
Visual Discovery and Analysis
Stephen G. Eick, Senior Member, IEEE

AbstractÐWe have developed a flexible software environment called ADVIZOR for visual information discovery. ADVIZOR

complements existing assumptive-based analyses by providing a discovery-based approach. ADVIZOR consists of five parts: a rich

set of flexible visual components, strategies for arranging the components for particular analyses, an in-memory data pool, data

manipulation components, and container applications. Working together, ADVIZOR's architecture provides a powerful production

platform for creating innovative visual query and analysis applications.

Index TermsÐInformation visualization, data analysis, visual design patterns, perspectives, linked views.

æ

1 INTRODUCTION

IMMENSE amounts of information are available to decision-
makers today. Tomorrow, there'll be even more. And

that's the problem. Data is exploding. Every report
produces another. Presentations get more complex. The
best opportunities are often the hardest to see. The
challenge is to find the treasure, to spot the nuances in
customer behavior that will give a quick, sure market edge
or help notice a profitable trend, or make the right
inventory call.

Previous approaches to making sense of data involved
manipulating text displays such as cross tabs, running
complex statistical packages, and assembling the results
into reports using presentation graphics. Browsers and the

web have popularized the idea that modern interfaces
combine text and graphics. Extending this trend, we have
developed an interactive visualization-based application to
help users make sense of data and take actions. Our tool,
called ADVIZOR, takes the web one step further by making

the text and graphics interactive, using rich metaphors to
encode information, and enabling the user to pose and
resolve queries dynamically using the mouse. Our goal is to
provide users with an immediate and intuitive grasp of
what is significant and actionable in their data.

In contrast to previous approaches used in statistical
graphics or scientific visualizations, ADVIZOR is an
information visualization system focusing on customer
analysis. As illustrated in Fig. 1, it uses visual metaphors,
data structures, and interactive operations to help users see

micro trends and anomalies in business data.
Broadly speaking, the problems addressed by informa-

tion visualization tools fall into three classes:

1. Presentation Graphics such as is included with
Microsoft PowerPoint2 or even spreadsheet graphics.

These generally consist of bars, pies, and line charts

that are easily populated with static data and drop into

printed reports or presentations. The next generation

of presentation graphics, exemplified by VRML-based

browsers, enriches the static displays with a 3D-

information landscape. Users can then navigate

through the landscape and animate it to display time-

oriented information. This class of visualizations is

generally useful for answering ªwhatº questions and

for conveying results.

2. Visual Interfaces for Information Access are focused on
enabling users to navigate through complex infor-
mation spaces, such as the web, to locate and
retrieve information. Supported user tasks involve
searching, back tracking, and history logging. User
interface techniques attempt to preserve user context
and support smooth transitions between locations.

3. Full Visual Discovery and Analysis systems, such as
ADVIZOR, that combine the insights communicated
by presentation graphics with an ability to probe,
drill-down, filter, and manipulate the display to
answer the ªwhyº questions as well as ªwhatº
questions.

The difference between answering a ªwhatº and a ªwhyº
question involves an interactive operation. For example, in
a set of sales data, the answer to ªwhat happenedº might be
that sales went up, generally discernable in the slope of a
line graph or the height of a bar in a bar chart. Answering
why requires an interactive operation such as drilling-
down, drilling-across, excluding, or rescaling to discover
that increased sales were due to one product having an
exceptional quarter. Going further requires a drill-down,
e.g., showing sales increases by customer purchases to
notice that the sales increase is due to a single huge order.

1.1 User Needs

Many organizations, particularly within the business com-
munity, have made significant investments in collecting,
storing, and converting business information into actionable
results. Unfortunately, typical implementations of business
intelligence software1 have proven to be too complex for
most users except for their core reporting and charting
capabilities. Users' demand for multidimensional analysis,
finer data granularity, and multiple data sources simulta-
neously, all at Internet speed, require too much specialist

44 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

. The author is with Visual Insights, Inc., 215 Shuman Blvd., Suite 200,
Naperville, IL 60563-8495. E-mail: eick@visualinsights.com.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 110935.

1. Business Intelligence is a broad industry analyst category that includes
all software used to gain insights and business data.

1077-2626/00/$10.00 ß 2000 IEEE

intervention for broad utilization. The result is a report

explosion in which literally hundreds of predefined reports

are generated and pushed throughout the organization.

This is in direct conflict with the needs of front line

decision-makers and knowledge workers who are demand-

ing to be included in the analytical process. Finding a

strategic outlier in multiple pages of nicely formatted

reports or cross tab displays is analogous to finding a

needle in a haystack.

EICK: VISUAL DISCOVERY AND ANALYSIS 45

Fig. 1. An ADVIZOR/2000 perspective with bar charts (left) and a Multiscape (right) for PivotTable visualization.

Fig. 2. An ADVIZOR perspective showing male purchases in weeks 20-22 for the top five product categories.

A report-based style of analysis is ªassumptive-basedº

since reports presuppose the relationships that are reported

upon. Visual analysis, as presented in this paper, proposes a

new style of ªdiscovery-basedº analysis. Presenting infor-

mation visually in an environment that encourages the

exploration of linked events leads to deeper insights and

more actionable results. This is particularly true when

applied to time and detail critical applications associated

with customer behavior, such as cross selling, target

marketing, total quality of service, customer loyalty, and

product and category analysis.
In today's highly sophisticated retail world, for example,

product purchasing decisions often are influenced more by

product features and attributes such as color and size rather

than by brand or item; distribution strategies involving

geographic attributes, such as shelf position, may prevail

over channel or store location; detailed customer demo-

graphics and real time behavior statistics define segments

more than buying communities and behavior trends; and

time is now measured in Internet time. In a dynamic retail

environment, it is impossible to combine the effects of all

these attributes in a meaningful way using reports.
Combining these factors to find salient relationships

constitutes complex analysis. When confronted with the

complexity of such inqueries, users face tough problems:

Where do I start? What looks interesting here? Have I

missed anything? What are other ways to derive the

answer? Is there other data available? People think

iteratively and ask ad hoc questions of complex data while

looking for insights. Predefined reports and drill downs

through OLAP cubes specifically inhibit the power of

human thought. Ad hoc ªslice and diceº of tabular data is

difficult and limited by the inability to display and

comprehend more than several dimensions and two-dozen

rows at a time.
To help address these and related questions, we have

developed software and a methodology supporting visual

discovery. Our approach, which we call ªVisual Query and

Analysis,º is embedded in ADVIZOR and involves:

1. presenting complex multidimensional information
in a natural an intuitive way;

2. structuring a visual analysis to support discovery;
3. providing fast navigation through large and com-

plex datasets;
4. identifying important areas with a single mouse

click;
5. publishing analysis in web documents; and
6. sharing results sets with operational systems for

implementing business actions.

Candidate visual query, discovery and analysis (VQA)

users include business, government, and research organiza-

tions who have made investments in a data infrastructure

and need a richer organization-wide analysis capability. In

many ways, VQA complements the reporting capabilities of

existing solutions with significantly more powerful and

easier to use analytical functions. VQA identifies actionable

contitions based on detail, attribute, and micro-trend

analysis, resulting in better business decisionsÐfaster.

1.2 Human Intelligence

When designing and implementing VQA systems, it is
important to consider the perceptual acuity and activities of
the end user. Visuals must be arranged to reveal key
answers to task-specific questions. Visual encoding of data
must be perceptually effective. Interactive operations must
be natural and intuitive. Frequently, data conditioning is
necessary, e.g., taking square roots of count data or logging
salary data.

Our experience is that designing perceptually effective,
easy-to-use software is extremely hard and often task
dependent. There are a huge number of conflicting goals
and the best solution frequently involves engineering trade-
offs. Our approach to overcoming these problems involves
implementing and trying many solutions, evaluating their
usefulness with real users, and capturing the successful
solutions in methodologies and a knowledge base.

1.3 Research Contributions

This paper addresses four significant research questions:

1. What visual components or views are needed for visual
analysis? In our work, we have developed a set of
11 components that are broadly useful. Furthermore,
our components are highly scalable and can display
significantly larger data sets than their traditional
counterparts. (See Section 2.1.)

2. How should visual components be organized? We
propose fixed arrangements, called perspectives,
that answer specific classes of questions. The
advantage of perspectives over general linked view
analysis systems is that they significantly reduce
complexity for nonexpert users. Perspectives are
ªauthoredº by domain experts, provide a starting
point and guiding framework for interactive analysis
by power users, and can be viewed by casual users.
(See Section 2.2.)

3. What are the recurring visual design patterns in the
perspectives? In our work implementing solutions, we
have found certain patterns of components are
broadly useful for general classes of problems. (See
Section 2.3.)

4. How is this class of software application built? We have
developed a plug and play software architecture and
data model for building visual query and analysis
applications. Components supporting our frame-
work automatically integrate into the environment,
support all interactive operations, and are easily
programmed by our containers.

This paper is organized into five sections. Section 2
presents our visual components and their organization into
perspectives. Section 3 describes our software architecture
and interesting implementation details. Section 4 briefly
lists some related research and Section 5 concludes.

2 COMPONENTS, PERSPECTIVES, AND DESIGN

PATTERNS

This section describes our visual components, explains how
we organize them into perspectives, and highlights design
patterns in the perspectives.

46 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

2.1 Visual Components

ADVIZOR includes 11 interactive visual components or

ªviews.º Nine are graphical, one is textual, and one does

both.2 Each component is richly parameterized and can

assume many different visual looks. Even a simple bar

chart, for example, can be oriented vertically or horizon-

tally, pointed left or right, and may appear as a spine plot or

a two-dimensional Treemap [16]. The bars may be inter-

actively reordered, sorted, and shown in groups.
Components may be partitioned into three groups:

1. Traditional visual metaphors including:

. Bar Chart that shows aggregations and frequen-
cies, as in Fig. 3, that uses a 1,000 to 1 scaling
ªzoombar,º an over-plotting indicator, and
stacked colors to show tens of thousands of bars.

. Histogram that shows the distribution of a
single numeric variable with adjustable inter-
active smoothing.

. Line Chart for understanding trends in ordered.

. Pie Chart for visualizing fractions of a total.

. Scatter plot for bivariate analysiswith interactive
scaling, navigation, and point manipulation.

2. Novel metaphors:

. Time Table, Fig. 4, is a component for showing
thousands of time-stamped events. Described in
[9], it encodes each event using a tick mark
positioned on a time-by-type grid. The tick marks
are color, angle, and shape-coded to represent
the events, type, and associated characteristics,
and may contain tails to encode the event
duration. Scalability is increased by including

an over-plotting indicator, filtering, and zoom-
bars.

. Multiscape, shown in Fig. 1 (right), is a land-
scape visualization. It encodes information
using 3D glyphs (ªskyscrapersº) on a 2D land-
scape. The glyph symbol choice is parameter-
ized, the bars may be negative or positive,
interactively labeled, and rendered in 2D or 3D.
The 3D renderings are exciting and dynamic,
whereas the 2D better supports crisp compar-
isons between glyph sizes.

. ParaBox, Fig. 5, combines Box, parallel coordi-
nates, and bubble plots, for visualizing n-
dimensional data. It handles both continuous
and categorical data [6]. The reason for combin-
ing Box and parallel coordinate plots involves
their relative strengths. Box plots work well for
showing distributional summaries. Parallel co-
ordinates' strength is their ability to display
high dimensional outliers, individual cases with
exceptional values. Combining the two techni-
ques results in a visual component that excels at
both tasks.

. Data Constellations, illustrated in Fig. 6, is a
component for visualizing large graphs. Many
data sets can be represented as graphs including
purchasing associations, web click streams, and
market basket analysis. Two tables parameterize
Data Constellations, one corresponding to nodes
and another to links. It contains four built-in
graph layout algorithms, described in [22], that
dynamically position the nodes so that patterns
are emergent. The strength of the algorithms is
their ability to layout extremely large graphs
with thousands of nodes and links.

EICK: VISUAL DISCOVERY AND ANALYSIS 47

2. Research versions of another dozen or so components have been
developed, but are not yet integrated into the tool.

Fig. 3. Bar chart scalability is increased by using levels of rendering detail, a red over-plotting indicator (left), and a 1,000 to 1 zoombar.

48 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 4. TimeTable shows thousands of time-stamped events using color-coded tick marks.

Fig. 5. ParaBox is a combination of Box plots and parallel coordinate plots for showing multidimensional data.

. Text-oriented tools:

- Data Sheet, shown in Fig. 7, is a dynamic
scrollable text visualization for tables [7]
that bridges the gap between text and
graphics. It extends traditional displays by
color coding cell values, and supporting
sorting and filtering. Furthermore, as the

user adjusts the zoom factor with the

scrollbar, the component progressively dis-

plays more information, using smaller and

smaller fonts, eventually switching to one-

pixel high bars. This process is called

smashing.

EICK: VISUAL DISCOVERY AND ANALYSIS 49

Fig. 6. Data Constellations is a component for visualizing large graphs. Each of the four components is a different graph layout algorithm.

Fig. 7. Data Sheet is a scalable text view that smoothly transitions between text and graphics to increase view scalability. Upper left: full scale, lower

right: completely smashed where each thin bar represents a text field.

. Counts is a text view providing a statistical
summary of a data table and information about
the table's selection vector (see Section 2.2).

Perhaps the most unique aspect of the visual compo-

nents is their scalability. The Bar Chart, for example, can

easily display tens of thousands of bars. At full scale, the

bars are collapsed down to a smoothed distribution. As the

user zooms in, the scale progressively expands until the

bars become individually visible and, eventually, become

standard size. Time Table can easily handle 100,000 tick

marks and Data Constellations scales to tens of thousands

of nodes.
Each component is packaged as an ActiveX control with

a set of properties that may be manipulated programma-

tically or through the ADVIZOR GUI. Each control has five

classes of properties:

1. Data that binds the view to one or more columns of a
data table in the data pool.

2. Color that automatically ties color scales to data
ranges.

3. Selection for modifying the user interaction model.
4. Component-specific properties such as smoothing,

node placement, and statistical parameters.
5. Viewing and Navigation, including view-port opera-

tions such as panning and zooming, and camera
position for the 3D components.

The Color and Selection properties affect the data table

attached to the component and, thus, carry over to all other

components attached to the same data table.

2.1.1 Context Menus

The visual components each contain context menus for

users to manipulate the properties. The context menus may

be customized for particular applications, or overridden,

but are particularly useful for hosting the components in

containers, such as browsers, with limited UI support.

2.1.2 Undo/Redo Command stack

Every component maintains an undo/redo command stack,

containing a history of component changes. By manipulat-

ing the command stack, container applications can back out

or repeat user manipulations.

2.1.3 Color Scales

A key strength of ADVIZOR is its use of color. Color, a

retinal variable [3], is frequently tied to a data range, and

used to overlay an additional dimension on a conventional

visual.
ADVIZOR supplies six color scales. Rainbow, the most

popular scale, walks the color wheel from blue to red. The

other scales are Green/Red, Pastel, Equalized, Thermal (red to

white), and, of course, Gray level (light to dark). A general

problem with color scales is that increments in color are not

perceived as equal increments in the data value. The

Equalized scale is a perceptually uniform scale based on

user experimentation that is perceived correctly.

2.1.4 Component-Specific Properties

Properties such as view port manipulations, e.g., panning
and zooming, are view-specific. Besides scrolling, other
nonlinked properties include scaling, sorting, label options,
and layout.

2.2 Perspectives

Each component has inherent strengths and weaknesses.
Some (particularly Multiscape, Data Constellations, Time
Table, and ParaBox) support high-level structure discovery.
Others, for example Data Sheet, provide immediate access
to details, but are less effective at conveying structure. Bar
and pie charts are particularly useful as filters for selection
and to summarize data. A key contribution in ADVIZOR is
to organize sets of components into perspectives, which are
multiple linked components that work together to answer a
class of questions. Many questions are just too complicated
to answer with a single component. A well-engineered
perspective contains a set of components that function
together in a complementary manner. (See Fig. 1.) Each
component shows the data from a different perspective.
Combined components are more powerful than the sum of
each individual contribution.

2.2.1 Linking in Perspectives

Components attached to the same data table in a perspec-
tive are linked in four ways: by color, focus, selection, and
exclusion. Components linked by color use the same color
scale. Focus, selection, and exclusion, described below, are
interactive properties involving ADVIZOR's case-based
linking model [10].

In case-based linking, selection, focus, labeling, and other
interactive operations affect the state of cases (or rows) in
the data table. State information is kept in vectors parallel to
the fields in the data table. When state changes occur, other
components displaying this table are automatically notified
and can update themselves to reflect the new state
information. Other types of linking include constraint-
linking, where constraints specify the relationships between
components, and many-to-one linking.

Fig. 8 illustrates the automatic linking among the
components using a bar chart and Data Sheet. Both are
visualizing the product sales table. Focusing on quaker

oats crunchberries in the DataSheet automatically
highlights details off the CEREAL bar in the bar chart.

2.2.2 Selecting, Excluding, and Restoring

Associated with every data pool table is a parallel selection
vector that marks each row in one of three mutually
exclusive states: selected, unselected, or excluded. By conven-
tion, data items corresponding to the excluded rows are not
displayed, the unselected rows are drawn in light gray, and
the selected rows are drawn in color.3 Excluded rows may be
restored using menu operations. Initially, by default, all
rows in a table are selected.

Used together, selection and exclusion are extremely
powerful. Fig. 9 shows, for example, a perspective using
bar charts to display sales by quarter, year, sales channel,
and product and a Multiscape showing sales by product

50 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

3. Default colors may be customized via a color property page.

EICK: VISUAL DISCOVERY AND ANALYSIS 51

Fig. 9. ADVIZOR/2000 perspectives showing sales by quarter, year, sales channel, and product. Upper left: initial perspective. Upper right: user

selects OEM and Europ sales channels. Lower left: filtering results shown on perspective. Lower right: excluding restricts the display to drill down on

only the two selected channels.

Fig. 8. Bar chart and data sheet showing sales by product are automatically linked so that selection and focus events propagate between the

components.

and quarter. The initial perspective is in the upper left.
Selecting the OEM and Europ channels (upper right) shows
sales for these channels (lower left). Excluding focuses the
perspective on only these two selected channels (lower
right).

Excluding and restoring are particularly useful for elim-
inating bad data from a perspective, e.g., all cases
corresponding to the unknown bar in the male-female bar
chart.

2.2.3 Focus

Focus provides a means for users to see the value of data
items. Mousing over a graphical entity corresponding to a
row, either selected or unselected, sets the focus. By conven-
tion, the entity corresponding to the focus row is dynami-
cally labeled. Focus provides a convenient interface for
labeling and interactively identifying interesting entities in
the current and all other linked components.

2.2.4 Selection Tool and Modes

The selection tool and mode, described in detail in [21], are
extremely powerful. The most common selection tool is a
swept out rectangle, but other options include a circle with
radial sizing and a lasso that can assume arbitrary shapes.

The most frequently used selection mode is replace, which
causes the current selection to replace any previous
selections. Other possible modes are toggle that inverts the
selection state of the chosen items, add that increases the
selection set, subtract that decreases the selection set, and
intersect that subsets the selection set by intersecting the
new and existing selections.

2.2.5 Automatic Selection Aggregation

By default, the components automatically recalculate
aggregations, roll-ups, and statistical routines every time
the selection set changes. Although this is computationally
intensive, automatic recalculation facilitates ªdrill-acrossº
comparisons.

For example, consider a perspective containing four bar
charts, respectively, showing sales (bar height) by sex, by
store location, by age, and by marital status. Each component
is attached to a data table containing transactions with
additional columns containing the purchaser's sex, age,
marital status, and store location. The bar charts will
automatically aggregate over the data table and display
sales totaled by category. Sequentially selecting first the
males and then the females in the sex bar chart shows how
sales vary by sex across all of the other variables. Using the
intersect selection mode to select from all males those whose
marital status is single shows three-way interactions
between variables. A particularly handy technique is to
aggregate over a ªcolor-byº variable. The colors are then
stacked within each bar, showing the subpopulations
involved within the aggregation.

2.2.6 Programming ADVIZOR

There are two ways to program ADVIZOR content, either
visually by interactively creating and saving perspectives or
by writing Visual Basic scripts that set component proper-
ties. A convenient technique is to use AutoScript.vbs,
which automatically runs at startup by default, to bind

scripts to ADVIZOR buttons and to populate the initial data
tables. Application-oriented scripts are then available with a
single mouse click.

Although VB provides a rich programming environment
for ADVIZOR, it is also possible to program ADVIZOR
using J++, C++ or any language that supports COM
bindings. All important attributes are exposed through the
component properties.

Adding a new ActiveX component to ADVIZOR, e.g., a
map control or a data mining tool, is straightforward. The
integration step involved with a tight linkage involves
writing message handling code that translates events
between ADVIZOR and the new component. The transla-
tion should be logical, e.g., if a user focuses on the bar
corresponding to Illinois, the state Illinois should be
highlighted in a linked choropleth (color-coded) map.

Some of the more common ADVIZOR programming
operations involve manipulating the data pool, modifying
the color vector, and redefining the context menus. These
operations are only available through the programming
APIs. Typical data pool operations involve adding new rows
or columns to an existing table, performing row transforms,
and creating new tables.

2.2.7 Embedding Visual Components in Other

Applications

ADVIZOR's visual components are easily hosted by other
containers, such as MS Internet Explorer2, and that may be
integrated into other applications. The components are
packaged in four dynamic link libraries (dlls), VzUni, VzBi,
VzMulti, and VzLib containing the univariate, bivariate,
multivariate views, and common routines, respectively.

There are three successive levels of component integration:

1. Graphical widgets, where the components function as
richer and better graphical displays.

2. Stand alone visual data analysis environment, where the
container hosts the components and exploits their
built-in menus, linking, statistical functions, and
analysis capacity.

3. Visual controls integrated into an application and
functioning both as a visual display and interactive
environment for manipulating the application.

In embedded applications, it is the responsibility of the
container to populate the data pool, either directly through
the API or by accessing the SDR/W, described in Section 3.2.
For an integration involving visual controls, the hosting
application must write code that maps ADVIZOR events to
the appropriate control actions.

2.2.8 ADVIZOR/2000ÐEnd User Visual Workspace

We have developed two container applications, ADVIZOR
and ADVIZOR/2000, that provide a rich environment for
building interactive visual query and analysis applications.
ADVIZOR/2000, shown in Fig. 1, focuses on visualizing
multidimensional data. It provides an out-of-the-box end
user experience for navigating, selecting, manipulating, and
analyzing multidimensional data. The ADVIZOR/2000
container hosts two perspectives, a single measure perspec-
tive for visualizing one measure and a multiple measures
perspective for visualizing two or three measures simulta-

52 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

neously. It goal is to provide an easy-to-use tool specifically
suited for one class of data.

Important features include:

1. Undo and Redo that is a standard in Windows
applications;

2. Bookmarking to save and return to the current state;
3. Reporting and Printing for sharing analysis results;
4. Toolbars for ease of use and navigation (Fig. 10);
5. Write-back to export a result set to an operational

system for further analysis or business action.

2.2.9 ADVIZORÐScriptable Visual Workspace

ADVIZOR is a powerful, general-purpose platform for
constructing visual applications. Using ADVIZOR menus
and dialogs, users import data tables into the data pool and
manipulate the data using the data and date calculator to
create new fields and perform other data conditioning
operations. Users then instantiate visual components, e.g.,
bar charts, pies, ..., attach them to the data tables, and
organize them into perspectives. This process, called
authoring, enables domain knowledge to be captured in
reusable perspectives. This process supports arbitrary ad-
hoc analysis since visual components can be created and
populated as needed for the analysis.

ADVIZOR provides:

1. Window management including MDI and splitter
windows;

2. Visual authoring to interactively build and save
perspectives;

3. Application templates that capture important problem
domain knowledge (see below);

4. Viewing for ªlight weightº users;
5. Session management including save and restore;
6. Undo and Redo that is becoming standard in

Windows applications;
7. Reporting and Printing for sharing analysis results;
8. Toolbars for ease of use and navigation;
9. Preferences for end user customization.

When a set of perspectives is bundled together to solve a
business problem, it is called an Application Template.
Application templates may be customized and modified
as needed. A Category Analysis template, for example,
might include perspectives answering: significant changes
from previous time periods; branded and private label
performance; share and growth percentages; emerging new
products; and shelf stocking by store sizes and category.

2.3 Visual Design Patterns

In the process of constructing many perspectives, we have
observed certain recurring design patterns. These patterns
associate perspectives with specific types of problems or
analyses. The patterns are broadly useful across many
applications and apply to many problem domains.

2.3.1 Overview, Zoom, Filter, Details on Demand

As noticed by Card et al. [4, p. 625], a common design
pattern involves an overview that shows the entire dataset,
e.g., all folders on your hard disk, and supports the ability
to zoom in on interesting folders visible in the overview
using direct manipulation techniques. It incorporates
interactive filters, frequently bar and pie charts, that enable
you to filter out uninteresting folders so that you display
only the data that is interesting. Filtering might be by
category, numeric range, or even selected value. An
effective user interface, for example, might allow you to
click on the interesting items and thereby retrieve folder
details. This design pattern is called: Overview, Zoom, Filter,
Details on Demand.

ADVIZOR perspectives using this design pattern fre-
quently use a Data Constellations, Scatterplot, ParaBox, or
Time Table with zoombars as the overview, coupled with
linked bar charts for filtering, and labeling and perhaps a
Data Sheet for details. Examples of other systems using this
design pattern include Spotfire (a scatterplot overview) and
VisDB [13] (space-filling pixel overview). The overview is
the primary workspace, with little if any substantive
interpretation coming from the filter graphics.

2.3.2 Linked Bar Charts For Categorical Analysis

Another design pattern, called Linked Bar Charts is particu-
larly strong for data tables containing categorical data. The
design pattern uses one bar plot for each categorical
column, with the height of the bar tied to the number of
rows having that particular value. In statistical terms, each
of the bar charts shows a marginal distribution. As the user
selects an individual bar, the display recalculates to show
one-way interactions. Using exclusion and selection shows
two-way interactions.

A typical example of a categorical dataset might involve
a pizza customer survey. A data table contains one line
(row) for each surveyed customer that with many attributes
(columns) including:

. topping satisfaction: numeric value from 1 and 7;

. complaint: no problem, ...;

EICK: VISUAL DISCOVERY AND ANALYSIS 53

Fig. 10. ADVIZOR/2000 toolbar supports rich navigation.

. type of crust: deep dish, ...;

. topping:

. pizza size: small, medium, large;

. overall satisfaction: numeric value from 1 to 7;

. ...

Fig. 11 (left) illustrates this design pattern with bar charts

showing satisfaction by attribute. Most customers are

highly satisfied since the bar corresponding to a 7 is the

longest in the overall satisfaction bar chart. If a user selects

any individual bar, e.g., Deep Dish, the perspective

recalculates to show marginal satisfaction for that attribute

(not shown). By sequentially selecting individual or sets of

bars, users can explore relationships between the attributes.
The perspective on the right side of Fig. 11 has excluded

the satisfied customers and focused in on just those who

were somewhat unhappy. Using the perspective further, we

can find that the primary reason customers are unhappy is

because they are not getting enough toppings. Going

further, we discover the reason is that a small number of

stores are not putting on enough pepperoni.
In this design pattern, users interact with multiple

workspaces. No one bar chart is primary or secondary.

User questions dictate the starting point for an analysis and

their journey through the rest of the interrelated bar charts.

2.3.3 3D Multiscape with Bar Charts

Another common design pattern uses a 3D Multiscape or

landscape visualization to show tabular information with

the height of each bar encoding the value of the respective

cell. The bars may be organized on a 2D grid or positioned

spatially on a geographical substrate. Bar charts and other

controls that function as filters are positioned around the

landscape visualization or, in some cases, directly on the

walls. Users rotate and manipulate the landscape visualiza-

tion to see patterns and can label interesting bars by

touching them with the mouse and can filter using the

linked bar charts. See Fig. 1.
Exemplar systems using this design pattern include SDM

[5], Wright's information animations [23], and Visual

Insights ADVIZOR/2000 [8].

This design pattern is midway between the single and
multiple-workspace apprach. The overview graphicsÐthe
3D MultiscapeÐis a primary workspace to keep the users
oriented to solutions in regard to the table population. Yet,
users take ªside journeysº into the bar charts for substantive
intrepretation, not just filtering. With the bar charts as
secondary workspaces, user can explain detailed issues
while still maintaining a big picture view in the primary 3D
workspace.

3 IMPLEMENTATION DETAILS

This section describes some of the interesting aspects of
ADVIZOR's construction.

3.1 Data Model

ADVIZOR uses a table-based data model. VzTable, shown in
Fig. 12, consists of named columns, each of which contains
data elements of a single type. Internally, the data within
columns is stored in auto-sizing vectors. The indigenous
data types are String, 32 bit integer, doubles, and
dates. The meta data for each table includes householding
information such as vector names, lengths, access state, etc.
The left side of Fig. 12 shows that two additional vectors are
automatically associated with every table: a selection and
color vector. Sets of in-memory tables are maintained in the
Data Pool.

3.1.1 Data Access

ADVIZOR achieves ubiquitous access via the Structured
Data Reader/Writer, an OLE-component that interfaces with
standard sources and can directly populate the data pool.
The engineering goal for the SDR/W is to provide
ubiquitous data access. The currently supported standards
include ODBC, ADO, Excel spreadsheets, and text files.

3.1.2 Linking and Joining Tables

Joining tables within the data pool combines multiple tables
to make them appear as one. Linking tables propagates
events between tables, an especially useful feature for
selection, color, and handling real-time data feeds. Both of

54 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 11. Categorical data design pattern. Left: overall satisfaction by attribute. Right: dissatisfaction by attribute.

these features are currently available only through the
programming API. Tables may be linked in four ways:
selection linking along a key, color linking, aggregation
linking, and clone linking. The mechanism ADVIZOR uses
for implementing the linking is a general purpose capability
called Connectors.

There are several significant advantages to maintaining
multiple tables in the data pool. First, it simplifies
application development. Second, having multiple tables,
each representing a different level of aggregation, enables
ADVIZOR to navigate through drill-down, drill-up, or drill-
across at various levels in a data hierarchy. For example, a
retail product management perspective might include
transactions, a roll-up of transactions by customer loyalty
card number, and a further roll-up of sales by product.
Third, by linking the tables together and bringing in data
one slice at a time, it is possible to handle arbitrarily large
data stores.

3.1.3 Operations on Tables

Tables within the data pool may be manipulated, cloned,
edited, transformed, and aggregated. Cloning and aggregat-
ing creates a new table. Manipulations are performed either
through the programming APIs or by using ADVIZOR's
Calculator, a general purpose table manipulation tool.

3.1.4 Answering ªWhyº Questions

Answering ªwhyº questions frequently involves multiple
tables. In single table visualization systems, the initial visual
display is often sufficient and rich enough to answer the
ªwhat happenedº question, e.g., sales went up in Nevada,
profit increased, beer and diapers are purchased together
on Fridays, and so on. Probing more deeply and answering
the ªwhyº questions often involves another table. Under-
standing why sales in Nevada increased might involve
linking the initial perspective, showing the sales by state
table, with another perspective, showing the sales by
product table restricted to Nevada. Answering the why
question for beer and diapers might involve another
perspective, showing the customer profiles table for beer
and diaper purchasers, to discover that young husbands are
frequently sent on errands to purchase diapers and buy
beer for themselves.

The system architecture needed to answer why questions
includes:

1. a multiple table data pool;
2. linking and event passing among the tables so that

drill-up, down, and across operations propagate;
3. Perspectives with different visual components show-

ing multiple tables simultaneously.

EICK: VISUAL DISCOVERY AND ANALYSIS 55

Fig. 12. VzTable, ADVIZOR's internal data store.

3.1.5 Event Model

ADVIZOR uses events to propagate changes, both user and
data initiated, among the visual components and data
tables. The events are accessible through programming
APIs and can be intercepted, generated, and manipulated
using Visual Basic code. Every event is associated with a
data table and is propagated using a publish and subscribe
programming pattern. Visual components direct events
generated by user manipulations, e.g., selections, excluding,
focus, etc., to their associated data table, which then
propagates the events to any linked components.

There are seven important event types:

1. DataChanged indicates that the underlying data table
has been modified and usually causes the compo-
nent to completely redraw itself;

2. VisibilityChanged is triggered for an excluding (or
restoring) event;

3. HighlightChanged is called for selection events;
4. NamesChanged indicates that a variable name in a

table has changed;
5. ColorChanged happens when the current color vector

changes, either by rescaling the colors or by selecting
a new color scale;

6. FocusItemChanged occurs when the focus changes;
7. UndoChanged occurs when a user has selected either

undo or redo from the command stack.

In contrast to many components that return raw mouse
coordinates and button clicks, ADVIZOR events are much
higher level and oriented toward visualization tasks. To

create an animation, for example, ADVIZOR sequentially

creates HighlightChanged events and walks the focus over

the rows in the data table.

3.2 Software Architecture

As shown in Fig. 13, ADVIZOR consists of five architectural

components:

1. Data Pool, a set of in-memory data tables available to
be visualized and populated directly or via the
Structured Data Reader/Writer (SDR/W), a component
providing broad data access.

2. Data Manipulation components, VzCalculator and
VzDateCalc, that manipulate data pool tables per-
forming data, date and calendar calculations, and
some statistical metrics.

3. Interactive Visual Components, each embodying a
particular visual representation, including conven-
tional graphs such as bars, pies, and lines, as well as
novel metaphors such as Data Constellations. Com-
ponents both show information and provide built-in
analysis capability. Components attached to the
same table are automatically linked (see below).

4. Container Applications, ADVIZOR and ADVIZOR/
2000, that function as visual workspaces and provide
an interactive sense-making environment. The con-
tainers, targeted at different domains, provide
windows services, a GUI, and help support.

5. A Powerful Event-based Linking Mechanism that co-
ordinates operations among the components.

56 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

Fig. 13. ADVIZOR software architecture.

At the core of ADVIZOR is a patented C++ class library

called Vz. Developed over six years in Bell Laboratories, Vz

is an object-oriented, platform-neutral, class library focused

on visualization. The Vz library:

. handles display rendering in an efficient manner,

. contains placement and graph layout algorithms,

. factors out common visualization operations such as
color management, scales, mouse operation,

. includes many utility classes for efficient data
management, manipulation, conditioning, and
transforms,

. provides a common ªlook-and-feel,º

. enables efficient 3D navigation,

. supports view linking and event management,

. includes statistical algorithms, such as smoothing
and trending, and

. uses an API-neutral rendering engine, VzDrawer,
that draws with OpenGL for 3D graphics and Win32
for 2D graphics.

4 RELATED WORK

The related work falls into three broad classes: general

papers in information visualization, linked-view statistical

graphics applications, and visual component-related re-

search. In all cases, there has been a rich history of

interesting and significant contributions. The best general

summary of related work is clearly Card et al.'s recent book

on information visualization [4]. It contains reprints of

many fundamental and sustaining papers in information

visualization. Another related collection of papers is [14].
More specifically, some work on linked-view systems

which clearly influenced the creation ADVIZOR includes:

Dynamic Statistical Graphics are a collection of early

techniques for interacting with statistical plots [2].

MANET is a linked-view system focusing on missing

values [18].

Data Desk is a powerful interactive teaching tool that has

evolved into a sophisticated commercial statistical

package [19].

XGobi an early linked-view visualization system for X-

Windows [17].

XmdtTool is another pioneering linked-view system em-

bodying rich multivariate data analysis techniques [20].

Spotfire is a commercial package based on work at the

University of Maryland that is targeting the pharmaceu-

tical industry [1].

Research related to our visual components includes:

Data Sheet is similar to Xerox Parc's Table Lens [15].

Time Table is built from the SeeLog tool that focused on

displaying time-stamped events from log files [9].

Multiscape is our version of a landscape visualization

introduced in [12] and extended in [11].

Data Constellations extends Wills' work on NicheWorks

[22].

5 SUMMARY

ADVIZOR is an interactive environment for building tightly

linked visual query and analysis applications. There are

three unique and compelling aspects to ADVIZOR's

technology:

. Rich, scalable, interactive Visual Components that are
tightly linked by selection, focus, data, and color.

. A Data Pool containing multiple, linkable tables for
visualization. A multiple table data pool is necessary
to answer ªwhyº questions and provides better
support for drill-up, drill-down, and drill-across.

. ADVIZOR and ADVIZOR/2000 containers that host
the components and function as visual workspaces.

Together, the different aspects of ADVIZOR function as a

powerful environment for visual query and analysis.

ACKNOWLEDGMENTS

Many talented and creative thinkers on the Visual Insights

staff have contributed to the creation of ADVIZOR. Also, I

particularly appreciate insightful comments and my colla-

borations with Alan Karr and Barbara Mirel. Graham Wills

and Ken Cox contributed greatly to an early research

version of this technology.

REFERENCES

[1] C. Ahlberg and B. Shneiderman, ªVisual Information Seeking:
Tight Coupling of Dynamic Query Filters with Starfield Displaysº
SIGCHI '94 Conf. Proc., pp. 313-317, Apr. 1994.

[2] R.A. Becker, W.S. Cleveland, and A.R. Wilks, ªDynamic Graphics
for Data Analysis,º Statistical Science, vol. 2, pp. 355-395, 1987.

[3] J. Bertin, Semiology of Graphics. London: Univ. of Wisconsin Press,
Ltd. 1983.

[4] S.K. Card, J.D. Mackinlay, and B. Shneiderman, Readings in
Information Visualiation: Using Vision to Think. San Francisco:
Morgan Kaufman, 1999.

[5] M.C. Chuah, S.F. Roth, J. Mattis, and J.A. Kolojejchick, ªSDM:
Selective Dynamic Manipulation of Visulizations,º UIST '95 Conf.
Proc., pp. 6170, 1995.

[6] W.S. Cleveland, The Elements of Graphing Data. Pacific Grove,
Calif.: Wadsworth, 1985.

[7] S.G. Eick, ªGraphically Displaying Text,º J. Computational and
Graphical Statistics, vol. 3, no. 2, pp. 127-142, June 1994.

[8] S.G. Eick, ªVisualizing Multi-Dimensional Data with Advizor/
20002,º Aug. 1999, available at: http://www.visualinsights.com.

[9] S.G. Eick and P.J. Lucas, ªDisplaying Trace Files,º Software Practice
and Experience, vol. 26, no. 4, pp. 399-409, Apr. 1996.

[10] S.G. Eick and G.J. Wills, ªHigh Interaction Graphics,º European J.
Operational Research, vol. 81, pp. 445-459, 1995.

[11] J. Goldstein, S.F. Roth, J. Kolojejchick, and J. Mattis, ªA Frame-
work for Knowledge-Based Interactive Data Exploration,º J. Visual
Languages and Computing, vol. 5, pp. 339-363, Dec. 1994.

[12] W.C. Hill and J.D. Hollan, ªDeixis and the Future of Visualization
Excellence,º IEEE Visualization '91 Conf. Proc., pp. 314-320, Oct.
1991.

[13] D.A. Keim and H.-P. Kriegel, ªVisDB: Database Exploration Using
Multidimensional Visualization,º IEEE Computer Graphics and
Applications, vol. 14, no. 5, pp. 40-49, Sept. 1994.

[14] Database Issues for Data Visualization, J.P. Lee and G.G. Grinstein,
eds. Springer-Verlag, Oct. 1994.

[15] R. Rao and S.K. Card, ªTable Lens: Merging Graphical and
Symbolic Representations in an Interactive Focus Plus Context
Visualization for Tabular Informationº Proc. ACM Conf. Human
Factors in Computing Systems (CHI '94), pp. 318-322, Apr. 1994.

[16] B. Shneiderman, ªTree Visualization with Tree-Maps: A 2-
Dimensional Space Filling Approach,º ACM Trans. Graphics,
vol. 11, no. 1, pp. 92-99, Jan. 1992.

EICK: VISUAL DISCOVERY AND ANALYSIS 57

[17] D.F. Swayne, D. Cook, and A. Buja, ªXGOBI: Interactive Dynamic
Data Visualization in the X Window System,º J. Computational and
Graphical Statistics, vol. 7, no. 1, June 1998.

[18] A. Unwin, G. Hawkins, H. Hofmann, and B. Siegl, ªInteractive
Graphics for Data Sets with Missing ValuesÐManet,º J. Computa-
tion and Graphical Statistics, vol. 5, no. 2, pp. 113-122, 1996.

[19] P.F. Velleman, The DataDesk Handbook. Odesta Corp., 1988.
[20] M.O. Ward, ªXmdvtool: Integrating Multiple Methods for

Visualizing Multivariate Data,º Visualization '94 Conf. Proc.,
pp. 326-333, Oct. 1994.

[21] G.J. Wills, ªSelection: 524,288 Ways to Say 'This is interesting,'º
Information Visualization '96 Proc., pp. 54-60, Oct. 1996.

[22] G.J. Wills, ªNicheworksÐInteractive Visualization of Very Large
Graphs,º J. Computational and Graphical Statistics, vol. 8, no. 2,
pp. 190-212, June 1999.

[23] W. Wright, ªInformation Animation Applications in Capital
Markets,º IEEE InfoVis '95 Symp. Proc., pp. 19-25, 1995.

Stephen G. Eick received a BA from Kalama-
zoo College (1980), an MA from the University of
Wisconsin at Madison (1981), and a PhD in
statistics from the University of Minnesota
(1985). He is the vice president of research
and development for Visual Insights, an emer-
ging growth software company. He and his
colleagues have developed a suite of visualiza-
tions, including tools for displaying geographic
and abstract networks, software source code,

text corpora, log files, program slices, and relational databases. Dr. Eick
is an active researcher, is widely published, and holds several software
patents. He is particularly interested in visualizing e-commerce
databases, web analysis, and building high-interaction user interfaces.

58 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 1, JANUARY-MARCH 2000

