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Visual Embedding
A Model for Visualization

Automating the design of effective visual-

izations is an unsolved problem. Although 

researchers have proposed numerous guide-

lines and heuristics, a formal framework for design 

and evaluation is still elusive. Instead, conducting 

a posteriori user studies is still the primary tool 

for assessing a visualization’s effectiveness. Using 

theoretical models presents another, albeit less ex-

plored, approach (for background on such models, 

see the sidebar). We believe that the generative po-

tential of model-based visualizations can acceler-

ate design and complement the summative nature 

of user studies.

Developing a theory of visualization that is 

both descriptive and generative is dif� cult. The 

space of visualizations is large, and the use of vi-

sualization spans many issues in human percep-

tion and cognition. Additional factors, such as 

interaction techniques, can signi� cantly affect a 

visualization’s success. Given our current knowl-

edge, visualization design is an underconstrained 

problem. So, there is value in developing simpler, 

constrained models, each addressing certain as-

pects of visualization while ignoring others, like 

spotlights on a theater stage.

In this context, we introduce visual embedding as 

a model for visualization construction. We de� ne 

a visualization as a function that maps from a do-

main of data points to a range of visual primitives 

(see Figure 1). We claim a visualization is “good” if 

the embedded visual elements preserve structures 

present in the data domain. A function meeting 

this criterion constitutes a visual embedding of 

the data points.

Our model is motivated by the fact that un-

derstanding patterned structures in data is a pri-

mary goal of visual analysis. The proposed basic 

framework can be used to generate and evaluate 

visualizations on the basis of both the underlying 

data and—through the choice of preserved struc-

ture—desired perceptual tasks. Our model is a gen-

eralization of earlier work on structure-preserving 

colorings.1

Representing Structures in Data
Structure is “the arrangement of and relations be-

tween the parts or elements of something complex” 

(http://oxforddictionaries.com/de� nition/english/

structure). How, then, can we express structures 

in data? Unfortunately, a user might not explicitly 

know about important structures in the data, let 

alone be able to express or quantify them.

On the other hand, users often can hypothesize 
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Figure 1. Visual embedding is a function that preserves structures in the 

data (domain) within the embedded perceptual space (range).
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some notion of distance between data points. Us-

ing pairwise distances is one simple and general 

way to implicitly express structures in spaces. For 

example, if a function transforms a 2D or 3D 

Euclidean space while preserving pairwise Euclid-

ean distances, the shape and size of objects in the 

space will stay the same. Similarly, if a function 

existed from a sphere to a plane that preserved all 

pairwise distances on the sphere, we’d have world 

maps without distortion (angles and areas would 

be simultaneously preserved). Structure can be 

operationalized in terms of these atomic pairwise 

relations; in this context, the visualization func-

tion should picture what these pairwise relations 

amount to.

Ideally, distance in the data space should re�ect 

users’ understanding of the similarity between 

data points as it relates to their current task. This 

lets them hint at the type of structures they’re 

interested in seeing. For instance, if a user is in-

terested in symmetries, he or she should provide 

a measure that quanti�es these relationships. In 

fact, structural criteria such as symmetry and 

continuity often serve as design choices in creat-

ing visualizations. In contrast, distance in the vi-

sual space should convey the perceptual distances 

between visual primitives.

Of course, there can be many other ways of ex-

pressing structures in data. However the structure 

is expressed, the corresponding perceptual range 

Researchers have proposed general and speci�c models 

of visualization. Owing to space limitations, we con�ne 

our discussion to a small but representative subset.

Jock Mackinlay introduced one of the most in�uential 

systems for automatically generating visualizations.1 

Following Jacques Bertin’s aphorism of graphics as a 

language for the eye,2 Mackinlay formulated visualizations 

as sentences in a graphical language. He argued that good 

visualizations will meet the criteria of expressiveness and 

effectiveness. A visualization meets the expressiveness crite-

rion if it faithfully presents the data, without implying false 

inferences. Effectiveness concerns how accurately view-

ers can decode the chosen visual-encoding variables; it’s 

informed by prior studies in graphical perception (for exam-

ple, by William Cleveland and Robert McGill3). Mackinlay’s 

APT (A Presentation Tool) employed a composition algebra 

over a basis set of graphical primitives derived from Bertin’s 

encodings to generate alternative visualizations. The system 

then selected the visualization that best satis�ed formal 

expressiveness and effectiveness criteria.

APT didn’t explicitly take into account user tasks or interac-

tion. To this end, Steven Roth and his colleagues extended 

Mackinlay’s work with new types of interactive presentations.4 

Similarly, Stephen Casner built on APT by incorporating user 

tasks to guide visualization generation.5 Some of these ideas 

now support visualization recommendation in Tableau (www.

tableausoftware.com), a commercial visualization tool.

Donald House and his colleagues’ automatic visualiza-

tion system integrated user preferences.6 Genetic algo-

rithms re�ned a population of visualizations in response to 

user ratings. In contrast to this empirical approach, Daniel 

Pineo and Colin Ware used a computational model of the 

retina and primary visual cortex to automatically evaluate 

and optimize visualizations.7 Jarke van Wijk argued for �rst 

modeling a perceptual domain (for example, luminance or 

shape perception) and then optimizing for some perceptu-

al goal according to that model.8 Visual embedding can be 

viewed as a reusable template within van Wijk’s discussion 

on perceptually optimal visualizations.

If we chose a motto for visual embedding, it would be 

“visualization as a perceptual painting of structure in data.” In 

this sense, visual embedding’s perceptual-structure preserva-

tion criterion closes the cycle, explicitly linking Mackinlay’s 

expressiveness and effectiveness criteria while providing a 

recipe to achieve both (see the main article).
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should be able to accurately convey that structure. 

One advantage of using pairwise distances is that 

their application to visual spaces is conceptually 

straightforward. We can encode them as perceptual 

differences of color, shape, texture, spatial distance, 

size, and so on. The following discussion uses pair-

wise distances to express structures in data.

Estimating Perceptual Distances  
with Crowdsourcing
To assess structural preservation, we require 

perceptual-distance measures for a given visual-

embedding space. However, except for a few per-

ceptually uniform color spaces, we don’t have 

these measures for most visual spaces. In these 

cases, online crowdsourcing can help us estimate 

perceptual distances.2

A visual space is perceptually uniform if a per-

turbation to any element in it results in a propor-

tional change in a viewer’s percept. For example, 

perceptual experiments �nd that linear mappings 

for 2D position or 1D length are perceptually lin-

ear. By design, the CIELAB color space is approxi-

mately perceptually uniform; RGB and CIEXYZ 

aren’t. The Euclidean distance between two color 

points in CIELAB is approximately proportional 

to the empirically reported perceptual difference 

between the colors. Conversely, a small change to 

RGB or CIEXYZ triplet values might cause a dis-

proportionate change in perceived colors.

Crowdsourcing is one way to collect large, di-

verse perceptual data samples. For example, Jef-

frey Heer and Michael Bostock replicated prior 

graphical-perception results using crowdsourced 

experiments on Amazon’s Mechanical Turk.2 

CIELAB was also, in a sense, crowdsourced: it was 

created by �tting an appearance model to observ-

ers’ color-scale judgments. We demonstrate the vi-

ability of this approach later.

New Visual Spaces from Old:  
Visual Product Spaces
Formulating visualizations as structure-preserving 

functions raises the possibility of transferring 

other related mathematical concepts. Product 

spaces (or sets) provide one example: we can gen-

erate a new visual space using the Cartesian prod-

uct of existing visual spaces. We call this space a 

visual product space (see Figure 2).

Generally, the product of two perceptually uni-

form visual spaces won’t be uniform. On the other 

hand, when we have two topological spaces en-

dowed with metrics, constructing a metric for the 

product space is straightforward. One challenge is 

to discover whether cases exist that have an analo-

gous procedure for constructing visual product met-

rics. This issue resonates strongly with research on 

interactions between perceptual dimensions (for 

example, integral versus separable visual encod-

ings3). Searching the literature for separable cases 

might be a promising starting point.

Under our model, constructing a good visual-

ization function is fundamentally an optimization 

problem. The nature of embedding spaces often 

determines the available techniques. The spaces 

can be Euclidean (for example, most color spaces, 

including RGB, CIELAB, and CIELUV), continuous 

but non-Euclidean (for example, parametric shape 

spaces and texture spaces), or discrete (for exam-

ple, �nite sets of icons, shapes, glyphs, and fonts). 

Some of the many techniques for embedding a do-

main in Euclidean space are principal component 

analysis, multidimensional scaling, isometric fea-

ture mapping, and locally linear embedding.4

Although embedding in the Euclidean space is 

computationally well studied, embedding in non-

Euclidean spaces (continuous or discrete) is not. 

We can formulate the latter problem as a combi-

natorial optimization; graphical models5 are one 

way to formulate and solve these problems.

A graphical model depicts a joint probability 

distribution of random variables. While a graphi-

cal model’s nodes represent random variables, its 

edges represent their conditional dependencies. 

How might we use a graphical model for visual 

embedding? We can de�ne a random variable 

(node) for each data point, assigning that point 

to a visual primitive (for example, color, icon, or 

shape) in the visual-embedding space. Similarly, 

we can use edges to express pairwise distances as 

conditional dependencies that we intend to pre-

serve perceptually in the embedding space. Then, 

we can de�ne the visual-embedding problem as 

�nding the mode of the joint distribution de�ned 

by this graphical model, which we can compute us-

ing ef�cient inference algorithms.5 Later, we give a 

simple example of how to use graphical models for 

visual embedding.

Directed and undirected graphical models have 

great potential for expressing and synthesizing 

visualizations. We can also extend them to con-
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Figure 2. A visual product space. To create these 

spaces, we use the Cartesian product of existing 

visual spaces (in this case, Vp and Vg).
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struct embeddings in continuous visual spaces. 

Using graphical models also presents an opportu-

nity to model conditional distributions of visual 

embeddings. We can imagine a scenario in which 

a visualization tool presents a user with sampled 

visualizations drawn from a distribution over pos-

sible visualizations learned by the model.

Applying Our Model
The following three examples demonstrate our 

model.

Coloring Neural Tracts
We colored neural-�ber pathways estimated from 

a diffusion-imaging brain dataset. Given a set of 

tracts, we �rst computed distances (or dissimilari-

ties) between pairs of pathways. To do this, we used 

a simple measure that quanti�ed the similarity of 

two given neural pathways’ trajectories. We then 

constructed the visualization function by embed-

ding the distances in the CIELAB color space us-

ing multidimensional scaling. Figure 3 shows the 

obtained colorings; perceptual variations in color 

re�ect the spatial variations in the tracts.

Scatterplots with Icons
Here, a toy problem demonstrates embedding in a 

discrete visual space. We wanted to assign polygo-

nal icons from the discrete polygonal-shape space Vp 

(see Figure 2) to a given set of 2D points so that the 

points’ spatial proximity was redundantly encoded 

via the assigned polygons’ perceptual proximity. 

Though simple, this setup is realistic: redundant vi-

sual encoding is common in visualization. Alterna-

tively, we could have used icons to convey attributes 

of other dimensions of the data points.

Unlike the coloring example, here we lacked a 

perceptual model for estimating perceived distance. 

So, we obtained a crowdsourced estimate of the per-

ceptual distances between the elements of Vp, using 

Amazon’s Mechanical Turk. The study participants 

saw all possible pairs, including identical ones. We 

used errant ratings of identical polygon pairs to �l-

ter “spammers.” After this initial �ltering, we nor-

malized each participant’s ratings and averaged the 

ratings across the users. Finally, we normalized the 

averaged ratings and accumulated the results in a 

distance matrix. Figure 4a shows the task interface 

and resulting perceptual-distance matrix.

We then posed the embedding problem as maxi-

mum a posteriori estimation in a Markov random 

�eld (an undirected graphical model) to �nd an 

embedding of a simple 2D point set in Vp. Figure 

4b shows the result. The polygonal primitive as-

signment re�ects the data points’ clustering, as we 

desired.

Evaluating Tensor Glyphs
With our model, given suitable data and percep-

tual metrics, we can assess competing visualiza-

tion techniques’ structure-preserving qualities.

We compared superquadrics and cuboids, two 

alternative glyphs used in visualizing second-order 

diffusion tensors (see Figure 5a). We rotated 

the diagonal tensor D = [2.1 0 0; 0 2 0; 0 0 1] 

around its smallest eigenvector (0, 0, 1) with �ve 

incremental degrees. We computed how the ten-

sor value changed as the Euclidean distance be-

tween the reference tensor and the rotated tensor 

changed. We approximated the perceptual change 

in the corresponding glyph visualizations with 

the sum of the magnitudes of the optical �ow at 

each pixel in the image domain. We averaged the 

optical-�ow distances over nine viewpoints uni-

formly sampled on a circumscribed sphere under 

�xed lighting and rendering conditions.

(a) (b)

Figure 3. Coloring neural tracts: (a) the internal capsule and (b) the corpus callosum. We colored them using 

visual embedding in a perceptually uniform color space. Perceptual variations in color re�ect the spatial 

variations in the tracts.
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The trends in Figure 5b suggest that superquad-

rics represented the change in the data more faith-

fully (that is, preserved the structure better) than 

cuboids. This supports the visualization design 

choice motivating superquadrics.6

Discussion and Research Directions
Embedding spaces needn’t be restricted to visual 

stimuli. They could be any perceptual channel 

or combinations thereof, such as color, texture, 

shape, icon, tactile, and audio features. For ex-

ample, we could, in theory, apply our formulation 

to construct soni�cations for people with visual 

disabilities.

Our current examples are only a proof of concept, 

including our approach for estimating perceptual 

distance through crowdsourcing. Visualizations 

live in context; crowdsourcing-based estimated 

perceptual distances can’t capture all the percep-

tual interactions of every context. Also, running 

large-scale crowdsourcing studies can be dif�cult. 

Because we used a small discrete space, we could 

present every pair of embedding-space points to 

each study participant. Running a similar experi-

ment with thousands of discrete visual primitives 

will require larger studies and more sophisticated 

analysis methods for estimating a distance matrix.7 

Similarly, large-scale embedding can be slow; how-

ever, many heuristics, such as restricting pairwise 

distances to local neighborhoods and sampling, 

can ameliorate the problem.

On the basis of these challenges and insights 

derived from our examples, we envision the fol-

lowing research directions.

A Standard Library of Visual Spaces
The visualization community could bene�t from 

a standard library of visual spaces with associated 

perceptual measures. The library would be a prac-

tical resource for constructing useful defaults for 

visualizations. This goal will require consulting 

the literature on the interference of perceptual di-

mensions and running large-scale crowdsourcing 

studies. For the latter, metric learning might help.7

Probabilistic Models of Visualizations
Implementing visual embedding with graphical 

models provides an opportunity to explore proba-

bilistic models of visualization design spaces. This 

might prove fruitful because several “optimum” 

visualizations often exist. Using graphical models 

can also help express high-level structures in data. 

Such models might also make it easier to incorpo-

rate aesthetic or subjective criteria into automatic 

visualization generation.

Evaluating Visualizations
To use visual embedding to evaluate visualizations, 

a primary challenge is to devise and validate ap-

propriate image-space measures (for example, op-

tical �ow) to approximate perceptual distances.

Tools
Finally, we want to develop tools that facilitate 

construction of visualizations under our model. 

Two challenges stand out. The �rst is to develop a 

visualization language that lets users express and 

create visual embeddings without implementing an 

optimization algorithm. This language should inte-

grate libraries of visualization defaults for different 

data and task domains. It might also bene�t from 

crowd-programming ideas8 to enable automated 

support for running crowd-sourced evaluations.

The second challenge is to develop a visualization 

debugger in the spirit of the tensor glyph example, 

letting users get runtime feedback about visualiza-

tion quality. We envision future visualization devel-

opment environments integrating such languages 

and debuggers. 
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Figure 5. Evaluating tensor glyphs. (a) A superquadric and a cuboid glyph, used for visualizing the same tensor �eld.6 The insets 

represent the diagonal tensor D. (b) Changes in the size of D and its superquadric and cuboid representations with respect to 

rotations around the tensor’s smallest eigenvector. The tensor size and the superquadric glyph’s appearance follow a similar 

trend; the cuboid glyph’s appearance differs. This suggests that superquadric glyphs better preserved the structure in the data.


