
Visual Exploration of Combined Architectural and Metric Information

Maurice Termeer Christian F. J. Lange Alexandru Telea Michel R. V. Chaudron

Technische Universiteit Eindhoven

Department of Mathematics and Computer Science

Den Dolech 2, 5600 MB Eindhoven, the Netherlands

 m.a.termeer@student.tue.nl, c.f.j.lange@tue.nl, alext@win.tue.nl, m.r.v.chaudron@tue.nl

Abstract

We present MetricView, a software visualization and

exploration tool that combines traditional UML

diagram visualization with metric visualization in an

effective way. MetricView is very easy and natural to

use for software architects and developers yet offers a

powerful set of mechanisms that allow fine

customization of the visualizations for getting specific

insights. We discuss several visual and architectural

design choices which turned out to be important in the

construction of MetricView, and illustrate our approach

with several results using real-life datasets.

1. Introduction

UML diagrams are one of the most widespread forms

of depicting software architectural and design

information. UML models are usually created and used

visually, using interactive modeling tools or diagram

editors. Software metrics, such as produced by analysis

tools [16], are efficient and effective instruments for

analyzing large system architectures [3]. Metrics can

answer complex, targeted questions, such as “which

components are unstable or non-conforming to specific

guidelines and requirements?” or “what happens if I

change this component?” Metrics come mostly in two

flavors. Global metrics, e.g. system cohesiveness or

quality, characterize entire systems by single numbers,

so they are best shown by tables with text and numbers.

Per-element metrics characterize separate components

or relationships, e.g. component coupling, fan-in, fan-

out, ‘provides’, or ‘uses’. To understand such metrics,

tables are not enough. We need to correlate their values

with already familiar, understood model information,

such as contained in the various UML diagrams.

We present an approach that combines architectural

and metric data on software systems in an integrated,

interactive visualization tool called MetricView. We

aim to create a single view where users smoothly and

easily navigate between classical UML diagram data

and architectural metric data, minimizing the cognitive

disruption present in approaches that separate the two.

Next, we let users easily, yet completely, customize the

metric visualization in a variety of ways. Finally, we

designed MetricView so that combining UML and

metric data is easy and imposes no constraints or

modifications on the data sources.

Section 2 presents related work on combining

software metric and structural information. Section 3

details the visualization techniques we adapted and

applied for our goals with MetricView. Throughout the

presentation, we compare our experiences with

MetricView and SoftVision [12], the latter being a

related software visualization tool we developed in the

past, and outline the lessons learnt. Section 4 concludes

our discussion and outlines future work directions.

2. Related Work

We define the goal of software architecture

visualization using the 5-dimensional model of Maletic

et al. [9]: task, audience, target, medium, and

representation. Our main task is to gain insight in the

structure and semantics of architectures represented in

the UML language. Our audience consists of system

architects and developers, interested to understand a

system’s structure and dependencies, and evaluate

various functional and non-functional component

properties. Our visualization target is the system

architectural information, given as a set of (class,

sequence, package, etc) UML diagrams, enriched with

various computed software metrics. The visualization

medium is the standard PC display. Finally, the

representation augments the classical UML diagram

graphical layout used by modeling tools with metric

data, shown as overlaid transparent icons.

UML-based modeling tools, such as Rational Rose

[11] or Together [14], are the most accepted way for

visually understanding architectures. However effective,

such tools are limited to showing only UML diagrams.

Adding extra information to the picture, e.g. software

metrics, is not supported. At the other extreme,

architectures can be analyzed by means of software

metrics, computed by reverse engineering and software

analysis tools and presented in tables and histograms

[8][10]. This presentation form makes it hard to

correlate metrics with structural information.

Somewhere between the above, programmable

visualization tools such as Rigi [6], SHriMP [12] or

SoftVision [13] propose a more abstract, system view

which disposes of many rich UML visual details. Figure

1 (top) illustrates this in the SoftVision tool. Boxes are

components, box nesting shows component inclusion

(containment), and lines are component call

relationships.

Figure 1: Software architecture without (top)
and with metrics (bottom) in SoftVision

Being more customizable than the fine-tuned, but

more rigid UML modelers, such tools allow users to

specify several visualization elements. For example,

software metrics can be displayed atop of the system

structure graph, e.g. by tuning the color, shape, or size

of the graph nodes to corresponding component metrics.

Similar ideas have been presented in [1] and [8]. Figure

1 (bottom) shows a similar architecture as in Figure 1

(top). Each component has a four metrics bar chart laid

out in the vertical dimension atop of the structure graph.

Programming this visualization in SoftVision took us

around two hours [15]. However useful, we discovered

that this approach has several limitations. First, many

users preferred the richer UML diagrams to our more

simplified, albeit more customizable, visualization.

Second, our users wanted a nearly automatic way to add

metric visualization to their UML diagrams, in a single

tool. We answered these requirements by combining the

strengths of UML views (intuitive, interactive, visual

navigation) and metric data (concise, precise) in an

integrated tool, called MetricView. This tool is

presented next.

3. Anatomy of MetricView

MetricView is essentially an UML visual tool that

adds highly customizable metric visualizations to the

well-known diagrams. In a nutshell, given a UML

diagram (Figure 2a) and a set of metric values (Figure

2b), MetricView produces the result shown in Figure 2c.

In the following, we describe the design (Section 3.1)

and metric information (Section 3.2) used by

MetricView. Next, we detail the visualization

techniques we created to integrate the two in one view

(Section 3.3).

3.1. Structure (UML) Data

MetricView can visualize class, sequence, state, use

case, and collaboration UML diagrams, imported from

XMI (XML Metadata Interchange) files conforming to

OMG’s version 1.2 [5]. The UML data is represented

using the UML 1.3 metamodel [4]. Although these

standards are a bit aged, they are still better accepted

than their successors, XMI 2.0 and UML 2.0. At the

time of writing, the UML 2.0 standard is still not yet

released as final. Moreover, only very few UML tools

support this format. Hence, our choice for the older and

more supported format.

3.2. Metric Data

MetricView supports both global metrics, i.e., defined

for a complete UML model, and element metrics, i.e.,

defined for an element, or relationship, of the model. A

metric is modeled as a (key, value) pair. The key is the

metric’s (unique) textual name. MetricView currently

supports boolean and numeric metrics. Any element can

have any number of metrics. One may freely choose

which metrics to define for which elements. Metrics and

UML diagrams are provided as separate input files to

MetricView. This loose association between the metric

and structural data, similar to the one used by

SoftVision [12], allows users to easily combine metric

and UML data that come from independent tools.

Indeed, our UML models came from various modelers

[11][14]. So far, we used the over 40 metrics provided

by our own software architecture analysis tool SAAT

[10]. However, using metrics computed by other tools,

e.g. [16], or alternatively UML models provided by

different modelers, is clearly an easy task.

a) UML design information b) Metric information c) Combination in MetricView

Figure 2 : Combining UML design and software metric information in MetricView

3.3. Visualization

Figure 3 shows a typical visualization session in

MetricView. The canvas (A) displays a UML class

diagram, combined with six element (class) metrics.

Users can select the desired diagram from the complete

diagram (model) set from the XMI input file using the

diagram browser (B). The UML diagram is drawn using

the structural and layout information stored in the XMI

input file. Layout data is, however, not a mandatory part

of the XMI specification. In practice, different UML

modelers may store different amounts of layout data,

ranging from simple per-element 2D bounding box and

position data to detailed geometry. MetricView is

capable of drawing the UML diagrams even if only

basic bounding box data are available, by performing a

number of local element layouts using various graph

layout techniques. The metric list (C) shows a textual

list of all available metrics in the input file. In itself, this

panel is similar to the text-based output of metric tools

such as SAAT [10]. For every metric, the list shows its

name, type (indicated by the letter “b” for boolean and

“ï” for integer), and a checkbox to select the metric for

display (Figure 4 left).

Visualizing a metric proceeds as follows. First, the

desired metric is checked in the list (D). A metric icon

appears now atop of all UML elements in the canvas for

which that metric is available. Several types of metric

icons are available to choose from. They differ in the

way they map the metric value to a visual attribute, as

well as whether they work for boolean or integer

metrics. We implemented the following integer metric

icons (the visual attribute that maps the metric value is

given in brackets): 2D rectangles (color, using a blue-to-

red rainbow colormap), 2D height bars (y dimension),

2D circles (radius), 2D pies (circle arc), 3D bars (z

dimension) and 3D cylinders (z dimension). For boolean

metrics, we implemented several flavors of 2D

checkbox icons. If several metric values are to be

displayed for a UML element, MetricView lays out their

chosen metric icons in a 2D grid layout over the element

drawing itself. Finally, various metric icon specific

parameters, such as cylinder icon and circle arc icon

resolution, checkbox symbols, colormap color entries,

and so on, can be tuned via GUI controls (E).

A

B

C

D

E

Figure 3: MetricView visualization overview

Figure 4 (right) shows such an UML class element

with four metrics M1, M2 (boolean) and M3, M4

(integer) displayed, using two checkbox icon flavors

and twice the same 2D height bar icon respectively. To

let users make the correspondence between the

displayed icons and the metrics in the metric list, we use

two visual curs, as follows. First, a layout legend panel

is drawn in MetricView (Figure 3C). The panel shows

the grid layout used for to position icons over the UML

elements in the canvas. Second, every metric in the

metric list (Figure 3D) displays a small colored type

symbol right to its check box (Figure 4 left). The layout

legend displays the colors of the metrics that are

selected from the metric list to be visualized in the

canvas. Thus, the user can, in two steps, see which

metrics are displayed over a given UML element, by a)

looking at the color of the corresponding position in the

layout legend and b) looking at the metric with that

color in the metric list. Although direct icon-to-metric

Layout legend

M1

M2

M3

M4

Metric list

M1 M2

M4 M3

Metric icons

Figure 4: Visual mapping of metric list (left) to metric icons (right) via layout legend (middle)

association is also possible by clicking a metric icon in

the canvas and getting its associated metric entry in the

list, the previous two-step visual mechanism is better,

since it allows one to directly interpret all metric icons

present on all the canvas elements.

In comparison, SoftVision’s icon customization

features are technically more powerful than those of

MetricView. SoftVision icons (called glyphs) can be

any 2D or 3D graphical object, of which all attributes

(shape, color, texture, lighting, size, and even interactive

behavior) can be parameterized by any number of

metric values by user-defined scripts. MetricView icons

are a limited set of shapes, and the metric to shape

attribute parameterization is strictly one to one.

However, our extensive experience with SoftVision

showed its icon mechanism to be often unnecessarily

complex and hard to grasp for end users. Often, users

want just a small icon type set, with straightforward

parameterization and meaning, which is usable via

pointing and clicking, with no scripting involved.

Hence, our choice for the icon design used in

MetricView.

A second visualization issue is how to let users freely

navigate between the structural (UML) information and

the metric information in the same view. We solved this

problem by controlling the transparency of the two. By

changing both the UML diagram (αS) and metric icon

(αM) transparencies interactively via two sliders, users

can effectively and efficiently change the focus from the

structure (Figure 6 top, αS=0.8, αM=0.2) and metrics

(Figure 6 bottom, αS=0.2, αM=0.8). In the extreme

cases, we obtain a pure UML diagram visualization

(αS=1, αM=0) or a pure histogram-like metric

visualization (αS=0, αM=1).

A third visualization issue is the use of spatial

dimensions. MetricView is able to do both 2D and 3D

visualizations. Figure 5 (bottom) shows a 3D

visualization, where the xy plane contains the UML

diagram and the z dimension is used for the 3D metric

icons. Although this visualization uses the same

mechanisms as the one in Figure 1 (bottom) made with

the SoftVision tool, the one made with MetricView

provides more insight, due to the fine UML diagram

detail available as well as the various navigation and

metric customizations provided. Figure 5 (top) shows

the same data as in Figure 5 (bottom), but using a 2D

visualization. Interestingly enough, although we tried to

provide well-tuned, advanced 3D support in

MetricView, including 3D stereo display, most users

preferred the 2D mode. We recorded the same

experience from our use of SoftVision for software

visualization in reverse engineering activities [12]. The

only case, in both MetricView and SoftVision, when the

use of 3D was preferred, was when users wanted to

quickly get a comparative overview of several metric

values defined for many elements of a given

architecture. Using height bars produced here

landscape-like visualizations such as Figure 1 and

Figure 5, which, when navigated, allowed users to

immediately spot outlier values (e.g. maxima).

Tuning transparency, as described before, prevents

UML diagram element occlusion by the metric icons.

Still, this is not a solution when one desires to view both

metric and structural data. We solve this by allowing

users to tune the metric grid layout by scaling and

translating the 2D layout area used, on every element, to

display the metric icons. Figure 5 uses this technique to

‘shift’ the metric icons to the upper-right quarter of the

elements, making the UML annotations (class and

method names, etc) visible. Another visualization issue

is how to address questions such as “spot all

components having important properties”. We assume

these properties are described by specific metric values

or value ranges. To allow easy spotting of such

components, we provide several simple interval-based,

slider-like, filtering mechanisms in MetricView’s

interface. These allow users to select which metric

values, or ranges, to display. No icons are displayed for

metric values outside the selection, so this immediately

lets users spot those diagram elements that match their

selection. We did not implement more sophisticated

metric filtering. Our previous experience with this

situation in SoftVision showed that the best result is

reached by computing more involved filtering as

metrics and doing only basic filtering interactively.

Figure 5: Planar (top) and 3D (bottom) layouts

Figure 6: Tuning diagram and metric opacity

As a last example to illustrate the combination of

structural and metric information, we present a

visualization showing 15 metrics per diagram element

(Figure 7). We use here the perspective, instead of the

orthogonal, projection (compare to Figure 5 bottom).

Although the displayed metric data amount per

element is high, the 3D layout (xy plane for structure,

z axis for metrics), and the usage of the same color for

the same metric icon, provides an effective way to

compare the various model elements.

MetricView is implemented in C++ using OpenGL

for graphics, FreeType for the UML diagram high-

quality fonts, and wxWindows for the user interface,

and runs under both Windows and Linux. It can

interactively visualize XMI datasets of tens of

megabytes containing UML models up to thousand

classes, on a Pentium 4 PC at 1.8 GHz with

accelerated OpenGL. A prototype of MetricView

showing all features presented in this paper, including

an easy-to-use installer and example UML and metric

data is publicly available at:

http://www.win.tue.nl/empanada/metricview

Figure 7: 3D perspective visualization with 15
metrics per component

4. Conclusions and future work

We have presented MetricView, an integrated

software tool for interactive exploration of UML

software models and software metrics. Throughout the

design of MetricView, its users, and their preferences,

stood central, as follows. First, MetricView builds

upon the UML visualizations, using diagrams and

graphical layouts which are familiar to software

architects and developers. Metric information,

computed by separate software architecture analysis

tools, is added to the UML diagram visualization in a

non-intrusive way. Users can continuously change the

appearance of the visualization between the two

extremes of a classical, architecture-only UML

diagram, and a histogram-like, metric-only display, by

the simple dragging of a slider. Second, MetricView

offers a wide range of fine-grained visualization

customization options, that allow users to specify

which metrics to display, how to arrange (layout)

them, which graphical shapes, colors, sizes, and so on,

to use for the metrics. Third, MetricView is designed

to fully decouple the implementation details of its four

main ingredients, or information types: the UML

layout and structural information; the metric

information; the metric layout (where to draw

metrics); and the metric mapping (how to draw

metrics). This allowed us, as proved by several use

cases, to quickly build visualization scenarios that

import UML information from various sources, e.g.

modeling tools; add metric data computed with third-

party software analysis tools; and easily choose, at

run-time, which metrics to display, and how.

Compared to our previous experience with SoftVision,

which was designed for similar goals, MetricView

allowed our users to combine structural and metric

information in visualizations in a fraction of the time

needed before, and with definitely more satisfying

results. MetricView is an evolving project. We are

currently working on several extension directions, as

follows. First, we plan to integrate several graphical

layout plug-ins, based on existing work in this area

[1]. This will allow users to quickly produce quality

visualizations even when no layout information is

present in the UML input data, and also work on novel

layouts to allow visualizing hundreds of elements on a

single screen with minimal cluttering. Second, we plan

to extend the metric visualizations beyond the metric-

per-component current capabilities, e.g. by computing

displaying more global, per subsystem, or per project

metrics. Finally, we work on improving the metric

computation tools themselves to extract more

insightful and usable information from software

architectures and display it within our improved

MetricView tool.

References

[1] Diehl, S. (ed.), Software Visualization, Proc. Dagstuhl

2001 Intl. Seminar, Springer, 2002.

[2] Eiglsperger, M., Kaufmann, M., Siebenhaller M. A.

Topology-Shape-Metrics Approach for the Automatic

Layout of UML Class Diagrams, Proc. ACM SoftVis,

ACM Press, 2003, pp. 189 – 198

[3] Fenton, N., Pfleeger, S. Software Metrics: A Rigorous

and Practical Approach, Intl. Thomson Computer Press,

1996

[4] Fowler, M. UML Distilled, 3rd ed., Addison-Wesley,

2003

[5] Grose, T., Doney, G., Brodsky, B., Mastering XMI: Java

Programming with XMI, XML, and UML, John Wiley &

Sons, OMG Press, 2002

[6] Tilley, S. R., K. Wong, M. Storey, H. A. Müller,

Programmable Reverse Engineering, Intl. Journal of

Software Engineering and Knowledge Engineering, vol.

4, no. 4, World Scientific, 1994, pp. 501-520

[7] Maletic, J.I., Marcus, A., Collard, M.L. A Task Oriented

View of Software Visualization, Proc. Vissoft’02, IEEE

CS Press, pp. 32-40

[8] Lange, C., Chaudron, M., Combining metric data and

the structure of UML models using GIS visualization

approaches, Proc. Intl. Conf. on Information

Technology: Coding and Computing, 2005, pp. 322 –

326

[9] Marcus, A., Feng, L., Maletic, J.I., 3D Representations

for Software Visualization, Proc. ACM SoftVis ‘03,

ACM Press, 2003, pp. 27 – 36.

[10] Lange, C. F. J., Empirical Investigations in Software

Architecture Completeness, Master’s Thesis, Eindhoven

University of Technology Press, 2002

[11] Rational Rose: www.306.ibm.com/software/rational/

[12] Storey, M.A., Best, C., Michaud, J., Rayside, D.,

Litoiu, M., Musen, M., SHriMP Views: An Interactive

Environment for Information Visualization and

Navigation, Proc. CHI ‘02, ACM Press, NY, 520 – 521

[13] Telea, A., Maccari, A., Riva, C., An Open Toolkit for

Prototyping Reverse Engineering Visualization, Proc.

IEEE VisSym ‘02, EG Association, 2002, pp. 241 – 251

[14] Together: http://www.borland.com/together, 2005

[15] Voinea, L., Telea, A., A Framework for Interactive

Visualization of Component-Based Software, Proc.

EUROMICRO ’04, IEEE CS Press, 2004, pp. 567 – 574

[16] Wust, J. SDMetrics: The software design metrics tool

for UML, http://www.sdmetrics.com, 2005

