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Abstract Humans are endowed with the ability to grasp the overall meaning or the gist of a

complex visual scene at a glance. We need only a fraction of a second to decide if a scene is

indoors, outdoors, on a busy street, or on a clear beach. In recent years, computational gist

recognition or scene categorization has been actively pursued, given its numerous applications

in image and video search, surveillance, and assistive navigation. Many visual descriptors

have been developed to address the challenges in scene categorization, including the large

number of semantic categories and the tremendous variations caused by imaging conditions.

This paper provides a critical review of visual descriptors used for scene categorization, from

both methodological and experimental perspectives. We present an empirical study conducted

on four benchmark data sets assessing the classification accuracy and class separability of

state-of-the-art visual descriptors.

Keywords Visual descriptors · Scene categorization · Survey and evaluation ·

Gist recognition

1 Introduction

Humans can grasp rapidly the overall meaning of a complex visual scene. With a single glance,

they can determine whether they are looking at a room, a beach, or a forest (Pavlopoulou and

Yu 2010). Viewers need only a fraction of a second to associate a picture with an abstract

concept such as girl clapping or busy street (Goldstein 2010). This ability to understand the
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conceptual meaning of a scene at a glance, regardless of its visual complexity and without

attention to details, is known as gist recognition. The gist of a scene plays many roles in

visual perception. It guides the viewer’s attention, aids object recognition, and affects the

viewer’s recollection of the scene (Snowden et al. 2004).

Understanding gist recognition in humans and replicating this ability in computers has

been an ongoing research goal (Fei-Fei et al. 2007b; Loschky et al. 2007; Wei et al. 2010;

Walther et al. 2011; Lee and Choo 2013; Linsley and MacEvoy 2014; Malcolm et al. 2014).

In the early psychovisual studies, Potter found that a scene is processed rapidly at an abstract

level before intentional selection occurs (Potter 1975). Gist recognition is shown to happen

in the first 30–300 ms of viewing a scene (Goldstein 2010). This perception occurs much

earlier than the time required for recognizing individual objects in the scene. Consequently,

gist recognition is considered to rely significantly more on holistic and low-level properties

than on the detection of individual objects (Loschky et al. 2007). These low-level prop-

erties include color (Castelhano and Henderson 2008; Oliva 2000), edges (Pavlopoulou

and Yu 2010), and texture (Renninger and Malik 2003). It was even found that object

shape and identity are not necessary for the rapid perception of scenes (Oliva and Torralba

2001).

In computer vision, gist recognition is also known as scene categorization, which aims

to classify a scene into semantic categories (Lazebnik et al. 2006; Xiao et al. 2014a; Krapac

et al. 2011; Yao et al. 2012; Zhao and Xing 2014). The scene could be a static image or

dynamic video, and the semantic categories could be indoor versus outdoor, gas station versus

restaurant, or slow traffic versus flowing traffic. Scene categorization can be used to provide

cues about objects and actions, detect abnormal events in public places, sense dangerous

situations, and search for images and video; therefore, it is highly useful for applications

in surveillance (Zhang et al. 2008; Gowsikhaa et al. 2014), navigation (Chang et al. 2010;

Jia et al. 2014; Khosla et al. 2014; Fuentes-Pacheco et al. 2015), and multimedia (Chella

et al. 2001; Maggio and Cavallaro 2009; Huang et al. 2008; Zhou et al. 2010; Dai et al.

2015).

In computational scene categorization, visual descriptors play a central role in recognition

performance. A good visual descriptor must possess discriminative power to charac-

terize different semantic categories, while remaining stable in the presence of inter-

and intra-class variations caused by photometric and geometric image distortions. Note

that previously Douze et al. (2009) compared different visual descriptors for image

search, but the compared descriptors were restricted to only GIST descriptor (Oliva and

Torralba 2001) and its variants. Mikolajczyk and Schmid (2005) evaluated the local

descriptors, such as SIFT-based features, steerable filters, complex filters, and moment

invariants. Van de Sande et al. (2010) analyzed mainly SIFT-based color descriptors

on the PASCAL VOC Challenge 2007. Xiao et al. (2014a) compared fourteen descrip-

tors on the SUN397 data set. Their comparison also focused on the local features, such

as scale-invariant feature transform (SIFT) (Lowe 2004), histogram of oriented gra-

dients (HOG) (Dalal and Triggs 2005), and local binary pattern (LBP) (Ojala et al.

1996).

This paper aims to assess the state-of-the-art visual descriptors for scene categorization

of static images, from both methodological and experimental perspectives. The compared

descriptors range from biologically-inspired features, local features to global features. The

paper is structured as follows. Section 2 reviews visual descriptors used for scene categoriza-

tion. Section 3 describes the public data sets and evaluation protocols for scene categorization.

Section 4 presents results of experimental evaluations on four benchmark data sets. Section

5 gives concluding remarks.
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Table 1 List of acronyms used in this paper

Acronym Definition

BIF Biologically-inspired features (Song and Tao 2010)

BOP Bag-of-parts (Juneja et al. 2013)

BoW Bag-of-words (Fei-Fei et al. 2007a)

CENTRIST Census transform histogram (Wu and Rehg 2011)

CNN Convolutional neural network (LeCun et al. 1998; Krizhevsky et al. 2012)

DeCAF Deep convolutional activation feature (Donahue et al. 2014)

GIST An abstract representation of the scene (Oliva and Torralba 2001)

HIK Histogram intersection kernel (Maji et al. 2008)

HMAX Hierarchical model and X (Riesenhuber and Poggio 1999)

HOG Histogram of oriented gradients (Dalal and Triggs 2005)

HOG-SPM HOG with spatial pyramid matching (Lazebnik et al. 2006)

HSOG Histogram of the second-order gradients (Huang et al. 2014a)

LBP Local binary pattern (Ojala et al. 1996)

LBP-HF LBP with Fourier histogram (Ahonen et al. 2009)

LCS Local color statistic (Clinchant et al. 2007)

OB Object bank (Li et al. 2010)

PLBP LBP with pyramid representation (Qian et al. 2011)

RBF Radial basis function kernel (Scholkopf et al. 1997)

SEV Sequential edge vectors (Morikawa and Shibata 2012)

SIFT Scale-invariant feature transform (Lowe 2004)

SIFT-FV SIFT with Fisher vector (Sanchez et al. 2013)

SIFT-LLC SIFT with locality-constrained linear coding (Wang et al. 2010)

SIFT-ScSPM SIFT with sparse coding based spatial pyramid matching (Yang et al. 2009)

SIFT-SPM SIFT with spatial pyramid matching (Lazebnik et al. 2006)

SURF Speeded up robust features (Bay et al. 2008)

SVM Support vector machine (Burges 1998)

2 Visual descriptors

Many algorithms have been developed for scene categorization from static images. For con-

venience, the list of the most widely used acronyms in this paper is given in Table 1. In

most algorithms, visual features are first extracted from the input image, and then classi-

fied into semantic categories using a trained classifier, e.g., support vector machines. Hence,

feature extraction plays a vital role in scene categorization. The existing approaches for

visual feature extraction in scene categorization can be divided into three broad categories:

biologically-inspired methods, local features, and global features. Table 2 summarizes the

three categories and gives the representative visual descriptors of each category.

2.1 Biologically-inspired feature extraction models

To mimic the gist recognition capability of the human vision, researchers have developed a

variety of computational algorithms for scene categorization from static images. For example,
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Table 2 Classification of scene categorization descriptors

Approaches Representative works

Biologically-inspired feature extraction

Visual cell model HMAX (Serre et al. 2005)

Layout properties GIST (Oliva and Torralba 2001)

Deep learning features Convolutional neural networks (Zhou

et al. 2014)

OverFeat (Sermanet et al. 2014)

DeCAF Donahue et al. (2014)

Local feature extraction

Patch-based features SIFT (Lowe 2004)

HOG (Dalal and Triggs 2005)

LBP (Ojala et al. 1996)

CENTRIST (Wu and Rehg 2011)

HSOG (Huang et al. 2014a)

Object-based model Object bank (Li et al. 2010)

Region-based model Edge vectors (Morikawa and Shibata

2012)

Bag of parts (Juneja et al. 2013)

Keypoint-based features SURF (Bay et al. 2008)

FREAK (Alahi et al. 2012)

BRISK (Leutenegger et al. 2011)

Global feature formation

Principal component analysis SIFT features with PCA (Ke and

Sukthankar 2004)

Histogram Multi-resolution histogram

(Hadjidemetriou et al. 2004)

Feature encoding SPM (Lazebnik et al. 2006)

ScSPM (Yang et al. 2009)

LLC (Wang et al. 2010)

FV (Sanchez et al. 2013; Dixit et al.

2015)

Lee and Mumford (2003) developed a hierarchical Bayesian inference for scene reconstruc-

tion based on the early visual neurons. Song and Tao (2010) suggested a gist recognition

model, where intensity, color, and C1 visual features are extracted. Grossberg and Huang

(2009) proposed the ARTSCENE system based on gist and texture features for natural scene

classification. In the following subsections, we discuss three major biologically-inspired

feature extraction approaches: the HMAX model, the GIST model, and the deep learning

model.

2.1.1 HMAX model

Riesenhuber and Poggio (1999) proposed a feed-forward architecture, called HMAX, which

is inspired by the hierarchical nature of the primate visual cortex. The HMAX model has four
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layers: two simple layers (S1 and S2) and two complex layers (C1 and C2). In layer S1, the

input image is densely filtered with Gaussian filters at several orientations and scales. The

feature maps generated from layer S1 are then arranged into filter bands that contain neigh-

boring scale maps with different orientations. After layer S1, the spatial maximum values in

each filter band are computed at the same orientation to form layer C1. Let Pi , i = 1, . . . , K ,

be a dictionary that is learned from samples of layer C1. Pi is used as a prototype to represent

intermediate-level feature S2. The maximum values of S2 are computed over all positions

and scales, and are used as the output features C2, which are shift- and scale-invariant.

The HMAX architecture has the advantages of both template-based features (Viola and

Jones 2004) and histogram-based features (Lowe 2004; Dalal and Triggs 2005). HMAX

features preserve object geometry similarly to template-based features, and they are robust

to small distortions in objects, like histogram-based features. Serre et al. (2007) later used

HMAX features for object recognition and scene understanding. In object recognition tasks,

the HMAX model outperforms the HOG (Dalal and Triggs 2005), the part-based model

(Leibe et al. 2004), and the local patch correlation (Torralba et al. 2004). However, HMAX

has a longer processing time than other algorithms, such as the HOG and SIFT.

Several extensions to the HMAX have been proposed. Serre and Riesenhuber (2004)

introduced a new HMAX that uses Gabor filters to model simple cell receptive field instead

of Gaussian filters. Mutch and Lowe (2006) extended the HMAX by introducing lateral

inhibition and feature localization. The extended HMAX achieved an improvement of 14 %

in the classification rate compared to the original HMAX, in object categorization on the

Caltech-101 data set. Brumby et al. (2009) developed a large-scale functional model based

on the HMAX and applied it to detect vehicles in remote-sensing images. Inspired by the

HMAX, to describe the scene, Jiang et al. (2010) proposed a new approach that combines

features from simple cells and complex cells with the sparse coding based spatial pyramid

matching (ScSPM) (Yang et al. 2009).

2.1.2 GIST model

Oliva and Torralba (2001) proposed a computational model, known as GIST, for scene cate-

gorization. They suggested that images in a scene category possess a similar spatial structure

that can be extracted without segmenting the image. The GIST features are the statistical sum-

mary of the scene spatial layout. That is, they capture the dominant perceptual properties,

such as naturalness, openness, roughness, expansion, and ruggedness, of a scene.

The GIST model can be described as follows. An input image I is first padded, whitened,

and normalized to reduce the blocking artifact. Next, the image is processed with a set of

multi-scale oriented Gabor filters. The impulse response of a Gabor filter is a Gaussian

modulated by a harmonic function:

g(x, y) = cos

(

2π
x ′

λ
+ Φ

)

exp

(

x ′2 + γ 2 y′2

2σ 2

)

, (1)

where x ′ = x cos θ + y sin θ , y′ = −x sin θ + y cos θ , θ is the rotation angle, Φ is the

phase offset, λ is the wavelength of the harmonic function, σ is the standard deviation of the

Gaussian function, and γ is the spatial aspect ratio. In the original GIST model, 32 filters

at four scales and eight orientations are used. Each output filtered image is partitioned into

16 blocks, and the average value of each block is used as a feature. Overall, a GIST feature

vector has 512 elements. Figure 1b shows the GIST features extracted from an input image

shown in Fig. 1a. Here, the input image is divided into 4 × 4 regions. From each region 32

gist features (4 scales and 8 orientations) are extracted and visualized in polar coordinates.
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Fig. 1 Visual illustration of GIST feature extraction. a input image, b GIST features in polar form

The GIST features were found to be more effective for recognizing outdoor scenes than the

indoor scenes (Wu and Rehg 2011). They have been combined with other features for scene

categorization. Torralba et al. (2006) proposed a new GIST model that combines the local

features, global features, bottom-up saliency, and top-down mechanisms to predict which

image regions are likely to be fixated by human observers. Han and Liu (2010) developed a

hierarchical GIST model for scene classification with two layers: (1) a perceptual layer based

on the GIST model proposed by Oliva and Torralba (2001); and (2) a conceptual layer based

on the kernel PCA (Scholkopf et al. 1998).

2.1.3 Deep learning

In recent years, deep learning architectures have gained fervent research interest for image

recognition. One of the major deep learning architectures is the convolutional neural networks

(CNN) developed by LeCun et al. (1998). CNNs are inspired by the discoveries of Hubel and

Wiesel (1968) about the receptive fields in mammal visual cortex. The CNNs are based on

three key architectural ideas: (1) local receptive fields for extracting local features; (2) weight

sharing for reducing network complexity; (3) sub-sampling for handling local distortions and

reducing feature dimensionality. An advantage of CNNs is that they can be trained to map

raw pixels to image categories, thereby alleviating the need for hand-designed features.

A CNN is a feed-forward architecture with three main types of layers: (1) 2-D convolution

layers; (2) 2-D sub-sampling layers; and (3) 1-D output layers (see Fig. 2 for an example).

A convolution layer consists of several adjustable 2-D filters. The output of each filter is

called a feature map, because it indicates the presence of a feature at a given pixel location. A

sub-sampling layer follows each convolution layer, and reduces the size of each input feature

map, via mean pooling or max pooling. The 1-D layers map the extracted 2-D features to the

final network output.

Designing and training a CNN or deep learning architecture is a computation-intensive

task that requires significant engineering efforts. Hinton et al. (2006) proposed a new approach

for training deep networks. Their main idea is to pre-train each layer of the network using an

unsupervised learning algorithm, e.g. the restricted Boltzmann machine, the denoising auto-
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Fig. 2 An example of layers in a convolutional neural network

encoder, and the kernel principal component analysis. Once the pre-training is completed,

a supervised learning algorithm, e.g. the error backpropagation, is employed to adjust the

connection weights of the hidden layers and the output layer (Theodoridis 2015).

Krizhevsky et al. (2012) developed a CNN for image classification, which has 5 convo-

lution layers, 650,000 neurons and 60 million parameters, and produces 4096 features. On

the ImageNet benchmark, which comprises 1.2 million images with 1000 object categories,

the CNN achieved a top-1 classification rate of 62.5 %, which was higher than the previous

results obtained by other methods. Sermanet et al. (2014) later developed a CNN-based inte-

grated framework, called OverFeat, to perform both localization and detection tasks; their

system achieved very competitive results (1st in localization and 4th in classification) on the

ImageNet benchmark. CNNs have also been applied for scene categorization by Zhou et al.

(2014) and Donahue et al. (2014). CNNs have been shown to be less effective for moderate-

size data sets (Goh et al. 2014), however, they perform well when trained on large-scale data

sets (Krizhevsky et al. 2012; Donahue et al. 2014).

2.2 Local feature extraction

Local descriptors capture low-level properties of the scene, whereas global descriptors rep-

resent the overall spatial information. Vogel et al. (2007) studied the use of local features and

global features in the categorization of natural scenes. Their results suggested that humans rely

as much on local region information as on global configural information. Existing algorithms

for local descriptors can be divided into three main categories: patch-based, object-based,

and region-based.
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2.2.1 Patch-based local features

Patch-based algorithms extract features from small patches of input images. For the SIFT

(Lowe 2004) and speeded up robust features (SURF) (Bay et al. 2008), patches are generated

from local windows around interest points. For the LBP (Ojala et al. 1996), patches are formed

from rectangular regions of each pixels. For the HOG (Dalal and Triggs 2005), patches are

non-overlapping blocks where orientation voting and normalization are applied. For SIFT-

ScSPM (Yang et al. 2009), patches are overlapping blocks formed from a regular grid at

the same scale. For the SIFT-LCS-FV (Sanchez et al. 2013), patches are overlapping blocks

formed from a regular grid at five scales.

(A) Scale-invariant feature transform

Lowe (2004) developed the SIFT algorithm to extract image features that are invariant to

image scale, rotation, and changing illumination. Extracting SIFT local features involves

four main steps. First, the difference-of-Gaussian filters are applied to identify the location

and scale of interest points. Second, the interest points with high stability are selected as

the key points. Third, dominant orientation is assigned to each key point based on local

image gradient. Fourth, the SIFT features that are partially invariant to affine distortions and

illumination changes are extracted from key-point regions. The SIFT features are computed

from image gradient magnitude and orientation in a region centered at key point. An example

of SIFT key points is shown in Fig. 3a. The centers of circles are the key points, the radiuses

of circles are the average scales of the key points, and the arrows inside the circles are the

average orientations of the key points.

To apply the SIFT for scene categorization, Fei-Fei and Perona (2005) proposed to extract

local features from dense patches. A dictionary is formed from random local patches using

k-means algorithm. Then, for each input image, a feature vector is generated using the trained

dictionary. An example of SIFT feature map that is extracted from dense patches is shown

in Fig. 3b. In this figure, the SIFT features are averaged at each pixel location and shown.

The original SIFT algorithm has been extended by several researchers. Brown and

Susstrunk (2011) proposed the multi-spectral SIFT (MSIFT) on color and near-infrared

images for scene categorization. They showed that compared with the SIFT, HMAX, and

GIST on the 8-outdoor-scene data set (Oliva and Torralba 2001), the MSIFT reduced feature

dimensionality and improved recognition accuracy. Liu et al. (2011) proposed the SIFT flow

to align images across scenes, and applied it for image alignment, video retrieval, face recog-

nition, and motion prediction. Bo et al. (2010) improved the low-level SIFT features using a

kernel approach. The kernel descriptors provide a principled tool to convert pixel attributes

to patch-level features.

(B) Speeded-up robust features

Bay et al. (2008) proposed scale- and rotation-invariant visual descriptor, called SURF. The

SURF detects interest points using determinant of Hessian matrix. The computation time of

interest point detection is reduced by using integral images (Viola and Jones 2001). The key

points are then selected from interest points using non-maximum suppression in multi-scale

space. The orientation of key point is assigned using sliding orientation windows on Haar

wavelet response maps. The longest vector over all windows defines the orientation of the key

point. The Haar wavelet response in the horizontal direction (dx ) and the vertical direction

(dy) are computed from a 4 × 4 sub-region over the key point. The feature vector for each

sub-region is v =
(
∑

dx ,
∑

dy,
∑

|dx |,
∑

|dy |
)

. SURF key points of an example image is

shown in Fig. 3c. The centers of circles are the key points, the radiuses of circles are the

average scales of the key points, and the arrows inside the circles are the average orientations

of the key points.
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Fig. 3 Visual illustration of SIFT, SURF, and HOG feature extraction of the input image in Fig. 1a. a SIFT

key points, b SIFT dense feature map, c SURF key points, d HOG dense feature map

(C) Histogram of oriented gradients

Dalal and Triggs (2005) originally developed the HOG descriptor for pedestrian detection

in gray-scale images. The HOG features have since been applied for recognition of other

image categories, such as cars (Rybski et al. 2010), bicycles (Felzenszwalb et al. 2010), and

facial expressions (Bai et al. 2009). The HOG feature extraction involves four main steps.

First, an input image is normalized by the power-law, and the image gradients are computed

along the horizontal and vertical directions. Next, the image is divided into cells; a cell can

be a rectangular or circular region. In the third step, the histograms for multiple orientations

are computed for each cell, where each pixel in the cell contributes a weighted score to a

histogram. Finally, the cell histograms are normalized and grouped in blocks to form the HOG

features. An example of HOG features is shown in Fig. 3d, which illustrates the strength of

averaged HOG features at each pixel location.

For scene categorization, the HOG features are useful for capturing the distribution of

image gradients and edge directions in a regular grid. Xiao et al. (2014a) compared the HOG

with other descriptors, such as GIST and SIFT, on the SUN397 data set. The HOG achieved

a higher classification rate (CR) compared with other hand-designed descriptors.

(D) Local binary pattern

Ojala et al. (1996) first developed the LBP algorithm for texture classification. Since then, the

LBP has been applied to many computer vision tasks, including face recognition (Ahonen

et al. 2006), pedestrian detection (Zheng et al. 2011), and scene categorization (Xiao et al.
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Fig. 4 Illustration of the basic LBP algorithm

Fig. 5 The circular regions in a generic form of the LBP. Here, P is the number of neighboring pixels, and

R is the circle radius. When P = 8 and R = 1, the basic LBP operator is obtained

2014a). The LBP algorithm analyzes the textures of a local patch by comparing each center

pixel with the neighboring pixels.

The basic LBP operates on 3-by-3 blocks. Each pixel in the block is compared to the

center pixel, and a binary value of 1 or 0 is returned (see Fig. 4). A pattern B is formed

by concatenating the binary values from the neighboring pixels. The decimal LBP code is

obtained by summing the thresholded differences weighted by powers of two. Furthermore,

a contrast measure C is obtained by subtracting the average of pixel values smaller than the

center pixel value p from the average of pixel values larger than or equal to p. An example of

LBP code map is shown in Fig. 6. In the example, the pattern B is 11001101; the LBP code

is 179; the contrast C is 7.4. The histogram of local contrast (LBP/C) is used as a feature

vector. The computational simplicity of the LBP algorithm makes it suitable for real-time

image analysis.

Several variants of the LBP have been developed. Ojala et al. (2002a) proposed a generic

form of LBP that supports arbitrary neighborhood sizes. By contrast to the basic LBP that uses

8 neighboring pixels in a 3-by-3 block, the generic operator LBPP,R is circularly symmetric,

see Fig. 5.

Ojala et al. (2002a) also developed the uniform patterns, denoted as LBPu
P,R . Here, u is

the number of transitions (0 to 1, or 1 to 0) in an LBP pattern. A local binary pattern is called

uniform if u ≤ 2. Different output labels are assigned to uniform LBP codes, and a single
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Fig. 6 Visual illustration of LBP-based feature extraction of the input image in Fig. 1a. a LBP, b uniform

LBP, c LBP-HF

label is assigned to non-uniform patterns. Experiments by Ojala et al. (2002a) indicated that

uniform patterns can be considered as fundamental textures because they represent the vast

majority of local texture patterns.

Ahonen et al. (2009) proposed an algorithm, called LBP-HF, that combines the uni-

form LBP and Fourier coefficients. They showed that the LBP-HF has better rotation

invariance than the uniform LBP. In the LBP-HF algorithm, the uniform pattern LBPu
P,R

at pixel location(x, y) is replaced by LBPu
P,(R+θ) mod P , where θ is a rotation angle:

θ = 0, 2π
P

, 2×2π
P

, . . . ,
(P−1)×2π

P
. Then, the histograms hθ of LBPu

P,(R+θ) mod P are com-

puted. Finally, the Discrete Fourier Transform is applied on hθ to form LBP-HF features

(Fig. 6).

Guo et al. (2010) proposed a completed local binary pattern (CLBP) to extract image

features for texture classification. The original LBP only encodes the signs of differences

between center pixel and its neighbors (see Fig. 4). The CLBP encodes both the signs (CLBP-

S) and magnitudes (CLBP-M) of the differences. Furthermore, the intensity of center pixel

(CLBP-C) is encoded as the third part of CLBP. Guo et al. (2010) showed that the texture

classification accuracy of CLBP was better than the original LBP algorithm. Li et al. (2012)

proposed a scale- and rotation-invariant LBP descriptor. The scale-invariance of this method

is achieved by searching for the maximum response over scale spaces. The rotation invariance

is achieved by locating the dominant orientations of the uniform-LBP patterns. The scale-

and rotation-invariant LBP outperforms the classical uniform LBP in texture classification. In

another approach, Qian et al. (2011) proposed an LBP descriptor with pyramid representation

(PLBP). By cascading the LBP features obtained from hierarchical spatial pyramids, the

PLBP descriptor extracts texture resolution information. The pyramid representation for

LBP is more efficient than the multi-resolution representation for LBP proposed by Ojala

et al. (2002b).

(E) Census transform histogram

Wu and Rehg (2011) proposed a visual descriptor called CENTRIST, which is a holistic

representation of structural and geometrical properties of images. In the CENTRIST, feature

maps are calculated by the census transform (CT), which is equivalent to the local binary

pattern LBP8,1. Wu and Regh presented an experiment showing that CT values encode shape

information. The authors identified 6 CT values with highest counts (31, 248 240, 232, 15,

and 23) in the 15-scene data set (Fei-Fei and Perona 2005; Lazebnik et al. 2006). The 6 CT

values correspond to local 3-by-3 neighborhoods that have horizontal or close-to-diagonal

edge structures. To encode the global structure of an image, the CT values are processed by

the spatial pyramid algorithm, described in (Lazebnik et al. 2006). The features extracted

from the pyramid feature maps are then reduced using the spatial PCA or BoW methods.
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(a) (b) (c) (d)

Fig. 7 Object bank feature maps of input image in Fig. 1a. a ‘tree’, b ‘sky’, c ‘beach’, d ‘coast’

Wu and Rehg (2011) showed experimentally that the CENTRIST with the spatial PCA

outperforms the state-of-the-art algorithms, such as the SIFT and GIST, on several scene

categorization data sets. However, the CENTRIST has a number of limitations. First, the

CENTRIST is not invariant to rotations. Second, it is not designed for extracting color infor-

mation. Third, the CENTRIST still has difficulty in learning semantic concepts from images

with varied viewing angles and scales. Based on the CENTRIST, a multi-channel feature

generation mechanism was proposed by Xiao et al. (2014b). The CENTRIST features with

multi-channel information (RGB channels and infrared channel) improves grayscale CEN-

TRIST’s performance on scene categorization.

2.2.2 Object-based local features

Object-based algorithms rely on landmark objects to classify scenes. They have been applied

for scene perception in robotic navigation systems (Abe et al. 1999; Yu et al. 2009b; Schauerte

et al. 2011). Bao et al. (2011) proposed a scene layout reconstruction algorithm by determining

the 3-D locations and the support planes of objects. In these methods, the scene is classified

based on landmark objects and their configuration. A challenge of object-based methods is to

detect small objects, especially in outdoor conditions. Another challenge is to select a small

set of landmark objects to represent a scene (Siagian and Itti 2007).

An example of object-based algorithms for visual categorization are object bank proposed

by Li et al. (2010). The OB algorithm was designed to decrease the gap between low-level

visual features of objects and high-level semantic information of the scene.

In the OB approach, an image is represented by scale-invariant response maps produced

by pre-trained object detectors. Objects are classified by two types of detectors: (1) the SVM

detector, proposed by Felzenszwalb et al. (2010), for objects such as humans, cars, and

tables; (2) the texture detector, proposed by Hoiem et al. (2006), for objects such as sky,

road, and sea. Li et al. (2010) analyzed common object types in four data sets ESP (Von Ahn

2006), LabelMe (Russell et al. 2008), ImageNet (Jia et al. 2009), and Flickr (Yahoo 2004),

and selected 200 object detectors that were trained with 12 detection scales and 3 spatial

pyramid levels (Peters and Itti 2007). The example feature maps produced by four object

detectors are shown in Fig. 7a–d. Li et al. (2010) compared the OB algorithm with SIFT,

GIST, and spatial pyramid matching (SPM) (Lazebnik et al. 2006) on several scene data sets.

The results showed that OB outperforms the other algorithms on the UIUC data set (Li and

Fei-Fei 2007), the 67-indoor-scene data set (Quattoni and Torralba 2009), and the 15-scene

data set (Lazebnik et al. 2006).

2.2.3 Region-based local features

Region-based algorithms segment images and extract features from different regions. Boutell

et al. (2006) proposed an algorithm to classify scenes using the identities of regions and
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(a) (b) (c) (d)

Fig. 8 Illustration of SEV regions of input image in Fig. 1a and the computed edge maps along the a horizontal

direction, b vertical direction, c +45 degree direction, and d −45 degree direction

the spatial relations between regions. Gokalp and Aksoy (2007) proposed a bag-of-regions

algorithm for scene classification. In their algorithm, an image is partitioned into regions, and

the structure of the image is represented by a bag of individual regions and a bag of region

pairs. Juneja et al. (2013) used distinctive parts for scene categorization. First, the distinctive

parts in each category are detected and learned based on HOG features. Then, the features

of parts are extracted and encoded using bag of words or Fisher vector.

An example of region-based algorithms is the sequential edge vectors (SEV) proposed

by Morikawa and Shibata (2012). The SEV reduces the ambiguity of features caused by

the inter-class variations among scene categories. Unlike other region-based algorithms that

segment the entire image, the SEV segments only local regions. The SEV method considers

an image as a document consisting of sentences, in which the separated regions play the role

of words, and oriented edges play the role of letters. The SEV identifies each word from the

letters, forms the document vector from words, and finally determines the topic vector.

The main steps of the SEV method can be described as follows. First, oriented edges

of input image are detected by horizontal, vertical, and diagonal edge filters. Second, the

horizontal or vertical edge map is used to generate fixed sentences (also called local threads).

All local threads are scanned from one end to the other, producing edge distribution vectors

in four directions. Next, the sum of absolute differences (SAD) between neighboring local

windows is calculated. The boundaries of meaningful sequences are determined by locating

peaks in the SAD histograms. Figure 8 shows the boundaries in four edge maps. Then, the

meaningful sequences form words that describe images. Finally, probabilistic latent semantic

analysis (PLSA) (Quelhas et al. 2005) is applied on meaningful sequences (words) to generate

topic vectors.

Using the 8-outdoor-scene data set, Morikawa and Shibata evaluated the SEV algorithm

on seven scene categories: coast, open country, forest, highway, mountain, street, and tall

building. The SEV method with a 16-by-16 scan window achieved a higher F-measure

(65 %) than a model that uses SIFT and PLSA (55 %).

2.3 Global feature formation

For scene categorization, global features are often extracted without image segmentation

or object detection to summarize the statistics of the image. For example, Renninger and

Malik (2003) computed histograms of features generated by a bank of Gaussian derivative

filters to represent scenes. Serrano et al. (2004) used quantized color histograms and wavelet

texture as global features for scene categorization. Furthermore, Mikolajczyk and Schmid

(2005) showed that the performance of visual descriptors depends not only on local regions
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but also global information. Therefore, several scene categorization algorithms focus on first

extracting suitable local features and then forming global features from regular grids. In the

following subsections, four representative algorithms for global feature formation in scene

categorization are described: the PCA, histograms, BoW, and Fisher vector.

2.3.1 Principal component analysis

Principal component analysis (PCA) represents data by a small number of principal com-

ponents. It has been used for dimensionality reduction in a wide range of computer vision

tasks, such as image categorization (Han and Chen 2009), face recognition (Guangda et al.

2002; Xie and Lam 2006), and feature selection (Malhi and Gao 2004; Yang and Li 2010;

Ebied 2012).

Ke and Sukthankar (2004) proposed a visual descriptor, known as PCA-SIFT, that com-

bines the SIFT and PCA. In their approach, a projection matrix P is calculated from a large

number of image patches. For each training image patch, a feature vector is generated from

the horizontal and vertical gradient maps. The covariance matrix C of all feature vectors is

calculated. Eigenanlysis is applied to C , and the n most-significant eigenvectors of C are

selected to form the projection matrix P . In Ke and Sukthankar’s experiments, n was selected

to be 20, which is significantly smaller than the number of features (128) in the standard SIFT

algorithm. Compared to the SIFT features, the PCA-SIFT features lead to an improvement

in image matching, when evaluated on the INRIA Graffiti data set (2004).

2.3.2 Histogram

Histogram is a method to represent the statistical distribution of data. It is efficient and robust

to noise compared to other feature formation methods (Hadjidemetriou et al. 2004). Therefore,

it has been used in many image processing tasks, including image and video retrieval (Lee

et al. 2003; Song et al. 2004; Jeong et al. 2003; Liu and Yang 2013), image structure analysis

(Koenderink and Van Doorn 1999), image filtering (Kass and Solomon 2010; Igarashi et al.

2013), and color indexing (Swain and Ballard 1991; Stricker and Orengo 1995; Funt and

Finlayson 1995; Kikuchi et al. 2013). In several scene categorization algorithms, such as the

LBP and its variants, global features are formed by calculating the histogram of local features

(Ojala et al. 1996; Gupta et al. 2009; Wu and Rehg 2011).

A weakness of the histogram approach is that it does not capture the spatial information.

To encode spatial information, Hadjidemetriou et al. (2004) proposed multi-resolution his-

tograms that extract shape and texture features at several resolution levels. Given an image

I (x, y) with n gray-levels, the spatial resolution of the image is decreased by convolv-

ing it with a Gaussian kernel G(x, y; σ). The multi-resolution histograms are calculated as

h[I ∗ G(σ )]. Then, the cumulative histograms corresponding to each image resolution is

computed. Next, the differences between the cumulative histograms of consecutive levels

are calculated. The difference histograms are sub-sampled and normalized to make them

independent of the sub-sampling factor. Finally, the normalized difference histograms are

concatenated to form a feature vector.

2.3.3 Bag-of-words

The bag-of-word (BoW) algorithms were first used in document classification to simplify the

representation of natural language. Recently, BoW has been used to classify images based
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on the appearance of image patches. In the BoW, features are extracted from regular grids

(feature extraction) and quantized into discrete visual words (encoding). The coding strategy

aims to generate similar codes for similar features. A compact representation of visual words

is built for each image based on a trained dictionary (codebook).

Qin and Yung (2010) proposed an algorithm based on contextual visual words. To train

the visual words, SIFT features are calculated from both the region of interest (ROI) and the

regions surrounding the ROI. Fei-Fei and Perona (2005) proposed a BoW algorithm based on

latent Dirichlet allocation (Blei et al. 2003). They compared different local patch detectors,

such as the regular grids, random sampling, saliency detector (Kadir and Brady 2001), and

the difference-of-Gaussian detector (Lowe 2004). Their experiment results showed that the

regular grids perform better than the random sampling, saliency detector, and difference-of-

Gaussian detector for scene categorization.

Next, we describe three representative BoW algorithms for training visual words on regular

grids: SPM (Lazebnik et al. 2006), ScSPM (Yang et al. 2009), and LLC (Wang et al. 2010).

Spatial pyramid matching (SPM) for recognizing natural scenes was proposed by Lazebnik

et al. (2006). Unlike the traditional BoW algorithms that extract order-less features, the SPM

algorithm retains the global geometric correspondence of images. It divides the input image

into regular grids and computes local features, such as SIFT and HOG in each grid. The visual

vocabulary is formed by k-means clustering, and then all features are formed using vector

quantization (VQ). Based on the trained dictionary, local features are represented. Finally,

the spatial histograms (average pooling) of coded features are used as feature vectors. To

recognize multiple scene categories, a support vector machine with the one-versus-all strategy

is used.

Sparse coding based spatial pyramid matching (ScSPM) was suggested by Yang et al.

(2009) to improve the efficiency of the SPM. The original SPM uses k-means vector quan-

tization, whereas the ScSPM uses sparse coding to quantize the local features. Furthermore,

for spatial pooling, the original SPM uses histograms, whereas the ScSPM applies the max

operator, which is more robust to local spatial translations. For the ScSPM, the linear-SVM

classifier is used to reduce the computation cost. The experiments by Yang et al. show that

the sparse coding of SIFT descriptors with the linear-SVM outperforms several methods,

including kernel codebooks (Gemert et al. 2008), SVM-K-Nearest-Neighbor (Zhang et al.

2006), and naive Bayes nearest-neighbor (NBNN) (Boiman et al. 2008).

Locality-constrained linear coding (LLC) was proposed by Wang et al. (2010) to reduce

the computational cost of the SPM. Because of the importance of locality, as demonstrated

by Yu et al. (2009a), the LLC replaces the sparsity constraint used in ScSPM with the locality

constraint to select similar bases for local features from the trained visual words. In Wang

et al.’s approach, a linear weighted combination of these bases is learned to represent local

features. Their experiments on the Catech-101 data set (Fei-Fei et al. 2007a) show that the

LLC achieved higher classification rates than the ScSPM, NBNN (Boiman et al. 2008), and

kernel codebooks (Gemert et al. 2008). Recently, Goh et al. (2014) improved the ScSPM and

LLC by using a deep architecture. The deep architecture merges the strengths of the BoW

framework and the deep learning method to encode the SIFT features.

2.3.4 Fisher vector

Fisher vector (FV) is a feature encoding algorithm proposed by Sanchez et al. (2013). The

local features extracted from dense multi-scale grids are represented by their deviation from

a Gaussian mixture model (GMM). The local features are mapped to a higher-dimensional

space which is more amenable to linear classification.
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In the FV algorithm, a GMM is first computed from a training set of local features using

the Expectation–Maximization algorithm. The parameters of a GMM are denoted by λ =

{(wk,µk, σ k), k = 1, . . . , K }, where wk is the mixture weight, µk is the mean vector, and

σ k is the covariance matrix of the kth Gaussian component.

Let X = {xt , t = 1, . . . , T } be the set of local descriptors extracted from an input image.

For local descriptor xt , let pλ(xt ) be the probability density function of local descriptor,

as computed by the GMM model. Let Lλ be the square-root of the inverse of the Fisher

information matrix. The normalized gradient statistics are computed as

ϕ(xt ) = Lλ∇λ log pλ(xt ). (2)

A Fisher vector is the sum of normalized gradient statistics:

G
X
λ =

T
∑

t=1

ϕ(xt ) (3)

The final Fisher vector is the concatenation of the gradients GX
wk

, GX
µk

, and GX
σ k

. To improve the

classification accuracy, two normalization steps, l2-normalization and power normalization

(Perronnin et al. 2010), can be applied on the Fisher vector.

Compared with other bag-of-words algorithms, the Fisher vector has many advantages.

First, it provides a generalized method to define a kernel from a generative process of the

data. Second, Fisher vector can be computed from small vocabularies with a lower computa-

tional cost. However, the Fisher vector is dense, which leads to storage issues for large-scale

applications.

2.3.5 Composite global features

Global features are also formed by combining different global features. For example, the

CENTRIST features are generated by combining histograms and PCA (Wu and Rehg 2011).

The HOG-SPM and SIFT-SPM features are first extracted by BoW algorithms, and then

accumulated by spatial histograms (Lazebnik et al. 2006). The SIFT-ScSPM (Yang et al.

2009) and SIFT-LLC (Wang et al. 2010) represent local features by the BoW algorithm

and the max pooling. The image categorization method proposed by Krapac et al. (2011)

combines the SPM and the Fisher kernel to encode spatial layout of images.

3 Data sets and performance measures

Progress in image recognition is due in part to the existence of comprehensive data sets

on which new or existing algorithms can be rigorously evaluated (Salzberg 1997; Phillips

et al. 2000). In this section, we review the publicly available data sets and the performance

measures for scene categorization algorithms, and discuss their characteristics.

3.1 Data sets for scene categorization

Because of the difficulty of finding one representative data set, it is not sufficient to evaluate

a scene categorization algorithm on only one data set. For example, on the Caltech-101 data

set, the LLC algorithm is found to have a higher classification rate than the ScSPM algorithm

(Wang et al. 2010). However, on the 15-scene data set, the ScSPM algorithm has a higher

classification rate than the LLC algorithm (see Sect. 4.4). One possible reason is that built-in
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Table 3 Data sets for scene categorization

Data set Data set size (images) Image categories

8-outdoor-scene (Oliva and Torralba 2001) 2600 8 outdoor scenes

13-natural-scene (Fei-Fei and Perona 2005) 3759 13 natural scenes

15-scene (Lazebnik et al. 2006) 4485 15 indoor/outdoor scenes

67-indoor-scene (Quattoni and Torralba 2009) 15,620 67 indoor scenes

SUN397 (Xiao et al. 2014a) 108,754 397 general scenes

Places205 (Zhou et al. 2014) 2,448,873 205 general scenes

biases are present when collecting image data for a recognition task, e.g. the viewing angle,

the type of background scene, and the composition of objects. These intrinsic biases cause

every data set to represent the physical world differently. Therefore, scene categorization

algorithms should be evaluated on multiple large-scale data sets that exhibit more diversity

and less bias.

Table 3 summarizes the major data sets used for scene categorization. For each data set, the

source, the number of images, and the number of image categories are given. In the following,

we describe the major data sets. Three benchmark data sets, 8-outdoor-scene (Oliva and

Torralba 2001), 13-natural-scene (Fei-Fei and Perona 2005), and 15-scene (Lazebnik et al.

2006), have been used by many researchers (Grossberg and Huang 2009; Qin and Yung 2010;

Jiang et al. 2010; Kazuhiro 2011; Cakir et al. 2011; Morikawa and Shibata 2012; Meng et al.

2012; Goh et al. 2014; Zhang et al. 2015). The 8-outdoor-scene data set has eight categories

of only-outdoor scenes (coast, forest, highway, inside city, mountain, open country, street,

and tall buildings), whereas the 13-natural-scene data set contains the same eight categories

of outdoor scenes and five additional categories of indoor scenes (bedroom, kitchen, living-

room, office, and store). The 15-scene data set includes all images from the 13-natural-scene,

and two additional outdoor scenes of man-made structures (suburb and industry). The images

in each category are from different sources, such as COREL data set, Google image search,

and personal photographs.

Large data sets have been developed to increase the number of semantic categories and the

diversity of images. The 67-indoor-scene data set (Quattoni and Torralba 2009) divides five

indoor scenes (working places, home, leisure, store, and public spaces) into 67 sub-categories.

Common objects appear in multiple categories; therefore, it is harder to distinguish between

the image categories. The SUN397 data set (Xiao et al. 2014a) has 397 scene categories, from

abbey, bedroom, and castle to highway, theater, and yard. There are at least 100 images in each

category. The Places205 data set (Zhou et al. 2014) has 205 scene categories; each category

has at least 5000 images. Among the benchmark data sets listed in Table 3, the SUN397 has

the most number of categories and the Places205 has the most number of images.

3.2 Performance measures

To evaluate a scene categorization system, a data set is typically partitioned into three separate

subsets: training, validation, and test. The training subset is used to determine the system’s

adjustable parameters, the validation set is used to prevent over-training, and the test set is

used to estimate the system’s generalization capability. The generalization capability of a

system is commonly measured using the classification rate (CR), which is the percentage
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of test images that are correctly classified. For example, the CR has been used for scene

categorization in (Elfiky et al. 2012; Wu and Rehg 2011; Kazuhiro 2011; Meng et al. 2012).

To prevent bias in partitioning the data set and to estimate more reliably the generalization

capability, an alternative technique known as n-fold cross-validation is usually adopted. The

image data set is divided into n subsets of equal size. For each validation fold, one subset

is used for testing, and the remaining (n − 1) subsets are used for training and validation.

This is repeated n times, each time a different subset fold is used for testing. Finally, the n

classification rates are averaged to give the overall CR.

Scene categorization is a multi-class recognition problem. Many scene categorization

algorithms are also evaluated using the confusion matrix (Wu and Rehg 2011; Perina et al.

2010; Meng et al. 2012; Morikawa and Shibata 2012; Cakir et al. 2011; Qin and Yung 2010).

For a problem involving K categories, the confusion matrix has K rows and K columns.

Each row represents an actual category, and each column represents a predicted category. The

entry at row r , column c is the number of category r samples that are classified as category c.

Clearly, the correct classification for individual categories are the diagonal entries, whereas

the miss-classification are the non-diagonal entries.

Evaluation measures for two-class problems are also applied for scene categorization.

Consider a scene category r . The positive class consists of all samples belonging to category

r , whereas the negative class consists of all samples belonging to the remaining categories.

Four measures can be computed:

– True positives (tp) is the number of test samples in the positive class that are correctly

classified.

– False positives ( f p) is the number of test samples in the negative class that are incorrectly

classified.

– False negatives ( f n) is the number of test samples in the positive class that are incorrectly

classified.

– True negatives (tn) is the number of test samples in the negative class that are correctly

classified.

The precision rate P and the recall rate R are then defined as

P =
tp

tp + f p
, and R =

tp

tp + f n
. (4)

A good scene categorization system should have a high precision rate and a high recall rate.

These two requirements can be reflected in a single measure called the F-measure, which is

the harmonic mean of the precision rate and recall rate:

F =
2PR

P + R
. (5)

The plot of the true positive rate versus the false positive rate is called the receiver oper-

ating characteristic (ROC) curve (Fawcett 2006). It is a useful tool for visualizing the scene

categorization performance, when a system parameter is varied. Another performance mea-

sure is the area-under-the-ROC-curve or AUC. The ROC curve and the AUC have been used

for scene categorization in (Jia et al. 2009) and (Xiao et al. 2014a).

The measures described above are suitable for evaluating the performance of a complete

scene categorization system that includes both a feature extractor and a classifier. To evaluate

the performance of the feature extraction independently of the classifier, we can use the class

separability of the extracted features. The Fisher’s discriminant analysis (FDA) is a tool for

analyzing the separability of features. For example, Li et al. (2003) and Chin et al. (2011) used
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FDA to analyze multi-class image classification. Consider a scene categorization problem

that involves K classes. The within-class covariance matrix Cw is calculated as

Cw =

K
∑

k=1

∑

x∈ωk

(x − x̄k)(x − x̄k)
T , (6)

where x̄k is the mean vector of class ωk . The between-class covariance matrix Cb is given by

Cb =

K
∑

k=1

Nk(x̄k − x̄)(x̄k − x̄)T , (7)

where x̄ is the mean vector of all classes and Nk is the number of samples in class ωk . The

S score of the feature vector is given by

S =
|trace(Cb)|

|trace(Cw)|
. (8)

A high S score means there is a high separability between the K classes using the given

feature vector.

4 Experimental evaluation and results

In this section, we present an extensive experimental evaluation of the performance of state-of-

the-art descriptors, which include biologically-inspired, local, and global feature extraction

methods. The selected descriptors were evaluated on four benchmark data sets with respect to

scene categorization accuracy and class separability of feature vectors. For scene categoriza-

tion, five measures are used to evaluate the classification accuracy, namely classification rate,

precision, recall, F-measure, and AUC. By using the same classification protocol described

in (Krizhevsky et al. 2012), we are able to compare descriptors on the SUN397 data set with

several recent methods: ImageNet-CNN (Krizhevsky et al. 2012), BOP-FV (Juneja et al.

2013), discriminative patches (Doersch et al. 2013), OverFeat (Sermanet et al. 2014), Places-

CNN (Zhou et al. 2014), and DeCAF (Donahue et al. 2014). For class separability, the visual

descriptors are compared using Fisher discriminant analysis.

Section 4.1 describes the four image data sets used in the experiments. Section 4.2 and 4.3

describe the implementation of the descriptors and classifiers. Section 4.4 presents results of

a comparative study using different classifiers with four data sets. Finally, Sect. 4.5 evaluates

the class separability and stability of feature vectors.

4.1 Image data sets

The experiments were conducted on four data sets: the 8-outdoor-scene data set, the 15-scene

data set, the 67-indoor-scene data set, and the SUN397 data set. The 8-outdoor-scene data

set and the 15-scene data set have been used as benchmark for scene categorization by many

researchers (Fei-Fei and Perona 2005; Yang et al. 2009; Quattoni and Torralba 2009; Li

et al. 2010; Jiang et al. 2010; Wu and Rehg 2011; Kazuhiro 2011; Karayev et al. 2014). The

67-indoor-scene data set contains 67 indoor scene categories. There are at least 100 images

per category and all images have a size of at least 200×200 pixels. The 67-indoor-scene data

set has been used to evaluate scene categorization in (Quattoni and Torralba 2009; Wang et al.

2010; Wu and Rehg 2011; Doersch et al. 2013; Juneja et al. 2013; Bergamo and Torresani

2014; Cheng et al. 2015; Dixit et al. 2015). The SUN397 data set contains 397 scene categories
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and 108,754 images. It has been used as a benchmark for scene categorization by Huang et al.

(2014b), Sanchez et al. (2013), Sun et al. (2013), Bergamo and Torresani (2014), Zhou et al.

(2014), Donahue et al. (2014), and Dixit et al. (2015).

4.2 Implementation of visual descriptors

This section describes the implementation of the visual descriptors compared in our experi-

ments. There are two biologically-inspired descriptors (GIST and HMAX), four SIFT-based

descriptors (SIFT-SPM, SIFT-ScSPM, SIFT-LLC, and SIFT-FV), two other BOW-based

descriptors (HOG-SPM and SURF-ScSPM), five LBP-based descriptors (LBP, Uniform LBP,

LBP-HF, PLBP, CENTRIST), and one object-based descriptor (OB). Most of the 14 descrip-

tors combine local and global features.

The biologically-inspired descriptors implemented in this paper are GIST and HMAX.

The GIST descriptor is a low dimensional representation of an image. In our experiment,

the normalized input image was convolved with Gabor filters at 4 scales and 8 orientations.

Each filtered output was down-sampled to a 4 by 4 patch and reshaped to a 16 element vector.

The GIST descriptor assembled all outputs from the 32 filters to form a feature vector with

512 elements. The HMAX descriptor contains two simple layer S1 and S2, and two complex

layer C1 and C2. In our experiment, the S1 layer was formed from the outputs of Gaussian

filters with 4 orientations and 12 scales. In layer C1, the S1 feature maps were grouped into

4 filter bands of a certain scale range. The max pooling operation was applied to each filter

bank. Only S1 units with the same preferred orientation fed into a given C1 unit. The S2

features were formed from C1 features with 256 visual words (learned from C1). The C2

features were generated from S2 features using max pooling. The final HMAX descriptor

had 4069 features.

The SIFT-based descriptors were compared to evaluate the encoding capability of SPM,

ScSPM, LLC, and FV. For the four SIFT-based descriptors (SIFT-SPM, SIFT-ScSPM, SIFT-

LLC, and SIFT-FV), their local features were calculated from overlapping patches (16×16) on

a dense grid every 8 pixels. The local patch was first filtered with Gaussian filters to generate 8

orientation maps. The histograms were then generated from the orientation maps and further

weighted by a Gaussian function. The SIFT descriptor was formed by concatenating the

orientation histograms. The SIFT-SPM descriptor extracted global features from dense SIFT

features by the SPM algorithm. In the experiments, k-means clustering and PCA were used to

train and extract 200 visual words from random samples of local features. The local features

were quantized by the trained visual words. Finally, histograms of quantized features were

formed with 1000 bins. The SIFT-ScSPM descriptor formed global features from dense-SIFT

features using the ScSPM algorithm. A feature dictionary including 1024 visual words was

obtained by applying k-means clustering to the local features. Finally, the ScSPM algorithm

was employed to convert the local SIFT features to global features. The SIFT-LLC descriptor

formed global features from dense-SIFT features using the LLC algorithm. The SIFT-LLC

descriptor converted the local feature maps to global features based on the n nearest neighbors

of the feature dictionary. In the experiment, the number of neighbors was set to 5. The SIFT-

FV descriptor extracted global features from dense-SIFT features using the Fisher vector

encoding. The dictionary was trained using a Gaussian mixture model with 256 Gaussians.

Other BOW-based descriptors that are similar to the SIFT-based descriptors include

HOG-SMP and SURF-ScSPM. In our experiment, the HOG-SPM descriptor extracted local

features from overlapping patches (16 × 16) on a dense grid every 8 pixels. The input image

was first normalized globally by the power-law. Then, image gradients were computed along

the horizontal and vertical directions. For each patch, histograms for multiple orientations
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were computed to form HOG features. The global features were then generated by the spatial

pyramid matching (SPM). The SURF-ScSPM descriptor used the SURF for local feature

extraction. The ScSPM algorithm was applied for global feature formation. Different from

the SIFT-based descriptors and HOG-SMP that extracted local features from dense patches,

the SURF-ScSPM descriptor extracted local features from interest-points (sparse patches).

In our experiment, at least 100 interest points were found in each image.

The LBP-based descriptors compared in the experiment include LBP, uniform LBP, LBP-

HF, PLBP, and CENTRIST. The LBP descriptor is a histogram of the LBP feature map.

In our experiment, the feature map was generated from 3-by-3 blocks of the entire image.

The number of histogram bins was selected as 256. When the number of histogram bins

was reduced, our preliminary experiments indicated that the classification rate dropped by

about 10 %. The uniform LBP descriptor is similar to the LBP descriptor, but it only encodes

uniform patterns of the LBP. For the uniform LBP, we represented each input image with 59

uniform patterns. The histograms of the uniform LBP were calculated with 59 bins. The LBP-

HF descriptor is an extension of the uniform LBP. In our experiment, the histograms of the

uniform LBP were first calculated on the input image and its 90-degree rotated version. Then,

the Fourier transform was applied on the histograms. The magnitudes of Fourier coefficients

were calculated as the LBP-HF features. The final LBP-HF vector had 76 elements: half of

the elements were generated from the original image, and the other half from the rotated

image. The PLBP descriptor is an LBP descriptor with spatial pyramid representation. To

calculate PLBP features, each input image was decomposed into 5 Gaussian pyramid images

with dyadic scales. The histograms of the LBP in each pyramid image were combined to

form the PLBP features. The CENTRIST descriptor first converted input image into the

CENTRIST feature map (similar to LBP feature map). Then, spatial histogram with 3 spatial

levels and PCA with 40 eigenvectors were employed to form the CENTRIST feature map.

The dimension of the CENTRIST was 1240.

The object-based descriptor OB extracts features from a large number of pre-trained object

detectors. It has the longest feature-extraction stage among the compared descriptors. In our

experiment, 176 object detectors with 12 detection scales and 3 spatial pyramid levels were

used. An OB descriptor with 44,604 features was formed by max pooling.

4.3 Classification procedure

Support Vector Machines (SVM) with linear, RBF and HIK kernels were used to classify the

different descriptors. The linear kernel is given by

K (fi , f j ) = fi · f j , (9)

where fi and f j are two feature vectors. The RBF kernel is given by

K (fi , f j ) = exp
{

−γ ||fi − f j ||
2
}

, (10)

where γ is a positive scalar. The HIK kernel is computed as

K (fi , f j ) =

N
∑

n=0

min
[

hi (n), h j (n)
]

, (11)

where hi (n) and h j (n) are, respectively, the N -bin histograms of fi and f j .

Five-fold cross validation was used to evaluate the performance of the SVM classifiers with

different visual descriptors. In each fold, four subsets were used for training and validation,

and the remaining subset was used for testing. The parameters of the SVM classifiers were
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determined using a validation set in each fold. The average values of CR, P, R, F, and AUC

were calculated over the five folds. The standard deviations of CR, P, R, F, and AUC over

the five folds are used as a measure of variation in the classification performance.

4.4 Classification results

The following four subsections present and discuss the results of image classification on the

15-scene, 8-scene, 67-indoor-scene, and SUN397 data sets.

4.4.1 Classification results on the 15-scene data set

In the first experiment, the 14 selected descriptors were evaluated on the 15-scene data set.

Tables 4, 5 and 6 present the classification performance measures of the different visual

descriptors using the linear-SVM, RBF-SVM, and HIK-SVM. In these tables (and also

Tables 7, 8, and 9), the best performance measure is indicated in bold font. The results

in these tables show that each descriptor achieves its best classification rate using a different

SVM classifier. For example, the SIFT-ScSPM, SIFT-LLC, SIFT-FV, SURF-ScSPM, CEN-

TRIST, and OB achieve higher classification rates with the linear-SVM than with the RBF-

or HIK-SVM. The LBP-HF and GIST have their highest classification rates when using the

RBF-SVM. The HOG-SPM, SIFT-SPM, LBP, uniform LBP, PLBP, and HMAX achieve their

highest classification rates with the HIK-SVM. The highest classification rates on the 15-scene

data set for individual descriptors are (in a descending order) the SIFT-ScSPM (84.5 %),

SIFT-LLC (83.0 %), SIFT-FV (80.2 %), HOG-SPM (80.0 %), OB (79.9 %), SIFT-SPM

(77.9 %), SURF-ScSPM (73.3 %), PLBP (73.0 %), GIST (72.8 %), CENTRIST (72.7 %),

LBP (71.9 %), uniform LBP (70.6 %), LBP-HF (67.3 %), and HMAX (63.9 %).

The biologically-inspired algorithms HMAX algorithm has the lowest CRs among the

compared algorithms. As shown in Tables 4, 5 and 6, the CRs of the HMAX using the

linear-SVM, RBF-SVM, and HIK-SVM are 61.1, 62.4, and 63.9 %, respectively. The other

biologically-inspired descriptor, namely the GIST, has CRs of 71.5, 72.8, and 72.1 %, respec-

tively. Furthermore, the GIST algorithm performed better than the LBP-based and HMAX

algorithms with all three SVM kernels.

The SIFT-ScSPM outperforms all other 13 descriptors on the 15-scene data set; its CRs

is 84.5 % for the linear-SVM, 83.8 % for the RBF-SVM, and 83.6 % for the HIK-SVM. The

SIFT-ScSPM algorithm also has higher values of precision, recall, F-measure, and AUC than

other algorithms.

The SIFT-LLC and SIFT-FV perform better than the HOG-SPM and the SIFT-SPM. The

SIFT-LLC uses the locality-constrained linear coding and the SIFT-FV uses Fisher kernel

coding, whereas the HOG-SPM and the SIFT-SPM uses vector quantization for global feature

formation. The result indicates that a better encoding algorithm like ScSPM and Fisher

vector improves the classification performance. Note that among the top-seven algorithms,

SIFT-ScSPM, SIFT-LLC, SIFT-FV, HOG-SPM, SIFT-SPM, and SURF-ScSPM all encode

local features using BoW.

It is interesting to note that the classification rates of HOG-SPM and SIFT-SPM improve by

8.3 and 12.0 %, respectively, when using the RBF-SVM compared to using the linear-SVM. In

addition, using the HIK-SVM increases the classification rates of HOG-SPM and SIFT-SPM

by 9.4 and 17.0 %, respectively. However, for the SIFT-LLC, SIFT-ScSPM, and SIFT-FV,

the classification performance is not improved by using the RBF-SVM and HIK-SVM. Note

that previous tests (Yang et al. 2009; Wang et al. 2010) on several benchmark data sets also
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Table 4 Scene categorization performance on the 15-scene data set using the linear-SVM

ID Algorithms CR (%) Precision (%) Recall (%) F-measure (%) AUC (%)

1 SIFT-ScSPM 84.5 ± 1.5 84.8 ± 1.7 84.0 ± 1.4 84.1 ± 1.4 98.9 ± 0.1

2 SIFT-LLC 83.0 ± 1.3 83.0 ± 1.5 82.2 ± 1.5 82.3 ± 1.4 98.8 ± 0.2

3 SIFT-FV 80.2 ± 1.8 79.6 ± 1.9 79.2 ± 1.9 79.0 ± 2.0 98.4 ± 0.1

4 HOG-SPM 70.6 ± 2.7 71.7 ± 2.7 68.7 ± 2.6 70.0 ± 2.4 96.3 ± 0.3

5 OB 79.9 ± 1.6 80.0 ± 1.6 79.1 ± 2.0 79.0 ± 1.9 97.7 ± 0.3

6 SIFT-SPM 60.9 ± 4.0 62.3 ± 5.6 57.8 ± 4.3 57.0 ± 4.7 94.4 ± 0.5

7 SURF-ScSPM 73.3 ± 2.1 72.9 ± 2.1 72.3 ± 2.3 72.3 ± 2.4 97.3 ± 0.4

8 GIST 71.5 ± 1.2 71.1 ± 1.4 70.6 ± 1.5 71.2 ± 1.0 95.7 ± 0.4

9 CENTRIST 72.7 ± 1.4 72.8 ± 1.1 72.2 ± 1.9 71.9 ± 1.7 95.9 ± 0.3

10 LBP 71.1 ± 2.9 69.8 ± 4.0 70.3 ± 3.4 69.3 ± 3.9 94.9 ± 1.2

11 Uniform LBP 56.2 ± 3.0 55.6 ± 5.8 54.7 ± 3.2 52.6 ± 3.6 92.8 ± 1.0

12 LBP-HF 64.9 ± 3.4 63.8 ± 4.6 63.9 ± 3.8 62.5 ± 4.3 92.8 ± 1.0

13 PLBP 53.8 ± 3.6 52.7 ± 4.7 52.4 ± 3.6 51.5 ± 4.1 92.1 ± 1.5

14 HMAX 61.1 ± 4.1 60.8 ± 4.0 59.8 ± 4.5 59.9 ± 4.3 79.7 ± 6.9

Table 5 Scene categorization performance on the 15-scene data set using the RBF-SVM

ID Algorithms CR (%) Precision (%) Recall (%) F-measure (%) AUC (%)

1 SIFT-ScSPM 83.8 ± 1.7 84.2 ± 1.6 83.2 ± 1.6 83.5 ± 1.3 98.3 ± 0.0

2 SIFT-LLC 82.2 ± 1.1 82.5 ± 1.2 81.5 ± 1.1 81.5 ± 1.2 98.2 ± 0.1

3 SIFT-FV 79.4 ± 1.7 78.9 ± 2.1 78.1 ± 2.1 77.6 ± 2.3 97.5 ± 0.2

4 HOG-SPM 78.9 ± 1.2 76.8 ± 3.2 76.3 ± 2.9 76.1 ± 3.1 96.5 ± 0.5

5 OB 73.2 ± 2.0 73.5 ± 1.9 72.0 ± 2.4 72.1 ± 2.3 95.5 ± 0.4

6 SIFT-SPM 72.9 ± 1.3 72.0 ± 1.6 71.6 ± 1.4 71.3 ± 1.4 95.2 ± 0.4

7 SURF-ScSPM 72.4 ± 1.6 71.6 ± 1.8 71.1 ± 1.7 70.6 ± 1.8 95.8 ± 0.4

8 GIST 72.8 ± 1.2 72.2 ± 1.0 71.8 ± 1.4 71.5 ± 1.2 95.2 ± 0.2

9 CENTRIST 72.6 ± 1.8 72.7 ± 1.1 72.0 ± 2.1 71.8 ± 1.8 91.2 ± 1.0

10 LBP 70.9 ± 4.2 69.6 ± 5.2 70.1 ± 4.8 69.2 ± 5.3 96.2 ± 0.7

11 Uniform LBP 67.8 ± 3.9 66.8 ± 5.0 66.8 ± 4.4 65.6 ± 4.9 94.0 ± 0.8

12 LBP-HF 67.3 ± 4.4 66.0 ± 5.4 66.5 ± 4.9 66.3 ± 4.4 94.0 ± 0.8

13 PLBP 69.4 ± 3.5 69.2 ± 4.9 68.2 ± 4.1 68.1 ± 4.4 95.4 ± 1.0

14 HMAX 62.4 ± 3.7 61.6 ± 3.4 61.0 ± 4.0 60.8 ± 3.7 79.5 ± 6.0

indicate that the choice of the SVM kernel does not affect the performance of the LLC and

ScSPM significantly.

The SURF-ScSPM is also a BOW-based descriptor. However, it extracts local features

from the interest point patches. The CRs of SURF-ScSPM is lower than the CRs of SIFT-

ScSPM, SIFT-LLC, and HOG-SPM, which extract local features from the dense patches.

The result indicates that sparse local features can not cover enough information for scene

categorization compared to dense local features.

The LBP, uniform LBP, LBP-HF, PLBP, and CENTRIST have higher classification rates

than the HMAX on the 15-scene data set. The PLBP has the highest classification rate
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Table 6 Scene categorization performance on the 15-scene data set using the HIK-SVM

ID Algorithms CR (%) Precision (%) Recall (%) F-measure (%) AUC (%)

1 SIFT-ScSPM 83.6 ± 1.6 84.2 ± 1.7 83.2 ± 1.4 83.2 ± 1.4 98.2 ± 0.1

2 SIFT-LLC 82.6 ± 1.5 82.8 ± 1.4 82.1 ± 1.3 82.1 ± 1.3 98.2 ± 0.0

3 SIFT-FV 80.0 ± 1.7 80.1 ± 2.0 79.7 ± 1.4 79.3 ± 1.7 97.7 ± 0.2

4 HOG-SPM 80.0 ± 2.6 79.5 ± 2.5 79.7 ± 2.5 79.6 ± 2.4 97.8 ± 0.2

5 OB 76.9 ± 2.0 76.9 ± 1.8 76.0 ± 2.3 76.0 ± 2.2 97.4 ± 0.2

6 SIFT-SPM 77.9 ± 1.2 77.5 ± 1.3 76.8 ± 1.0 76.8 ± 1.0 97.0 ± 0.3

7 SURF-ScSPM 72.3 ± 2.4 71.4 ± 2.5 71.2 ± 2.5 70.6 ± 2.6 95.6 ± 0.4

8 GIST 72.1 ± 0.7 71.8 ± 0.7 71.4 ± 0.9 72.1 ± 0.9 95.2 ± 0.2

9 CENTRIST 70.9 ± 2.4 71.3 ± 1.8 70.1 ± 2.6 70.0 ± 2.3 95.9 ± 0.4

10 LBP 71.9 ± 2.5 71.0 ± 3.2 71.1 ± 3.2 70.5 ± 3.4 95.7 ± 0.8

11 Uniform LBP 70.6 ± 3.5 70.4 ± 4.4 69.8 ± 4.0 69.3 ± 4.5 95.7 ± 1.0

12 LBP-HF 66.4 ± 3.3 65.6 ± 4.4 65.5 ± 3.7 64.8 ± 4.2 95.7 ± 1.0

13 PLBP 73.0 ± 3.4 72.3 ± 5.1 72.9 ± 4.2 72.6 ± 4.7 96.6 ± 1.0

14 HMAX 63.9 ± 3.4 63.5 ± 3.6 62.5 ± 3.7 62.6 ± 3.6 82.9 ± 8.3

(73.0 %) among the LBP-based descriptors. For the original LBP, uniform LBP, and PLBP,

scene categorization performance is better using the HIK-SVM than the linear-SVM and

the RBF-SVM. The highest classification rates of LBP, uniform LBP, PLBP are 71.9, 70.6,

and 73.0 %, respectively. For the LBP-HF algorithm, a higher classification rate (67.3 %) is

achieved using the RBF-SVM, compared to the linear-SVM (64.9 %) and HIK-SVM (66.4 %).

The highest CR of the CENTRIST is 72.7 %, achieved with the linear-SVM. In fact, the

CENTRIST is also a LBP-based algorithm because it extracts local features using the LBP

feature map. The difference is that the CENTRIST forms the global feature vector using the

spatial PCA, whereas the LBP, uniform LBP, and LBP-HF form the global feature vector

using histograms. The PCA with 3 spatial levels accounts for the higher performance of the

CENTRIST over the original LBP algorithm.

The OB has a higher classification rate (79.9 %) than the SIFT-SPM, the LBP-based algo-

rithms, and the biologically-inspired algorithms on the 15-scene data set. The OB algorithm

achieves its highest classification rate of 79.9 % when using the linear-SVM. A similar obser-

vation was reported in (Li et al. 2010); the OB performs better than the SIFT-SPM on the

UIUC-sport-event data set, the 15-scene data set, and the 67-indoor scene data set. How-

ever, in our experiment, the OB has a lower CR than the SIFT-ScSPM and SIFT-LLC on the

15-scene data set. This result indicates that the global feature formation used in the OB is

not as good as in the SIFT-ScSPM and SIFT-LLC.

Based on this experiment, we determined a suitable SVM kernel for each of the descriptors.

The selected SVM classifiers were used in the subsequent experiments, where we evaluated

the visual descriptors on three other data sets: the 8-outdoor-scene, the 67-indoor-scene, and

the SUN397 data sets. The aim of the subsequent experiments is to identify the algorithms

that had consistent performance on multiple data sets.

4.4.2 Classification results on the 8-outdoor-scene data set

Table 7 shows scene categorization results of the 14 selected descriptors on the 8-outdoor

-scene data set. Among the 14 descriptors, the SIFT-ScSPM has the highest CR (89.8 %). The
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Table 7 Scene categorization performance on the 8-nature-outdoor-scene data set

ID Algorithms CR (%) Precision (%) Recall (%) F-measure (%) AUC (%)

1 SIFT-ScSPM (linear) 89.8 ± 1.8 90.4 ± 1.8 90.0 ± 2.2 90.0 ± 2.1 98.4 ± 0.4

2 SIFT-LLC (linear) 88.1 ± 2.1 88.6 ± 2.0 88.3 ± 2.6 88.3 ± 2.4 98.2 ± 0.6

3 SIFT-FV (linear) 88.1 ± 3.3 88.2 ± 3.4 88.0 ± 3.9 87.9 ± 3.8 98.7 ± 0.4

4 HOG-SPM(HIK) 88.1 ± 2.5 89.0 ± 2.1 88.2 ± 3.2 88.3 ± 2.9 98.3 ± 0.6

5 OB (linear) 87.5 ± 2.5 88.0 ± 2.3 87.6 ± 3.1 87.5 ± 2.8 98.4 ± 0.5

6 SIFT-SPM(HIK) 87.4 ± 2.3 87.9 ± 2.2 87.8 ± 2.5 87.6 ± 2.4 98.1 ± 0.4

7 SURF-ScSPM (linear) 85.9 ± 2.6 85.4 ± 2.8 85.0 ± 3.4 85.9 ± 3.2 98.0 ± 0.5

8 GIST (RBF) 85.3 ± 2.5 85.9 ± 2.4 85.4 ± 3.1 85.4 ± 2.9 98.0 ± 0.8

9 CENTRIST (linear) 83.5 ± 4.9 84.3 ± 4.8 83.6 ± 5.8 83.5 ± 5.5 97.2 ± 1.1

10 LBP (HIK) 76.6 ± 4.3 77.0 ± 4.6 76.8 ± 5.1 76.5 ± 4.9 95.8 ± 1.2

11 Uniform LBP (HIK) 75.2 ± 4.6 76.0 ± 4.6 75.2 ± 5.8 74.9 ± 5.5 95.0 ± 1.6

12 LBP-HF (RBF) 71.9 ± 3.7 72.1 ± 4.5 71.9 ± 4.7 71.4 ± 4.6 92.5 ± 2.6

13 PLBP (HIK) 81.4 ± 2.9 81.6 ± 3.6 81.3 ± 3.7 81.2 ± 3.8 96.7 ± 1.1

14 HMAX (HIK) 79.8 ± 0.8 80.1 ± 0.7 80.2 ± 0.7 80.0 ± 0.7 96.5 ± 0.3

SIFT-ScSPM, SIFT-LLC, SIFT-FV, HOG-SPM, OB, SIFT-SPM, and SURF-ScSPM are the

top-7 algorithms, listed in a descending order of CR. For the last 7 descriptors, the classifi-

cation rates of GIST, CENTRIST and PLBP are higher than 80.0 %. Note that the HMAX

achieves a higher CR (79.8 %) on the outdoor scene categorization than three LBP-based

algorithms (76.6 % for LBP, 75.2 % for uniform LBP, and 71.9 % for LBP-HF). This result

indicates that the biologically-inspired features are useful for outdoor scene categorization.

4.4.3 Classification results on the 67-indoor-scene data set

Table 8 shows scene categorization results of the 14 selected descriptors on the 67-indoor-

scene data set. The SIFT-ScSPM still has the highest CR (45.6 %) compared with the

other 13 descriptors. The top-7 descriptors are the SIFT-ScSPM, OB, SIFT-LLC, SIFT-FV,

SURF-ScSPM, HOG-SPM, and SIFT-SPM, listed in a descending order of CR. These seven

algorithms (except for the OB) use BoW methods for global feature formation. These results

indicate that using BoW methods is more robust than using histograms, PCA and down-

sampling, especially when the complexity of images is increased. Note that the OB descriptor

outperformed most of the BoW methods on the 67-indoor-scene data set. This result indicates

that the object information is useful for indoor scene categorization.

From Tables 4, 5, 6, 7 and 8, we can see that the ranking based on different measures

were consistent for the top-seven algorithms. A higher CR was also accompanied by a higher

precision, recall, F-measure, and AUC values.

4.4.4 Classification results on the SUN397 data set

Using the SUN397 data set, we compared the 14 visual descriptors and 4 recent methods based

on deep learning: OverFeat (Sermanet et al. 2014), DeCAF (Donahue et al. 2014), ImageNet-

CNN (Krizhevsky et al. 2012), and Places-CNN (Zhou et al. 2014). Note that training a

CNN for scene categorization on a large data set requires significant engineering efforts for

parameter tuning. To achieve a fair comparison, we evaluated the 14 visual descriptors using
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Table 8 Scene categorization performance on the 67-indoor data set

ID Algorithms CR (%) Precision (%) Recall (%) F-measure (%) AUC (%)

1 SIFT-ScSPM (linear) 45.6 ± 1.0 45.4 ± 2.5 35.8 ± 1.5 36.9 ± 1.7 91.7 ± 0.4

2 SIFT-LLC (linear) 43.9 ± 0.4 44.7 ± 1.2 35.2 ± 0.8 36.3 ± 0.9 91.3 ± 0.5

3 SIFT-FV (linear) 41.5 ± 1.2 46.0 ± 1.3 31.4 ± 1.0 32.5 ± 1.0 90.4 ± 0.6

4 HOG-SPM (HIK) 31.0 ± 0.5 27.5 ± 0.8 25.5 ± 0.6 25.8 ± 0.6 85.1 ± 0.6

5 OB (linear) 45.3 ± 0.5 43.7 ± 1.0 39.4 ± 0.7 39.2 ± 0.7 91.7 ± 0.4

6 SIFT-SPM (HIK) 31.4 ± 0.8 28.4 ± 1.1 25.9 ± 0.7 26.4 ± 0.8 85.3 ± 0.5

7 SURF-ScSPM (linear) 34.5 ± 0.7 35.5 ± 0.9 25.4 ± 0.4 26.2 ± 0.2 87.6 ± 0.3

8 GIST (RBF) 30.9 ± 0.9 28.0 ± 0.1 25.2 ± 0.3 25.7 ± 0.4 84.4 ± 0.4

9 CENTRIST (linear) 12.2 ± 11.0 15.4 ± 8.5 10.8 ± 9.6 10.1 ± 9.6 78.4 ± 3.8

10 LBP (HIK) 22.9 ± 0.6 21.0 ± 1.0 17.7 ± 0.9 18.4 ± 0.9 81.7 ± 0.5

11 Uniform LBP (HIK) 22.0 ± 1.1 18.5 ± 0.4 16.2 ± 1.0 16.6 ± 0.9 80.0 ± 0.6

12 LBP-HF (RBF) 15.4 ± 1.2 12.7 ± 0.8 11.9 ± 0.7 11.8 ± 0.7 76.3 ± 1.0

13 PLBP (HIK) 27.2 ± 1.0 24.1 ± 1.3 21.6 ± 1.0 22.2 ± 1.0 84.5 ± 0.3

14 HMAX (HIK) 11.6 ± 2.3 10.5 ± 2.7 9.4 ± 1.9 9.5 ± 2.1 72.9 ± 3.0
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Fig. 9 Comparison of scene categorization methods on the SUN397 data set. For each method, the top number

in black is the classification rate, and the bottom number in white is the standard deviation

the same evaluation protocol described in (Xiao et al. 2014a) for the SUN397 data set. This

data set is divided into fixed partitions. In each partition, 50 training images and 50 test images

per class are used for evaluation. The classification rate, averaged over the fixed partitions,

is used for comparison. The four deep learning methods had been evaluated using the same

protocol, and their results have been reported in (Donahue et al. 2014; Zhou et al. 2014; Xiao

et al. 2014a).

Figure 9 presents the CRs and their standard deviation of the 14 visual descriptors and

the four deep-learning methods (OverFeat, DeCAF, ImageNet-CNN, and Places-CNN) on

the SUN397 data sets. All the four deep features outperform the other visual descriptors.

However, even the best algorithm (Places-CNN) had a CR of only 54.3 %, which is still

significantly lower than human performance of 68.0 % (Xiao et al. 2014a).
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To rank the data sets in terms of their degree of difficulty, we compared the average

classification rates of the top 7 descriptors on each of the four data set. The highest average

CR of 87.8 % is obtained with the 8-outdoor-scene data set, compared to 79.8 % for the

15-scene data set, 39.0 % for the 67-indoor-scene data set, and 25.4 % for the SUN397 data

set. These results indicate that among the four data sets, the 8-outdoor-scene data set is

the easiest and the SUN397 data set is the hardest to classify. Similar ranking is obtained

if we use the median CR on each data set. Apart from the difference in the number of

images and scene categories, the 8-outdoor-scene data set consists of only outdoor images,

whereas the SUN397 data set contains not only outdoor scenes but also indoor and man-made

scenes.

4.5 Class separability and stability of feature vectors

We evaluated the class separability of the feature vectors using the Fisher score S (see

Sect. 3.2). Note that this evaluation is independent of the classifier used.

Table 9 presents the class separability scores (S) for the compared features on the four

data sets. Among the biologically-inspired features, the HMAX has a low S score on the

four data sets. The HMAX features are formed by using max pooling in layer C1, BoW in

layer S2, and max pooling in layer C2. The GIST has a higher S score than the HMAX,

CENTRIST, OB, and the LBP-based features. As shown in Tables 4, 5, 6, 7 and 8, the GIST

algorithm also has higher classification rates than the OB, HMAX, LBP, uniform LBP, and

LBP-HF. However, the GIST algorithm has a lower class separability score than BoW algo-

rithms (SIFT-ScSPM, SURF-ScSPM, SIFT-LLC, SIFT-SPM, and HOG-SPM). Note that

the GIST forms global features using only down-sampling and averaging. This result indi-

cates that biologically-inspired features can benefit from better schemes for forming global

features.

Table 9 The S score for class separability of feature vectors

ID Algorithms 8-outdoor-scene 15-scene 67-indoor-scene SUN397

1 SIFT-ScSPM 1.8827 1.3005 1.0364 1.0064

2 SIFT-LLC 2.4339 1.5626 1.1441 1.0061

3 SIFT-FV 2.5470 2.3111 1.1484 1.0132

4 HOG-SPM 1.6340 1.6010 1.0959 1.0042

5 OB 1.0003 1.0001 1.0001 1.0000

6 SIFT-SPM 1.4521 1.3573 1.0516 1.0052

7 SURF-ScSPM 1.8323 1.7330 1.0525 1.0060

8 CENTRIST 1.0045 1.0039 1.0000 1.0000

9 GIST 1.0604 1.0283 1.0047 1.0008

10 LBP 1.0434 1.0136 1.0021 1.0004

11 Uniform LBP 1.0187 1.0070 1.0015 1.0003

12 LBP-HF 1.0146 1.0091 1.0012 1.0002

13 PLBP 1.0630 1.0255 1.0034 1.0002

14 HMAX 1.0006 1.0003 1.0004 1.0001

A high value of S means the extracted scene categories are highly separable using the given feature vector
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Among the 14 descriptors, the SIFT-FV (which calculates SIFT features on dense-

grids, and forms global features using the Fisher kernel coding) has the highest S score

on the 8-outdoor-scene data set (2.5470), the 15-outdoor-scene data set (2.3111), the

67-indoor-scene data set (1.1484), and the SUN397 data set (1.0132). The result indicates

the Fisher vector extracts discriminative global features. Note that in our experiment, the

SIFT-FV has lower CRs than the SIFT-ScSPM on the four data sets. However, in the paper of

Sanchez et al. (2013), the CR of SIFT-FV on the SUN397 data set is 43.3 %, which is higher

than other hand-designed features compared in our experiments. The reason is the SIFT-FV

in (Sanchez et al. 2013) extracts local SIFT features from overlapping patches (24×24) on a

regular grid every 4 pixels at 5 scales. The SIFT-FV in our experiment extracts SIFT features

from overlapping patches (16 × 16) on a regular grid every 8 pixels at one scale. The differ-

ence between the CRs of SIFT-FV in (Sanchez et al. 2013) and in our paper indicates that

informative local features and discriminative global feature formation methods can improve

the classification performance.

The other BoW algorithms (SIFT-LLC, SIFT-ScSPM, SIFT-SPM, HOG-SPM, and SURF-

ScSPM) also has higher S scores than the LBP-based algorithms (LBP, uniform LBP, LBP-

HF, PLBP, and CENTRIST) on the four data sets. Note that to form global features, the

SIFT-ScSPM and SIFT-LLC combine the BoW algorithms with spatial histograms and max

pooling, whereas the LBP-based methods only use histograms.

The SURF-ScSPM has lower S score than most of the BOW-based descriptors, such as

SIFT-ScSPM, SIFT-LLC, and SIFT-FV, but it has higher S score than OB, SIFT-SPM, LBP-

based, and biologically-inspired descriptors. This shows that compared to the SIFT-ScSPM,

the discriminative power of the SURF-ScSPM is reduced by extracting the SURF features

from key points. The S score of SURF-ScSPM is 1.8323 on the 8-outdoor-scene data set,

1.7330 on the 15-outdoor-scene data set, 1.0525 on the 67-indoor-scene data set, and 1.0060

on the SUN397 data set.

The LBP-based features (LBP, uniform LBP, PLBP, LBP-HF, and CENTRIST) have

lower S scores than the BoW features. However, the LBP-based features achieve higher

S scores than the OB and HMAX. Note that the LBP-based features are more efficient to

compute than the BoW features. Among the LBP-based algorithms, the PLBP achieved

the highest class separability score. This is also reflected in the higher CR of the PLBP,

compared to the LBP, uniform LPB, LBP-HF, and CENTRIST (see Sect. 4.4). The uni-

form LBP and the LBP-HF reduce the dimension and also the class separability of features.

This result indicates that the class separability and classification accuracy of the LBP-based

algorithms can be improved by using a better global feature formation, instead of the his-

tograms.

The OB has the lowest S score among the compared features. Its S score is 1.0003

on the 8-outdoor-scene data set, 1.0001 on the 15-outdoor-scene data set, 1.0001 on the

67-indoor-scene data set, and 1.0000 on the SUN397 data set. The reason may be that many

similar objects appear in different scene categories. Note that the OB uses only max pooling

to form global features, and it extracts a large number of features (44,604 per image).

Next, we evaluated the stability of the scene categorization algorithms in the presence of

noise. In this experiment, Gaussian noise with varied standard deviation was added to the

original images. Then, the class separability scores were computed for the noisy images.

Figure 10 shows the results for the top-7 algorithms: SIFT-ScSPM, SIFT-LLC, SIFT-FV,

HOG-SPM, OB, SIFT-SPM, and SURF-ScSPM. These algorithms (based on the bag-of-

words) are identified as having high classification accuracy in Sect. 4.4. When noise is

added, the class separability (S score) of all features reduces. At all noise levels, the SIFT-FV

descriptors has a higher S score than all other descriptors.

123



Visual descriptors for scene categorization: experimental… 361

Noise standard deviation (δ)

S
 s

c
o
re

 (
lo

g
 s

c
a
le

)

0

0.2

0.4

0.6

0.8

1
SIFT-ScSPM

SIFT-LLC

SIFT-FV

HOG-SPM

OB

SIFT-SPM

SURF-ScSPM

(a)

Noise standard deviation (δ)

S
 s

c
o
re

 (
lo

g
 s

c
a
le

)

0

0.2

0.4

0.6

0.8

1
SIFT-ScSPM

SIFT-LLC

SIFT-FV

HOG-SPM

OB

SIFT-SPM

SURF-ScSPM

(b)

Noise standard deviation (δ)

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

S
 s

c
o
re

 (
lo

g
 s

c
a
le

)

0

0.2

0.4

0.6

0.8

1
SIFT-ScSPM

SIFT-LLC

SIFT-FV

HOG-SPM

OB

SIFT-SPM

SURF-ScSPM

(c)

Noise standard deviation (δ)

S
 s

c
o
re

 (
lo

g
 s

c
a
le

)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
SIFT-ScSPM

SIFT-LLC

SIFT-FV

HOG-SPM

OB

SIFT-SPM

SURF-ScSPM

(d)

Fig. 10 Stability of features under the presence of Gaussian noise of varying standard deviation, on the four

data sets. a 8-scene data set, b 15-scene data set, c 67-indoor-scene data set, d SUN397 data set

The results presented in this section indicate that the method for forming global features

affects the class separability significantly. Using BoW algorithms before applying histograms,

PCA or max pooling (as in SIFT-FV, SIFT-ScSPM, and HOG-SPM) produces feature vectors

with more discriminative power. Using histograms as the first step of the global feature

formation (as in CENTRIST) decreases the class separability of features. Using only one

method for global feature formation (as in the LBP-based algorithms) does not yield high

separability scores and nor high classification rates.

5 Conclusion

This paper presented an experimental evaluation of existing visual descriptors for scene

categorization. Fourteen descriptors were grouped into three categories: biologically-inspired

features, local features, and global feature formation. The existing benchmark data sets and

performance measures for scene categorization were also discussed.

The experimental results indicate that the SIFT-ScSPM outperforms all other tested

descriptors on the 15-scene data set. The SIFT-ScSPM uses SIFT as its local descriptor and

ScSPM as its global feature formation. Local descriptors, SIFT, HOG, and SURF achieve

higher classification rates than LBP, CENTRIST, and HMAX. The global feature formation
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methods affect the class separability of feature vectors significantly. Using ScSPM, LLC,

and FV for global feature formation leads to higher class separability than using histograms

and PCA. Using BoW before histograms, PCA, and max pooling makes feature vectors more

distinguishable. The results on 67-indoor-scene data set show that the mid-level features like

objects, bag-of-parts, and the efficient patch encoding algorithm like Fisher vector improve

the classification rates for indoor scenes. The results on the SUN397 data set indicate that

the SIFT-ScSPM outperforms all other hand-designed descriptors. The learned features pro-

duced by deep learning establish the new state-of-the art performance in scene categorization.

However, there is still a large performance gap between the best computational algorithm

and humans.

Based on this survey and evaluation, several promising research directions can be high-

lighted. First, local feature descriptors can be built that combine the properties of SIFT, HOG,

SURF, GIST, or the early stages of deep learning architecture. A good local descriptor leads

to a high classification rate. Second, global feature formation algorithms can be developed

based on ScSPM and FV. Third, most existing studies on gist recognition have been con-

cerned with static scenes, which is the focus of this study. In recent years, gist recognition of

dynamic scenes has attracted the attention of researchers (Shroff et al. 2010; Derpanis et al.

2012; De Geest and Tuytelaars 2004; Ng et al. 2015), and therefore, the extension of this

study to dynamic scenes would be invaluable.
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