure 8.5 shows no evidence of this

oscillation, which will be masked by the motion blur effect discussed in Section 3.5.6.

Visual servoing is likely to be most useful in controlling manipulators that are

either very rigid or, more interestingly, less stiff (and hence cheaper) with vibrations

occurring well below the Nyquist frequency and thus amenable to visual closed-loop

endpoint control. The latter is quite feasible, with the bandwidth achievable limited

primarily by the sample rate of the visual sensor. Cannon [42] observes that control of

the manipulator' s end-point using a non-colocated sensor complicates control design,

but can result in superior performance. Unfortunately the Puma robot available for this

work is more difficult to control, since significant resonances exist on either side of

the Nyquist frequency, even though the robot pose was selected in order to minimize

those frequencies.

8.2 High-performance 3D translational visual servoing

This section describes an experiment in high-performance translational visual servo-

ing. Three robot DOF are controlled by image features so as to keep the camera at

a constant height vertically above a target rotating on a turntable. A plan view is

shown in Figure 8.15. The controller will use visual feedforward of target velocity
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two target markers

Figure 8.15: Plan view of the experimental setup for translational visual servoing.

and computed-torque axis velocity-control loops since axis interaction torques are ex-

pected to be significant at the anticipated joint speeds and accelerations.

8.2.1 Visual control strategy

In order to control 3 robot DOF we require 3 'pieces' of information from the image.

As in previous examples the centroid gives an X and Y target displacement with re-

spect to the camera and the extra information required is target distance. From (3.66),

for the X-axis, we can write

cx̂t

cz f

αx f
iX X0 (8.40)

which gives the estimated target position relative to the camera in terms of the image

plane coordinate and target distance. A similar expression can be written for the Y-

axis. The camera coordinate frame can be determined from measured joint angles and

forward kinematics
0Tc K θ t6 Tc (8.41)

which provides the camera pose in world coordinates allowing the target position in

world coordinates to be estimated

0x̂t
0Tc

cxt (8.42)

where cxt
cxt

cyt
czt .
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The remaining problem is estimation of target distance, czt , which is required to

control the robot' s Z-axis Cartesian motion and is also required in (8.40). Using a

monocular view the approaches to distance estimation are rather limited. Stadimetry

is a simple technique based on the apparent size of the object but is sensitive to changes

in lighting level and threshold as discussed in Section 4.1.3.4. A more robust approach

is based on the distance between the centroids of two features since centroid was

previously shown to be robust with respect to lighting and threshold. Consider a scene

with two circular markers where the X and Y image plane components of the centroid

difference are
i∆X

iX1
iX2

i∆Y
iY1

iY2 (8.43)

The X and Y axes have different pixel scale factors, see Table 3.8, so these displace-

ments must be scaled to length units

∆x

czt
i∆X

αx f
∆y

czt
i∆Y

αy f
(8.44)

The distance between the centers of the markers

∆ ∆2
x ∆2

y (8.45)

is known, allowing an expression for range to be written

cẑt
f ∆

i∆2
X

αx

2 i∆2
Y

αx

2
(8.46)

The centroid used for fixation purposes is the mean centroid of the two circle

features. The target position estimates in the world frame are given by (8.42) and the

X and Y components are input to tracking filters in order to estimate the target' s world-

frame Cartesian velocity, 0 ˆ̇xt . This provides the velocity feedforward component of the

robot' s motion. The feedback Cartesian velocity component is derived from image-

plane centroid error and estimated target range error

cẋe
iKp

iXd
iX iKv

i ˆ̇X (8.47)

cẏe
iKp

iYd
iY iKv

i ˆ̇Y (8.48)
cże Kz

cẑt
czd (8.49)

As shown in Figure 8.16 the two velocity components are summed in the wrist refer-

ence frame
t6 ẋd

t6 J0
0 ˆ̇xt

feedforward

t6Jc
cẋe

feedback

(8.50)
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Figure 8.16: Block diagram of translational control structure.

The camera-mount Jacobian, t6 Jc, is a constant and is determined (from t6Tc given

earlier in (4.73)) using (2.10) to be

t6Jc
cJ 1

t6

1 0 0

0 0 1

0 1 0

(8.51)

and involves only transpositions and sign changing. The other Jacobian, t6J0, is con-

figuration dependent and determined online using (2.10) and the current estimate of
0Tt6 .

In the final step the total Cartesian velocity demand is resolved to joint velocity by

the manipulator Jacobian

θ̇d
t6 Jθ θ 1t6 ẋd (8.52)

to provide the axis velocity demand. The inverse manipulator Jacobian is computed

using the method of Paul and Zhang [202]. All Jacobians in the above equations are

3 3.
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8.2.2 Axis velocity control

High-performance axis velocity control will be required for the robot' s base axes,

and from experience in the previous section a high sample rate will be required.

Computed-torque control will be used to compensate for rigid-body dynamic effects

which are expected to be significant in this experiment. For online dynamics com-

putation it is desirable to divide the computation into two components, one executed

at the axis servo rate and another, generally coefficient computation, executed at a

lower rate. There are two motivations for this. The first, which is widely men-

tioned [149, 201, 228], is that this reduces the amount of computation that need be

done at the high sample rate and thus significantly lowers the burden on the processor.

Secondly, Sharkey et al. [228] suggest that it may be counter-productive to compute

joint torques at a high-rate based on a dynamic model that does not take into account

higher-order manipulator dynamic effects. The RNE procedure described earlier in

Section 2.2.2 computes torque as a function of θ, θ̇ and θ̈ and suffers the objections

just mentioned when computed at the high sample rate.

In reports of controllers using this dual-rate approach [149, 228] the coefficient

matrices, M, C, and G are computed at a low rate while the torque equation (2.11)

is executed at the higher sample rate. However this raises the question of how to

calculate these coefficient matrices. Symbolic algebra approaches could be used but

the run-time computational cost may be significant since the efficient factorization

of the RNE procedure cannot be exploited. Armstrong et al. [20] provide closed-form

expressions for the coefficient matrices derived by symbolic analysis and significance-

based simplification; however the kinematic conventions are different to those used in

this work. Instead, the approach taken was to begin with the symbolic sum-of-product

torque expressions developed earlier and apply the culling procedure of Section 2.6.3

to automatically eliminate terms below 1% significance. The expressions were then

symbolically partitioned

τ M θ θ̈ N θ θ̇ (8.53)

where M is the 3 3 manipulator inertia matrix and N is a 3-vector comprising lumped

gravity, centripetal and Coriolis torques. Given coefficients M and N equation (8.53)

can be evaluated with only 9 multiplications and 9 additions resulting in a very low

computational burden of only 81 µs. The coefficients M and N, updated at 25 Hz,

are computed by a MAPLE generated 'C' function that takes 1.5ms to execute. The

low rate of coefficient update is not a problem in this situation since the pose cannot

change significantly over the interval, and axis velocity can be assumed piecewise

constant since the demand is only updated at the video sample rate of 50 Hz.

Evaluating the coefficients from the expanded torque equation is computationally

less efficient than the RNE algorithm. However this approach allows the computation

to be partitioned into a 'lightweight' component for execution at a high servo rate

and a moderately more expensive component to execute at a lower sample rate. The
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computational burden can be expressed as the fraction

execution time

period

Computing the 3-axis RNE (symbolically simplified) at 4ms (using timing data from

Table 2.25) results in a burden of

780

4000
20%

while the dual-rate approach has two, relatively small, components

81

4000

1500

40000
6%

totalling less than one third the burden of the straightforward RNE. The dual-rate

approach also satisfies the problem of unwanted coupling of unmodelled manipulator

dynamics.

The velocity controller, evaluated at the 4ms period, uses simple proportional gain

τd MKv θ̇d
ˆ̇θ N F ˆ̇θ (8.54)

and friction compensation as described in the previous section. M and N are updated

at a 40 ms interval.

8.2.3 Implementation details

To implement this control strategy under VxWorks and RTVL a number of concurrent

communicating tasks, shown in Figure 8.17, are used:

field is a high-priority task that samples the joint angles into the shared variable

j6 vis at the beginning of vertical blanking. It then activates the centroid,

viskine and dynpar tasks.

viskine is a 20 ms periodic task that computes the camera coordinate frame oTc

and the inverse manipulator Jacobian t6Jθ from current joint angles j6 vis.

centroid is a 20 ms periodic task that processes region data, estimates target range

by (8.46), Cartesian velocity by (8.47) - (8.50), which are then resolved to joint

rate demands and written to thd d.

torque is a 4ms periodic task that performs the computed-torque axis velocity loop

calculations for joints 1 to 3.
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Figure 8.17: Task structure for translation control. Arrows represent data flow,

lighting bolts are events, ellipses are tasks and '3D' boxes are datastructures.

dynpar is a 40 ms periodic task that updates the rigid-body coefficients M and N

based on current joint angles and velocity estimated over the last three time

steps using a 3-point derivative.

camera is a 7ms periodic task that is responsible for keeping the camera's optical

axis normal to the motion plane. Motion of the lower three joints changes the

orientation of the camera which this task counters by appropriate wrist motion.
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Figure 8.18: Camera orientation geometry. The camera can be maintained normal

to the working surface if θ5 θ2 θ3 π .

Function Period Execution time

µs µs % of CPU

torque 4000 1844 46

viskine 20,000 3800 19

dynpar 40,000 1500 4

centroid 20,000 1300 7

Total 76

Table 8.3: Summary of task execution times. These are average elapsed times for

execution of code segments and no allowance has been made for the effects of task

preemption during execution.

From the simple geometry depicted in Figure 8.18 it is clear that compensation

can be achieved by motion of a single wrist axis

θ5 θ2 θ3 π (8.55)

pendant is a low-priority continuous task that communicates with the robot teach

pendant using the ARCL pendant communication primitives. Several modes

of operation can be selected by the teach pendant and include visual fixation

control, manual joint velocity control and manual Cartesian velocity control.

Execution times of the various modules are summarized in Table 8.3 in abso-

lute terms and as a fraction of total computing burden. The torque task consumes
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the largest fraction, but a good deal of that time is taken up with communications

overhead: 680 µs to read the three encoders, and 510 µs to transmit the motor current

demands. Velocity estimation, computed torque computation, friction compensation

and current clipping take only 220 µs axis. These computations account for 76% of

the computational resource, and additional processing is required for data logging,

user interface, graphics and networking. Clearly the processor, in this case a single

33 MHz 68030, is close to its limit.

8.2.4 Results and discussion

The tracking performance of the controller for the standard target motion is shown in

Figure 8.19. The error magnitude in the Y direction is similar to that displayed by the

2-DOF pan/tilt controller of Section 7.5. The centroid error is significantly greater in

the X direction than the Y direction and this is believed to be due to the poor dynamic

performance of the waist axis. Performance of that axis is limited by significant fric-

tion and the relatively low velocity gain needed to ensure stability. Figure 8.20 shows

the results of the same experiment but with centripetal and Coriolis feedforward dis-

abled. Clearly the Y-axis tracking performance is substantially degraded with only

partial compensation of manipulator rigid-body dynamic effects. Disabling target ve-

locity feedforward results in very poor performance, and it is not possible to keep the

target in the camera's field of view even at 20% of the velocity demonstrated here.

The manipulator joint rates shown in Figure 8.21 peak at approximately half the fun-

damental maximum joint rates established in Table 2.21. At the peak velocity there is

some tendency toward oscillation, particularly for joints 1 and 2.

The logged joint angle trajectory data was transformed off-line by the manipula-

tor forward kinematics to determine the camera's Cartesian trajectory which is shown

in Figure 8.22. The camera's height, cz, is not constant and has a peak-to-peak am-

plitude of approximately 40 mm. This performance is due to the relatively low gain

proportional control strategy (8.49) used for this DOF. The Cartesian camera velocity

is shown in Figure 8.23 along with the online estimated target velocity. The veloc-

ity feedforward signal is a good estimate of the actual target velocity. The peak tip

speed is 350 mm s and this is approximately one third of the manufacturer's specified

maximum. The robot appeared to be 'working hard' and with considerable gear noise.

The Cartesian path of the camera, shown in Figure 8.24, is only approximately

a circle and two factors contribute to this distortion. Firstly, non-ideal tracking per-

formance causes the camera to deviate from the path of the target. Secondly, the

camera is not maintained in an orientation normal to the XY plane. The contribution

of these two effects can be understood by looking at the online target position esti-

mates. These are computed from target centroid and joint angle data and make no

assumptions about tracking performance. Figure 8.25 shows this estimated target path

which is clearly distorted like the path actually followed by the camera. Similar plots,
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Figure 8.19: Measured centroid error for translational visual servo control with

estimated target velocity feedforward. RMS pixel error is 28 and 7.3pixels for the

X and Y directions respectively.
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Figure 8.20: Measured centroid error for translational visual servo control with

estimated target velocity feedforward, but without centripetal and Coriolis feed-

forward. RMS pixel error is 30 and 22pixels for the X and Y directions respec-

tively.
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Figure 8.21: Measured joint rates (radl/s) for translational visual servo control

with estimated target velocity feedforward. Velocity is estimated off-line using a

5-point numerical derivative of joint angles measured by RTVL.

but for significantly lower camera speed, are almost ideal circles. At the joint speeds

used in this experiment the wrist axes, under control of the Unimate position loops,

are unable to accurately track the wrist orientation demand (8.55). From the recorded

data it appears that the actual θ5 lags the demand by approximately 21 ms resulting in

peak-to-peak orientation errors of 0.043 radl and this is verified using the SIMULINK

model of Figure 2.26. In addition, dynamic forces acting on the camera result in small

rotations of joints 4 and 6. These seemingly small orientation errors, coupled with the

nominal 500 mm target distance, result in considerable translational errors.

It is interesting to contrast the control structure just described with some other

structures described in the literature. Operational space control, proposed by Khatib

[149], would appear to be an ideal candidate for such an application since a camera is

an operational (or task) space sensor. In fact an example of vision based control using

the operational space formulation has been recently described by Woodfill et al. [284].

Operational space control transforms the robot and sensor data into the operational

space where degrees of freedom can be selected as position or force controlled and

desired manipulator end-point forces are computed. Finally these forces are trans-

formed to joint space and actuate the manipulator. As expressed in Khatib [149] the



8.2 High-performance 3D translational visual servoing 293

0 1 2 3 4 5 6 7 8 9

600

800

Time (s)

X
c

0 1 2 3 4 5 6 7 8 9

-200

-100

Time (s)

Y
c

0 1 2 3 4 5 6 7 8 9

120

140

Time (s)

Z
c

Figure 8.22: Measured camera Cartesian position (mm) for translational visual

servo control with estimated target velocity feedforward. Cartesian path data is

estimated off-line from joint angles (measured by RTVL) using forward manipu-

lator kinematics.
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Figure 8.23: Measured camera Cartesian velocity (solid) with estimated target

velocity feedforward (dashed). Camera velocity is estimated off-line using a 5-

point numerical derivative of the Cartesian position data of Figure 8.22.
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manipulator torque loop is closed at a rate of 200 Hz which is likely to be dictated by

computational limits. If a machine vision sensor is used then the torque loop would

be closed at a maximum of 60 Hz (assuming RS170 video) which has been shown to

be too low to achieve high-performance from the non-ideal Puma axes. The structure

proposed in this section is hierarchical and more appropriate for the case of a low

sample rate sensor such as a machine vision system.

8.3 Conclusion

This chapter has extended and brought together many of the principles established in

earlier chapters by means of two examples: 1-DOF visual control of a major robot

axis, and 3-DOF translational camera control. The simple 2-DOF control of the pre-

vious chapter effectively decoupled the dynamics of each axis, with one actuator per

camera DOF. In the 3-DOF translational case there is considerable kinematic and dy-

namic coupling between the axes involved. To achieve high-performance tracking

a multi-rate hierarchical control system was developed. Target velocity feedforward

was found to be essential for the accurate tracking at high speed shown in Section

8.2. Feedforward of manipulator rigid-body dynamics, that is computed-torque con-

trol, has also been shown to increase the tracking accuracy. The end-point control

experiment of Section 8.1 did not use visual feedforward, but in that case the target

was stationary and the manipulator was decelerating.

The controller computational hardware, which has served well over a period of

many years, is now at the limit of its capability. Working in such a situation is increas-

ingly difficult and unproductive and precludes the investigation of more sophisticated

control structures. The act of enabling data logging for the experiment of Section 8.2

now causes a visible degradation in performance due to increased latencies and viola-

tions of designed timing relationships. The experimental facility has however demon-

strated that sophisticated control techniques incorporating machine vision, rigid-body

dynamics and friction compensation can be achieved using only a single, modest, pro-

cessor.
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Figure 8.24: Measured camera Cartesian path in the XY plane. Cartesian path

data as per Figure 8.22.
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Figure 8.25: Measured camera Cartesian path estimate from online tracking filter

recorded by RTVL.
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Chapter 9

Discussion and future directions

9.1 Discussion

This book has presented for the first time a detailed investigation of the many facets

of a robotic visual servoing system with particular emphasis on dynamic character-

istics and high-performance motion control. The use of machine vision for high-

performance motion control is a significant challenge due to the innate characteristics

of the vision sensor which include relatively low sample rate, latency and coarse quan-

tization.

A distinction has been established between visual servo kinematics and visual

servo dynamics. The former is well addressed in the literature and is concerned with

how the manipulator should move in response to perceived visual features. The latter

is concerned with dynamic effects due to the manipulator and machine vision sen-

sor which must be explicitly addressed in order to achieve high-performance control.

This problem is generic to all visually controlled machines no matter what approach

is taken to feature extraction or solving the visual kinematic problem.

Weiss proposed a robot control scheme that entirely does away with axis sensors

— dynamics and kinematics are controlled adaptively based on visual feature data.

This concept has a certain appeal but in practice is overly complex to implement and

appears to lack robustness. The concepts have only ever been demonstrated in simula-

tion for up to 3-DOF and then with simplistic models of axis dynamics which ignore

' real world' effects such as Coulomb friction and stiction. However the usefulness of

such a control approach is open to question. It is likely that robots will always have

axis position and/or velocity sensors since not all motion will be, or can be, visually

guided. Ignoring these sensors adds greatly to the control complexity and has been

shown to lead to inferior control performance. Structural resonances and the time

constants of stick-slip friction, ignored by Weiss, dictate a sample interval of less than
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4ms, which is not currently achievable with off-the-shelf video or image processing

components. If constrained by the vision system to low sample rates, high-bandwidth

axis level feedback is required for high-performance and robust control. Axis posi-

tion and velocity information are also essential for model-based dynamic control and

Jacobian computation.

In order to overcome low visual sample rates some researchers have proposed the

use of trajectory generators that continuously modify their goal based on visual input.

In this book the task has instead been considered as a ' steering problem', controlling

the robot' s velocity so as to guide it toward the goal. Conceptually this leads to a

visual position loop closed around axis velocity loops. This structure is analogous

to the common robot control structure, except that position is sensed directly in task

space rather than joint space.

The term 'high performance' has been widely used in this book and was defined at

the outset as robot motion which approaches or exceeds the performance limits stated

by the manufacturer. The limits for the robot used were established in Chapter 2.

There is also an implied fidelity criterion which was defined later in terms of pixel

error for tracking applications.

The performance achieved is a consequence of the detailed understanding of the

dynamics of the system to be controlled (the robot) and the sensor (the camera and

vision system). Despite the long history of research in these areas individually, and

combined in visual servoing, it is apparent that much of the data required for modelling

is incomplete and spread through a very diverse literature. This book has attempted to

draw together this disparate information and present it in a systematic and consistent

manner.

A number of different control structures have been demonstrated in experiments

and simulation. Feedback-only controllers were shown to be capable of high perfor-

mance but were found to be rather 'brittle' with respect to actuator saturation. Their

design was also found to be seriously constrained in order to achieve compensator

stability which has been shown to be important. Feedforward increases the design

degrees of freedom and a control strategy based on estimated target velocity feed-

forward was introduced. With no a priori knowledge of target motion the controller

demonstrates sufficient performance to fixate on an object rotating on a turntable or a

ping-pong ball thrown in front of the robot.

The key conclusions from this work are that in order to achieve high-performance

visual servoing it is necessary to minimize open-loop latency, have an accurate dy-

namic model of the system and to employ a feedforward type control strategy. Pre-

diction can be used to overcome latency but at the expense of reduced high frequency

disturbance rejection. Open-loop latency is reduced by choice of a suitable control

architecture. An accurate dynamic model is required for control synthesis. Feedback-

only controllers have a loop gain limit due to the significant delay in pixel transport

and processing. Simple feedback controllers have significant phase lag characteristics
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which lead to poor tracking. More sophisticated feedback controllers can overcome

this but the solution space becomes very constrained and the controllers are not ro-

bust with respect to plant parameter variation. Feedforward control results in a robust

controller with excellent tracking capability.

9.2 Visual servoing: some questions (and answers)

This section poses a number of pertinent questions that were posed at the outset of the

original PhD research program. They are worth repeating here, along with answers in

terms of material covered in this book, since they provide a succinct encapsulation of

the major conclusions of this research.

1. Can machine vision be used to control robot manipulators for dynamically chal-

lenging tasks, by providing end-point relative sensing? Machine vision and

end-point sensing can be used for dynamically challenging tasks if the general

principles summarized above are observed. The limits to visual servo dynamic

performance have been investigated and suitable control structures have been

explored by analysis, simulation and experiment. Commonly used performance

measures such as step response have been shown to be inadequate for the gen-

eral target tracking problem. Alternative measures, based on image plane error,

have been proposed to enable more meaningful comparison of results.

2. What are the limiting factors in image acquisition and processing? These issues

were addressed principally in Chapter 3. Image feature extraction, by special-

ized hardware or even software, is now easily capable of 50 or 60 Hz operation,

and the fundamental limit to visual servo performance is now the sensor frame

rate. It has been shown that the requirements for ideal visual sampling and

reducing motion blur require short exposure times, and consequently consider-

able scene illumination, which may be a problem in some applications due to

the heat generated. At higher frame rates, and in order to maintain the ideal

sampler approximation, even shorter exposure times would be required, neces-

sitating increased illumination or more sensitive sensors. A camera-mounted

pulsed-LED lighting system has been demonstrated that provides light when

and where required.

More robust scene interpretation is definitely required if visually servoed sys-

tems are to move out of environments lined with black velvet. Optical flow

based approaches show promise, and have been demonstrated at 60 Hz with

specialized processing hardware.

Maintaining adequate focus is often considered important for visual servoing

and is difficult to achieve given variation in relative target distance. The lens

system may be configured for large depth of field but this further exacerbates the
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lighting problems just mentioned. The upper bound on image clarity has been

shown to be determined by effects such as lens aberration and to a lesser extent

pixel re-sampling. It has also been shown that binary image processing in the

presence of edge gradients results in feature width estimates that are functions

of threshold and overall illumination, but that centroid estimates are unbiased.

For image processing approaches based on edges or texture, for instance optical

flow or interest operators, image clarity would be important.

3. How can the information provided by machine vision be used to determine the

pose of objects with respect to the robot? This is what has been termed in

this book the kinematics of visual control and a number of techniques were

reviewed in Chapter 4. This problem is solved for all practical purposes, and

the computational costs of the various proposed approaches, image based and

position based, are comparable and readily achieved. Control of a 6-DOF robot

was demonstrated by Ganapathy [98] a decade ago using a closed-form solution

that executed in only 4ms on a 68000 processor. An iterative approach has even

been patented [289].

The image-based technique has been demonstrated to work well, but the advan-

tages seem illusory, and the problem of image feature Jacobian update in the

general case remains, although adaptation and general learning schemes have

been demonstrated. The 3-D scene interpretation problem can be eased sig-

nificantly by using 3-D sensors. Sensors based on structured lighting are now

compact and fast enough to use for visual servoing.

4. Can robot tasks be specified in terms of what is seen? For a large number of

robotic tasks the answer is clearly 'yes' but this book has provided only par-

tial answers to the question. A number of papers reviewed in Chapter 4 have

discussed how tasks can be described in terms of image features and desired tra-

jectories of those features but most of the systems described are single purpose.

There appears to have been little work on languages for general specification of

visually servoed tasks. In a semi-automated situation such as time delay tele-

operation an operator may be able to select image features and indicate their

desired configuration and have the execution performed under remote closed-

loop visual control. There are some reports on this topic [198].

5. What effects do robot electro-mechanical and machine vision dynamics have on

closed-loop dynamic performance? The vision system was modelled in detail

in Section 6.4 where it was shown that the dominant characteristics were delay

due to pixel transport and gain due to lens perspective. The effective delay was

shown to depend on the camera exposure period, and for some visual servoing

configurations the gain was shown to depend on target distance. Both charac-

teristics can have significant effect on closed-loop system stability.
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In Section 6.4 the electro-mechanical dynamics could be represented by a unit

delay due to the action of a position control loop. When the axes are veloc-

ity controlled the dynamics are first-order and the effective viscous damping is

strongly dependent on motion amplitude due to the effect of Coulomb friction.

For visual servo control of a major axis, as described in Chapter 8, additional

dynamic effects such as structural resonance and significant stiction are encoun-

tered.

Structural dynamics were discussed in Section 8.1.4 and are important when

the manipulator has significant structural or transmission compliance, and high

endpoint acceleration is required. Visual servoing, by providing direct endpoint

position feedback, can be used to control endpoint oscillation, Section 8.1. This

may one day be a viable alternative to the common approach of increasing link

stiffness which then necessitates higher torque actuators.

6. What control architecture is best suited for such an application? Many aspects

of the control architecture employed in this work are very well suited to this

task since it provides the prerequisites identified in Section 6.1, in particular:

a high-frame-rate low-latency vision system which reduces latency to the

minimum possible by overlapping pixel transport with region extraction;

a high bandwidth communications path between the vision system and

robot controller achieved by a shared backplane.

The control architecture has evolved as shortcomings were identified, and an

obvious weakness in the early work was added latency due to servo setpoint

double handling and the multi-rate control structure. In later work this was

eliminated by implementing custom axis velocity loops which were also capa-

ble of higher speed. The greatest bottleneck in the architecture described in

this book is now the communications link to the Unimate servos and the digital

servo boards themselves, particularly when implementing high sample rate axis

control. A more appropriate architecture may involve direct motor control by a

dedicated motor control card, perhaps another VMEbus processor, and dispens-

ing with the Unimate digital servo board. A different robot may also eliminate

some of these difficulties.

The control problem has considerable inherent parallelism: axis control, visual

feature processing, and application program execution. It seems likely that the

control task can be partitioned into a number of cooperating parallel processes

each of which have relatively modest computational and communications re-

quirements. These processes could also be geographically distributed into the

motors and cameras, ultimately leading to an implementation comprising a net-

work of communicating ' smart' entities. This offers little advantage for a small
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machine such as a Puma, but has significant benefits for control of large ma-

chines in applications such as, for example, mining.

9.3 Future work

There are many interesting topics related to visual servoing that remain to be investi-

gated. These include:

1. The Puma robot has limited the control performance in this work, primarily

because of friction. It would be interesting to investigate the performance that

could be achieved using a direct drive robot or some of the robotic head and eye

devices that have been recently reported [157].

2. This book has alluded to the limiting nature of cameras that conform to common

video standards. The image feature extraction hardware used in this work [25] is

capable of processing over 20 Mpixels s. In conjunction with lower resolution

images, say 256 256 pixels, this would allow at least 300 frames s giving a

visual Nyquist frequency of 150 Hz. Cameras with such capability do exist, for

instance from Dalsa in Canada, but they are extremely bulky and weigh almost

1kg. However the market for 'digital cameras' is expanding and the nascent

standards such as that proposed by AIA will expand the range of cameras and

video formats. A more difficult path would be to develop a camera from a CCD

sensor chip.

Such high visual sample rates would allow for visual control of structural modes

and would then provide a viable approach to high-quality endpoint control.

Such rates may also allow axis-level velocity feedback to be dispensed with,

but such feedback is relatively inexpensive in terms of hardware requirements

and has been shown to provide significant advantage.

3. The issue of languages and operator interfaces for visual description of tasks

has not received much attention in the literature and would seem to offer con-

siderable scope for investigation. Potentially an operator could describe a task

by indicating visual features on a screen. The robot system would then bring a

tool to the indicated location and perform the task.

4. Clearly more robust scene interpretation is required if the systems are to move

out of environments lined with black velvet. There has been some recent work

based on greyscale feature tracking and optical flow at sample rates in the range

25 to 60 Hz. In many cases the latency, due to pipelining, is several sample

intervals which is poor from a control point of view. Research into low-cost

dedicated architectures with high sample rate and low latency is needed to ad-

dress this issue.
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Appendix A

Glossary

ADC analog to digital converter

affine An affine transformation is similar to a conformal transformation

except that scaling can be different for each axis — shape is not

preserved, but parallel lines remain parallel.

AGC automatic gain control

AIA Automated Imaging Association.

ALU Arithmetic logic unit, one component of a CPU

APA Area Parameter Accelerator, an image feature extraction board

manufactured by Atlantek Microsystems, Adelaide, Australia.

See Appendix C.

ARC Australian Research Council, a national agency that funds re-

search projects

ARCL Advanced Robot Control Library, an RCCL like package for on-

line control and offline simulation of robot programs [64].

ARX autoregressive with exogenous inputs

ARMAX autoregressive moving average with exogenous inputs

CCD Charge coupled device

CCIR International Radio Consultative Committee, a standards body

of the UN

CID Charge injection device

CIE Commission Internationale de l'Eclairage

CMAC Cerebellar model arithmetic computer [5]

conformal A conformal transformation is one which preserves shape —

translation, rotation and scaling are all conformal.

COG Center of gravity

CPU Central processing unit
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CRT Cathode ray tube.

CSIRO Commonwealth Scientific and Industrial Research Organization,

the Australian national research organization.

CTF Contrast transfer function. Similar to MTF but measured with

square wave rather than sine wave excitation.

DAC digital to analog converter

DH Denavit-Hartenberg

DIGIMAX A video digitizer board manufactured by Datacube Inc., Danvers

MA, USA.

DOF Degrees of freedom

EMF electro-motive force, measured in Volts

FFT Fast Fourier transform, an efficient algorithm for computing a

discrete Fourier transform

fovea the high resolution region of the eye's retina.

FPGA field-programmable gate array

IBVS Image based visual servoing

LED light emitting diode

LQG linear quadratic Gaussian

LTI linear time invariant

MAPLE a symbolic algebra package from University of Waterloo [47].

MATLAB An interactive package for numerical analysis, matrix manipula-

tion and data plotting from 'The MathWorks' [181].

MAXBUS a digital video interconnect standard from Datacube Inc.

MAXWARE 'C' language libraries from Datacube Inc. for the control of their

image processing modules

MDH Modified Denavit-Hartenberg

MIMO multiple-input multiple-output

MMF magneto-motive force, measured in Amp�ere turns. Analogous to

voltage in a magnetic circuit.

MRAC model reference adaptive control

MTF Modulation transfer function

NE Newton-Euler

NFS Network File System, a protocol that allows computers to access

disks on remote computers via a network.

NMOS N-type metal oxide semiconductor

PBVS Position based visual servoing

PD proportional and derivative

PI proportional and integral

PID proportional integral and derivative

principal point Principal point, the point where the camera's optical axis inter-

sects the image plane.
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Puma A type of robot originally manufactured by Unimation Inc, and

subsequently licenced to Kawasaki. Probably the most common

laboratory robot in the world.

RCCL Robot Control C Library, a software package developed at Pur-

due and McGill Universities for robot control.

RMS Root mean square.

RNE Recursive Newton-Euler

RPC a mechanism by which a computer can execute a procedure on

a remote computer. The arguments are passed and the result

returned via a network.

RS170 Recommended standard 170, the video format used in the USA

and Japan.

RTVL Real-time vision library. A software package to facilitate exper-

imentation in real-time vision, see Appendix D.

saccade a rapid movement of the eye as it jumps from fixation on one

point to another.

SHAPE a 3D shape measurement system developed at Monash Univer-

sity, Melbourne.

SIMULINK A block-diagram editing and non-linear simulation add on for

MATLAB.

SISO single-input single-output.

SNR Signal to noise ratio, generally expressed in dB. SNR = x2 σ2

Unimate Generic name for robots and controllers manufactured by Uni-

mation Inc.

VAL the programming language provided with Unimate robots.

VLSI Very large scale integrated (circuit)

VxWorks a real-time multi-tasking operating system from WindRiver Sys-

tems [281].

ZOH zero-order hold.
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Appendix B

This book on the Web

Details on source material from this book can be obtained via the book' s home page at

http://www.cat.csiro.au/dmt/programs/autom/pic/book.htm. Ma-

terial available includes:

Cited technical papers by the author

Robotics Toolbox for MATLAB

MAPLE code for symbolic manipulation of robot equations of motion

SIMULINK models for robot and visual servo systems

Links to other visual servo resources available on the World Wide Web

Ordering details for the accompanying video tape.

Visual servoing bibliography

Errata

325



326 This book on the Web



Appendix C

APA-512

The APA-512 [261] is a VMEbus boardset designed to accelerate the computation of

area parameters of objects in a scene. It was conceived and prototyped by the CSIRO

Division of Manufacturing Technology, Melbourne, Australia, in 1982-4, [272] and is

now manufactured by Atlantek Microsystems Ltd. of Adelaide, Australia. The APA

performs very effective data reduction, reducing a 10 Mpixel s stream of grey-scale

video data input via MAXBUS, to a stream of feature vectors representing objects in

the scene, available via onboard shared memory.

The APA, see Figure C.1, accepts video input from a MAXBUS connector, bina-

rizes it, and passes it via a framebuffer to the connectivity logic. The frame buffer

allows images to be loaded via the VMEbus, and also acts as a pixel buffer to match

the processing rate to the incoming pixel rate. Pixels arrive at 10 Mpixel s during

connectivity logic

frame
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threshold
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internal bus
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Figure C.1: APA-512 block diagram.
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Figure C.2: APA region data timing, showing region completion interrupts for a

non-interlaced frame. The host is notified of completed regions one raster scan

line after the last pixel of the region.

each video line but the peak processing rate is over 20 Mpixel s. The connectivity

logic examines each pixel and its neighbours and commands a bank of ALUs to up-

date the primitive region features which are kept in shared memory. The ALUs are

implemented by custom gate arrays. Each region is assigned a unique integer label

in the range 0 to 254, and which also serves as the address of the region' s primitive

feature data in the shared memory. The connectivity analysis is single-pass, of the

type described by Haralick as simple-linkage region growing [106]. For each region

the following parameters are computed by the APA:

Σi, number of pixels (zeroth moment);

Σx, Σy (first moments);

Σx2, Σy2, Σxy (second moments);

minimum and maximum x and y values for the region;

perimeter length;

a perimeter point;

region color (0 or 1);

window edge contact.

Figure C.2 shows when region completion interrupts are generated with respect to
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the image which is input in raster scan fashion. One line time after the last pixel of the

region its completion can be detected and the host computer notified by interrupt or

pollable status flag and that region' s label is placed in a queue. The host would read a

label from the queue and then read the region' s primitive feature data from the APA's

shared memory. Information about regions is thus available well before the end of the

field or frame containing the region.

From the fundamental parameters, a number of commonly used image features

discussed in Section 4.1 such as:

area

centroid location

circularity

major and minor equivalent ellipse axis lengths

object orientation (angle between major axis and horizontal)

may be computed by the host processor. These represent a substantial subset of the

so-called 'SRI parameters' defined by Gleason and Agin at SRI in the late 70' s.

The perimeter point is the coordinate of one pixel on the region' s perimeter, and is

used for those subsequent operations that require traversal of the perimeter. The edge

contact flag, when set, indicates that the region touches the edge of the processing

window and may be partially out of the image, in this case the parameters would not

represent the complete object.

Perimeter is computed by a scheme that examines a 3x3 window around each

perimeter point as shown in Figure C.3. The lookup table produces an appropriate

perimeter length contribution depending upon the slope of the perimeter at that point.

Experiments reveal a worst case perimeter error of 2% with this scheme.

The APA-512 computes these parameters for each of up to 255 current regions

within the scene. Processing of the data is done in raster scan fashion, and as the end

of a region is detected the region label is placed in a queue and the host is notified by

an interrupt or a pollable status flag. The host may read the region parameters and then

return the region label to the APA for reuse later in the frame, thus allowing processing

of more than 255 objects within one frame. This feature is essential for processing

non-trivial scenes which can contain several hundred regions of which only a few are

of interest. Maximum processing time is one video frame time.

An additional feature of the APA is its ability to return region hierarchy informa-

tion as shown in Figure C.4. When a region is complete the APA may be polled to

recover the labels of already completed regions which were topologically contained

within that region. This makes it possible to count the number of holes within an

object, and compute the area of enclosed holes or internal perimeter.

The APA was designed to process non-interlaced video, but can be coerced into

working with interlaced video thus eliminating the deinterlacing process. The APA

processes the interlaced video as one large frame, see Figure C.5. The active pro-

cessing window is set to the upper position before the even field commences. This
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Figure C.3: Perimeter contribution lookup scheme.

window stops processing before the blanking interval during which time the APA will

continue loading the video signal which will comprise the equalization and serration

pulses. Prior to the odd field commencing, the processing window is set to the lower

position. The biggest drawback with this approach is that the bottom processing win-

dow comprises only 511 313 198 lines rather than the 287 active lines of a video

field. This is due to the APA unnecessarily loading lines during the vertical blank-

ing interval and also the CCIR video format having 574 active lines. Normally when

working with 512 512 images the lower 31 lines of each field are lost.

The APA-512 is controlled by the host computer using a 'C' language library that

is compatible with Datacube's MAXWARE 3.1 [74]. To achieve maximum perfor-

mance with a Sun workstation host a Unix device driver was written to efficiently

move data from the APA to the application program's memory space. For operation

under VxWorks the interface library was simply cross-compiled and the device driver

replaced by a simple structure in which APA interrupt handlers raise semaphores to

unblock tasks which service the APA.
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Figure C.5: Field mode operation. Stippled region shows the progress of the raster

scan. Dashed box is the active APA processing window.
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Appendix D

RTVL: a software system for

robot visual servoing

This appendix discusses a software system developed within the Division' s Melbourne

Laboratory to facilitate research into video-rate robotic visual servoing. Early experi-

mental work in visual servoing showed that quite simple applications rapidly became

bloated with detailed code dealing with the requirements of vision and robot con-

trol, graphical display, diagnostics, data logging and so on [57]. Considerable work

has gone into the design of the software system known as RTVL for real-time vision

library. RTVL provides extensive functions to the user's application program encom-

passing visual-feature extraction, data-logging, remote variable setting, and graphical

display.

RTVL provides visual-servo specific extensions to VxWorks and is loaded into

memory at system boot time to provides all the infrastructure required for visual ser-

voing. Visual servo applications programs are loaded subsequently and access RTVL

via a well-defined function call interface. Internally it comprises a number of concur-

rent tasks and shared data structures. Each RTVL module has its own initialization and

cleanup procedure as well as one or more procedures, accessible from the VxWorks

shell, to show operating statistics or enable debugging output. The whole system is

highly parameterized and the parameters are parsed from a text file at startup. All pa-

rameters are global variables, and thus may be inspected or altered from the VxWorks

shell allowing many operating characteristics to be changed online. A schematic of

the system, showing both hardware and software components, is given in Figure D.1.
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Figure D.1: Schematic of the experimental system

D.1 Image processing control

The image processing pipeline shown in Figure D.1 requires software intervention

during each video blanking time to control video datapaths and set the APA processing

window to allow field rate processing as discussed in Appendix C. The field task is

activated at the start of video blanking and invokes functions that have been previously

registered for callback. A number of permanent callbacks are used by RTVL itself

and others may be registered by user application programs. The blanking interval

is relatively narrow, lasting only 1.6ms, so this task runs at high priority in order to

accomplish all its tasks within the blanking interval. Datacube's MAXWARE software

libraries are used, with a custom written low level module to allow operation under

VxWorks.

D.2 Image features

The feature extraction process is simplistic and reports the first (in raster order) n re-

gions which meet the application program's acceptance criteria. These are expressed

in terms of a boolean screening function applied to all extracted regions in the scene.

Typically screening is on the basis of object color (black or white), upper and lower
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Figure D.2: Block diagram of video-locked timing hardware.

bounds on area, and perhaps circularity (4.11). Functions exist to compute useful mea-

sures such as centroid, circularity and central moments from the returned region datas-

tructures. An application obtains region data structures by means of the regGet()

function.

D.3 Time stamps and synchronized interrupts

Timestamping events is essential in understanding the temporal behavior of a com-

plex multi-tasking sensor-based system. It is also desirable that the mechanism has

low overhead so as not to impact on system performance. To meet this need a novel

timing board has been developed that provides, via one 32-bit register, a count of

video lines since midnight, see Figure D.2. Each video line lasts 64 µs and this pro-

vides adequate timing resolution, but more importantly since the count is derived from
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MAXBUS horizontal synchronization signals it gives a time value which can be di-

rectly related to the video waveform. The time value can be readily converted into

frame number, field number, field type (odd or even) and line number within the field

or frame, as well as into conventional units such as time of day in hours, minutes

and seconds. A comprehensive group of macros and functions is provided to perform

these conversions. For debugging and performance analysis this allows the timing of

events with respect to the video waveform to be precisely determined.

In addition, for custom manipulator axis control strategies, a source of periodic

interrupts with a period in the range 1 to 5ms is required. To avoid beating problems

with the lower rate visual control loops it is desirable that the servo loops operate at

a sub-multiple of the vision field time. A programmable down counter on the timing

board divides the MAXBUS pixel clock by a 32 bit divisor to create suitable interrupts.

Divisor values are computed by

n 9625000 T

where T is the desired period in units of seconds. The 2 and 4ms period servo loops

used in Chapter 8 are clocked in this manner.
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D.4 Real-time graphics

The system uses a framebuffer to hold graphical data which is overlaid on the live

image from the camera. Almost all information about the system can be learned from

this display. Since many tasks need to display graphical information quickly and

cannot afford to wait all requests are queued, see Figure D.3. The graphical requests

queue is serviced by a low-priority task which renders the graphical entities into the

framebuffer using the SunView pixrect libraries which has been 'fooled' into treating

the ROISTORE as a memory resident pixrect. Functions are provided which allow

an application to write strings to the graphic display and update a variety of tracking

cursors.

D.5 Variable watch

The 'watch' package allows a number of specified variables to be monitored and their

value displayed on the real-time graphics display as shown in Figure D.4. The variable

values are updated on the screen at 5Hz, and may be used to monitor various internal

program variables, as shown in Figure 6.8.
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D.6 Parameters

Most parts of the RTVL kernel are controlled by parameters, rather than compiled-

in constants. Parameters can be integer, float or string variables, or be attached to a

function which is invoked when the parameter is changed. Whilst parameters can be

set manually via the VxWorks shell, the preferred mechanism is via the interactive

control facility described next. Parameters are initialized from a parameter file read

when the kernel starts up. As each parameter is initialized from the file, it is registered

with the parameter manager, which is a remote procedure call (RPC) server task which

can modify or return the value of any parameter, see Figure D.5. User applications

can also use the parameter facilities, by explicitly registering the type and location of

application program parameters.

D.7 Interactive control facility

Various operating parameters of the RTVL kernel such as threshold may be changed

by simply moving a slider on the control panel. A popup window lists all parameters

registered under RTVL, and double-clicking brings up a slider, or value entry box,

for that parameter. The XView program is an RPC client to the parameter server task

running under VxWorks to examine and modify the parameter.

Convenient control of applications is facilitated by a mechanism that allows pro-

gram variables to be registered with a remote procedure call (RPC) server. The client

is an interactive control tool running under OpenWindows on an attached workstation

computer. A list of variables registered under the real-time system can be popped up,

and for user selected variables a value slider is created which allows that variable to

be adjusted. Variables can be boolean, integer, floating point scalar or vector.

The named parameters can be conveniently examined and modified by the inter-

active control tool, an XView application running under OpenWindows.

A remote cursor facility has also been implemented, whereby a cursor on the

RTVL display is slaved to the mouse on the OpenWindows workstation. An appli-

cation program can wait for a 'pick' event

superGetPick(&coord);

Unsolicited picks are grabbed by the region processing subsystem which will display

the feature vector for the region under the cursor.

D.8 Data logging and debugging

The VxWorks shell allows any global program variable to be examined or modified

interactively. However it has been found convenient to build facilities to 'log' variables
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     PARAM_TYPE, PARAM_REAL,
     PARAM_ADDR, &Pgain,
     NULL);

Figure D.5: On-line parameter manipulation.

of interest onto the main color display, and also to record time histories of variables

for data logging purposes.

The 'watch' facility continuously displays the values of a nominated list of vari-

ables in the graphics plane which is superimposed on the live camera image, see Figure

6.8.

The RTVL kernel provides built-in facilities to log multiple variables during an

experiment. This is essential in trying to debug an application, or monitor the closed-

loop control system performance. Traced variables are timestamped and placed into
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a large circular buffer using a low-overhead macro package. The trace buffer can

be dumped to disk, and off-line tools can be used to extract the time histories of the

variables of interest. These time records can be analyzed by a number of tools such as

MATLAB [181] for analysis and plotting.

D.9 Robot control

Robot control functions are layered on top of the ARCL package introduced in Section

6.2.3. RTVL can use ARCL facilities to implement a 6-DOF Cartesian velocity con-

troller. This approach is useful for quick application development, but the problems

discussed in the body of the book such as increased latency from data double handling

and the limitations of purely feedback control will apply. For higher performance it is

necessary for the programmer to implement custom axis control loops.

D.10 Application program facilities

MATLAB is used as a tool for both controller design and data analysis. The RTVL

kernel includes library routines for reading MATLAB's binary MAT-files, as well

as for performing matrix arithmetic. This allows straightforward implementation of

state-feedback controllers and state-estimators designed using MATLAB. On the cur-

rent system, a 4-state estimator and state-feedback control can be executed in around

500µs.

D.11 An example — planar positioning

Servoing in a plane orthogonal to the camera view axis has been demonstrated by a

number of authors with varying levels of performance. The most appropriate features

to use are the object centroid xc yc , computed simply from the 1st order moments;

xc
m10

m00
yc

m01

m00

The essence of the application program is:

1 planar()

2 {

3 Region r;

4 double xc, yc, xgain, ygain, cartRates[6];

5 int nfeat;

6

7 paramRegister("xgain", &xgain, PARAM_TYPE, PARAM_REAL, 0);

8 paramRegister("ygain", &ygain, PARAM_TYPE, PARAM_REAL, 0);
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9 watchStart("X=%f", &x, "Y=%f", &y, NULL);

10 regFilterFunc(filterfn); /* specify region screening funcn */

11 robotOpen();

12 for (;;) { /* loop forever */

13 nfeat = regGet(&r, 1, filterfn); /* get a feature */

14

15 xc = XC(r); /* find the centroid */

16 yc = YC(r);

17

18 /* compute the desired cartesian velocity */

19 cartRates[X] = xc * xgain;

20 cartRates[Y] = yc * ygain;

21

22 /* set the robot velocity */

23 robotSetRates(cartRates);

24 }

24 }

Lines 7-8 register the two control gains with the parameter manager to allow set-

ting by the remote interactive control tool. Line 9 causes the centroid coordinates in

pixels to be monitored on the real-time display. Line 12 requests a single feature that

is accepted by the low-level region screening function filterfn (not shown here).

Next the centroid is computed from simple moment features within the Region

datatype, the control gain is computed, and then the X and Y Cartesian velocities

of the robot are set.

D.12 Conclusion

A powerful experimental facility for research into robotic visual closed-loop control

has been described. Pipelined image processing hardware and a high-speed region-

analysis boardset are used to extract visual features at 50Hz. The RTVL kernel takes

advantage of the real-time multi-tasking environment to provide facilities for real-time

graphics, status display, diagnostic tracing, interactive control via a remote OpenWin-

dows control tool, and MATLAB data import. An important design aim was to de-

couple the actual application from the considerable infrastructure for visual-feature

extraction and robot control.
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Appendix E

LED strobe

Figure E.1: Photograph of camera mounted solid-state strobe.
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Figure E.2: Derivation of LED timing from vertical synchronization pulses.

The high-power LED illumination system built in the course of this work is shown in

Figure E.1. Ten LEDs are arranged in a circle around the lens providing coaxial illu-

mination of the robot' s area of interest. Figure E.2 shows how the LED timing pulses

are derived from vertical synchronization pulses output by the system's DIGIMAX

video digitizer. The first delay, t1, positions the pulse with respect to the vertical syn-

chronization pulse and is used to align the LED pulse with the shutter opening. The

second delay, t2, governs the length of the LED pulse. LED timing can be readily set

by pointing the camera at the LED while observing the camera output on a monitor.

The LED appears lit only when the LED pulse overlaps the camera exposure interval.

For a short duration pulse, the bounds of the exposure interval can be explored. Such

an approach was used to determine the exposure intervals shown in Figure 3.14.

The peak pulse current was established experimentally using a circuit which al-

lowed the current waveform to be monitored while adjusting the magnitude of the

applied voltage pulse. As the peak current amplitude is increased the observed current

waveform ceases to be square and rises during the pulse. This is indicative of the onset

of thermal breakdown within the junction, and if sustained was found to lead to per-

manent destruction of the LED. The relationship between permissible current pulse

amplitude and duty cycle is likely to be nonlinear and dependent upon thermal prop-

erties of the LED junction and encapsulation. The final LED control unit provides an

adjustable constant current drive to avoid destructive current increase due to thermal

breakdown.

In practice it was found that the relationship between current and brightness was

non-linear as shown in Figure E.5. Further investigation with a high-speed photodiode

sensor, see Figure E.3, shows that the light output of the LED is a narrow initial spike

with a slower exponential falloff. Figure E.4 shows more detail of the initial spike.

The light output increases with current which has a limited rise time due to inductance
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Figure E.3: LED light output as a function of time. Note the very narrow initial peak.
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Figure E.4: LED light output during initial peak. Current (and light output) rise

time is limited by circuit inductance.
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Figure E.5: Measured LED intensity as a function of current. Intensity is the

average intensity over many light pulses as measured with an averaging light-

meter.

in the long connecting cable. After the peak, light output falls off exponentially with

a time constant of approximately 10 µs. The two time constants involved in light

falloff are suspected to be due to heating effects: the fast mode from heating of the

small junction region, and the slow mode from heating the entire package. At high

temperature an LED has a reduced quantum efficiency and its spectral characteristics

may alter [279].

This light source has been used usefully in many experiments. The most signif-

icant difficulties are that the light output was not as great as hoped for, due to the

unexpected thermal effects described above, and the rather uneven nature of the illu-

mination.
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α β filter, 245–246, 248, 249, 252

α β γ filter, 173, 246

f -number, 80

aberrations in lens, 84–85

accuracy of robot, 11

AGC, see automatic gain control

aliasing

spatial, 91, 136

temporal, 115–116, 269

ALTER facility, VAL II, 174

amplifier voltage saturation, 48, 234,

266

analog servo board, see UNIMATE Puma,

analog servo board

angle of view, 80

APA-512+, 180–181, 327–330

aperture, 80

ARCL robot control software, 178–179

arm interface board, see UNIMATE Puma,

arm interface board

arm-interface board, 177

automatic gain control, 98–100

axis velocity control, 233, 234

axis velocity estimation, 276

back EMF, 47, 268

blackbody radiation, 76

camera

active video, 109

AGC, 96, 98–100

angle of view, 80

calibration, 107

CCD, 88–90

blooming, 90

cross talk, 91, 94

exposure control, 94

frame transfer, 90

spectral response, 76

CID, 90

dark current, 100

digital output, 103

dynamic range, 102

electronic shutter, 120

exposure interval, 118

eye-in-hand configuration, 3

field shutter, 105

frame shutter, 105

gamma, 96

integration period, 94

lag in centroid, 94

line scan, 88, 156

metric, 139

modulation transfer function, 91–

94

MTF, 91–94, 107, 109

NMOS, 90

noise, 100–101, 134

nonmetric, 139

pan and tilt, 184, 185, 236

pixel cross-talk, 90

pixel dimensions, 111

principal point, 138

sensitivity, 96–100
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signal to noise ratio, 101

spatial sampling, 91–94

camera calibration

classical non-linear method, 141

homogeneous transform method,

141

matrix, 138

techniques, 139–145

Tsai's method, 143

two plane method, 143

camera location determination problem,

144

CCD

interline transfer, 89

CCD sensor, 166

CCIR video format, 103

central projection, 87

centripetal effect, 15

centroid, 127

accuracy of, 133

accuracy of estimate, 209

bias due to aliasing, 136

effect of threshold, 133

error for off-axis viewing, 127

lag in estimate, 94, 206

of disk, 133

use of, 284

charge well, 88

CIE luminosity, 75

circle of confusion, 83, 118

circularity, 128, 206

close-range photogrammetry, 138

closed-loop bandwidth, 211, 214

color temperature, 76

color, use of, 87, 166

communications to robot controller, 173

compensator stability, 220

compliance

structural, 194, 233

transmission, 233, 269–274

compound lens, 84

computed-torque control, 62, 274–279,

285–287

computer vision, 123

connectivity analysis, 328

Coriolis effect, 15, 60, 290

Coulomb friction, see friction

CRT monitor, luminance response, 95

cyclotorsion, 122

dark current, 100

Datacube

DIGIMAX, 107–109, 113, 180

MAXBUS, 180, 184, 327

use of, 179–181

deinterlacing, 105–106

Denavit and Hartenberg notation, 8

modified, 10

depth of field, 83

diffraction, 136

digital servo board, see UNIMATE Puma,

digital servo board

digital velocity loop, 239–242, 252

direct dynamics, see forward dynam-

ics

dynamic look and move visual control,

153

dynamics, robot, see rigid-body dynam-

ics

edge sharpness, 134

effect of noise, 135

electronic assembly, 264

electronic shutter, 94, 180, 198

endpoint oscillation, 268–269

EV, see exposure value

exposure, 82

exposure interval, 180, 208

exposure value, 82

extrinsic parameter, 138

eye-hand calibration, 147

feature
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extraction, 127

tracking, 168

vector, 153

feedforward control, 214

of rigid-body dynamics, 62

visual servo, 235–236, 251–257

film speed, 82

fixation, 153, 161, 191, 212, 214, 224,

236, 251, 253, 255

by orientation, 188, 192

by translation, 188

human reflex, 245, 257

focal length, 80, 137

focus, 82–84, 134

control, 166

depth of field, 83, 118

hyperfocal distance, 83, 118

forward dynamics, 21

fovea, 153, 257

friction, 15, 32–34, 58, 234, 268, 290

compensation, 64, 275–276

Coulomb, 32, 46

estimation, 33

static, 32

stiction, 32

viscous, 32, 46

gamma, 96

geared transmission, 27

geometric distortion, 85–86

grasping moving object, 155–157, 173,

211

gravity load, 23

horizontal blanking, 103

human eye

cone photorecptors, 121

fixation reflex, 257

fovea, 121, 257

muscles, 121

oculomotor system, 257

photopic response, 74, 76

rod photoreceptor, 74

saccadic motion, 121, 257

scotopic response, 74

smooth pursuit, 121, 257

hydraulic actuation, 172

hyperfocal distance, 83

illuminance, 74, 81

illumination, 118–121

fluorescent, 77

incandescent, 76, 118–120

LED, 120–121, 343–344

the Sun, 74, 76

image

feature, 123, 153

features, 123–130, 181, 191

Jacobian, 162, 165

moments, 127–130, 167, 180, 328

window based processing, 168–

169

image-based visual servo, 153, 161–

165

independent joint control, 60

inertia, 58, 264–265

armature, 22, 28, 37

matrix of manipulator, 15

normalized, 264

normalized joint, 28

principal axes, 22

products of, 22

infra-red radiation, 79

insect vision, 161

integral action, 54, 234, 252

interaction matrix, 164

interlaced video, 103–104, 181

intrinsic parameter, 138

Jacobian

camera mount, 185, 285

image, 162, 165, 188

manipulator, 10, 185, 285
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Kalman filter, 173, 240, 246–249, 252,

257

kinematics

forward, 10

inverse, 10, 192

parameters for Puma 560, 12–14

singularity, 10

Lambertian reflection, 75

latency, 211

deinterlacing, 181

lens

aberration, 84–85, 114

aperture, 80, 85

C-mount, 114

compound, 81, 84, 189

diffraction, 85, 114, 118

equation, 80, 137

focal length, 80

gain, 188, 189, 197, 206, 269

magnification, 80

modelling, 188

MTF, 85

nodal point, 189–191

nodal point estimation, 190

projection function, 86–87, 152

radial distortion, 86

simple, 79, 189

vignetting, 84

light, 73

light meter, 81–82

exposure value, 82

incident light, 81–82

reflected light, 82

spot reading, 82, 97

light stripe, 156, 159

line scan sensor, 88, 156

line spread function, 85

lumens, 73

luminance, 74, 76

luminosity, 73

luminous flux, 73

luminous intensity, 74

machine vision, 123

magneto-motive force, 38

maneuver, 168, 173, 211, 245, 246,

249

mechanical pole, 37

median filter, 180

metric camera, 139

MMF, see magneto-motive force

modulation transfer function, 85, 113–

115

moment

computation, 167–168

moments of inertia, 22

motion blur, 115, 166, 204, 253, 266

motion stereo, 160, 161, 165

motor

armature and current loop dynam-

ics, 45–47

armature impedance, 41–42

armature inertia, 22, 28, 37

armature reaction, 38, 40

back EMF, 36, 39

contact potential difference, 36

electrical pole, 36

magnetization, 38, 39

MATLAB model, 42, 49

mechanical pole, 35, 51

torque constant, 33, 35, 38–41

torque limit, 46

MTF, see modulation transfer function

multi-rate system, 194, 196, 201–203

nested control loops, 228

nodal point, 189–191

nonmetric camera, 139

normalized inertia, 28

oculomotor, 257

optical axis, 79
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optical flow, 167

parameter sensitivity, 234

perspective transformation, 86–87

photogrammetery

camera calibration matrix, 138

camera location determination, 144

photogrammetry, 137–147, 159

camera calibration, 139–145

close-range, 138

pose estimation, 159

photometric units, 75

photometry, 73

photon shot noise, 100

photons per lumen, 78

photopic response, 74

photosites, 88

pixel aspect ratio, 111–112

pixel quantization, 112

pixel resampling, 109, 110

pixel response non-uniformity, 101

Planck's equation, 78

pole placement, 221

pose, 3, 151–153

pose estimation, 153, 159

position-based visual servo, 153, 159–

161

prediction, 173, 211, 219, 220, 245,

247

principal axes of inertia, 22

principal point, 138

products of inertia, 22

quantum efficiency, 96

radiant flux, 73

radiometry, 73

raster scan, 103

RCCL, 24, 174, 178

recursive Newton-Euler, 286

redundant manipulator, 10

reflectivity, 75

repeatability of robot, 12

resolved rate control, 285

resolved rate motion control, 11, 192

rigid-body dynamics, 14–19

base parameters, 23

computational issues, 64–70

control of

computed torque, 62, 63, 274–

279, 285–287

feedforward, 62, 63

equations of motion, 14

forward dynamics, 21

gravity load, 23, 33, 34, 58

inertial parameters for Puma 560,

21–27

inverse dynamics, 14

recursive Newton-Euler, 16–19

significance of, 58–60, 290

symbolic manipulation, 19–21

robot

accuracy, 11

dynamics, see rigid-body dynam-

ics

geared, 27

joints, 7

kinematics, see kinematics

limitations of, 1–2

links, 7

repeatability, 12

RS170 video format, 102

RTVL software, 182–184

saccadic motion, 257

sample rate, 234

sampler

camera as, 198

sampling rate, 275

scotopic response, 74

semi-angles of view, 80

serial-link manipulators, 7

signal to noise ratio, 101, 113, 118
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SIMULINK model

CTORQUEJ1, 275

DIGVLOOP, 242

FFVSERVO, 253

LMOTOR, 50, 234

MOTOR, 50

POSLOOP, 57

VLOOP, 52

Smith' s method, 218

smooth pursuit motioni, see fixation

SNR, see signal to noise ratio

specular reflection, 75

stadimetry, 284

state estimator, 220

state feedback, 219

steady-state error, 213

steering problem, 235

stereo vision, 157, 158, 160, 161, 167

motion stereo, 161, 165

stick/slip phenomena, 234, 276

stiction, 276

structural dynamics, 194, 201, 263, 268,

275

symbolic manipulation

recursive Newton-Euler, 19–21

truncation of torque expression, 67–

68

tachometer, 40, 50

target centroid, 191

target tracking, 168

teleoperation, 169

threshold

effect on aliasing, 116

effect on centroid estimate, 133

effect on width estimate, 131–133

selection, 135

thresholding, 167, 180

timestamping, 184, 253, 269

tracking filter

α β, 245–246

α β γ, 246

comparison of, 248–250

initiation, 248, 252

Kalman, 246–247

lag in, 249–250, 253

maneuver, 168, 173, 211, 245, 246,

249

roughness of, 249–250

tracking parameter, 246

trajectory generation, 191, 265–266

Type, of system, 213, 231, 234, 257

UNIMATE Puma

amplifier voltage saturation, 48

analog servo board, 50

arm interface board, 179, 240

current control mode, 56, 239

current loop, 42–44, 228, 270

current limit, 46

digital servo board, 52, 179, 237

encoder resolution, 53

fundamental performance limits,

56

fuse, 46

gear ratios, 28

kinematic parameters, 12–14

position loop, 52–55, 177, 266,

269, 278

control law, 54

integral action, 54

setpoint interpolation, 53

velocity loop, 49–51, 229, 237,

270, 275, 278

synthetic tachometer, 50

velocity limit, 237, 267

wrist cross-coupling, 27, 40, 252

velocity estimation, 239, 275

of joint, 62

quantization, 239, 276

velocity loop, digital, 239–242

video
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amplitude of signal, 104, 105

back porch, 104, 107

black-setup voltage, 104

CCIR, 103, 110

composite color, 104, 107

DC restoration, 107

digitization, 106–113

horizontal blanking, 103

interlaced, 103–104

pedestal voltage, 104

raster scanning, 103

RS170, 102, 110

vertical blanking, 104

viscous friction, see friction

visual servo

advantage of, 2

applications, 154–159

catching, 157

fruit picking, 157, 172

human skills, 157

vehicle guidance, 157

as a steering problem, 191

axis control mode

position, 231

torque, 228

velocity, 229

camera as sampler, 115, 198

closed-loop frequency response, 196,

206

control

feedforward, 214, 235–236, 251–

257, 284

LQG, 225

PID, 216

pole-placement, 221

Smith' s method, 218

stability of compensator, 220

state feedback, 219

control problem, 191

dynamics, 151

endpoint damping, 279–281

image Jacobian, 162, 165

kinematics, 151

latency in, 211

neural networks for, 158

performance metric, 214

phase response, 214

sampler, 253

square wave response, 195

stability problem, 172

task specification, 169

use of color, 166, 167

VMEbus, 176, 180, 327

VxWorks operating system, 177

width estimate, 131

effect of edge gradient, 134

Wien' s displacement law, 78

zeros of system, 217, 235


