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Abstract—This paper introduces a novel method for vehicle
pose estimation and motion tracking using visual features. The
method combines ideas from research on visual odometry with a
feature map that is automatically generated from aerial images
into a Visual Navigation System. Given an initial pose estimate, e.g.
from a GPS receiver, the system is capable of robustly tracking
the vehicle pose in geographical coordinates over time, using
image data as the only input.

Experiments on real image data have shown that the precision
of the position estimate with respect to the feature map typically
lies within only several centimeters. This makes the algorithm
interesting for a wide range of applications like navigation, path
planning or lane keeping.

I. INTRODUCTION

A precise digital representation of the road network is

crucial for autonomous navigation. At present, coverage of

such high-precision digital maps is very low and mainly

focused on some major cities, as the generation of these maps

is costly and time-consuming.

Highly detailed aerial images, which are publicly available

for virtually any region of the world, present a good alternative

to manual map generation. In this paper, we present a novel

method for vehicle localization by matching data from an on-

board stereo camera rig to a digital feature map which is

automatically created from aerial imagery. Except for one GPS

measurement for position initialization, the method does not

rely on other sensor data than on-board and aerial imagery.

As a main advantage over existing visual odometry and

visual SLAM approaches, our method delivers a pose estimate

not only relative to a local coordinate frame, but in geograph-

ical coordinates. Furthermore, problems of error integration

over time and loop-closure problems are avoided by the use

of the pre-built digital map.

A. Related Work

In recent years, research on the simultaneous localization

and mapping (SLAM) problem has been brought from indoor

applications to large-scale outdoor scenes [18], which makes

them interesting for driver assistance applications. While orig-

inally SLAM methods based on range measurements from a

laser range finder, recent work has also focused on developing

camera-based approaches to SLAM [7][15][22].

For SLAM, it is desirable to obtain a robust estimate of

the ego-motion, which is commonly realized with on-board

inertial sensors. Current research on a field often referred to

as visual odometry has shown the possibility of doing motion-

estimation from an on-board camera only [20][19][12].

However, visual odometry suffers from the same problems

than inertial-sensor based odometry, i.e. the vehicle pose error

integrates over time. Similarly, a typical problem of SLAM

approaches is the loop closure when an already mapped point

is visited again. Furthermore, building the map from scratch

is not suitable for long-distance path planning in large scale

environments and building an entire road network from sensor

data is very time-consuming.

B. Objective Formulation

To overcome the limitations of existing SLAM approaches

for large-scale outdoor scenes, we introduce a pre-built feature

map of the environment instead of building up the map from

on-board sensor data only. This feature map is generated from

widely available geographically referenced aerial imagery and

is matched to visual features from the on-board camera plat-

form.

The basic idea of localization by matching on-board camera

features to a global map has already been demonstrated in

[21]. In this work, we will combine this idea with additional

information from a visual odometry system for increased

robustness and precision of the pose estimate.

Similar to conventional Inertial Navigation Systems which

fuse motion estimates from inertial sensors with an absolute

GPS pose estimate [2], the vehicle pose estimate from map

matching will be fused with the vehicle motion estimates from

visual odometry by a Kalman filter. Since our approach relies

only on visual data from aerial and on-board cameras - except

for one GPS measurement for pose initialization - we dub it

a Visual Navigation System.

Figure 1 shows examples of the aerial images and on-board

camera images that will be matched for vehicle localization.

(a) (b)

Fig. 1. Example vehicle camera image (a) and aerial image (b)

The remainder of this paper will detail the components of

the Visual Navigation System system. Section II-A describes

the generation of the digital map from aerial imagery. In
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section II-B, feature detection from on-board cameras for

map matching and visual odometry is described. The actual

vehicle pose estimation in section III is explained in two

steps: matching the on-board features to the pre-built map is

discussed in section III-A. The Kalman filter for data fusion

with the underlying model for vehicular motion is introduced

in section III-B. Experimental results of the overall system are

given in section IV and section V concludes.

II. IMAGE PROCESSING

This section deals with the necessary processing of both on-

board and aerial images. The images will be matched using

some kind of feature that has to be extracted from both views.

To distinguish between low-level image features like corners

or edges and features for matching, the latter will be denoted

landmarks in the following.

The landmarks have to be visible from both views and

ideally should not have too large dimensions or perspective

distortion. Our approach will make use of lane markings as

landmarks, since they are clearly visible from both views and

since their detection is well-discussed in literature [8][13][14].

However, the method is applicable to any other kind of

landmark. Introducing other classes of landmarks may even

improve the results further.

The landmark extraction from aerial images is detailed in

section II-A. Both the landmark extraction and the determi-

nation of the vehicle motion from on-board camera images is

described in section II-B.

A. Aerial Images

The landmark extraction from aerial images is performed

by classification of each pixel whether it belongs to a lane

marking or not. This is done by a Support Vector Machine

classifier [9], which is trained by manually selecting some

positive and negative samples from the aerial images.

The manual training and the comparably long computation

times are tolerable, since landmark extraction from aerial

images can be performed off-line, and only a very small

training set is required to classify large map areas.

As the aerial imagery contains no height information, the

classification result is a planar map, i.e. all detected features

are assumed to lie in one ground plane.

Figure 2 shows a detail of an aerial image and the corre-

sponding classification result.

The lane marking pixels are finally clustered to lane mark-

ings according to their distances and the centroid of each

lane marking is stored in the feature map. Some additional

properties like length and orientation of each marking are

also stored for visualization purposes but will not be used

for localization.

B. Vehicle Camera

The images from the on-board camera platform will serve

two purposes. First, lane markings have to be detected and

their 3D position has to be estimated for map matching.

(a) (b)

Fig. 2. Original aerial image (a) and classification result (b).

Second, the 3D vehicle motion has to be estimated from the

2D motion of image features.

For the latter, the image displacement, i.e. the 2D motion of

image points between consecutive frames, is computed for a

salient set of image points. These image points are determined

using an interest point detector like e.g. the Harris corner

detector [11].

Given the displacement, the motion components in 3D space

are computed using depth information from a stereo image

pair. In the following, it is assumed that the optical flow is

determined from the right camera image and the disparity

∆ is determined with respect to the right camera image.

Furthermore, the camera platform is assumed to be fully

calibrated and all image coordinates are assumed to be given

in normalized coordinates, i.e. with focal lengths f = 1 and

the image center located at c = (0, 0)T .

For a given 3D scene point X = (X, Y, Z)T , the corre-

sponding position x in the image plane is

x =

(
y

z

)
= Π(X) =

f

X

(
Y

Z

)
. (1)

The depth information of the interest points can be re-

covered by measuring the horizontal separation of two cor-

responding points in a rectified stereo image pair.

Fig. 3. The model of the stereo rig. The coordinate system of the right
camera coincides with the global coordinate system. For any 3D scene point
X, its projection Π(X) into the image plane can be described by eq. (1).

Given the image coordinates yL in the left and yR in the

right image along an epipolar line, the disparity is related to
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the depth X of a scene point by

X =
b

∆
, (2)

where ∆ = (yL −yR) is the disparity and b is the base length

of the stereo rig.

Figure 3 shows the model of the stereo rig.

Assuming a rigid scene, the motion of all scene points is

described by the same translational velocity v = (vx, vy, vz)
T

and rotational velocity Ω = (ωx, ωy, ωz)
T . With the Longuet-

Higgins equations [16], the relation between the 6 DoF

velocity and the 2D displacement can be described adequately.

Defining the displacement of an image point as its motion

across the image plane (ẏ, ż)T = (u, v)T , the Longuet-Higgins

equations for the case of translational and rotational rigid

motion can be written as

ẏ =
Ẏ

X
−

Y

X2
Ẋ

=
(
−

vy

X
− ωz + ωxz

)
− y

(vx

X
− ωyz + ωz · y

)
,

(3)

ż =
Ż

X
−

Z

X2
Ẋ

=
(
−

vz

X
− ωxy + ωz

)
− z

(
−

vx

X
− ωyz + ωzy

)
.

(4)

Substitution of equation (2) into equation (4) and separation

of the translational and the rotational motion components

delivers the 2D image displacement (ui, vi) of the i-th interest

point for a given camera motion
(

ui

vi

)
= Hi · (vx, vy, vz, ωx, ωy, ωz)

T (5)

with

Hi =

[
−

yi·∆i

b
−

∆i

b
0 zi yi · zi −1 − y2

i
zi·∆i

b
0 −

∆i

b
−yi 1 + z2

i −yi · zi

]
.

Stacking equation (5) for N interest points with displace-

ment (ui, vi)
T delivers a linear observation model with 2N

equations
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

v1

u2

v2

...

uN

vN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ê =

⎛
⎜⎜⎜⎝

H1

H2

...

HN

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎝

vx

vy

vz

ωx

ωy

ωz

⎞
⎟⎟⎟⎟⎟⎟⎠

, (6)

which can be solved using straightforward least squares esti-

mation (
v̂

Ω̂

)
=

(
H

T
H

)−1
H

T
û . (7)

However, the least squares estimate is very sensitive to

outliers, which, in this case, are mainly due to violations

of the rigid scene assumption. Other causes are e.g. errors

in the disparity or displacement calculation. Especially for

small disparities ∆ → 0, the observation matrix H becomes

unobservable. Therefore, interest points with a disparity below

a certain threshold are discarded.

Furthermore, instead of using all interest points for the least

squares estimate, a maximum set of N inliers is determined

using the RANSAC estimator [10], which has proved to yield

good results even with a large number of outliers present.

For the displacement estimation, the hierarchical Lukas-

Kanade-algorithm ([17], [4]) is used. Disparity is computed by

area based block matching ([6]). For the subsequent Kalman

filtering (section III-B), the residuals of both estimation pro-

cedures are used to determine the measurement noise.

Figure 4 shows an example result for optical flow estimation

and figure 5 shows an example disparity matching result. Only

interest points with sufficiently low residuals and a disparity

above the threshold are shown. Only the green interest points

are used for least squares motion estimation, while the red

points were rejected from the RANSAC algorithm.

Fig. 4. Optical flow vectors for the detected feature points. Green points are
used for ego-motion estimation.

The visual landmarks for map matching are yet to be

determined. For this purpose, we will make use of the same

combination of Harris interest point detection with disparity

that was already used for motion estimation:

In the lower part of the camera image, the majority of the

Harris Corner responses lies on corners of the lane markings.

With equations (1) and (2), the 3D scene coordinates X for a

given interest point with image coordinates x = (y, z)T and

disparity ∆ are denoted by

X =

⎛
⎝

X

Y

Z

⎞
⎠ =

b

∆
·

⎛
⎝

1
y

z

⎞
⎠ . (8)

Figure 6(a) shows an example corner detection result for the

lower part of the image. Unlike in figure 4, corners that were

rejected for motion estimation due to a high optical flow

residual are also displayed.

Typically, up to four corners belong to one lane marking,

thus the corners have to be clustered accordingly. This is
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Fig. 5. Correspondences between left and right camera image. Green points are used for ego-motion estimation.

(a) Detected interest points.

(b) Canny contours. Each cluster is marked with a different
color.

(c) Centroids of detected landmarks.

Fig. 6. Example landmark detection results.

accomplished by a Canny-like contour-tracing and computing

the lane marking centroid from all clustered edge coordinates.

Figure 6(b) shows an example result of the clustered edges

and figure 6(c) shows the resulting centroids which will be

used for matching.

III. VEHICLE POSE ESTIMATION

To obtain an estimate of the vehicle pose, the 3D coordinates

of the lane markings from the camera view have to be matched

to the lane markings in the digital map. This is a standard

point pattern matching problem, for which many solutions

were proposed in the recent years. These solutions mainly

differ on their complexity and their robustness to outliers. We

decided to use the iterative closest point algorithm [3] as a

very fast and simple method for point pattern matching.

A major drawback of this method is that it only minimizes a

local objective function, and therefore is very likely to stick to

nearby local minima. It is therefore necessary to have a good

initial position estimate. For vehicle pose tracking, the pose

from the previous time step is in most cases sufficient, however

for initialization, a single GPS measurement is needed.

Other methods like the ones proposed by van Wamelen et

al. [23] or Caetano et al. [5] do not have these restrictions,

however they require a large amount of memory and comput-

ing time to find the global optimum. Therefore, these methods

are not suitable for real-time vehicle localization.

After having obtained an estimate for the current vehicle

pose, the result is fused with the previous vehicle pose, vehic-

ular motion constraints and with the vehicle motion estimate

from visual odometry by a Kalman filter. The underlying

system model is presented in section III-B. In the following,

the vehicle pose estimation using the Iterative Closest Point

method will be described in detail.

A. Iterative Point Matching

Given a set of m scene points in 3 from the digital map

in world coordinates and n template points in 3 from the

camera view in vehicle coordinates, the optimal transformation

of the two coordinate systems has to be determined. The scene

points are given as S = s
W
1 , sW

2 , ...sW
m and the template points

as T = t
V
1 , tV

2 , ..., tV
n where the superscript W and V denote

the respective vehicle or world coordinate system.

Assuming that the optimal transformation, i.e. the vehicle

position x
W and orientation matrix R is known, the transfor-

mation of the scene points from world coordinates to vehicle

coordinates is

s
V
i = R

−1
·

(
s
W
i − x

W
)

. (9)

As stated before, for the iterative closest point method, the

initial vehicle position has to be known up to some position

and orientation error x̃ and R̃. Given the initial pose estimate

x̂
W and R̂, the optimal transformation is

x
W = x̂

W
− x̃ , (10)

R = R̃
−1

R̂ . (11)

The estimated position of the scene points in vehicle coor-

dinates is

ŝ
V
i = R̂

−1
·

(
s
W
i − x̂

W
)

. (12)
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The goal of the ICP algorithm is now to recover the position

and orientation errors x̃ and R̃ given the pose estimate x̂
W

and R̂.

Assuming that for each template point t
V
i , the correspond-

ing scene point m
W
i = s

W
j is known, the optimal rotation and

translation can be determined by a translation of the centroid

position and a rotation around the centroid which can be solved

efficiently by a singular value decomposition (SVD) of the

matrix

W =
n∑

i=1

m
′

i · t
′T
i = UΣV

T , (13)

where t
′

i and m
′

i are the coordinates of the template and

matched scene points relative to their respective centroid

position:

t
′

i = t
V
i −

n∑

k=1

t
V
k (14)

m
′

i = m̂
V
i −

n∑

k=1

m̂
V
k . (15)

The desired rotation matrix is

R̃ = UV
T (16)

and the translation is

x̃ =
n∑

k=1

m̂
V
k − t

V
k . (17)

It is shown in [1] that this solution minimizes the sum of

the squared residuals.

As the correspondences of the scene and template points

are not known in advance, each template point is paired

with the closest scene point, i.e. that minimizes the squared

Mahalanobis distance

d2(ti, sj) = (ti − sj)
T
· Σ

−1
· (ti − sj) , (18)

where Σ is the covariance matrix of the vehicle position

estimate.

The point pairing and the computation of the rotation and

translation errors R̃
W and x̃ is repeated until the vehicle pose

converges.

Finally, to refine the vehicle position estimate further, and

to cope with outliers that are mainly due to false lane marking

detection, the iterative closest point algorithm is repeated with

only a smaller subset of the matches mj . This subset is

determined by finding a maximum consensus for a rotation

and translation error R̃
W and x̃ by the RANSAC algorithm

[10]. Again, the pairing and pose computation is repeated until

the pose converges.

The combination of a full least squares optimization and

a RANSAC optimization afterward has shown to give better

convergence results in practice than a RANSAC optimization

alone, while still having the robustness to outliers of the

RANSAC algorithm. Especially for large initial pose devi-

ations, only a small set of points is paired correctly. In

these cases, RANSAC tends to reject the correct matches, not

leading to any convergence at all. However, for a good initial

pose estimate, the RANSAC stage is very well suited to reject

all false correspondences.

B. Motion Tracking

Similar to conventional Inertial Navigation Systems, the

Visual Navigation System obtains an estimate for the current

vehicle pose by fusing vehicle motion estimates from visual

odometry and the pose estimates from map matching in

a Kalman filter structure. The underlying system assumes

vehicle motion with constant velocity and yaw rate in the

x,y-ground plane of the world coordinate system. Figure 7

illustrates the vehicle motion.

The vehicle pitch and roll angles as well as the camera pose

are modeled as constant.

P

v

y
V

x
V

W y
W

x
W

V

Ã¢T
¢

r

Fig. 7. Vehicle motion with constant yaw rate with instantaneous center of
rotation P . The z-axis points into the image plane.

The vehicle position at time instant k + 1 relative to the

vehicle coordinate system at time instant k is given by

x
V
k+1 = x

V
k +

⎛
⎝

⎡
⎣

0
r

0

⎤
⎦ + R ·

⎡
⎣

0
−r

0

⎤
⎦

⎞
⎠ , (19)

where R is the rotation matrix around the z-axis

R =

⎡
⎣

cos(ψ̇ · T ) − sin(ψ̇ · T ) 0

sin(ψ̇ · T ) cos(ψ̇ · T ) 0
0 0 1

⎤
⎦ . (20)

Transformation to world coordinates gives the system model

x
W
k+1 = x

W
k + R

W
V ·

⎡
⎢⎣

v

ψ̇
· sin(ψ̇ · T )

v

ψ̇
· (1 − cos(ψ̇ · T ))

0

⎤
⎥⎦ . (21)

The velocity and rotation vectors v and Ω from visual

odometry (see section II-B) and the pose estimates in geo-

graphical coordinates x
W , R from map matching (see section

III-A) serve as measurements for the Kalman filter. The output

of the Kalman filter is a vehicle pose estimate in world

coordinates and a covariance matrix as quality measure for

the estimate.
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IV. EXPERIMENTAL RESULTS

For experimental evaluation, the visual odometry results, the

results from map matching and the fused pose estimates will

be compared.

Figure 8 shows an overlay of the yellow lane markings from

the feature map with an example sequence of vehicle camera

images for the different pose estimates. All sequences were

initialized with the same exact pose estimate at t = 0. Only

every 25th frame is shown, i.e. the i-th row shows the results

at t = i seconds. Figure 9 shows all 50 pose estimates for the

first 2 seconds relative to the initial pose1.

Figures 8(a) and 9 clearly show the accumulation of a

positioning error over time, when only integrating the motion

estimates. After 2 seconds, the absolute accumulated position

error after 50 frames is 0.56m. On the other hand, the overlays

from the map matching pose estimates in figures 8(b) match

the real lane markings very well, except for some cases where

a larger number of outliers is present. The image in the third

row of 8(b) shows such an example. In figure 9, these cases

can be noticed as blue dots that do not lie on the trajectory.

These intermediate pose errors typically lie within 0.5m and

can be filtered very well by the extended Kalman filter, as

can be seen in 8(c). The map overlay matches the real lane

marking position in all cases.

0 10 20

0

5 15

2

y m[ ]

x m[ ]

Fig. 9. Vehicle pose estimates for the first 50 frames (i.e. 2 seconds). The
y-axis points to the east, the x-axis to the south. The units are meters relative
to the initial vehicle pose. Red: Integrated vehicle motion estimates. Blue:
Map matching pose estimates. Green: Filtered pose estimates

It is worth to notice that, according to our previous exper-

iments in [21], map matching alone can cope with position

errors of up to 2m. In combination with visual odometry, the

pose matching remains reliable even if the map matching fails

for a longer sequence of frames, e.g. if no lane markings are

present at all. As long as the overall accumulated pose error

remains below 2m, the first valid matching instantaneously

yields a correct position estimate. A quality measure for

the current pose estimate can be obtained directly from the

covariance matrix of the underlying Kalman filter.

Finally, figure 10 shows an overlay of the original aerial

image, the extracted yellow lane marking and the vehicle

for the pose estimate at t = 2s. It clearly illustrates that

the pose estimate in combination with the feature map can

provide information about the environment even outside the

current field of view. This information may be useful for other

applications, e.g. determining drivable area or road curvature.

1The coordinate system relative to the initial pose instead of geograph-
ical coordinates was chosen for reasons of comparability. Transformation
to latitute/longitude using the geographically referenced aerial images is
straigtforward.

Fig. 10. Overlay of vehicle position, aerial image and lane markings (yellow)
from the feature map.

V. CONCLUSION

We described a system that matches features from an on-

board camera to a previously generated feature map to obtain

a precise vehicle localization result. Robustness of the vehicle

pose estimate is increased by fusing the localization result

with an ego-motion estimate which is also obtained from the

on-board camera platform. The resulting pose estimates are

accurate within several centimeters with respect to the feature

map even when a large number of false detections is present.

Except for one pose estimate for initialization, the proposed

Visual Navigation System system relies on images as the only

input data.

Future work will evaluate possibilities of using globally

optimal methods for map matching. However, these methods

are comparably slow and are very likely not to be suitable for

real-time vehicle applications. Alternatively, a globally optimal

method could be used for initialization and the proposed

iterative method for pose tracking. Meanwhile, initialization

with GPS appears to be a reasonable alternative for most

practical purposes.
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