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Visual feature integration with amplitude maximization

DRAZEN DOMIJAN

A neural model of visual feature integration is proposed based on presynaptic inhibition of excitatory
feedback connections. The same activity level or amplitude of corresponding nodes represents features that
belong to the same object. This is achieved by spreading of activation from strongly activated nodes to weakly
activated nodes but not in reverse. Spreading is controlled by presynaptic inhibition, which prevents unbounded
activity growth. The model’s representational capacity is far greater than in models based on temporal synchrony,
itis equally applicable to the static and moving stimuli and it can represent hierarchical groupings. A network may
operate as a short-term storage, which allows simultaneous feature integration over space and time.

Top-down signals from higher visual centers can influence the operation of the network either through direct
excitatory input or indirectly through inhibitory interneurons. With direct input, model behavior is consistent with
psychophysical data on object-based attentional selection and curve tracing task. Indirect influences are able to
provide flexible task-dependent feature integration and prevent accidental bindings that are consequences of

intrinsic properties of some scenes.

Anatomical and physiological investigations suggest
that visual system analyzes stimuli in a parallel and distrib-
uted manner. Specialized areas exist for processing differ-
ent visual attributes such as form, color, motion, etc.
(DeYoe & van Essen, 1988; Livingstone & Hubel, 1988;
Zeki, 1993). Distributed processing is efficient but it cre-
ates a problem for object recognition because it is not clear
which features belong to the same object. It is assumed that
a process of feature integration or feature binding operates
on distributed cortical maps before they send signals to
higher cortical areas responsible for object recognition
(Muller, Elliott, Herrmann & Mecklinger, 2001; Sejnow-
ski, 1986; Treisman & Gelade, 1980).

Recently, a large amount of experimental and theoreti-
cal work has been devoted to the search for a plausible
mechanism for feature integration. One possibility that re-
ceives considerable attention is stimulus specific synchro-
nization of oscillatory neural activity observed in cats and
monkeys. Neurons that code the same object engage in
synchronous oscillations, that is, their phase difference is
reduced to zero. On the other hand, neurons that code dif-
ferent objects become desynchronized. Physiological
measurements also reveal that the degree of synchroniza-
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tion among cortical neurons depends on their receptive
field properties, where more similar receptive fields are
more likely to induce synchronization (Eckhorn er al.,
1988; Gray, Konig, Engel & Singer, 1989; Gray & Singer,
1989; Singer & Gray, 1995; see also recent reviews in Eck-
horn, 1999; Gray, 1999; and Salinas & Sejnowski, 2001).
Based on this discovery, many computational mechanisms
have been proposed (Hummel & Biederman, 1992; Mozer,
Zemel, Behrmann & Williams, 1992; Wang & Terman,
1995; 1997). Although they differ in biophysical plausibil-
ity and mathematical sophistication, they all share the com-
mon assumption of phase locking of oscillatory activity in
cells that represent the same object.

It is possible to achieve temporal synchrony without os-
cillatory units. Such an idea has been put forward by Fujii
et al. (1996), who assumed that neurons function as coinci-
dence detectors. The basic idea is that a neuron is sensitive
to a temporal difference between spikes that arrive on
them. When the temporal difference is small, a neuron will
fire and signal that inputs are correlated and arrive from a
single source, but if the temporal difference is large, a neu-
ron will not fire because uncorellated input arrives from
different objects. Recently, this hypothesis has been ex-
tended in a more complicated architecture with bi-
directional functional connectivity (Watanabe, Aihara &
Kondo, 1998; Watanabe, Nakanishi & Aihara, 2001).

However, synchronization as a mechanism for feature
integration has been criticized on several grounds. First,
psychophysical evidence conceming synchronization is
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not conclusive because some researchers fail to find sup-
port for it (Kandil & Fahle, 2001; Lamme & Spekreijse,
1998; Lehky, 2000), while others confirm correlation with
perceptual performance (Alais, Blake & Lee, 1998; Usher
& Donnelly, 1998). Furthermore, Lammne (1995) reported
a difference in amplitude of neuronal responses in a cortex
in relation to a figure-ground organization. Second, models
of object recognition based on temporal synchrony such as
Hummel and Biederman’s (1992) JIM or Wang’s (Wang
& Terman, 1995, 1997) LEGION suffer from capacity
limitations making them unsuitable for processing com-
plex natural scenes, which contain large number of objects.
Such a limitation is intrinsic to synchronization because the
phase difference of cells that code different objects could
not be arbitrarily small. Thirdly, synchronization models
are not capable of representing hierarchical stimuli (Hum-
mel & Holyoak, 1993). This refers to the fact that one
grouping may become part of a larger group or it may con-
tain a smaller group in itself. For instance, the human body
may be perceived as a single entity but it contains parts
such as legs and head, which may be treated as separate
perceptual objects. Finally, proposed models of synchroni-
zation have not yet demonstrated how moving stimuli
could be integrated in perceptual units.

Due to the above mentioned problems, it is reasonable
to ask whether there is a mechanism for feature integration
in a more traditional framework based on a neuron’s aver-
age firing rate or its amplitude. Treisman and Gelade
(1980) suggested that attention is responsible for feature
integration. Recently, such an idea has been further devel-
oped by Roelfsema (1998; Roelfsema, Lamme & Spek-
reijse, 2000). The problem with this approach is that it has
not been computationally developed yet. Wersing, Steil, &
Ritter (2001) proposed a competitive-layer model that is
based on amplitude representation. Their model is an addi-
tive recurrent network with linear threshold neurons. How-
ever, in order to achieve the desired behavior, it requires an
annealing procedure, which is not a biophysically realistic
mechanism. Besides, it is not clear whether their model
could be used with hierarchical and moving stimuli and
how attention influences its behavior.

The aim of the present paper is to present a biophysi-
cally plausible mechanism for feature integration that does
not suffer from capacity limitations, allows attention or any
other top-down signals to alter its operations, and is capa-
ble of representing hierarchical and moving stimuli.

Model description

In the context of the lightness perception, Grossberg
and his colleagues developed an alternative approach to the
visual feature integration (Cohen & Grossberg, 1984;
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Grossberg, 1987; Grossberg & Todorovic, 1988). They in-
troduced the nonlinear diffusion process as an implementa-
tion of a perceptual filling-in. Diffusion allows spreading
of neural activity which integrates local contrast informa-
tion in a global perception of object’s lightness or color.

Pessoa & Neumann (1997) and Grossberg (1987) sug-
gested that the same approach could be applied to the inte-
gration of form, texture and other visual attributes. How-
ever, this extrapolation is not straightforward when object
recognition is considered. In lightness perception, two dif-
ferent surfaces with the same lightness should be repre-
sented with the same activity level in corresponding nodes.
But in the task of visual object recognition, every object
should be represented with a different activity level despite
their similarity in size, form or color. Therefore, a certain
type of transformation is needed in order to prevent wrong
bindings. Consider the simple example with two horizontal
lines as input :

0 0000
01110
I={0 0 0 0 0 ()]
01110
0 00O0©O

where 0s correspond to a dark background and 1s to light
points. A diffusion model would respond with the same ac-
tivity for both bars, making them indistinguishable for an
object recognition system. This may be circumvented with
gating of input signals before they can reach a diffusion
stage with a weight matrix that gives different emphasis to
every location in the visual field such as

1 2 3 4 5
6 7 8 9 10
w=|11 12 13 14 15 2
16 17 18 19 20
21 22 23 24 25

or some random matrixes that have different value on every
location. It should be noted that this is equivalent to the re-
quirement for distinct starting phases of neural oscillations
in the models of synchronization (Hummel & Biedermann,
1992). A diffusion model performs averaging of input val-
ues so final activity would approximately correspond to
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However, such different weighting is not enough as can be
seen from the following input.
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Here, both lines will elicit same response in the diffusion
network
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Also, the diffusion model is not appropriate for binding
moving stimuli because, as the object changes location, av-
erage activity will change due to the different weights at
different locations.

Instead of averaging, here it is proposed that maximiza-
tion of a node’s amplitudes achieve binding that is free
from accidental errors. Maximization means enhancing all
cells that represent the same object to the same activity
level as the strongest cell in that group. Therefore, the net-
work assigned certain activity value to every object in a
visual scene and object recognition system could easily
discriminate between them. Representational capacity is
not limited because every location in a network receives
different emphasis from input gating so they could not be
mixed if they do not correspond to the same object.

<

Figure 1. A model of visual feature integration based on amplitude maximization. Open circles are excitatory nodes and filled circles are
inhibitory. Horizontal and vertical ellipses represent input from orientation selective cells in primary visual cortex.
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Amplitude maximization is implemented as an excita-
tory feedback network with presynaptic inhibition. A
model] is illustrated in Figure 1. Formally, it is expressed as
a set of differential equations

dx; + + +
gl—z'Axi'*'Bf(lz)([wili'xi] +[xi+l'xi] +[xi-l'xi] ) (6)

t

and

[»] = max(».0) %)

where x; denotes the neuron’s activity at spatial position i;
-Ax; is a passive decay that drives activity to the resting po-
tential if no input is applied; B is a parameter that deter-
mine the strength of influence that input and neighboring
cells may exert on a target cell; f( ) is a binary function with
the value 1 if [;0 and the value 0 otherwise. It is used be-
cause it restricts undesirable spreading of activity to inac-
tive cells. Term [; denotes input gated by synaptic weight
w; described by eq (2); x;+; and x;., are nearest neighbors
that deliver excitation. Input to the network are the activi-
ties from the distributed map of feature detectors such as
simple or complex cells or directionally selective cells. If
the object’s form is used as a primary source of information
for object recognition as in the model of Hummel and
Biedermann (1992), then neighbors should be understood
as spatially displaced cells with the same orientation as tar-
get cell. Therefore, for a complete representation of the ob-
ject’s form, separate feature binding networks with differ-
ent orientations are needed.

Presynaptic inhibition is denoted with -x;. Eq (7) de-
scribes rectification, which is necessary in a biologically
plausible model, because it prevents excitatory connection
from becoming inhibitory and vice versa.

" The model operates in the following manner. If a cell
receives the strongest input with respect to its neighbors, its
inhibitory interneuron will prevent any excitatory influ-
ence that arrives on it through horizontal connections.
Therefore, the cell will be protected or isolated from its
neighbors and its activity will depend only on input value.
On the other hand, if a cell does not receive the strongest in-
put, its inhibitory interneuron will not be able to prevent
excitatory influence from neighbors and the cell’s activity
will grow until it attains a value close to the activity level of
its neighbors. In this way, activity spreads from strongly
activated cells to the weakly activated cells but not in re-
verse. At the end of this process, all cells that represent the
same object will attain the same activity value and that is
the value of the strongest cell in the whole group for a par-
ticular object.
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Computer simulations show that the proposed network
converges to the equilibrium value that is close to the itera-
tion of the following algebraic approximation

x; = maX(WiIi .x,»ﬂ,x,»_,) ®

at least for small values of A (.01) and large values of B
(100). Therefore, the network response to the input matrix
(1), is approximated by

0 0 0 0 O
0 9 9 9 0
x={0 0 0 0 O )
0 19 19 19 0
0O 0 0 0 O
and to the input matrix (4) by
11 0 9 0 0
11 0 0 9 0
x=|11 0 0 0 O (10)
0 0 0 00
0 00 00

The network may also be used for surface representa-
tion. However, such representation requires a different net-
work structure, because surfaces may overlap which will
cause leaking of activity between cells that represent dif-
ferent objects. This is prevented by orientation selective
cells which signal a boundary between surfaces. A variant
of the model more suitable for surface representation is il-
lustrated in Figure 2.

Mathematically, the network is described by

dx
L. L/ i R
frn s -05]") an

where J denotes input from orientation selective cells
which will prevent spreading between neighboring cells if
they represent different surfaces. It is assumed that a signal
from orientation selective cells is stronger than a signal
transmitted through excitatory axons so there is no possi-
bility for activity leaking. Spatial displacements of .5
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Figure 2. A variant of the proposed neural network model more suitable for surface representation. Orientation selective cells do not drive
the network but provide restriction.to activity spreading which allows the network to label different surfaces with different activity levels.
Input to the network arrives from independent source that represents surfaces such as filling-in network in Grossberg’s theory.

means that J does not influence network cells but influence
axons between them. Therefore, i + .5 is a spatial position
of an orientation selective cell that is placed between cells
at spatial positions i and i + 1 in an activity spreading net-
work which allows it to signal a boundary between them.
Such a spatial coding achieves better surface representa-
tion. Term I does not represent direct input as in eq (6),
rather it is an internally generated signal necessary for la-
beling different surfaces with different activity levels. Out-
put of the networks for edge and surface labeling are illus-
trated in Figure 3a and 3b, respectively.

Humphreys, Cinel, Wolfe, Olson and Klempen (2000)
provide neuropsychological evidence for distinct binding
networks of form and surface properties. They presented
data from a patient with bilateral parietal lesions, GK, who
showed difficulty in integrating form and surface proper-
ties, as indicated by a large number of illusory conjunctions
when asked to report shape and color of multiple objects in
avisual field. On the other hand, a grouping has little effect

on the number of illusory conjunctions indicating that inte-
gration of edge information into shape is left intact. Based
on this finding, they conclude that binding is not a unitary
process, but involves several networks that integrate differ-
ent perceptual attributes. Damage to one such network may
still Jeave other binding networks intact. This point is fur-
ther developed by Humphreys (2001), who reviewed vari-
ous neuropsychological data, and suggests that at least
three different binding processes could be distinguished.
The first is an integration of local edge signals into con-
tours and integration of contours into coherent shapes. The
second is an integration of shape and surface properties,
and the third is a transient binding process that is sensitive
to temporal cooccurrence of input.

A network for surface integration presented in Figure 2
may be applied in image segmentation. It has an important
advantage over previous algorithms such as FBF networks
proposed by Grossberg and Wyse (1991). FBF networks
require a different network layer for every surface in a vis-
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B

Figure 3. Output of the two variants of the network: A) when input came from orientation selective cells; B) when input came from surface

representation.

ual field (i.e., segmentation is achieved when all surfaces
are separated in their own network). However, the number
of objects in a visual scene may vary considerably and it
may be very large, so the number of layers in the network
should be equal to the largest possible number of objects
that may be encountered simultaneously, but this informa-
tion is not known in advance. The present approach does
not suffer from such a problem. One network layer is
enough since every surface is labeled with a different activ-
ity level.

Spatiotemporal processing

The model proposed here may be used to bind features
of moving objects. Observe that the maximum is left in-
variant if the stimulus is moving from a location that is
more weighted to the location with a smaller weight. This
is true if we assume that lateral excitatory signals travel
faster than the stimulus moves. In that case, the strongest
cell perturbs its neighbors before it is shut down due to the
stimulus disappearance in its receptive field. Therefore, di-
rectional selective cells should be weighted in a way that
gradient of weights follows preferred direction. For in-
stance, cells selective for movement from left to right
should have the largest weight at leftmost location and low-
est at rightmost location. One potential problem with the
network is its very slow decay rate, which is necessary fora
smoother activity spreading. This implies that when an ob-
ject moves, cells will be active even after a long period of
time the object passes its locations, which will cause
smearing of object representation (network will not repre-
sent objects but their trajectories). This problem could be
overcome if we introduce a strong reset signal that selec-
tively shuts down all cells, which has not been currently ac-
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tivated by the input. Therefore, when a stimulus moves,
cells could track its current position while all cells that
have been previously activated will be instantaneously de-
activated.

Another important aspect of neural information proc-
essing is binding in a temporal domain. Different cells may
process parts of the same object at different times due to the
Jarge amount of variability in their response latencies,
which may cause a problem for object recognition system.
Amplitude maximization solves this problem because it
operates as a sort of short-term memory due to the slow de-
cay rate. When a strong reset signal used for moving stim-
uli is removed from the model, the network will approxi-
mately retain its activity level despite the fact that input has
ceased. Another possibility is that we assume that reset sig-
nal is activated with a certain delay (i.e., when input ceases,
a reset signal waits for a while and then becomes acti-
vated). Cell activity is not reduced much during this delay
period, and if another part of the object representation be-
comes active, it will be grouped with previously active
parts. It is also possible that a reset signal may be dynami-
cally manipulated from higher centers or from other parts
of the object recognition network, where partial activation
from a binding network allows recognition, but these cen-
ters may require further evidence from the input and there-
fore hold on already acquired data.

Hierarchical stimuli

An important advantage of the proposed neural net-
work is its ability to represent hierarchical stimuli. This is
achieved in a simple way by lifting cell activities by a cer-
tain amount, which allows an object recognition system to
distinguish among different hierarchical levels. For in-
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stance, in the eq (1), cell activity may vary between 1 and
25 due to the input gating. However, if both objects are
parts of the larger grouping, certain cells that detect higher
order groupings may send strong feedback signal to the in-
put network. Suppose that the strength of the feedback sig-
nal is 100 units, final activity in the feature integration net-
work therefore will be 109 for an upper objectand 119 for a
lower object. In this way, the network successfuily coded
information that there is a single object coded by 100 units
of activity composed of two parts coded by 9 and 19 units
of activity. If there is even higher hierarchical level it may
send 1000 units of activity to the input network. Also, if
there is some other entity at the same hierarchical level it
may send 2000 units and so on. In a similar vein, it is possi-
ble to represent hierarchical knowledge of an arbitrary
complexity. An object recognition system may decode
such hierarchical information by rounding off values that
correspond to the hierarchical levels that are not interesting
at that moment. For instance, if the lowest level is not inter-
esting, the last two digits are rounded to the closest value so
both parts signal 100 units of activity. Also, it is possible
that different parts of the recognition system keep track of
different hierarchical levels so it may simultaneously rep-
resent different hierarchical levels which is consistent with
human capability.

Attention

Attentional influences may be incorporated in the
model through inhibitory interneurons in at least two ways
and through direct excitatory synapses from higher visual
centers to the excitatory cells.

When attention enhances activity of the interneuron, it
will strongly prevent any lateral excitatory influences de-
spite the fact that neighbors may have stronger activity than
the target cell. In other words, cells are isolated from neigh-
bors and their activity will converge to the level defined
solely by the input. Therefore, attention provides flexible
bindings that are task dependent, that is, it may prevent
some bindings if they are undesirable. Such behavior is
consistent with Hummel and Biederman’s idea that atten-
tion serves to prevent bindings. However, their hypothesis
was motivated by the limitations of the mechanism of syn-
chronization that they employ for feature binding. Their
proposition is in contrast with Treismann’s feature integra-
tion theory where attention plays a crucial role in binding
distributed features. In the presented model, Treisman’s
position may be accommodated if we assume that, initially
(before the start of the binding process), all interneurons
have a strong activity level which prevents any activity
spreading (another possibility is discussed below in rela-
tion to the curve-tracing task). When attention is employed
to a particular location, excitation from attention network

to the inhibitory interneuron is reduced for the location in a
spotlight of attention, and binding is enabled. Therefore,
both theoretical positions about the role of attention in fea-
ture binding are implemented in the same neural architec-
ture. The only difference is the parametric variation, in the
sense that attention may enhance or reduce internenuron
activity.

Another possibility is that attention, or in more general
terms, any top down signals from higher visual centers, di-
rectly influence excitatory cells through excitatory syn-
apses. In that case, activity of a certain cell which lies at the
location where attention is directed, will be enhanced but
because of lateral connections this activity will spread to
nearby locations that are connected with attended ones.
Actually, spreading will continue until all cells that repre-
sent the same object as an attended cell converge to the ac-
tivity value of the attended cell. Therefore, attention is
spread to all locations occupied by the object, which is con-
sistent with recent psychophysical investigations showing
object benefits in feature detection task. When two over-
lapping objects are briefly presented, and the task is to re-
port their two attributes, participants make fewer errors
when both attributes belong to the same object (Duncan,
1984). Vecera and Farah (1994) extended his finding and
showed that object benefit is equal regardless of whether
objects are superimposed or not. They interpreted this as an
evidence for a spatially invariant object processing and
against grouped arrays of enhanced activity that corre-
spond to objects in retinotopic map. However, Kramer,
Weber and Watson (1997) challenged their conclusion on
methodological grounds and provide evidence for a
grouped array interpretation, which is in agreement with
the mechanism proposed here. Recently, O’Grady and
Muller (2000) have provided additional evidence for
grouped array representation using a different paradigm.

In a curve-tracing task, participants are asked to judge
whether two points lie on the same or different curves. The
difficulty of the task may vary depending on the number of
intersections among curves and the strength of their curva-
tures. An interesting finding is that the time to solve the
task increases linearly with the distance between the
points. When Euclidean distance is kept fixed while the
length of the path between points is varied, the time to
solve the task again increases with the increasing length
(Roelfsema et al., 2000). In a related neurophysiological
study, Roelfsema et al. (1998) found that in an alert
monkey’s primary visual cortex, the neuron showed en-
hanced response if the traced curve is in its receptive field
while the response is reduced if the neuron represents a dis-
tractor curve. In this way, attention labels target curve with
increasing neural activity.

It should be noted that the proposed network does not
automatically solve the curve tracing task because, ini-
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Figure 4. Time course of activity development. Height of vertical bars denotes activity level of corresponding cell. Left figure denotes
start of the activity spreading and right figure shows final activity level.

tially, different segments of the curve may be labeled with
different activity values since indicated points are treated
as separated objects. Attention is required to give an addi-
tional excitatory signal which will be spread along the
curve. Spreading is a process that requires some time, and
if we assume that every synapse that should be passed
along the object representation causes a small delay in sig-
nal transmission, the total time needed to complete the
spreading will be linearly related to the size of the object or
length of the path of the curve as shown by psychophysical
investigations. Figure 4. illustrates temporal aspects of the
network behavior.

An initial grouping achieved without attention could be
interpreted as a base grouping in Roelfsema et al. (2000)
theory while an activity after attention has been deployed is
analogous to an incremental grouping. Recently, they
showed using variant of the curve tracing task that there are
indeed two components of the perceptual grouping; one
that is achieved without attentional control and the second
which requires attention (Scholte, Spekreijse, & Roelf-
sema, 2001). The mechanism presented here can support
both types of grouping.

An alternative approach to the problem of interface be-
tween attention and perceptual integration has been devel-
oped by Grossberg and Raizada (2000; Raizada & Gross-
berg, 2001). Their network behaves in a similar manner as
is described here, with activity spreading to the whole ob-
ject representation. However, their model requires much
more complicated neural architecture involving several
processing stages and folded feedback from higher visual
centers to the input stage with on-center off-surround net-
work, which prevents unbounded growth of activity and at
the same time mediates top-down attentional influences.
Besides, such network does not have the ability to label dif-
ferent surfaces with different activity levels during initial
preattentive grouping.
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CONCLUSION

Presynaptic inhibition is a biophysically realistic
mechanism confirmed by anatomical and physiological
studies. It was discovered in a spinal cord (Eccles, Eccles,
& Magni, 1961) and later in retina (Masland, Mills, & Cas-
sidy, 1984) and hippocampus (Colmers, Lukowiak, & Pitt-
man, 1987). An anatomical basis for this mechanism are
axo-axonal synapses which have been discovered by elec-
tron microscopy in various locations in a mammalian cen-
tral nervous system (Nicholls, Martin, & Wallace, 1991).
In a neural network modeling, it was introduced by Yuille
and Grzywacz (1989) in their mode] of winner-take-all be-
havior, where presynaptic inhibition provides ordering of
the competitive interactions, in a way that the strongest cell
receives the smallest amount of inhibition and therefore
wins the competition. Here, it is shown that presynaptic in-
hibition may be useful in preventing unbounded exchange
of activity in neural network with excitatory horizontal
connections where cells reinforce each other and lose sen-
sitivity to the input amplitude (Douglas, Koch, Mahowald,
Martin, & Suarez, 1995; Grossberg, 1999). Due to the fact
that inhibitory pathways do not interact with excitatory
cells directly, presynaptic inhibition prevents excitatory re-
inforcement without causing any instability that would
lead to the oscillations as in Li’s (1998) model of contour
integration in the visual cortex.

The model makes a testable neurophysiological predic-
tion about the coding of locations in the cortex. Different
locations are represented with different activity levels un-
less the same object occupies them. Such coding is ex-
pected to occur in posterior parietal cortex, which is known
to be involved in spatial localization of objects in visual
space (Ungerleider & Mishkin, 1982). Further research
will elucidate whether the proposed mechanism may be ap-
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plied to other aspects of cognitive functioning where bind-
ing plays an important role such as the modeling of lan-
guage production and encoding in short-term memory.

In conclusion, visual feature binding may be achieved
through amplitude maximization implemented as an exci-
tatory feedback network with presynaptic inhibition. Pre-
synaptic inhibition serves as a gate that allows strongly ac-
tivated cells to influence weakly activated cells but not the
opposite. Amplitude maximization is able to represent po-
tentially infinitely many distinct objects in a visual field, it
is free from accidental errors, it is equally applicable to
static and moving stimuli and it is able to represent hierar-
chical stimuli. Moreover, the model allows higher visual
centers to influence its operation in a way that is consistent
with recent psychophysical research.
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