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Abstract

Doors are important landmarks for indoor mobile robot
navigation. Most existing algorithms for door detection
use range sensors or work in limited environments because
of restricted assumptions about color, pose, or lighting.
We present a vision-based door detection algorithm that
achieves robustness by utilizing a variety of features, in-
cluding color, texture, and intensity edges. We introduce
two novel geometric features that increase performance sig-
nificantly: concavity and bottom-edge intensity profile. The
features are combined using Adaboost to ensure optimal lin-
ear weighting. On a large database of images collected in
a wide variety of conditions, the algorithm achieves more
than 90% detection with a low false positive rate. Ad-
ditional experiments demonstrate the suitability of the al-
gorithm for real-time applications using a mobile robot
equipped with an off-the-shelf camera and laptop.
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1. Introduction

Indoor environments are highly structured places that are
designed with specific constraints on the shape, size, rela-
tive location, and orientation of navigational components
such as doors, walls, and corridors. Discovering and distin-
guishing these components are key for robust mobile robot
navigation in such environments. Doors, in particular, are
important landmarks for navigation because they provide
the entrance and exit points of rooms, and because they pro-
vide stable and semantically meaningful structures for de-
termining the location of the robot. As a result, the capabil-
ity of robust real-time automatic door detection would bene-
fit many applications, including courier robots, tour guides,
and patrol robots.

Much of the previous work on door detection has relied
upon 3D range information available from sonar, lasers, or
stereo vision [7, 11, 13, 1]. We are interested, however, in
using off-the-shelf cameras for detecting doors, primarily
because of their low-cost, low-power, and passive sensing
characteristics, in addition to the rich information they pro-

vide. Figure 1 illustrates our scenario, as well as the diffi-
culties of solving this problem. The robot is equipped with
two webcams, each one pointing at a different side of the
hallway as the robot drives. Because there is no overlap be-
tween the cameras, stereo vision is not possible. Even more
importantly, because the cameras are low to the ground, the
top of the door (thelintel) — which otherwise would pro-
vide a powerful cue for aiding door detection — is often
occluded by the top of the image. Pointing the cameras
upward is not possible, because of the importance of be-
ing able to see the ground to avoid obstacles. Even with
these constraints, our goal is to detect doors in a variety of
environments, containing low-contrast edges, bright reflec-
tions, variable lighting conditions, textured and untextured
floors, walls and doors with similar colors, and changing
robot pose, as shown in the figure.

In this paper we present a solution to this problem based
upon combining multiple geometric and photometric cues
using the Adaboost algorithm. Our approach augments
standard features such as color, texture, and vertical inten-
sity edges with novel geometric features based on the con-
cavity of the door and the gap below the bottom door edge.
We demonstrate the performance of the approach on a large
database of images from a variety of environments.

1.1. Related work

Two visual cues have been employed by previous re-
searchers: intensity edges along the sides (posts) and top
(lintel) of the door, and the average door color which is as-
sumed to be different from that of the surrounding wall. For
example, Stoeteret al. [13] extract vertical lines in the im-
age using the Sobel edge detector followed by morpholog-
ical noise removing. The resulting lines are then combined
with range information from a ring of sonars to detect doors.
In similar work, Kimet al. [7] extract both vertical and hor-
izontal line segments, then analyze whether the segments
meet minimum length and height restrictions. Door can-
didates are verified by a 3D trinocular stereo system. The
recent system of Anguelovet al. [1] combines an omnidi-
rectional camera and laser range finder in an expectation-



Figure 1. TOP-LEFT: Our robot is equipped with two non-
overlapping off-the-shelf webcams, mounted on top (30 cm above
the ground). TOP-RIGHT: An image taken by one of the cameras,
showing a door whose color is the same as the surrounding wall
and whose lintel is not visible. BOTTOM: Two additional exam-
ples, showing doors at drastically different poses and colors, along
with a variety of floor patterns and lighting conditions. These chal-
lenges make vision-based door detection difficult.

maximization framework. Doors are detected by observing
their motion over time (i.e., whether an open door later be-
comes closed, or vice versa), and the similarity of their color
to a globally estimated mean door color. This approach as-
sumes that the doors are all similarly colored, that the walls
are similarly colored, and that the mean color of the doors
and walls are significantly different from each other.

Other researchers have focused upon using visual data
alone, without range information, which of course is a much
harder problem. In an approach that assumes that the robot
is facing the door at a certain distance, Monasterioet al. [9]
detect edges corresponding to the posts and then classify the
scene as a door if the column between the edges in wider
than a certain number of pixels. Similarly, Munoz-Salinas
et al. [10] apply fuzzy logic to establish the membership de-
gree of an intensity pattern in a fuzzy set using horizontal
and vertical line segments. Rouset al. [12] generate a con-
vex polygonal grid based on extracted lines, and they define
doors as two vertical edges that intersect the floor and ex-
tend above the center of the image. Their work employs
color information to segment the floor, thus assuming that
the floor is not textured. An alternate approach by Cicirelli
et al. [4] analyzes every pixel in the image using two neural
networks: one to detect the door corners, and one to detect
the door frame, both of which are applied to the hue and
saturation color channels of the image. While this system
is able to detect doors under partial occlusion conditions
and from different perspectives, its incurs a high computa-
tional load (approximately three seconds per image), mak-

ing it unsuitable for a real-time system.
There remains a need for a vision-based door detection

system that operates in real time and is capable of handling
a variety of environments and the lintel-occlusion that often
occurs when the camera is low to the ground and the door
is nearby. It is our belief that the solution to this problem
cannot be achieved by focusing only upon one piece of local
evidence, such as lines or color. Rather, the integration of
a variety of cues is needed to overcome the noise of sparse,
local measurements. As a result, we approach the problem
recognizing that recognition is inherently a global process.

2. Multiples cues for door detection

Our approach to door detection utilizes a single image.
Let I be the image, and letDℓ be the predicate that is true if
a door exists in the image at locationℓ. According to Bayes’
decision rule, we declare a door if thea posterioriprobabil-
ity of the predicate is greater than that of its complement:

P (Dℓ|I)

P (¬Dℓ|I)
= exp (Ψ(Dℓ|I)) > 1. (1)

The energyΨ(Dℓ|I) has the form

Ψ(Dℓ|I) =

N
∑

n=1

αnhn(Dℓ|I), (2)

where the weak classifierhn(Dℓ|I) tests whether the predi-
cate is true given the data using some projection of the data,
with positive values ofhn indicating truth and negative val-
ues indicating falsehood. The weightsαn govern the rela-
tive performance of the individual tests, which are assumed
to be conditionally independent.

In this work we use five features described in the follow-
ing subsections. Weak classifiers based on these features
are then combined using the Adaboost algorithm to pro-
duce a strong classifier. Our approach makes the following
assumptions:

• Both door posts are visible in the image,

• The camera is oriented so that these posts appear
nearly vertical, and

• The door is at least a certain width.

Beyond these requirements, the algorithm is quite forgiving:
The color of the door may be the same or different from that
of the wall, the geometry of the door can be receded into the
wall or flush with the wall, and the lintel may be visible or
not. By utilizing multiple features in a boosting framework,
the absence of one feature will not cause a door to be missed
as long as there is sufficient evidence in the other features
to overcome this loss.



2.1. Detecting pairs of vertical lines

The first weak classifier looks for pairs of vertical
lines whose length and horizontal spacing between them
is greater than a threshold, and whose top extends above
the vanishing point. Intensity edges are detected through-
out the image using the Canny edge detector [3]. To group
the edges into straight line segments, many existing ap-
proaches apply the Hough transform, but in our experiments
we found this approach to be quite sensitive to the win-
dow size: Small windows cause unwanted splitting of lines,
while large windows cause unwanted merging of lines.

Instead, we employ the algorithmLineDetection,
which is a modified form of the divide-and-conquer algo-
rithm developed by Kovesi [8]. In the first step, edge pixels
are searched in order to label connected edges. Edges are
divided by junction points, which are defined as edge pix-
els that are connected to more than two other pixels in their
8-neighborhood. Small isolated edges and spurs (short se-
quences of pixels jutting to the side of the main branch of
the edge) are eliminated.

The second step divides the connected edges into se-
quences of straight line segments using a divide-and-
conquer strategy. A straightness test is recursively applied
to the edge, stopping when all segments pass the test. In
Kovesi’s algorithm, the threshold for the maximum allowed
deviationdallowed is a constant, which mistakenly absorbs
short line segments into long line segments and mistakenly
divides long line segments into multiple short segments.
Our modified version of the algorithm solves this problem
by determiningdallowed using a half-sigmoid function:

dallowed(s) = δ

(

β − e−|s|

β + e−|s|

)

, (3)

where|s| is the length of segments, δ is a constant specify-
ing the value ofdallowed for long segments, andβ > 1 is a
constant to increase the slope of the half-sigmoid function.
This function is shown in Figure 2, and the improvement
from the modification is shown in Figure 3.

The third step merges small line segments if the angle
deviation between them and the maximum distance between
end points are below specified thresholds.

Figure 4a shows a typical result from this algorithm. Al-
though straight line segments are found, several problems
remain. For example, vertical lines corresponding to the
door frame are often broken by door hinges or knobs. In
addition, the reflection of the door creates spurious lines on
the floor, often with a gap between the spurious lines and
the true lines. To overcome these problems, we merge ver-
tical lines separated by a small gap, discard lines that do not
extend above the vanishing point, discard short lines, and
retain only lines whose orientation is nearly vertical. The
result of these tests is shown in Figure 4b.

Algorithm: LineDetection

Input: Intensity edges of an image
Output: A set of straight line segments

1. Edge labeling:For each unlabeled edge pixel

(a) Track edge to find the rest of the connected edge
points and label them, stopping if a junction point
is encountered

(b) Eliminate isolated edges and spurs that are below
the minimum length

2. Line segmenting:For each labeled edge

(a) Create a virtual straight line by connecting the
start and end points of labeled edge

(b) Calculate the deviation (perpendicular distance
to the virtual line) of each point on the labeled
edge

(c) Divide the virtual line in half at the point of
maximum deviation if the maximum deviation is
greater than a thresholddallowed

(d) Repeat above process until the maximum devia-
tion of all the line segments is less thandallowed

3. Line merging:For each line segment

(a) Merge with another line segment if the maximum
tolerated angle deviation between them and the
maximum distance between their end points are
within a limit
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Figure 2. The half-sigmoid function ofdallowed, which makes the
threshold dependent upon the length of the segment.δ = 2 and
β = 10.

2.2. Concavity

In many environments doors are receded into the wall,
creating a concave shape for the doorway. A simplified con-



Figure 3. Modified Kovesi line segment detection algorithm.
LEFT: The original algorithm mistakenly absorbs the door reces-
sion into segmenta, and it mistakenly divides the single wall/floor
line into b andc. RIGHT: With our modification, the recession
is detected separately as segmentB, and the segmentsb andc are
correctly detected as a single segmentC. Note that the recession
segmentB is important for the concavity test described in Section
2.2.

(a) (b)
Figure 4. (a) Line segments detected by Canny edge detector fol-
lowed by line detection. (b) Candidate door segments retained
after applying multiple tests to the segments.

cave door structure is illustrated in Figure 5, leading to two
observations regarding the intensity edges:

• A slim “U” exists consisting of two vertical lines (the
door edge and jamb) and one horizontal line (between
the door frame and floor); and

• The bottom edge of the door is slightly recessed from
the wall/floor edge.

Let (x, y) be a pixel on the line formed by extending the
wall/floor boundary in front of the door (the dashed line in
the figure), and let(x, yb) be the pixel on the bottom of the
door in the same column of the image. We test the recession
of the door as follows:

Hrec(ω) = (τmin < y − yb < τmax), (4)

whereτmin = 2 andτmax = 10 pixels, andω ∈ {L,R} in-
dicates whether the wall/floor boundary was extended from
the left or the right of the door. The predicateHU tests the
presence of the slim “U” by looking for a vertical line ad-
jacent to the door and an adjoining horizontal line near the
bottom.

It may be the case that both left and right sides of the
wall/floor boundary are not visible due to the location of the
camera or an occluding object (e.g., a cabinet); or the slim

Figure 5. A concave door exhibits a slim “U” to its side, as well as
a recession of the bottom edge. This geometry yields a concavity
test which is an important cue for detecting doors.

“U” itself may be undetectable due to the oblique viewing
angle. To handle this complication, the bottom edge of the
door is determined as the line connecting the endpoints of
two vertical lines separated by a minimum distance. Then
the recession test is applied with respect to all non-vertical
line segments below the vanishing point, and the slim “U”
test is applied to the side of the edge. A door is declared if
at least two of the three tests (Hrec(L), Hrec(R), andHU )
succeed. Note that in practice there is not enough infor-
mation to use this concavity procedure if the robot directly
faces the door, a situation which is detected by measuring
the angle of the wall/floor boundary.

2.3. Gap below the door

Almost without exception, doors are constructed with a
gap below them to avoid unnecessary friction with the floor
as they open or close. As a result, when the light in the
room is on, the area under the door tends to be brighter than
the immediate surroundings, whereas if the light is off, then
the area tends to be darker. In either case this piece of ev-
idence, which is often just a few pixels in height, provides
a surprisingly vital cue to the presence of the door, which
is illustrated in Figure 6. In particular, this phenomenon
is important for disambiguating the bottom door edge from
the wall/floor edge. For each pixel along the bottom door
edge, we compute the minimum and maximum intensities
in the surrounding vertical profile. If one of these extrema
is above a threshold and located near the door edge, then
the pixel votes for the presence of a door. A majority vote
among the pixels is taken.

2.4. Color

In many environments, doors and the surrounding walls
have different colors. Rather than store a single mean color
of the walls, we store a color histogram to enable the cap-
turing of richly textured surfaces. The presence of a door is



Figure 6. LEFT: An image of a door. RIGHT: The intensity profile
of a vertical slice around the bottom edge. The dark region caused
by the shadow of the door indicates the presence of the door. (Al-
ternatively, if the light in the room were on, a bright region would
indicate the door’s presence.)

Figure 7. LEFT: A door with a kick plate. RIGHT: The segmenta-
tion of the image using the method of Felzenszwalbet al. [5]. The
kick plate is the olive green region at the bottom of the door.

detected by thresholding the histogram intersection [2] be-
tween the wall color modelφwall and the color histogram
φdoor computed between two vertical line segments:

∑M

i=1 min(φdoor[i], φwall[i])
∑M

i=1 φdoor[i]
> τcolor,

whereφdoor[i] andφwall[i] are the numbers of pixels in the
ith bin of the candidate door and wall histograms, respec-
tively, andM is the number of bins. Because our present
work is focused upon a single image, we assume that the
wall histogram is available from an additional computation.
We use the HSV (hue, saturation, value) color space be-
cause of its insensitivity to illumination changes compared
with RGB.

2.5. Kick plate

Some doors have kick plates near the bottom which pro-
vide an additional cue for door detection. The image is first
segmented using the method of Felzenszwalbet al. [5], as
shown in Figure 7, and a regionR in the segmented image
is considered as a kick plate if the following tests succeed:

• The regionR is located between two vertical linesx =
xleft andx = xright, xleft < xright:

min
x

{(x, y) ∈ R} ≥ xleft

max
x

{(x, y) ∈ R} ≤ xright

Figure 8. LEFT: The bottom line of a door or wall/floor boundary
intersects the vanishing point. RIGHT: In contrast, a distracting
line caused by shadows does not.

• The bottom ofR is near the bottom of the two vertical
lines

• The width and height ofR are within a specified range.

Kick plates are visible in a number of doors.

2.6. Texture

The bottom part of the door is usually untextured,
whereas areas of the wall and occluding objects often con-
tain significant texture. We compute the texture energy by
summing the magnitude of the gradient in the regionA be-
tween two vertical lines and below the vanishing point:

1

|A|

∑

p∈A

|∇I(p)| < τtex, (5)

where∇I(i) is the intensity gradient of pixelp in the re-
gion, and|A| is the number of pixels in the region.

2.7. Vanishing point

The vanishing point provides an additional test, as shown
in Figure 8. The vanishing point is computed as the mean
of the intersection of pairs of non-vertical lines:
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where the sum is over all pairs of linesi andj, each line is
described by an equationax + by + c = 0, × denotes the
cross product, and the result is expressed in homogeneous
coordinates. The vanishing point is determined by dividing
by the scaling factor:[ vx vy ]

T . If at least three lines on
a door candidate pass near the vanishing point, then the test
succeeds.

3. Adaboost training

Adaboost [6] is an algorithm to combine multiple weak
classifiers into a strong classifier. As long as each weak
classifier performs with at least 50% success, and the errors



of the different classifiers are independent, then the algo-
rithm is able to improve upon the error rate by optimally
selecting the weights for the weak classifiers. In our sys-
tem, we use five weak classifiers: (1) concavity, (2) intensity
changes along the bottom line, (3) color difference from the
wall, (4) texture energy, and (5) intersection of the bottom
line with the vanishing point.

Let hn be thenth weak classifier, and lety = hn(x)
be the output of the classifier to inputx. In our case,x is
the image andy is a binary label indicating whether a door
was detected by the weak classifier. The strong classifier is
given by a weighted sum of the weak classifiers:

Ψ(x) = sign

(

N
∑

n=1

αnhn(x)

)

, (7)

whereαn is the scalar weight found by AdaBoost indicating
the importance of the weak classifierhn, andN = 5. The
weights are determined in an iterative manner according to

αn =
1

2

(

ln
1 − εn

εn

)

, (8)

where the errorεn is given by

εn = Pri∼Dn
[hn(xi) 6= yi] =

∑

i:hn(xi) 6=yi

Dn(i). (9)

In this equation the outputyi ∈ {−1,+1} is the ground
truth for the training set, andDn(i) is the weight assigned
to theith training example on roundn.

4. Experimental results

To test the performance of the system, a database of 309
door images was collected in twenty different buildings ex-
hibiting a wide variety of visual characteristics. The images
were taken by an inexpensive Logitech QuickCam Pro 4000
mounted 30 cm above the floor on an ActivMedia Pioneer
P3AT mobile robot. Of these images, 100 were used for
training the algorithm. On the remaining 209 images used
for testing, the algorithm detects 90% of the doors with a
false positive rate of0.05 non-doors on average per image.
The algorithm was implemented in Visual C++ and runs at a
speed of 5 frame/s on a 1.6 GHz Dell Inspiron 700m laptop
computer.

Figure 9 shows some typical doors detected by our sys-
tem. As can be seen, our algorithm is capable of detecting
doors in the hallway under different illumination conditions
and different viewpoints, with either the same color as the
wall or a different color, even in a cluttered environment.
Note that in the second and third images in the first row,
the algorithm successfully excludes a vending machine and
a cabinet. From the ROC curves of the individual weak
classifiers shown in Figure 10, it is clear that a significant
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Figure 10. ROC curve showing the performance of our algorithm
compared with the performance of single-cue detectors.

Figure 11. Some errors of the algorithm. LEFT: One door is suc-
cessfully detected, but another is missed due to lack of contrast
along its bottom edge coupled with strong reflections on the floor;
in addition a false positive occurs because of distracting horizon-
tal edges. RIGHT: A dark door that is flush with the wall fails the
concavity and bottom gap tests and hence is missed, while edges
on the wall are erroneously detected.

improvement is achieved by combining the classifiers in the
Adaboost framework. Moreover, the features of concavity
and gap below the door play an extremely important role
compared with other features. Of course, the system is not
perfect, and some errors are shown in Figure 11 for com-
pleteness.

To demonstrate the utility of the algorithm, we used the
robot shown in Figure 1 equipped with two webcams with
diverging optical axes. As the robot moved down a corri-
dor, doors were detected on both sides of the hallway by the
algorithm by processing the images on-line. Doors were
tracked from frame to frame by a local search procedure
employing a constant velocity assumption. Doors that were
not repeatedly detected a certain number of image frames
were regarded as false positives and discarded.

Figure 12 shows the results of ten trials in which the
robot was manually driven along approximately the same
path at a speed of0.2 m/s down a40× 15 m corridor with a
90-degree turn. Of the 22 doors in the corridor, 20 of them
were detected with 100% accuracy, that is, ten detections
out of ten trials. However, one door (a in the figure) was



Figure 9. Examples of doors successfully detected by our algorithm. Note the variety of door widths, door and wall colors, relative pose of
the door with respect to the robot, floor texture, and lighting conditions. Distant doors are not considered by the algorithm.

detected only 70% of the time due to an occluding water
fountain, and one door (b) was detected 80% of the time
because it is flush with the wall. In 60% of the trials, no
false positives were detected in the entire corridor, although
a convexity in the wall was erroneously detected as a door
in the remaining four trials. Overall, the detection rate was
97.7% with a false positive rate of0.008 per meter driven.

5. Conclusion and future work

We have presented a vision-based door detection algo-
rithm for robot navigation using an uncalibrated camera.
The doors are detected by a camera mounted on a mobile
robot, from which low vantage point the lintel is often not
visible. Door candidates are first sought by detecting the
vertical lines that form the door frame, and then by apply-
ing constraints such as size, direction, and distance between
segments. Within these door candidates, several features are
measured. The algorithm augments standard features such
as color, texture, and vertical intensity edges with novel ge-
ometric features based on the concavity of the door and the
gap below the bottom door edge. The features are com-

bined in an Adaboost framework to enable the algorithm to
operate even in the absence of some cues. Tested on a large
database exhibiting a wide variety of environmental condi-
tions and viewpoints, the algorithm achieves more than 90%
detection rate with a low false positive rate. The approach
is suitable for real-time mobile robot applications using an
off-the-shelf camera, and preliminary experiments demon-
strate the success of the technique.

There is plenty of room for future work in this area. First,
the color model of the walls should be learned automati-
cally as the robot drives down the corridor. Secondly, the
algorithm at present only detects closed doors. To detect
open doors, the algorithm could be modified to observe the
motion parallax of features inside the room that are visible
when the door is open. More generally, additional features
such as motion, door knobs, or shape, can be incorporated
into the Adaboost framework to increase performance, and
the interdependence between adjacent doors can be taken
into consideration as well. In addition, calibration of the
camera, along with 3D line estimation, would enable pose
and distance measurements to facilitate the building of a
geometric map. Ultimately, our goal is to integrate the al-



Figure 12. Two additional examples. TOP: Two images of the hall-
way environment near our laboratory. BOTTOM: 2D plan view of
the hallway. Beside each door is indicated the number of detec-
tions / total number of trials. 100% detection rate is achieved for
all but two doors.

gorithm into a complete navigation system that is able to
map an environment, drive down a corridor, and turn into a
specified room.
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