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Abstract Despite progress in perceptual tasks such as image

classification, computers still perform poorly on cognitive

tasks such as image description and question answering. Cog-

nition is core to tasks that involve not just recognizing, but

reasoning about our visual world. However, models used

to tackle the rich content in images for cognitive tasks are

still being trained using the same datasets designed for per-

ceptual tasks. To achieve success at cognitive tasks, models

need to understand the interactions and relationships between

objects in an image. When asked “What vehicle is the per-

son riding?”, computers will need to identify the objects in

an image as well as the relationships riding(man, carriage)

and pulling(horse, carriage) to answer correctly that “the

person is riding a horse-drawn carriage.” In this paper, we

present the Visual Genome dataset to enable the modeling of

such relationships. We collect dense annotations of objects,

attributes, and relationships within each image to learn these

models. Specifically, our dataset contains over 108K images

where each image has an average of 35 objects, 26 attributes,

and 21 pairwise relationships between objects. We canoni-

calize the objects, attributes, relationships, and noun phrases

in region descriptions and questions answer pairs to Word-

Net synsets. Together, these annotations represent the densest
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and largest dataset of image descriptions, objects, attributes,

relationships, and question answer pairs.
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1 Introduction

A holy grail of computer vision is the complete under-

standing of visual scenes: a model that is able to name and

detect objects, describe their attributes, and recognize their

relationships. Understanding scenes would enable impor-

tant applications such as image search, question answering,

and robotic interactions. Much progress has been made in

recent years towards this goal, including image classifica-

tion (Perronnin et al. 2010; Simonyan and Zisserman 2014;

Krizhevsky et al. 2012; Szegedy et al. 2015) and object det-

ection (Girshick et al. 2014; Sermanet et al. 2013; Girshick

2015; Ren et al. 2015b). An important contributing factor

is the availability of a large amount of data that drives the

statistical models that underpin today’s advances in compu-

tational visual understanding. While the progress is exciting,

we are still far from reaching the goal of comprehensive scene

understanding. As Fig. 1 shows, existing models would be

able to detect discrete objects in a photo but would not be

able to explain their interactions or the relationships between

them. Such explanations tend to be cognitive in nature, inte-

grating perceptual information into conclusions about the

relationships between objects in a scene (Bruner 1990; Fire-

stone and Scholl 2015). A cognitive understanding of our

visual world thus requires that we complement comput-

ers’ ability to detect objects with abilities to describe those
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Fig. 1 An overview of the data needed to move from perceptual aware-
ness to cognitive understanding of images. We present a dataset of
images densely annotated with numerous region descriptions, objects,
attributes, and relationships. Some examples of region descriptions (e.g.

“girl feeding large elephant” and “a man taking a picture behind girl”)
are shown (top). The objects (e.g. elephant), attributes (e.g. large)
and relationships (e.g. feeding) are shown (bottom). Our dataset also
contains image related question answer pairs (not shown)

objects (Isola et al. 2015) and understand their interactions

within a scene (Sadeghi and Farhadi 2011).

There is an increasing effort to put together the next gen-

eration of datasets to serve as training and benchmarking

datasets for these deeper, cognitive scene understanding and

reasoning tasks, the most notable being MS-COCO (Lin et al.

2014) and VQA (Antol et al. 2015). The MS-COCO dataset

consists of 300K real-world photos collected from Flickr. For

each image, there is pixel-level segmentation of 80 object

classes (when present) and 5 independent, user-generated

sentences describing the scene. VQA adds to this a set of

614K question answer pairs related to the visual contents of

each image (see more details in Sect. 3.1). With this infor-

mation, MS-COCO and VQA provide a fertile training and

testing ground for models aimed at tasks for accurate object

detection, segmentation, and summary-level image caption-

ing (Kiros et al. 2014; Mao et al. 2014; Karpathy and Fei-Fei

2015) as well as basic QA (Ren et al. 2015a; Malinowski

et al. 2015; Gao et al. 2015; Malinowski and Fritz 2014).

For example, a state-of-the-art model (Karpathy and Fei-Fei

2015) provides a description of one MS-COCO image in

Fig. 1 as “two men are standing next to an elephant.” But

what is missing is the further understanding of where each

object is, what each person is doing, what the relationship

between the person and elephant is, etc. Without such rela-

tionships, these models fail to differentiate this image from

other images of people next to elephants.

To understand images thoroughly, we believe three key

elements need to be added to existing datasets: a ground-

ing of visual concepts to language (Kiros et al. 2014),

a more complete set of descriptions and QAs for each

image based on multiple image regions (Johnson et al. 2015),

and a formalized representation of the components of an

image (Hayes 1978). In the spirit of mapping out this com-

plete information of the visual world, we introduce the Visual

Genome dataset. The first release of the Visual Genome

dataset uses 108,077 images from the intersection of the

YFCC100M (Thomee et al. 2016) and MS-COCO (Lin et al.

2014). Section 5 provides a more detailed description of the

dataset. We highlight below the motivation and contributions

of the three key elements that set Visual Genome apart from

existing datasets.
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The Visual Genome dataset regards relationships and

attributes as first-class citizens of the annotation space, in

addition to the traditional focus on objects. Recognition of

relationships and attributes is an important part of the com-

plete understanding of the visual scene, and in many cases,

these elements are key to the story of a scene (e.g., the differ-

ence between “a dog chasing a man” versus “a man chasing

a dog”). The Visual Genome dataset is among the first to pro-

vide a detailed labeling of object interactions and attributes,

grounding visual concepts to language.1

An image is often a rich scenery that cannot be fully

described in one summarizing sentence. The scene in Fig. 1

contains multiple “stories”: “a man taking a photo of ele-

phants,” “a woman feeding an elephant,” “a river in the

background of lush grounds,” etc. Existing datasets such as

Flickr 30K (Young et al. 2014) and MS-COCO (Lin et al.

2014) focus on high-level descriptions of an image.2 Instead,

for each image in the Visual Genome dataset, we collect more

than 50 descriptions for different regions in the image, pro-

viding a much denser and more complete set of descriptions

of the scene. In addition, inspired by VQA (Antol et al. 2015),

we also collect an average of 17 question answer pairs based

on the descriptions for each image. Region-based question

answers can be used to jointly develop NLP and vision mod-

els that can answer questions from either the description or

the image, or both of them.

With a set of dense descriptions of an image and the

explicit correspondences between visual pixels (i.e. bound-

ing boxes of objects) and textual descriptors (i.e. relation-

ships, attributes), the Visual Genome dataset is poised to be

the first image dataset that is capable of providing a struc-

tured formalized representation of an image, in the form

that is widely used in knowledge base representations in

NLP (Zhou et al. 2007; GuoDong et al. 2005; Culotta and

Sorensen 2004; Socher et al. 2012). For example, in Fig. 1, we

can formally express the relationship holding between the

woman andfood as holding(woman, food). Putting together

all the objects and relations in a scene, we can represent each

image as a scene graph (Johnson et al. 2015). The scene graph

representation has been shown to improve semantic image

retrieval (Johnson et al. 2015; Schuster et al. 2015) and image

captioning (Farhadi et al. 2009; Chang et al. 2014; Gupta and

Davis 2008). Furthermore, all objects, attributes and rela-

tionships in each image in the Visual Genome dataset are

canonicalized to its corresponding WordNet (Miller 1995)

ID (called a synset ID). This mapping connects all images in

Visual Genome and provides an effective way to consistently

1 The Lotus Hill Dataset (Yao et al. 2007) also provides a similar anno-
tation of object relationships, see Sec 3.1.
2 COCO has multiple sentences generated independently by different
users, all focusing on providing an overall, one sentence description of
the scene.

query the same concept (object, attribute, or relationship)

in the dataset. It can also potentially help train models that

can learn from contextual information from multiple images

(Figs. 2, 3).

In this paper, we introduce the Visual Genome dataset with

the aim of training and benchmarking the next generation

of computer models for comprehensive scene understand-

ing. The paper proceeds as follows: In Sect. 2, we provide

a detailed description of each component of the dataset.

Section 3 provides a literature review of related datasets as

well as related recognition tasks. Section 4 discusses the

crowdsourcing strategies we deployed in the ongoing effort

of collecting this dataset. Section 5 is a collection of data anal-

ysis statistics, showcasing the key properties of the Visual

Genome dataset. Last but not least, Sect. 6 provides a set of

experimental results that use Visual Genome as a benchmark.

Further visualizations, API, and additional information on

the Visual Genome dataset can be found online.3

2 Visual Genome Data Representation

The Visual Genome dataset consists of seven main compo-

nents: region descriptions, objects, attributes, relationships,

region graphs, scene graphs, and question answer pairs.

Figure 4 shows examples of each component for one image.

To enable research on comprehensive understanding of

images, we begin by collecting descriptions and question

answers. These are raw texts without any restrictions on

length or vocabulary. Next, we extract objects, attributes

and relationships from our descriptions. Together, objects,

attributes and relationships comprise our scene graphs that

represent a formal representation of an image. In this section,

we break down Fig. 4 and explain each of the seven compo-

nents. In Sect. 4, we will describe in more detail how data

from each component is collected through a crowdsourcing

platform.

2.1 Multiple Regions and Their Descriptions

In a real-world image, one simple summary sentence is

often insufficient to describe all the contents of and inter-

actions in an image. Instead, one natural way to extend

this might be a collection of descriptions based on dif-

ferent regions of a scene. In Visual Genome, we collect

diverse human-generated image region descriptions, with

each region localized by a bounding box. In Fig. 5, we show

three examples of region descriptions. Regions are allowed

to have a high degree of overlap with each other when the

descriptions differ. For example, “yellow fire hydrant” and

“woman in shorts is standing behind the man” have very little

3 https://visualgenome.org.
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Fig. 2 An example image from the Visual Genome dataset. We show
3 region descriptions and their corresponding region graphs. We also
show the connected scene graph collected by combining all of the
image’s region graphs. The top region description is “a man and a

woman sit on a park bench along a river.” It contains the objects:
man, woman, bench and river. The relationships that connect
these objects are: sits_on(man, bench), in_front_of (man, river), and
sits_on(woman, bench)
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Fig. 3 An example image from our dataset along with its scene
graph representation. The scene graph contains objects (child,
instructor,helmet, etc.) that are localized in the image as bound-
ing boxes (not shown). These objects also have attributes: large,

green, behind, etc. Finally, objects are connected to each other
through relationships: wears(child, helmet), wears(instructor, jacket),
etc

123
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Fig. 4 A representation of the Visual Genome dataset. Each image
contains region descriptions that describe a localized portion of the
image. We collect two types of question answer pairs (QAs): freeform
QAs and region-based QAs. Each region is converted to a region graph

representation of objects, attributes, and pairwise relationships. Finally,
each of these region graphs are combined to form a scene graph with
all the objects grounded to the image. Best viewed in color
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Fig. 5 To describe all the contents of and interactions in an image,
the Visual Genome dataset includes multiple human-generated image
regions descriptions, with each region localized by a bounding box.
Here, we show three regions descriptions on various image regions:
“man jumping over a fire hydrant,” “yellow fire hydrant,” and “woman
in shorts is standing behind the man”

overlap, while “man jumping over fire hydrant” has a very

high overlap with the other two regions. Our dataset contains

on average a total of 50 region descriptions per image. Each

description is a phrase ranging from 1 to 16 words in length

describing that region.

2.2 Multiple Objects and Their Bounding Boxes

Each image in our dataset consists of an average of 35

objects, each delineated by a tight bounding box (Fig. 6).

Furthermore, each object is canonicalized to a synset ID

in WordNet (Miller 1995). For example, man would get

mapped to man.n.03 (the generic use of the

word to refer to any human being). Similarly,

person gets mapped to person.n.01 (a human

being). Afterwards, these two concepts can be joined to

person.n.01 since this is a hypernym of man.n.03. We

did not standardize synsets in our dataset. However, given

our canonicalization, this is easily possible leveraging the

WordNet ontology to avoid multiple names for one object

(e.g. man, person, human), and to connect information across

images.

2.3 A Set of Attributes

Each image in Visual Genome has an average of 26

attributes. Objects can have zero or more attributes asso-

Fig. 6 From all of the region descriptions, we extract all objects men-
tioned. For example, from the region description “man jumping over a
fire hydrant,” we extract man and fire hydrant

Fig. 7 Some descriptions also provide attributes for objects. For exam-
ple, the region description “yellow fire hydrant” adds that the fire
hydrant is yellow. Here we show two attributes: yellow and
standing

ciated with them. Attributes can be color (e.g. yellow),

states (e.g. standing), etc. (Fig. 7). Just like we col-

lect objects from region descriptions, we also collect the

attributes attached to these objects. In Fig. 7, from the

phrase “yellow fire hydrant,” we extract the attributeyellow

for the fire hydrant. As with objects, we canonical-

ize all attributes to WordNet (Miller 1995); for example,

yellow is mapped toyellow.s.01 (of the color

intermediate between green and orange in
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Fig. 8 Our dataset also captures the relationships and interactions
between objects in our images. In this example, we show the relation-
ship jumping over between the objects man and fire hydrant

the color spectrum; of something

resembling the color of an egg yolk).

2.4 A Set of Relationships

Relationships connect two objects together. These relation-

ships can be actions (e.g. jumping over), spatial (e.g. is

behind), descriptive verbs (e.g. wear), prepositions (e.g.

with), comparative (e.g. taller than), or prepositional

phrases (e.g. drive on). For example, from the region

description “man jumping over fire hydrant,” we extract the

relationship jumping over between the objects man and

fire hydrant (Fig. 8). These relationships are directed

from one object, called the subject, to another, called the

object. In this case, the subject is the man, who is perform-

ing the relationship jumping over on the object fire

hydrant. Each relationship is canonicalized to a Word-

Net (Miller 1995) synset ID; i.e. jumping is canonical-

ized to jump.a.1 (move forward by leaps and

bounds). On average, each image in our dataset contains

21 relationships.

2.5 A Set of Region Graphs

Combining the objects, attributes, and relationships extracted

from region descriptions, we create a directed graph repre-

sentation for each of the regions. Examples of region graphs

are shown in Fig. 4. Each region graph is a structured rep-

resentation of a part of the image. The nodes in the graph

represent objects, attributes, and relationships. Objects are

linked to their respective attributes while relationships link

one object to another. The links connecting two objects in

Fig. 4 point from the subject to the relationship and from the

relationship to the other object.

2.6 One Scene Graph

While region graphs are localized representations of an

image, we also combine them into a single scene graph rep-

resenting the entire image (Fig. 3). The scene graph is the

union of all region graphs and contains all objects, attributes,

and relationships from each region description. By doing so,

we are able to combine multiple levels of scene information

in a more coherent way. For example in Fig. 4, the leftmost

region description tells us that the “fire hydrant is yellow,”

while the middle region description tells us that the “man is

jumping over the fire hydrant.” Together, the two descriptions

tell us that the “man is jumping over a yellow fire hydrant.”

2.7 A Set of Question Answer Pairs

We have two types of QA pairs associated with each image

in our dataset: freeform QAs, based on the entire image, and

region-based QAs, based on selected regions of the image.

We collect 6 different types of questions per image: what,

where,how,when,who, andwhy. In Fig. 4, “Q. What is the

woman standing next to?; A. Her belongings” is a freeform

QA. Each image has at least one question of each type

listed above. Region-based QAs are collected by prompt-

ing workers with region descriptions. For example, we use

the region “yellow fire hydrant” to collect the region-based

QA: “Q. What color is the fire hydrant?; A. Yellow.” Region

based QAs are based on the description and allow us to

independently study how well models perform at answer-

ing questions using the image or the region description as

input.

3 Related Work

We discuss existing datasets that have been released and used

by the vision community for classification and object detec-

tion. We also mention work that has improved object and

attribute detection models. Then, we explore existing work

that has utilized representations similar to our relationships

between objects. In addition, we dive into literature related to

cognitive tasks like image description, question answering,

and knowledge representation.

3.1 Datasets

Datasets (Table 1) have been growing in size as researchers

have begun tackling increasingly complicated problems. Cal-

tech 101 (Fei-Fei et al. 2007) was one of the first datasets

hand-curated for image classification, with 101 object cate-
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gories and 15–30 examples per category. One of the biggest

criticisms of Caltech 101 was the lack of variability in its

examples. Caltech 256 (Griffin et al. 2007) increased the

number of categories to 256, while also addressing some

of the shortcomings of Caltech 101. However, it still had

only a handful of examples per category, and most of its

images contained only a single object. LabelMe (Russell

et al. 2008) introduced a dataset with multiple objects per

category. They also provided a web interface that experts

and novices could use to annotate additional images. This

web interface enabled images to be labeled with polygons,

helping create datasets for image segmentation. The Lotus

Hill dataset (Yao et al. 2007) contains a hierarchical decom-

position of objects (vehicles, man-made objects, animals,

etc.) along with segmentations. Only a small part of this

dataset is freely available. SUN (Xiao et al. 2010), just like

LabelMe (Russell et al. 2008) and Lotus Hill (Yao et al.

2007), was curated for object detection. Pushing the size

of datasets even further, 80 Million Tiny Images (Torralba

et al. 2008) created a significantly larger dataset than its

predecessors. It contains tiny (i.e. 32 × 32 pixels) images

that were collected using WordNet (Miller 1995) synsets as

queries. However, because the data in 80 Million Images

were not human-verified, they contain numerous errors.

YFCC100M (Thomee et al. 2016) is another large database of

100 million images that is still largely unexplored. It contains

human generated and machine generated tags.

Pascal VOC (Everingham et al. 2010) pushed research

from classification to object detection with a dataset con-

taining 20 semantic categories in 11, 000 images. Ima-

geNet (Deng et al. 2009) took WordNet synsets and crowd-

sourced a large dataset of 14 million images. They started the

ILSVRC (Russakovsky et al. 2015) challenge for a variety of

computer vision tasks. Together, ILSVRC and PASCAL pro-

vide a test bench for object detection, image classification,

object segmentation, person layout, and action classification.

MS-COCO (Lin et al. 2014) recently released its dataset,

with over 328, 000 images with sentence descriptions and

segmentations of 80 object categories. The previous largest

dataset for image-based QA, VQA (Antol et al. 2015), con-

tains 204,721 images annotated with three question answer

pairs. They collected a dataset of 614,163 freeform questions

with 6.1M ground truth answers (10 per question) and pro-

vided a baseline approach in answering questions using an

image and a textual question as the input.

Visual Genome aims to bridge the gap between all these

datasets, collecting not just annotations for a large number

of objects but also scene graphs, region descriptions, and

question answer pairs for image regions. Unlike previous

datasets, which were collected for a single task like image

classification, the Visual Genome dataset was collected to be

a general-purpose representation of the visual world, without

bias toward a particular task. Our images contain an average

of 35 objects, which is almost an order of magnitude more

dense than any existing vision dataset. Similarly, we contain

an average of 26 attributes and 21 relationships per image.

We also have an order of magnitude more unique objects,

attributes, and relationships than any other dataset. Finally,

we have 1.7 million question answer pairs, also larger than

any other dataset for visual question answering.

3.2 Image Descriptions

One of the core contributions of Visual Genome is its descrip-

tions for multiple regions in an image. As such, we mention

other image description datasets and models in this subsec-

tion. Most work related to describing images can be divided

into two categories: retrieval of human-generated captions

and generation of novel captions. Methods in the first cat-

egory use similarity metrics between image features from

predefined models to retrieve similar sentences (Ordonez

et al. 2011; Hodosh et al. 2013). Other methods map both sen-

tences and their images to a common vector space (Ordonez

et al. 2011) or map them to a space of triples (Farhadi et al.

2010). Among those in the second category, a common theme

has been to use recurrent neural networks to produce novel

captions (Kiros et al. 2014; Mao et al. 2014; Karpathy and

Fei-Fei 2015; Vinyals et al. 2015; Chen and Lawrence Zitnick

2015; Donahue et al. 2015; Fang et al. 2015). More recently,

researchers have also used a visual attention model (Xu et al.

2015).

One drawback of these approaches is their attention to

describing only the most salient aspect of the image. This

problem is amplified by datasets like Flickr 30K (Young

et al. 2014) and MS-COCO (Lin et al. 2014), whose sen-

tence desriptions tend to focus, somewhat redundantly, on

these salient parts. For example, “an elephant is seen wan-

dering around on a sunny day,” “a large elephant in a tall

grass field,” and “a very large elephant standing alone in

some brush” are 3 descriptions from the MS-COCO dataset,

and all of them focus on the salient elephant in the image

and ignore the other regions in the image. Many real-world

scenes are complex, with multiple objects and interactions

that are best described using multiple descriptions (Karpa-

thy and Fei-Fei 2015; Lebret et al. 2015). Our dataset pushes

toward a more complete understanding of an image by col-

lecting a dataset in which we capture not just scene-level

descriptions but also myriad of low-level descriptions, the

“grammar” of the scene.

3.3 Objects

Object detection is a fundamental task in computer vision,

with applications ranging from identification of faces in

photo software to identification of other cars by self-driving

cars on the road. It involves classifying an object into a dis-
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tinct category and localizing the object in the image. Visual

Genome uses objects as a core component on which each

visual scene is built. Early datasets include the face detec-

tion (Huang et al. 2008) and pedestrian datasets (Dollar et al.

2012). The PASCAL VOC and ILSVRC’s detection dataset

pushed research in object detection. But the images in these

datasets are iconic and do not capture the settings in which

these objects usually co-occur. To remedy this problem, MS-

COCO (Lin et al. 2014) annotated real-world scenes that

capture object contexts. However, MS-COCO was unable to

describe all the objects in its images, since they annotated

only 80 object categories. In the real world, there are many

more objects that the ones captured by existing datasets.

Visual Genome aims at collecting annotations for all visual

elements that occur in images, increasing the number of dis-

tinct categories to 33,877.

3.4 Attributes

The inclusion of attributes allows us to describe, compare,

and more easily categorize objects. Even if we haven’t seen

an object before, attributes allow us to infer something about

it; for example, “yellow and brown spotted with long neck”

likely refers to a giraffe. Initial work in this area involved find-

ing objects with similar features (Malisiewicz et al. 2008)

using examplar SVMs. Next, textures were used to study

objects (Varma and Zisserman 2005), while other meth-

ods learned to predict colors (Ferrari and Zisserman 2007).

Finally, the study of attributes was explicitly demonstrated to

lead to improvements in object classification (Farhadi et al.

2009). Attributes were defined to be parts (e.g. “has legs”),

shapes (e.g. “spherical”), or materials (e.g. “furry”) and could

be used to classify new categories of objects. Attributes have

also played a large role in improving fine-grained recogni-

tion (Goering et al. 2014) on fine-grained attribute datasets

like CUB-2011 (Wah et al. 2011). In Visual Genome, we

use a generalized formulation (Johnson et al. 2015), but we

extend it such that attributes are not image-specific bina-

ries but rather object-specific for each object in a real-world

scene. We also extend the types of attributes to include size

(e.g. “small”), pose (e.g. “bent”), state (e.g. “transparent”),

emotion (e.g. “happy”), and many more.

3.5 Relationships

Relationship extraction has been a traditional problem in

information extraction and in natural language process-

ing. Syntactic features (Zhou et al. 2007; GuoDong et al.

2005), dependency tree methods (Culotta and Sorensen

2004; Bunescu and Mooney 2005), and deep neural net-

works (Socher et al. 2012; Zeng et al. 2014) have been

employed to extract relationships between two entities in a

sentence. However, in computer vision, very little work has

gone into learning or predicting relationships. Instead, rela-

tionships have been implicitly used to improve other vision

tasks. Relative layouts between objects have improved scene

categorization (Izadinia et al. 2014), and 3D spatial geome-

try between objects has helped object detection (Choi et al.

213). Comparative adjectives and prepositions between pairs

of objects have been used to model visual relationships and

improved object localization (Gupta and Davis 2008).

Relationships have already shown their utility in improv-

ing visual cognitive tasks (Antol et al. 2014; Yang et al.

2012). A meaning space of relationships has improved the

mapping of images to sentences (Farhadi et al. 2010). Rela-

tionships in a structured representation with objects have

been defined as a graph structure called a scene graph, where

the nodes are objects with attributes and edges are relation-

ships between objects. This representation can be used to

generate indoor images from sentences and also to improve

image search (Chang et al. 2014; Johnson et al. 2015). We

use a similar scene graph representation of an image that

generalizes across all these previous works (Johnson et al.

2015). Recently, relationships have come into focus again in

the form of question answering about associations between

objects (Sadeghi et al. 2015). These questions ask if a rela-

tionship, involving generally two objects, is true, e.g. “do

dogs eat ice cream?”. We believe that relationships will be

necessary for higher-level cognitive tasks (Johnson et al.

2015; Lu et al. 2016), so we collect the largest corpus of

them in an attempt to improve tasks by actually understand-

ing interactions between objects.

3.6 Question Answering

Visual question answering (QA) has been recently proposed

as a proxy task of evaluating a computer vision system’s

ability to understand an image beyond object recognition

and image captioning (Geman et al. 2015; Malinowski and

Fritz 2014). Several visual QA benchmarks have been pro-

posed in the last few months. The DAQUAR (Malinowski

and Fritz 2014) dataset was the first toy-sized QA bench-

mark built upon indoor scene RGB-D images of NYU

Depth v2 (Nathan Silberman and Fergus 2012). Most new

datasets (Yu et al. 2015; Ren et al. 2015a; Antol et al. 2015;

Gao et al. 2015) have collected QA pairs on MS-COCO

images, either generated automatically by NLP tools (Ren

et al. 2015a) or written by human workers (Yu et al. 2015;

Antol et al. 2015; Gao et al. 2015).

In previous datasets, most questions concentrated on sim-

ple recognition-based questions about the salient objects,

and answers were often extremely short. For instance, 90%

of DAQUAR answers (Malinowski and Fritz 2014) and

89% of VQA answers (Antol et al. 2015) consist of single-

word object names, attributes, and quantities. This limitation

bounds their diversity and fails to capture the long-tail details
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of the images. Given the availability of new datasets, an array

of visual QA models have been proposed to tackle QA tasks.

The proposed models range from SVM classifiers and prob-

abilistic inference (Malinowski and Fritz 2014) to recurrent

neural networks (Gao et al. 2015; Malinowski et al. 2015; Ren

et al. 2015a) and convolutional networks (Ma et al. 2015).

Visual Genome aims to capture the details of the images with

diverse question types and long answers. These questions

should cover a wide range of visual tasks from basic percep-

tion to complex reasoning. Our QA dataset of 1.7 million

QAs is also larger than any currently existing dataset.

3.7 Knowledge Representation

A knowledge representation of the visual world is capable

of tackling an array of vision tasks, from action recogni-

tion to general question answering. However, it is difficult to

answer “what is the minimal viable set of knowledge needed

to understand about the physical world?” (Hayes 1978). It

was later proposed that there be a certain plurality to concepts

and their related axioms (Hayes 1985). These efforts have

grown to model physical processes (Forbus 1984) or to model

a series of actions as scripts (Schank and Abelson 2013) for

stories—both of which are not depicted in a single static

image but which play roles in an image’s story (Vedantam

et al. 2015b). More recently, NELL (Betteridge et al. 2009)

learns probabilistic horn clauses by extracting information

from the web. DeepQA (Ferrucci et al. 2010) proposes a

probabilistic question answering architecture involving over

100 different techniques. Others have used Markov logic

networks (Zhu et al. 2009; Niu et al. 2012) as their repre-

sentation to perform statistical inference for knowledge base

construction. Our work is most similar to that of those (Chen

et al. 2013; Zhu et al. 2014, 2015; Sadeghi et al. 2015) who

attempt to learn common-sense relationships from images.

Visual Genome scene graphs can also be considered a dense

knowledge representation for images. It is similar to the for-

mat used in knowledge bases in NLP.

4 Crowdsourcing Strategies

Visual Genome was collected and verified entirely by crowd

workers from Amazon Mechanical Turk. In this section, we

outline the pipeline employed in creating all the components

of the dataset. Each component (region descriptions, objects,

attributes, relationships, region graphs, scene graphs, ques-

tions and answers) involved multiple task stages. We mention

the different strategies used to make our data accurate and

to enforce diversity in each component. We also provide

background information about the workers who helped make

Visual Genome possible.

Table 2 Geographic distribution of countries from where crowd work-
ers contributed to Visual Genome

Country Distribution (%)

United States 93.02

Philippines 1.29

Kenya 1.13

India 0.94

Russia 0.50

Canada 0.47

(Others) 2.65

4.1 Crowd Workers

We used Amazon Mechanical Turk (AMT) as our primary

source of annotations. Overall, a total of over 33, 000 unique

workers contributed to the dataset. The dataset was collected

over the course of 6 months after 15 months of experimenta-

tion and iteration on the data representation. Approximately

800, 000 Human Intelligence Tasks (HITs) were launched on

AMT, where each HIT involved creating descriptions, ques-

tions and answers, or region graphs. Each HIT was designed

such that workers manage to earn anywhere between $6-

$8 per hour if they work continuously, in line with ethical

research standards on Mechanical Turk (Salehi et al. 2015).

Visual Genome HITs achieved a 94.1% retention rate, mean-

ing that 94.1% of workers who completed one of our tasks

went ahead to do more. Table 2 outlines the percentage dis-

tribution of the locations of the workers. 93.02% of workers

contributed from the United States.

Figure 9a, b outline the demographic distribution of our

crowd workers. This data was collected using a survey HIT.

The majority of our workers were between the ages of 25 and

34 years old. Our youngest contributor was 18 years and the

oldest was 68 years old. We also had a near-balanced split of

54.15% male and 45.85% female workers.

4.2 Region Descriptions

Visual Genome’s main goal is to enable the study of cognitive

computer vision tasks. The next step towards understand-

ing images requires studying relationships between objects

in scene graph representations of images. However, we

observed that collecting scene graphs directly from an image

leads to workers annotating easy, frequently-occurring rela-

tionships like wearing(man, shirt) instead of focusing on

salient parts of the image. This is evident from previous

datasets (Johnson et al. 2015; Lu et al. 2016) that contain

a large number of such relationships. After experimentation,

we observed that when asked to describe an image using nat-

ural language, crowd workers naturally start with the most

salient part of the image and then move to describing other
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Fig. 9 a Age and b gender distribution of Visual Genome’s crowd workers

parts of the image one by one. Inspired by this finding, we

focused our attention towards collecting a dataset of region

descriptions that is diverse in content.

When a new image is added to the crowdsourcing pipeline

with no annotations, it is sent to a worker who is asked to

draw three bounding boxes and write three descriptions for

the region enclosed by each box. Next, the image is sent

to another worker along with the previously written descrip-

tions. Workers are explicitly encouraged to write descriptions

that have not been written before. This process is repeated

until we have collected 50 region descriptions for each image.

To prevent workers from having to skim through a long list

of previously written descriptions, we only show them the

top seven most similar descriptions. We calculate these most

similar descriptions using BLEU-like (Papineni et al. 2002)

(n-gram) scores between pairs of sentences. We define the

similarity score S between a description di and a previous

description d j to be:

Sn(di , d j ) = b(di , d j ) exp

(

1

N

N
∑

n=1

log pn(di , d j )

)

(1)

where we enforce a brevity penalty using:

b(di , d j ) =

{

1 if len(di ) > len(d j )

e
1−

len(d j )

len(di ) otherwise
(2)

and pn calculates the percentage of n-grams in di that match

n-grams in d j .

When a worker writes a new description, we programmat-

ically enforce that it has not been repeated by using BLEU

score thresholds set to 0.7 to ensure that it is dissimilar to

descriptions from both of the following two lists:

1. Image-Specific Descriptions A list of all previously

written descriptions for that image.

2. Global Image Descriptions A list of the top 100 most

common written descriptions of all images in the dataset.

This prevents very common phrases like “sky is blue”

Fig. 10 Good (left) and bad (right) bounding boxes for the phrase “a
street with a red car parked on the side,” judged on coverage

from dominating the set of region descriptions. The list

of top 100 global descriptions is continuously updated as

more data comes in.

Finally, we ask workers to draw bounding boxes that sat-

isfy one requirement: coverage. The bounding box must

cover all objects mentioned in the description. Figure 10

shows an example of a good box that covers both thestreet

as well the car mentioned in the description, as well as an

example of a bad box.

4.3 Objects

Once 50 region descriptions are collected for an image,

we extract the visual objects from each description. Each

description is sent to one crowd worker, who extracts all the

objects from the description and grounds each object as a

bounding box in the image. For example, from Fig. 4, let’s

consider the description “woman in shorts is standing behind

the man.” A worker would extract three objects: woman,

shorts, and man. They would then draw a box around each

of the objects. We require each bounding box to be drawn

to satisfy two requirements: coverage and quality. Cover-

age has the same definition as described above in Sect. 4.2,

where we ask workers to make sure that the bounding box

covers the object completely (Fig. 11). Quality requires that

each bounding box be as tight as possible around its object

such that if the box’s length or height were decreased by one

pixel, it would no longer satisfy the coverage requirement.
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Fig. 11 Good (left) and bad (right) bounding boxes for the object fox,
judged on both coverage as well as quality

Since a one pixel error can be physically impossible for most

workers, we relax the definition of quality to four pixels.

Multiple descriptions for an image might refer to the same

object, sometimes with different words. For example, a man

in one description might be referred to as person in another

description. We can thus use this crowdsourcing stage to

build these co-reference chains. With each region description

given to a worker to process, we include a list of previously

extracted objects as suggestions. This allows a worker to

choose a previously drawn box annotated as man instead of

redrawing a new box for person.

Finally, to increase the speed with which workers com-

plete this task, we also use Stanford’s dependency parser

(Manning et al. 2014) to extract nouns automatically and send

them to the workers as suggestions. While the parser manages

to find most of the nouns, it sometimes misses compound

nouns, so we avoided completely depending on this auto-

mated method. By combining the parser with crowdsourcing

tasks, we were able to speed up our object extraction process

without losing accuracy.

4.4 Attributes, Relationships, and Region Graphs

Once all objects have been extracted from each region

description, we can extract the attributes and relationships

described in the region. We present each worker with a region

description along with its extracted objects and ask them to

add attributes to objects or to connect pairs of objects with

relationships, based on the text of the description. From the

description “woman in shorts is standing behind the man”,

workers will extract the attribute standing for the woman

and the relationships in(woman, shorts) and behind(woman,

man). Together, objects, attributes, and relationships form

the region graph for a region description. Some descriptions

like “it is a sunny day” do not contain any objects and there-

fore have no region graphs associated with them. Workers

are asked to not generate any graphs for such descriptions.

We create scene graphs by combining all the region graphs

for an image by combining all the co-referenced objects from

different region graphs.

Fig. 12 Each object (fox) has only one bounding box referring to it
(left). Multiple boxes drawn for the same object (right) are combined
together if they have a minimum threshold of 0.9 intersection over union

4.5 Scene Graphs

The scene graph is the union of all region graphs extracted

from region descriptions. We merge nodes from region

graphs that correspond to the same object; for example, man

and person in two different region graphs might refer to

the same object in the image. We say that objects from dif-

ferent graphs refer to the same object if their bounding boxes

have an intersection over union of 0.9. However, this heuris-

tic might contain false positives. So, before merging two

objects, we ask workers to confirm that a pair of objects with

significant overlap are indeed the same object. For exam-

ple, in Fig. 12 (right), the fox might be extracted from

two different region descriptions. These boxes are then com-

bined together (Fig. 12, left) when constructing the scene

graph.

4.6 Questions and Answers

To create question answer (QA) pairs, we ask the AMT work-

ers to write pairs of questions and answers about an image. To

ensure quality, we instruct the workers to follow three rules:

1) start the questions with one of the “six Ws” (who, what,

where,when,why andhow); 2) avoid ambiguous and spec-

ulative questions; 3) be precise and unique, and relate the

question to the image such that it is clearly answerable if and

only if the image is shown.

We collected two separate types of QAs: freeform QAs

and region-based QAs. In freeform QA, we ask a worker

to look at an image and write eight QA pairs about it. To

encourage diversity, we enforce that workers write at least

three different Ws out of the six in their eight pairs. In region-

based QA, we ask the workers to write a pair based on a given

region. We select the regions that have large areas (more

than 5k pixels) and long phrases (more than 4 words). This

enables us to collect around twenty region-based pairs at the

same cost of the eight freeform QAs. In general, freeform QA

tends to yield more diverse QA pairs that enrich the question

distribution; region-based QA tends to produce more factual

QA pairs at a lower cost.
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4.7 Verification

All Visual Genome data go through a verification stage as

soon as they are annotated. This stage helps eliminate incor-

rectly labeled objects, attributes, and relationships. It also

helps remove region descriptions and questions and answers

that might be correct but are vague (“This person seems to

enjoy the sun.”), subjective (“room looks dirty”), or opinion-

ated (“Being exposed to hot sun like this may cause cancer”).

Verification is conducted using two separate strategies:

majority voting (Snow et al. 2008) and rapid judgments

(Krishna et al. 2016). All components of the dataset except

objects are verified using majority voting. Majority vot-

ing(Snow et al. 2008) involves three unique workers looking

at each annotation and voting on whether it is factually cor-

rect. An annotation is added to our dataset if at least two (a

majority) out of the three workers verify that it is correct.

We only use rapid judgments to speed up the verification

of the objects in our dataset. Rapid judgments (Krishna et al.

2016) use an interface inspired by rapid serial visual pro-

cessing that enable verification of objects with an order of

magnitude increase in speed than majority voting.

4.8 Canonicalization

All the descriptions and QAs that we collect are freeform

worker-generated texts. They are not constrained by any lim-

itations. For example, we do not force workers to refer to a

man in the image as a man. We allow them to choose to refer

to the man asperson,boy,man, etc. This ambiguity makes

it difficult to collect all instances of man from our dataset. In

order to reduce the ambiguity in the concepts of our dataset

and connect it to other resources used by the research commu-

nity, we map all objects, attributes, relationships, and noun

phrases in region descriptions and QAs to synsets in Word-

Net (Miller 1995). In the example above, person, boy,

and man would map to the synsets: person.n.01 (a

human being), male_child.n.01 (a youthful

male person) andman.n.03 (the generic use

of the word to refer to any human being)

respectively. Thanks to the WordNet hierarchy it is now pos-

sible to fuse those three expressions of the same concept into

person.n.01 (a human being), which is the low-

est common ancestor node of all aforementioned synsets.

We use the Stanford NLP tools (Manning et al. 2014) to

extract the noun phrases from the region descriptions and

QAs. Next, we map them to their most frequent matching

synset in WordNet according to WordNet lexeme counts. We

then refine this simple heuristic by hand-crafting mapping

rules for the 30 most common failure cases. For example

according to WordNet’s lexeme counts the most common

semantic for “table” istable.n.01 (a set of data

arranged in rows and columns). However in our

data it is more likely to see pieces of furniture and therefore

bias the mapping towards table.n.02 (a piece of

furniture having a smooth flat top that

is usually supported by one or more

vertical legs). The objects in our scene graphs are

already noun phrases and are mapped to WordNet in the same

way.

We normalize each attribute based on morphology (so

called “stemming”) and map them to the WordNet adjectives.

We include 15 hand-crafted rules to address common failure

cases, which typically occur when the concrete or spatial

sense of the word seen in an image is not the most common

overall sense. For example, the synset long.a.02 (of

relatively great or greater than average

spatial extension) is less common in WordNet than

long.a.01 (indicating a relatively great

or greater than average duration of

time), even though instances of the word “long” in our

images are much more likely to refer to that spatial sense.

For relationships, we ignore all prepositions as they are

not recognized by WordNet. Since the meanings of verbs are

highly dependent upon their morphology and syntactic place-

ment (e.g. passive cases, prepositional phrases), we try to

find WordNet synsets whose sentence frames match with the

context of the relationship. Sentence frames in WordNet are

formalized syntactic frames in which a certain sense of a word

might appear; e.g. , play.v.01: participate in

games or sport occurs in the sentence frames “Some-

body [play]s” and “Somebody [play]s something.” For each

verb-synset pair, we then consider the root hypernym of that

synset to reduce potential noise from WordNet’s fine-grained

sense distinctions. The WordNet hierarchy for verbs is seg-

mented and originates from over 100 root verbs. For example,

draw.v.01: cause to move by pulling traces

back to the root hypernym move.v.02: cause to

move or shift into a new position, while

draw.v.02: get or derive traces to the root get.

v.01: come into the possession of some

thing concrete or abstract. We also include 20

hand-mapped rules, again to correct for WordNet’s lower

representation of concrete or spatial senses.

These mappings are not perfect and still contain some

ambiguity. Therefore, we send all our mappings along with

the top four alternative synsets for each term to AMT. We ask

workers to verify that our mapping was accurate and change

the mapping to an alternative one if it was a better fit. We

present workers with the concept we want to canonicalize

along with our proposed corresponding synset with 4 addi-

tional options. To prevent workers from always defaulting to

the our proposed synset, we do not explicitly specify which

one of the 5 synsets presented is our proposed synset. Sec-

tion 5.8 provides experimental precision and recall scores for

our canonicalization strategy.
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5 Dataset Statistics and Analysis

In this section, we provide statistical insights and analysis for

each component of Visual Genome. Specifically, we exam-

ine the distribution of images (Sect. 5.1) and the collected

data for region descriptions (Sect. 5.2) and questions and

answers (Sect. 5.7). We analyze region graphs and scene

graphs together in one section (Sect. 5.6), but we also break

up these graph structures into their three constituent parts—

objects (Sect. 5.3), attributes (Sect. 5.4), and relationships

(Sect. 5.5)—and study each part individually. Finally, we

describe our canonicalization pipeline and results (Sect. 5.8).

5.1 Image Selection

The Visual Genome dataset consists of all 108,077 creative

commons images from the intersection of MS-COCO’s (Lin

et al. 2014) 328, 000 images and YFCC100M’s (Thomee

et al. 2016) 100 million images. This allows Visual Genome

annotations to be utilized together with the YFCC tags and

MS-COCO’s segmentations and full image captions. These

images are real-world, non-iconic images that were uploaded

onto Flickr by users. The images range from as small as 72

pixels wide to as large as 1280 pixels wide, with an aver-

age width of 500 pixels. We collected the WordNet synsets

into which our 108,077 images can be categorized using the

same method as ImageNet (Deng et al. 2009). Visual Genome

images can be categorized into 972 ImageNet synsets. Note

that objects, attributes and relationships are categorized sep-

arately into more than 18K WordNet synsets (Sect. 5.8).

Figure 13 shows the top synsets to which our images belong.

“ski” is the most common synset, with 2612 images; it is

followed by “ballplayer” and “racket,” with all three synsets

referring to images of people playing sports. Our dataset is

somewhat biased towards images of people, as Fig. 13 shows;

however, they are quite diverse overall, as the top 25 synsets

each have over 800 images, while the top 50 synsets each

have over 500 examples.

5.2 Region Description Statistics

One of the primary components of Visual Genome is its

region descriptions. Every image includes an average of

50 regions with a bounding box and a descriptive phrase.

Figure 14 shows an example image from our dataset with its

50 region descriptions. We display bounding boxes for only

6 out of the 50 descriptions in the figure to avoid clutter.

These descriptions tend to be highly diverse and can focus

on a single object, like in “A bag,” or on multiple objects, like

in “Man taking a photo of the elephants.” They encompass

the most salient parts of the image, as in “An elephant taking

food from a woman,” while also capturing the background,

as in “Small buildings surrounded by trees.”

Fig. 13 A distribution of the top 25 image synsets in the Visual
Genome dataset. A variety of synsets are well represented in the dataset,
with the top 25 synsets having at least 800 example images each. Note
that an image synset is the label of the entire image according to the Ima-
geNet ontology and are separate from the synsets for objects, attributes
and relationships

MS-COCO (Lin et al. 2014) dataset is good at generat-

ing variations on a single scene-level descriptor. Consider

three sentences from MS-COCO dataset on a similar image:

“there is a person petting a very large elephant,” “a per-

son touching an elephant in front of a wall,” and “a man

in white shirt petting the cheek of an elephant.” These three

sentences are single scene-level descriptions. In comparison,

Visual Genome descriptions emphasize different regions in

the image and thus are less semantically similar. To ensure

diversity in the descriptions, we use BLEU score (Pap-

ineni et al. 2002) thresholds between new descriptions and

all previously written descriptions. More information about

crowdsourcing can be found in Sect. 4.

Region descriptions must be specific enough in an image

to describe individual objects (e.g. “A bag”), but they must

also be general enough to describe high-level concepts in an
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Fig. 14 a An example image from the dataset with its region descrip-
tions. We only display localizations for 6 of the 50 descriptions to avoid
clutter; all 50 descriptions do have corresponding bounding boxes. b

All 50 region bounding boxes visualized on the image

image (e.g. “A man being chased by a bear”). Qualitatively,

we note that regions that cover large portions of the image

tend to be general descriptions of an image, while regions

that cover only a small fraction of the image tend to be more

specific. In Fig. 15a, we show the distribution of regions over

the width of the region normalized by the width of the image.

We see that the majority of our regions tend to be around 10

to 15% of the image width. We also note that there are a large

number of regions covering 100% of the image width. These

regions usually include elements like “sky,” “ocean,” “snow,”

“mountains,” etc. that cannot be bounded and thus span the

entire image width. In Fig. 15b, we show a similar distribution

over the normalized height of the region. We see a similar

overall pattern, as most of our regions tend to be very specific

descriptions of about 10% to 15% of the image height. Unlike

the distribution over width, however, we do not see a increase

in the number of regions that span the entire height of the

image, as there are no common visual equivalents that span

images vertically. Out of all the descriptions gathered, only

one or two of them tend to be global scene descriptions that

are similar to MS-COCO (Lin et al. 2014) (Fig. 17).

In Fig. 16, we show the distribution of the length (word

count) of these region descriptions. The average word count

for a description is 5 words, with a minimum of 1 and a max-

imum of 12 words. In Fig. 18a, we plot the most common

phrases occurring in our region descriptions, with common

stop words removed. Common visual elements like “green

grass,” “tree [in] distance,” and “blue sky” occur much more

often than other, more nuanced elements like “fresh straw-

berry.” We also study descriptions with finer precision in

Fig. 18b, where we plot the most common words used in

descriptions. Again, we eliminate stop words from our study.

Colors like “white” and “black” are the most frequently used

words to describe visual concepts; we conduct a similar study

on other captioning datasets including MS-COCO (Lin et al.

2014) and Flickr 30K (Young et al. 2014) and find a similar

distribution with colors occurring most frequently. Besides

colors, we also see frequent occurrences of common objects

like “man” and “tree” and of universal visual elements like

“sky.”

Semantic Diversity We also study the actual semantic con-

tents of the descriptions. We use an unsupervised approach to

analyze the semantics of these descriptions. Specifically, we

use word2vec’s (Mikolov et al. 2013) pre-trained model on

Google news corpus to convert each word in a description to

a 300-dimensional vector. Next, we remove stop words and

average the remaining words to get a vector representation

of the whole region description. This pipeline is outlined

in Fig. 17. We use hierarchical agglomerative clustering

(Steinbach et al. 2000) on vector representations of each

region description and find 71 semantic and syntactic group-

ings or “clusters.” Figure 19a shows four such example

clusters. One cluster contains all descriptions related to ten-

nis, like “A man swings the racquet” and “White lines on

the ground of the tennis court,” while another cluster con-

tains descriptions related to numbers, like “Three dogs on the

street” and “Two people inside the tent.” To quantitatively

measure the diversity of Visual Genome’s region descrip-

tions, we calculate the number of clusters represented in a

single image’s region descriptions. We show the distribution

of the variety of descriptions for an image in Fig. 19b. We

find that on average, each image contains descriptions from

17 different clusters. The image with the least diverse descrip-

tions contains descriptions from 4 clusters, while the image
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Fig. 15 a A distribution of the width of the bounding box of a region description normalized by the image width. b A distribution of the height of
the bounding box of a region description normalized by the image height

Fig. 16 A distribution of the number of words in a region description.
The average number of words in a region description is 5, with shortest
descriptions of 1 word and longest descriptions of 16 words

with the most diverse descriptions contains descriptions from

26 clusters.

Finally, we also compare the descriptions in Visual

Genome to the captions in MS-COCO. First we aggregate

all Visual Genome and MS-COCO descriptions and remove

all stop words. After removing stop words, the descriptions

from both datasets are roughly the same length. We conduct

a similar study, in which we vectorize the descriptions for

each image and calculate each dataset’s cluster diversity per

image. We find that on average, 2 clusters are represented

in the captions for each image in MS-COCO, with very few

images in which 5 clusters are represented. Because each

image in MS-COCO only contains 5 captions, it is not a fair

comparison to compare the number of clusters represented

in all the region descriptions in the Visual Genome dataset.

We thus randomly sample 5 Visual Genome region descrip-

tions per image and calculate the number of clusters in an

image. We find that Visual Genome descriptions come from

4 or 5 clusters. We show our comparison results in Fig. 19c.

The difference between the semantic diversity between the

Fig. 17 The process used to convert a region description into a 300-
dimensional vectorized representation

two datasets is statistically significant (t = −240, p < 0.01)

(Fig. 20).

5.3 Object Statistics

In comparison to related datasets, Visual Genome fares

well in terms of object density and diversity (Table 3).

Visual Genome contains approximately 35 objects per

image, exceeding ImageNet (Deng et al. 2009), PASCAL

(Everingham et al. 2010), MS-COCO (Lin et al. 2014), and

other datasets by large margins. As shown in Fig. 21, there

are more object categories represented in Visual Genome

than in any other dataset. This comparison is especially per-

tinent with regards to Microsoft MS-COCO (Lin et al. 2014),

which uses the same images as Visual Genome. The lower

count of objects per category is a result of our higher number

of categories. For a fairer comparison with ILSVRC 2014

Detection (Russakovsky et al. 2015), Visual Genome has

about 2239 objects per category when only the top 200 cat-

egories are considered, which is comparable to ILSVRC’s

2671.5 objects per category. For a fairer comparison with

MS-COCO, Visual Genome has about 3768 objects per cat-
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Fig. 18 a A plot of the most common visual concepts or phrases that
occur in region descriptions. The most common phrases refer to univer-
sal visual concepts like “blue sky,” “green grass,” etc. b A plot of the
most frequently used words in region descriptions. Each word is treated

as an individual token regardless of which region description it came
from. Colors occur the most frequently, followed by common objects
like man and dog and universal visual concepts like “sky”

egory when only the top 80 categories are considered. This

is comparable to MS-COCO’s (Lin et al. 2014) object distri-

bution.

The 3,843,636 objects in Visual Genome come from a

variety of categories. As shown in Fig. 22 (b), objects related

to WordNet categories such as humans, animals, sports, and
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Numbers Cluster

Two people inside the tent.

Many animals crossing the road.

Five ducks almost in a row.

The number four.

Three dogs on the street.

Two towels hanging on racks.

Tennis Cluster

White lines on the ground of the tennis court.

A pair of tennis shoes.

Metal fence securing the tennis court.

Navy blue shorts on tennis player.

The man swings the racquet.

Tennis player preparing a backhand swing.

Ocean Cluster

Ocean is blue and calm.

Rows of waves in front of surfer.

A group of men on a boat.

Surfboard on the beach.

Woman is surfing in the ocean.

Foam on water’s edge.

Transportation Cluster

Ladder folded on fire truck.

Dragon design on the motorcycle.

Tall windshield on bike.

Front wheels of the airplane.

A bus rear view mirror.

The front tire of the police car.

(a)

(b) (c)

Fig. 19 a Example illustration showing four clusters of region descrip-
tions and their overall themes. Other clusters not shown due to limited
space. b Distribution of images over number of clusters represented
in each image’s region descriptions. c We take Visual Genome with
5 random descriptions taken from each image and MS-COCO dataset

with all 5 sentence descriptions per image and compare how many clus-
ters are represented in the descriptions. We show that Visual Genome’s
descriptions are more varied for a given image, with an average of 4
clusters per image, while MS-COCO’s images have an average of 2
clusters per image

scenery are most common; this is consistent with the gen-

eral bias in image subject matter in our dataset. Common

objects like man, person, and woman occur especially

frequently with occurrences of 24K, 17K, and 11K. Other

objects that also occur in MS-COCO (Lin et al. 2014)

are also well represented with around 5000 instances on

average. Figure 22a shows some examples of objects in

images. Objects in Visual Genome span a diverse set of

Wordnet categories like food, animals, and man-made struc-

tures.
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Fig. 20 a Distribution of the number of objects per region. Most
regions have between 0 and 2 objects. b Distribution of the number
of objects per image. Most images contain between 15 and 20 objects

It is important to look not only at what types of objects

we have but also at the distribution of objects in images and

regions. Figure 20a shows, as expected, that we have between

0 and 2 objects in each region on average. It is possible for

regions to contain no objects if their descriptions refer to no

explicit objects in the image. For example, a region described

as “it is dark outside” has no objects to extract. Regions with

only one object generally have descriptions that focus on the

attributes of a single object. On the other hand, regions with

two or more objects generally have descriptions that contain
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Fig. 21 Comparison of object diversity between various datasets.
Visual Genome far surpasses other datasets in terms of number of cate-
gories. When considering only the top 80 object categories, it contains
a comparable number of objects as MS-COCO. The dashed line is a
visual aid connecting the two Visual Genome data points

both attributes of specific objects and relationships between

pairs of objects.

As shown in Fig. 20b, each image contains on average

around 35 distinct objects. Few images have an extremely

high number of objects (e.g. over 40). Due to the image biases

that exist in the dataset, we have twice as many annotations

for men than we do of women.

5.4 Attribute Statistics

Attributes allow for detailed description and disambiguation

of objects in our dataset. Our dataset contains 2.8 million total

attributes with 68,111 unique attributes. Attributes include

colors (e.g. green), sizes (e.g. tall), continuous action

verbs (e.g. standing), materials (e.g. plastic), etc.

Each object can have multiple attributes.

On average, each image in Visual Genome contains 26

attributes (Fig. 23). Each region contains on average 1

attribute, though about 34% of regions contain no attribute at

all; this is primarily because many regions are relationship-

focused. Figure 24a shows the distribution of the most

common attributes in our dataset. Colors (e.g. white,

green) are by far the most frequent attributes. Also com-

mon are sizes (e.g. large) and materials (e.g. wooden).

Figure 24b shows the distribution of attributes describing

Table 3 Comparison of Visual Genome objects and categories to related datasets

Visual
Genome

ILSVRC det.
(Russakovsky
et al. 2015)

MS-COCO (Lin
et al. 2014)

Caltech101
(Fei-Fei et al.
2007)

Caltech256
(Griffin et al.
2007)

PASCAL det.
(Everingham
et al. 2010)

Abstract scenes
(Zitnick and
Parikh 2013)

Images 108,077 476,688 328,000 9144 30, 608 11,530 10,020

Total objects 3,843,636 534,309 2,500,000 9144 30, 608 27,450 58

Total categories 33,877 200 80 102 257 20 11

Objects per
category

113.45 2671.50 27472.50 90 119 1372.50 5.27
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Fig. 22 a Examples of objects in Visual Genome. Each object is local-
ized in its image with a tightly drawn bounding box. b Plot of the most
frequently occurring objects in images. People are the most frequently

occurring objects in our dataset, followed by common objects and visual
elements like building, shirt, and sky

people (e.g. man, girls, and person). The most common

attributes describing people are intransitive verbs describ-

ing their states of motion (e.g. standing and walking).

Certain sports (e.g. skiing, surfboarding) are over-

represented due to an image bias towards these sports.

Attribute Graphs We also qualitatively analyze the attributes

in our dataset by constructing co-occurrence graphs, in which

nodes are unique attributes and edges connect those attributes

that describe the same object. For example, if an image con-

tained a “large black dog” (large(dog),black(dog)) and

another image contained a “large yellow cat” (large(cat),

yellow(cat)), its attributes would form an incomplete

graph with edges (large, black) and (large, yellow).

We create two such graphs: one for both the total set of

attributes and a second where we consider only objects that
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Fig. 23 Distribution of the number of attributes a per image, b per
region description, c per object

refer to people. A subgraph of the 16 most frequently con-

nected (co-occurring) person-related attributes is shown in

Fig. 25a.

Cliques in these graphs represent groups of attributes in

which at least one co-occurrence exists for each pair of

attributes. In the previous example, if a third image contained

a “black and yellow taxi” (black(taxi),yellow(taxi)),

the resulting third edge would create a clique between the

attributes black, large, and yellow. When calculated

across the entire Visual Genome dataset, these cliques pro-

vide insight into commonly perceived traits of different types

of objects. Figure 25b is a selected representation of three

example cliques and their overlaps. From just a clique of

attributes, we can predict what types of objects are usually

referenced. In Fig. 25b, we see that these cliques describe an

animal (left), water body (top right), and human hair (bottom

right).

Other cliques (not shown) can also uniquely identify

object categories. In our set, one clique containsathletic,

young, fit, skateboarding, focused, teenager,

male,skinny, andhappy, capturing some of the common

traits of skateboarders in our set. Another such clique

has shiny, small, metal, silver, rusty, parked,

and empty, most likely describing a subset of cars. From

these cliques, we can thus infer distinct objects and object

types based solely on their attributes, potentially allowing for

highly specific object identification based on selected char-

acteristics.

5.5 Relationship Statistics

Relationships are the core components that link objects in

our scene graphs. Relationships are directional, i.e. they

involve two objects, one acting as the subject and one as

the object of a predicate relationship. We denote all relation-

ships in the form relationship(subject, object). For example,

if a man is swinging a bat, we write swinging(man,

bat). Relationships can be spatial (e.g. inside_of), action

(e.g. swinging), compositional (e.g. part_of), etc.

More complex relationships such as standing_on, which

includes both an action and a spatial aspect, are also repre-

sented. Relationships are extracted from region descriptions

by crowd workers, similarly to attributes and objects. Visual

Genome contains a total of 42,374 unique relationships, with

over 2,347,187 million total relationships.

Figure 26a shows the distribution of relationships per

region description. On average, we have 1 relationship per

region, with a maximum of 7. We also have some descrip-

tions like “an old, tall man,” which have multiple attributes

associated with the man but no relationships. Figure 26b

is a distribution of relationships per image object. Finally,

Fig. 26c shows the distribution of relationships per image.

Each image has an average of 19 relationships, with a min-

imum of 1 relationship and with a maximum of over 80

relationships.

Top Relationship Distributions We display the most fre-

quently occurring relationships in Fig. 27a. on is the

most common relationship in our dataset. This is primar-

ily because of the flexibility of the word on, which can

refer to spatial configuration (on top of), attachment

(hanging on), etc. Other common relationships involve

actions like holding and wearing and spatial configu-
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Fig. 24 a Distribution showing the most common attributes in the
dataset. Colors (e.g. white, red) and materials (e.g. wooden,
metal) are the most common. b Distribution showing the number of
attributes describing people. State-of-motion verbs (e.g. standing,

walking) are the most common, while certain sports (e.g. skiing,
surfing) are also highly represented due to an image source bias in
our image set

rations like behind, next to, and under. Figure 27b

shows a similar distribution but for relationships involv-

ing people. Here we notice more human-centric relation-

ships or actions such as kissing, chatting with, and

talking to. The two distributions follow a Zipf distribu-

tion.

Understanding Affordances Relationships allow us to also

understand the affordances of objects. Figure 28a shows

the distribution for subjects while Fig. 28b shows a similar

distribution for objects. Comparing the two, we find clear

patterns of people-like subject entities such as person,

man, policeman, boy, and skateboarder that can
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Fig. 25 a Graph of the person-describing attributes with the most co-
occurrences. Edge thickness represents the frequency of co-occurrence
of the two nodes. b A subgraph showing the co-occurrences and inter-

sections of three cliques, which appear to describe water (top right), hair
(bottom right), and some type of animal (left). Edges between cliques
have been removed for clarity

ride other objects; the other distribution contains objects

that afford riding, such as horse, bike, elephant,

motorcycle, and skateboard. We can also learn spe-

cific common-sense knowledge, like that zebras eat hay

and grass while a person eats pizzas and burgers

and that couches usually have pillows on them.

123



Int J Comput Vis (2017) 123:32–73 57

Fig. 26 Distribution of relationships a per image region, b per image
object, c per image

Related Work Comparison It is also worth mentioning in

this section some prior work on relationships. The con-

cept of visual relationships has already been explored in

Visual Phrases (Sadeghi and Farhadi 2011), who introduced a

dataset of 17 such relationships such as next_to(person, bike)

and riding(person, horse). However, their dataset is limited

to just these 17 relationships. Similarly, the MS-COCO-a

a scene graph dataset (Ronchi and Perona 2015) intro-

duced 156 actions that humans performed in MS-COCO’s

dataset (Lin et al. 2014). They show that to exhaustively

describe “common” images involving humans, only a small

set of visual actions is needed. However, their dataset is

limited to just actions, while our relationships are more gen-

eral and numerous, with over 42,374 unique relationships.

Finally, VisKE (Sadeghi et al. 2015) introduced 6500 rela-

tionships, but in a much smaller dataset of images than Visual

Genome.

5.6 Region and Scene Graph Statistics

We introduce in this paper the largest dataset of scene graphs

to date. We use these graph representations of images as a

deeper understanding of the visual world. In this section, we

analyze the properties of these representations, both at the

region-level through region graphs and at the image level

through scene graphs. We also briefly explore other datasets

with scene graphs and provide aggregate statistics on our

entire dataset.

In previous work, scene graphs have been collected by

asking humans to write a list of triples about an image

(Johnson et al. 2015). However, unlike them, we collect

graphs at a much more fine-grained level: the region graph.

We obtained our graphs by asking workers to create them

from the descriptions we collected from our regions. There-

fore, we end up with multiple graphs for an image, one for

every region description. Together, we can combine all the

individual region graphs to aggregate a scene graph for an

image. This scene graph is made up of all the individual

region graphs. In our scene graph representation, we merge

all the objects that referenced by multiple region graphs into

one node in the scene graph.

Each of our images has between 5 to 100 region graphs

per image, with an average of 50. Each image has exactly one

scene graph. Note that the number of region descriptions and

the number of region graphs for an image are not the same.

For example, consider the description “it is a sunny day”.

Such a description contains no objects, which are the building

blocks of a region graph. Therefore, such descriptions have

no region graphs associated with them.

Objects, attributes, and relationships occur as a normal

distribution in our data. Table 4 shows that in a region graph,

there are an average of 0.71 objects, 0.52 attributes, and 21

relationships. Each scene graph and consequently each image

has average of 35 objects, 26 attributes, and 21 relationships.

5.7 Question Answering Statistics

We collected 1,773,258 question answering (QA) pairs on

the Visual Genome images. Each pair consists of a question

and its correct answer regarding the content of an image. On

average, every image has 17 QA pairs. Rather than collect-

ing unconstrained QA pairs as previous work has done (Antol

et al. 2015; Gao et al. 2015; Malinowski and Fritz 2014), each
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Fig. 27 a A sample of the most frequent relationships in our dataset. In
general, the most common relationships are spatial (on top of, on
side of, etc.). b A sample of the most frequent relationships involv-

ing humans in our dataset. The relationships involving people tend to
be more action oriented (walk, speak, run, etc.)

question in Visual Genome starts with one of the six Ws –

what, where, when, who, why, and how. There are two major

benefits to focusing on six types of questions. First, they

offer a considerable coverage of question types, ranging from

basic perceptual tasks (e.g. recognizing objects and scenes) to

complex common sense reasoning (e.g. inferring motivations

of people and causality of events). Second, these categories

present a natural and consistent stratification of task diffi-

culty, indicated by the baseline performance in Sect. 6.4. For

instance, why questions that involve complex reasoning lead

to the poorest performance (3.4% top-100 accuracy com-

pared to 9.6% top-100 accuracy of the next lowest) of the six

categories. This enables us to obtain a better understanding

of the strengths and weaknesses of today’s computer vision

models, which sheds light on future directions in which to

proceed.
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Fig. 28 a Distribution of subjects for the relationship riding. b Dis-
tribution of objects for the relationship riding. Subjects comprise
of people-like entities like person, man, policeman, boy, and

skateboarder that can ride other objects. On the other hand, objects
likehorse,bike,elephant andmotorcycle are entities that can
afford riding

We now analyze the diversity and quality of our questions

and answers. Our goal is to construct a large-scale visual

question answering dataset that covers a diverse range of

question types, from basic cognition tasks to complex rea-

soning tasks. We demonstrate the richness and diversity of

our QA pairs by examining the distributions of questions and

answers in Fig. 29.

Question Type Distributions The questions naturally fall into

the 6W categories via their interrogative words. Inside each

of the categories, the second and following words catego-

rize the questions with increasing granularity. Inspired by

VQA (Antol et al. 2015), we show the distributions of the

questions by their first three words in Fig. 30. We can see that

“what” is the most common of the six categories. A notable
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Table 4 The average number of objects, attributes, and relationships
per region graph and per scene graph

Objects Attributes Relationships

Region graph 0.71 0.52 0.43

Scene graph 35 26 21

difference between our question distribution and VQA’s is

that we focus on ensuring that all six question categories

are adequately represented, while in VQA, 38.37% of the

questions are yes/no binary questions. As a result, a trivial

model can achieve a reasonable performance by just predict-

ing “yes” or “no” as answers. We encourage more difficult

QA pairs by ruling out binary questions.

Question and Answer Length Distributions We also ana-

lyze the question and answer lengths of each 6W category.

Figure 31 shows the average question and answer lengths

of each category. Overall, the average question and answer

lengths are 5.7 and 1.8 words respectively. In contrast to

the VQA dataset, where 89.32%, 6.91%, and 2.74% of the

answers consist of one, two, or three words, our answers

exhibit a long-tail distribution where 57.3%, 18.1%, and

15.7% of the answers have one, two, or three words respec-

tively. We avoid verbosity by instructing the workers to

write answers as concisely as possible. The coverage of long

answers means that many answers contain a short descrip-

tion that contains more details than merely an object or

an attribute. It shows the richness and complexity of our

visual QA tasks beyond object-centric recognition tasks.

We foresee that these long-tail answers can motivate future

Fig. 30 Distribution of question types by starting words. This figure
shows the distribution of the questions by their first three words. The
angles of the regions are proportional to the number of pairs from the
corresponding categories. We can see that “what” questions are the
largest category with nearly half of the QA pairs

research in common-sense reasoning and high-level image

understanding.

5.8 Canonicalization Statistics

In order to reduce the ambiguity in the concepts of our dataset

and connect it to other resources used by the research com-

munity, we canonicalize the semantic meanings of all objects,

Fig. 29 Example QA pairs in the Visual Genome dataset. Our QA pairs cover a spectrum of visual tasks from recognition to high-level reasoning
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Fig. 31 Question and answer lengths by question type. The bars show
the average question and answer lengths of each question type. The
whiskers show the standard deviations. The factual questions, such
as “what” and “how” questions, usually come with short answers of
a single object or a number. This is only because “how” questions
are disproportionately counting questions that start with “how many”.
Questions from the “where” and “why” categories usually have phrases
and sentences as answers

relationships, and attributes in Visual Genome. By “canon-

icalization,” we refer to word sense disambiguation (WSD)

by mapping the components in our dataset to their respective

synsets in the WordNet ontology (Miller 1995). This mapping

reduces the noise in the concepts contained in the dataset and

also facilitates the linkage between Visual Genome and other

data sources such as ImageNet (Deng et al. 2009), which is

built on top of the WordNet ontology.

Figure 32 shows an example image from the Visual

Genome dataset with its components canonicalized.

For example, horse is canonicalized as horse.n.01:

solid-hoofed herbivorous quadruped

domesticated since prehistoric times. Its

attribute, clydesdale, is canonicalized as its breed

clydesdale.n.01: heavy feathered-legged

breed of draft horse originally from

Scotland. We also show an example of a QA from which

we extract the nouns shamrocks, symbol, and St.

Patrick’s day, all of which we canonicalize to Word-

Net as well.

Related Work Canonicalization, or WSD (Pal and Saha

2015), has been used in numerous applications, including

machine translation, information retrieval, and information

extraction (Rothe and Schütze 2015; Leacock et al. 1998). In

English sentences, sentences like “He scored a goal” and “It

was his goal in life” carry different meanings for the word

“goal.” Understanding these differences is crucial for trans-

lating languages and for returning correct results for a query.

Similarly, in Visual Genome, we ensure that all our compo-

nents are canonicalized to understand how different objects

are related to each other; for example, “person” is a hypernym

of “man” and “woman.” Most past canonicalization models

use precision, recall, and F1 score to evaluate on the Semeval

dataset (Mihalcea et al. 2004). The current state-of-the-art

performance on Semeval is an F1 score of 75.8% (Chen et al.

2014). Since our canonicalization setup is different from the

Semeval benchmark (we have an open vocabulary and no

annotated ground truth for evaluation), our canonicalization

Fig. 32 An example image from the Visual Genome dataset with
its region descriptions, QA pairs, objects, attributes, and relation-
ships canonicalized. The large text boxes are WordNet synsets ref-
erenced by this image. For example, the carriage is mapped
to carriage.n.02: a vehicle with wheels drawn by

one or more horses. We do not show the bounding boxes for
the objects in order to allow readers to see the image clearly. We also
only show a subset of the scene graph for this image to avoid cluttering
the figure
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Table 5 Precision, recall, and mapping accuracy percentages for object,
attribute, and relationship canonicalization

Precision Recall

Objects 88.0 98.5

Attributes 85.7 95.9

Relationships 92.9 88.5

method is not directly comparable to these existing methods.

We do however, achieve a similar precision and recall score

on a held-out test set described below (Table 5).

Region Descriptions and QAs We canonicalize all objects

mentioned in all region descriptions and QA pairs. Because

objects need to be extracted from the phrase text, we use

Stanford NLP tools (Manning et al. 2014) to extract the

noun phrases in each region description and QA, result-

ing in 99% recall of noun phrases from a subset of 200

region descriptions we manually annotated. After obtaining

the noun phrases, we map each to its most frequent matching

synset (according to WordNet lexeme counts). This resulted

in an overall mapping accuracy of 88% and a recall of 98.5%

(Fig. 5). The most common synsets extracted from region

descriptions, QAs, and objects are shown in Fig. 33.

Attributes We canonicalize attributes from the crowd-extr-

acted attributes present in our scene graphs. The “attribute”

designation encompasses a wide range of grammatical

parts of speech. Because part-of-speech taggers rely on

high-level syntax information and thus fail on the dis-

joint elements of our scene graphs, we normalize each

attribute based on morphology alone (so-called “stem-

ming” (Bird 2006)). Then, as with objects, we map each

attribute phrase to the most frequent matching WordNet

synset. We include 15 hand-mapped rules to address com-

mon failure cases in which WordNet’s frequency counts

prefer abstract senses of words over the spatial senses

present in visual data, e.g. short.a.01: limited in

duration over short.a.02: lacking in len-

gth. For verification, we randomly sample 200 attributes,

produce ground-truth mappings by hand, and compare them

to the results of our algorithm. This resulted in a recall of

95.9% and a mapping accuracy of 85.7%. The most com-

mon attribute synsets are shown in Fig. 34a.

Relationships As with attributes, we canonicalize the rela-

tionships isolated in our scene graphs. We exclude prepo-

sitions, which are not recognized in WordNet, leaving a

set primarily composed of verb relationships. Since the

meanings of verbs are highly dependent upon their mor-

phology and syntactic placement (e.g. passive cases, prepo-

sitional phrases), we map the structure of each relation-

ship to the appropriate WordNet sentence frame and only

consider those WordNet synsets with matching sentence

frames. For each verb-synset pair, we then consider the

root hypernym of that synset to reduce potential noise

from WordNet’s fine-grained sense distinctions. We also

include 20 hand-mapped rules, again to correct for Word-

Net’s lower representation of concrete or spatial senses;

for example, the concrete hold.v.02: have or hold

in one’s hand or grip is less frequent in WordNet

than the abstract hold.v.01: cause to continue

in a certain state. For verification, we again ran-

domly sample 200 relationships and compare the results of

our canonicalization against ground-truth mappings. This

resulted in a recall of 88.5% and a mapping accuracy of

92.9%. While several datasets, such as VerbNet (Schuler

2005) and FrameNet (Baker et al. 1998), include semantic

restrictions or frames to improve classification, there is no

comprehensive method of mapping to those restrictions or

frames. The most common relationship synsets are shown in

Fig. 34b.

6 Experiments

Thus far, we have presented the Visual Genome dataset and

analyzed its individual components. With such rich informa-

tion provided, numerous perceptual and cognitive tasks can

be tackled. In this section, we aim to provide baseline experi-

mental results using components of Visual Genome that have

not been extensively studied.

Object detection is already a well-studied problem (Ever-

ingham et al. 2010; Girshick et al. 2014; Sermanet et al.

2013; Girshick 2015; Ren et al. 2015b). Similarly, region

graphs and scene graphs have been shown to improve seman-

tic image retrieval (Johnson et al. 2015; Schuster et al.

2015). We therefore focus on the remaining components, i.e.

attributes, relationships, region descriptions, and question

answer pairs.

In Sect. 6.1, we present results for two experiments on

attribute prediction. In the first, we treat attributes indepen-

dently from objects and train a classifier for each attribute,

i.e. a classifier for red or a classifier for old, as in Mal-

isiewicz et al. (2008), Varma and Zisserman (2005),Ferrari

and Zisserman (2007), Farhadi et al. (2009) and Johnson

et al. (2015). In the second experiment, we learn object and

attribute classifiers jointly and predict object-attribute pairs

(e.g. predicting that an apple is red), as in Sadeghi and

Farhadi (2011).

In Sect. 6.2, we present two experiments on relation-

ship prediction. In the first, we aim to predict the predicate

between two objects, e.g. predicting the predicate kicking

or wearing between two objects. This experiment is syn-

onymous with existing work in action recognition (Gupta

et al. 2009; Ramanathan et al. 2015). In another experiment,
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Fig. 33 Distribution of the 25 most common synsets mapped from the words and phrases extracted from region descriptions which represent
objects in a region descriptions and question answers and b objects

we study relationships by classifying jointly the objects and

the predicate (e.g. predicting kicking(man, ball)); we show

that this is a very difficult task due to the high variability in

the appearance of a relationship (e.g. the ball might be on

the ground or in mid-air above the man). These experiments

are generalizations of tasks that study spatial relationships

between objects and ones that jointly reason about the inter-

action of humans with objects (Yao and Fei-Fei 2010; Prest

et al. 2012).

In Sect. 6.3 we present results for region captioning.

This task is closely related to image captioning (Chen

et al. 2015); however, results from the two are not directly

comparable, as region descriptions are short, incomplete

sentences. We train one of the top 16 state-of-the-art

image caption generators (Karpathy and Fei-Fei 2015) on

(1) our dataset to generate region descriptions and on

(2) Flickr30K (Young et al. 2014) to generate sentence

descriptions. To compare results between the two train-
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Fig. 34 Distribution of the 25 most common synsets mapped from a attributes and b relationships

ing approaches, we use simple templates to convert region

descriptions into complete sentences. For a more robust eval-

uation, we validate the descriptions we generate using human

judgment.

Finally, in Sect. 6.4, we experiment on visual question

answering, i.e. given an image and a question, we attempt

to provide an answer for the question. We report results on

the retrieval of the correct answer from a list of existing

answers.

6.1 Attribute Prediction

Attributes are becoming increasingly important in the field

of computer vision, as they offer higher-level semantic cues

for various problems and lead to a deeper understanding

of images. We can express a wide variety of proper-

ties through attributes, such as form (sliced), function

(decorative), sentiment (angry), and even intention

(helping). Distinguishing between similar objects (Isola
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et al. 2015) leads to finer-grained classification, while

describing a previously unseen class through attributes

shared with known classes can enable “zero-shot” learn-

ing (Farhadi et al. 2009; Lampert et al. 2009). Visual Genome

is the largest dataset of attributes, with 26 attributes per image

for more than 2.8 million attributes.

Setup For both experiments, we focus on the 100 most com-

mon attributes in our dataset. We only use objects that occur

at least 100 times and are associated with one of the 100

attributes in at least one image. For both experiments, we

follow a similar data pre-processing pipeline. First, we low-

ercase, lemmatize (Bird 2006), and strip excess whitespace

from all attributes. Since the number of examples per attribute

class varies, we randomly sample 500 attributes from each

category (if fewer than 500 are in the class, we take all of

them).

We end up with around 50, 000 attribute instances and

43, 000 object-attribute pair instances in total. We use 80%

of the images for training and 10% each for validation and

testing. Because each image has about the same number of

examples, this results in an approximately 80–10–10% split

over the attributes themselves. The input data for this exper-

iment is the cropped bounding box of the object associated

with each attribute.

We train an attribute predictor by using features learned

from a convolutional neural network. Specifically, we use

a 16-layer VGG network (Simonyan and Zisserman 2014)

pre-trained no ImageNet and fine-tune it for both of these

experiments using the 50, 000 attribute and 43, 000 object-

attribute pair instances respectively. We modify the network

so that the learning rate of the final fully-connected layer

is 10 times that of the other layers, as this improves con-

vergence time. Convergence is measured as the performance

on the validation set. We use a base learning rate of 0.001,

which we scale by 0.1 every 200 iterations, and momentum

and weight decays of 0.9 and 0.0005 respectively. We use

the fine-tuned features from the network and train 100 indi-

vidual SVMs (Hearst et al. 1998) to predict each attribute.

We output multiple attributes for each bounding box input.

For the second experiment, we also output the object class.

Results Table 6 shows results for both experiments. For

the first experiment on attribute prediction, we converge

after around 700 iterations with 18.97% top-one accuracy

and 43.11% top-five accuracy. Thus, attributes (like objects)

are visually distinguishable from each other. For the sec-

ond experiment where we also predict the object class, we

converge after around 400 iterations with 43.17% top-one

accuracy and 71.97% top-five accuracy. Predicting objects

jointly with attributes increases the top-one accuracy from

18.97% to 43.17%. This implies that some attributes occur

exclusively with a small number of objects. Additionally, by

Table 6 (First row) Results for the attribute prediction task where we
only predict attributes for a given image crop. (Second row) Attribute-
object prediction experiment where we predict both the attributes as
well as the object from a given crop of the image

Top-1 accuracy (%) Top-5 accuracy (%)

Attribute 18.97 43.11

Object-attribute 43.17 71.97

jointly learning attributes with objects, we increase the inter-

class variance, making the classification process an easier

task.

Figure 35a shows example predictions for the first attribute

prediction experiment. In general, the model is good at asso-

ciating objects with their most salient attributes, for example,

animal with stuffed and elephant with grazing.

However, the crowdsourced ground truth answers sometimes

do not contain all valid attributes, so the model is incorrectly

penalized for some accurate/true predictions. For example,

the white stuffed animal is correct but evaluated as incor-

rect.

Figure 35b shows example predictions for the second

experiment in which we also predict the object. While the

results in the second row might be considered correct, to

keep a consistent evaluation, we mark them as incorrect. For

example, the predicted “green grass” might be considered

subjectively correct even though it is annotated as “brown

grass”. For cases where the objects are not clearly visible but

are abstract outlines, our model is unable to predict attributes

or objects accurately. For example, it thinks that the “flying

bird” is actually a “black jacket”.

The attribute clique graphs in Sect. 5.4 clearly show that

learning attributes can help us identify types of objects. This

experiment strengthens that insight. We learn that studying

attributes together with objects can improve attribute predic-

tion.

6.2 Relationship Prediction

While objects are the core building blocks of an image,

relationships put them in context. These relationships help

distinguish between images that contain the same objects but

have different holistic interpretations. For example, an image

of “a man riding a bike” and “a man falling off a bike” both

contain man and bike, but the relationship (riding vs.

falling_off) changes how we perceive both situations.

Visual Genome is the largest known dataset of relationships,

with more than 2.3 million relationships and an average of

21 relationships per image.

Setup The setups of both experiments are similar to those of

the experiments we performed on attributes. We again focus
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Fig. 35 a Example predictions from the attribute prediction experi-
ment. Attributes in the first row are predicted correctly, those in the
second row differ from the ground truth but still correctly classify
an attribute in the image, and those in the third row are classified

incorrectly. The model tends to associate objects with attributes (e.g.
elephant with grazing). b Example predictions from the joint
object-attribute prediction experiment

on the top 100 most frequent relationships. We lowercase,

lemmatize (Bird 2006), and strip excess whitespace from all

relationships. We end up with around 34, 000 unique rela-

tionship types and 27, 000 unique subject-relationship-object

triples for training, validation, and testing. The input data to

the experiment is the image region containing the union of

the bounding boxes of the subject and object (essentially, the

bounding box containing the two object boxes). We fine-tune

a 16-layer VGG network (Simonyan and Zisserman 2014)

with the same learning rates mentioned in Sect. 6.1.

Results Overall, we find that relationships are only slightly

visually distinct enough for our discriminative model to learn

effectively. Table 7 shows results for both experiments. For

relationship classification, we converge after around 800 iter-

ations with 8.74% top-one accuracy and 29.69% top-five

accuracy. Unlike attribute prediction, the accuracy results for

relationships are much lower because of the high intra-class

variability of most relationships. For the second experiment

jointly predicting the relationship and its two object classes,

we converge after around 450 iterations with 25.83% top-one

accuracy and 65.57% top-five accuracy. We notice that object

classification aids relationship prediction. Some relation-

ships occur with some objects and never others; for example,

the relationship drive only occurs with the object person

and never with any other objects (dog, chair, etc.).

Table 7 Results for relationship classification (first row) and joint clas-
sification (second row) experiments

Top-1 accuracy (%) Top-5 accuracy (%)

Relationship 8.74 26.69

Sub./Rel./Obj. 25.83 65.57

Figure 36a shows example predictions for the relationship

classification experiment. In general, the model associates

object categories with certain relationships (e.g. animals with

eating or drinking, bikes with riding, and kids with

playing).

Figure 36b, structured as in Fig. 36a, shows example

predictions for the joint prediction of relationships with its

objects. The model is able to predict the salient features of the

image (e.g. “boat in water”) but fails to distinguish between

different objects (e.g. boy vs. woman and car vs. bus in

the bottom row).

6.3 Generating Region Descriptions

Generating sentence descriptions of images has gained pop-

ularity as a task in computer vision (Kiros et al. 2014; Mao

et al. 2014; Karpathy and Fei-Fei 2015; Vinyals et al. 2015);

however, current state-of-the-art models fail to describe all
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Fig. 36 a Example predictions from the relationship prediction exper-
iment. Relationships in the first row are predicted correctly, those in
the second row differ from the ground truth but still correctly classify a
relationship in the image, and those in the third row are classified incor-
rectly. The model learns to associate animals leaning towards the ground

as eating or drinking and bikes with riding. b Example predic-
tions from the relationship-objects prediction experiment. The figure is
organized in the same way as a. The model is able to predict the salient
features of the image but fails to distinguish between different objects
(e.g. boy and woman and car and bus in the bottom row)

the different events captured in an image and instead provide

only a high-level summary of the image. In this section, we

test how well state-of-the-art models can caption the details

of images. For both experiments, we use the NeuralTalk

model (Karpathy and Fei-Fei 2015), since it not only pro-

vides state-of-the-art results but also is shown to be robust

enough for predicting short descriptions. We train NeuralTalk

on the Visual Genome dataset for region descriptions and on

Flickr30K (Young et al. 2014) for full sentence descriptions.

As a model trained on other datasets would generate complete

sentences and would not be comparable (Chen et al. 2015)

to our region descriptions, we convert all region descriptions

generated by our model into complete sentences using pre-

defined templates (Hou et al. 2002).

Setup For training, we begin by preprocessing region descrip-

tions; we remove all non-alphanumeric characters and low-

ercase and strip excess whitespace from them. We have

5,406,939 region descriptions in total. We end up with

3, 784, 857 region descriptions for training – 811, 040 each

for validation and testing. Note that we ensure descrip-

tions of regions from the same image are exclusively in the

training, validation, or testing set. We feed the bounding

boxes of the regions through the pretrained VGG 16-layer

network (Simonyan and Zisserman 2014) to get the 4096-

dimensional feature vectors of each region. We then use the

NeuralTalk (Karpathy and Fei-Fei 2015) model to train a

long short-term memory (LSTM) network (Hochreiter and

Schmidhuber 1997) to generate descriptions of regions. We

use a learning rate of 0.001 trained with rmsprop (Dauphin

et al. 2015). The model converges after four days.

For testing, we crop the ground-truth region bounding

boxes of images and extract their 4096-dimensional 16-layer

VGG network (Simonyan and Zisserman 2014) features. We

then feed these vectors through the pretrained NeuralTalk

model to get predictions for region descriptions.

Results Table 8 shows the results for the experiment. We

calculate BLEU (Papineni et al. 2002), CIDEr (Vedantam

et al. 2015a), and METEOR (Denkowski and Lavie 2014)

scores (Chen et al. 2015) between the generated descrip-

tions and their ground-truth descriptions. In all cases, the

model trained on VisualGenome performs better. Moreover,

we asked crowd workers to evaluate whether a generated

description was correct—we got 1.6 and 43.03% for models

trained on Flickr30K and on Visual Genome, respectively.

The large increase in accuracy when the model trained on

our data is due to the specificity of our dataset. Our region

123



68 Int J Comput Vis (2017) 123:32–73

Table 8 Results for the region
description generation
experiment

BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr METEOR Human

Flickr8K 0.09 0.01 0.002 0.0004 0.05 0.04 1.6%

VG 0.17 0.05 0.02 0.01 0.30 0.09 43.03%

Scores in the first row are for the region descriptions generated from the NeuralTalk model trained on Flickr8K,
and those in the second row are for those generated by the model trained on Visual Genome data. BLEU,
CIDEr, and METEOR scores all compare the predicted description to a ground truth in different ways

Fig. 37 Example predictions from the region description generation
experiment by a model trained on Visual Genome region descriptions.
Regions in the first column (left) accurately describe the region, and
those in the second column (right) are incorrect and unrelated to the
corresponding region

descriptions are shorter and cover a smaller image area. In

comparison, the Flickr30K data are generic descriptions of

entire images with multiple events happening in different

regions of the image. The model trained on our data is able

to make predictions that are more likely to concentrate on the

specific part of the image it is looking at, instead of generat-

ing a summary description. The objectively low accuracy in

both cases illustrates that current models are unable to reason

about complex images.

Figure 37 shows examples of regions and their predicted

descriptions. Since many examples have short descriptions,

the predicted descriptions are also short as expected; how-

ever, this causes the model to fail to produce more descriptive

phrases for regions with multiple objects or with distinctive

objects (i.e. objects with many attributes). While we use tem-

plates to convert region descriptions into sentences, future

work can explore smarter approaches to combine region

descriptions and generate a paragraph connecting all the

regions into one coherent description.

6.4 Question Answering

Visual Genome is currently the largest dataset of visual ques-

tion answers with more than 1.7 million question and answer

pairs. Each of our 108,077 images contains an average of 17

question answer pairs. Answering questions requires a deeper

understanding of an image than generic image captioning.

Question answering can involve fine-grained recognition

(e.g. “What is the breed of the dog?”), object detection

(e.g. “Where is the kite in the image?”), activity recognition

(e.g. “What is this man doing?”), knowledge base reasoning

(e.g. “Is this glass full?”), and common-sense reasoning (e.g.

“What street will we be on if we turn right?”).

By leveraging the detailed annotations in the scene graphs

in Visual Genome, we envision building smart models that

can answer a myriad of visual questions. While we encourage

the construction of smart models, in this paper, we provide

some baseline results to help others compare their models.

Setup We split the QA pairs into a training set (60%) and

a test set (40%). We ensure that all images are exclusive to

either the training set or the test set. We implement a simple

baseline model that relies on answer frequency. The model

counts the top k most frequent answers [similar to the Ima-

geNet challenge (Russakovsky et al. 2015)] in the training set

as the predictions for all the test questions, where k = 100,

500, and 1000. We let a model make k different predictions.

We say the model is correct on a QA if one of the k pre-

dictions matches exactly with the ground-truth answer. We

report the accuracy over all test questions. This evaluation

method works well when the answers are short, especially

for single-word answers. However, it causes problems when

the answers are long phrases and sentences. We also report

humans performance [similar to previous work (Antol et al.

2015; Yu et al. 2015)] on these questions by presenting them

with the image and the question along with 10 multiple choice

answers out of which one of them was the ground truth and the

other 9 were randomly chosen from the dataset. Other evalua-

tion methods require word ontologies (Malinowski and Fritz

2014).

Results Table 9 shows the performance of the open-ended

visual question answering task. These baseline results imply

the long-tail distribution of the answers. Long-tail distribu-
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Table 9 Baseline QA performances in the 6 different question types

Top-100 Top-500 Top-1000 Human

What 0.420 0.602 0.672 0.965

Where 0.096 0.324 0.418 0.957

When 0.714 0.809 0.834 0.944

Who 0.355 0.493 0.605 0.965

Why 0.034 0.118 0.187 0.927

How 0.780 0.827 0.846 0.942

Overall 0.411 0.573 0.641 0.966

We report human evaluation as well as a baseline method that predicts
the most frequently occurring answer in the dataset

tion is common in existing QA datasets as well (Antol et al.

2015; Malinowski and Fritz 2014). The top 100, 500, and

1000 most frequent answers only cover 41.1%, 57.3%, and

64.1% of the correct answers. In comparison, the correspond-

ing sets of frequent answers in VQA (Antol et al. 2015) cover

63%, 75%, and 80% of the test set answers. The “where”

and “why” questions, which tend to involve spatial and com-

mon sense reasoning, tend to have more diverse answers and

hence perform poorly, with performances of 9.6 and 3.4%

top-100 respectively. The top 1000 frequent answers cover

only 41.8 and 18.7% of the correct answers from these two

question types respectively. In comparison, humans perform

extremely well in all the questions types achieving an overall

accuracy of 96.6%.

7 Future Applications and Directions

We have analyzed the individual components of this dataset

and presented experiments with baseline results for tasks

such as attribute classification, relationship classification,

description generation, and question answering. There are,

however, more applications and experiments for which our

dataset can be used. In this section, we note a few potential

applications that our dataset can enable.

Dense Image Captioning We have seen numerous image

captioning papers (Kiros et al. 2014; Mao et al. 2014; Karpa-

thy and Fei-Fei 2015; Vinyals et al. 2015) that attempt to

describe an entire image with a single caption. However,

these captions do not exhaustively describe every part of

the scene. A natural extension to this application, which the

Visual Genome dataset enables, is the ability to create dense

captioning models that describe parts of the scene.

Visual Question Answering While visual question answer-

ing has been studied as a standalone task (Yu et al. 2015;

Ren et al. 2015a; Antol et al. 2015; Gao et al. 2015), we

introduce a dataset that combines all of our question answers

with descriptions and scene graphs. Future work can build

supervised models that utilize various components of Visual

Genome to tackle question answering.

Image Understanding While we have seen a surge of image

captioning (Kiros et al. 2014) and question answering (Antol

et al. 2015) models, there has been little work on creat-

ing more comprehensive evaluation metrics to measure how

well these models are performing. Such models are usually

evaluated using BLEU, CIDEr, or METEOR and other sim-

ilar metrics that do not effectively measure how well these

models understand the image (Chen et al. 2015). The Visual

Genome scene graphs can be used as a measurement for

image understanding. Generated descriptions and answers

can be matched against the ground truth scene graph of an

image to evaluate its corresponding model.

Relationship Extraction Relationship extraction has been

extensively studied in information retrieval and natural lan-

guage processing (Zhou et al. 2007; GuoDong et al. 2005;

Culotta and Sorensen 2004; Socher et al. 2012). Visual

Genome is the first large-scale visual relationship dataset.

This dataset can be used to study the extraction of visual

relationships(Sadeghi et al. 2015) from images, and its inter-

actions between objects can also be used to study action

recognition (Yao and Fei-Fei 2010; Ramanathan et al. 2015)

and spatial orientation between objects (Gupta et al. 2009;

Prest et al. 2012).

Semantic Image Retrieval Previous work has already shown

that scene graphs can be used to improve semantic image

search (Johnson et al. 2015; Schuster et al. 2015). Further

methods can be explored using our region descriptions com-

bined with region graphs. Attention-based search methods

can also be explored where the area of interest specified by

a query is also localized in the retrieved images.

Completing the Set of Annotations While Visual Genome is

the most densely annotated visual dataset for cognitive image

understanding, it is still not complete. In most images, it is not

feasible to collect an exhaustive set of attributes and relation-

ships for every object or pair of objects. This raises two new

research questions. In computer vision, we need to develop

new evaluation metrics that do not penalize models due to

a lack of a complete set of annotations. In human computer

interaction, we need to design new interfaces and workflows

that incentivize humans to annotate visual common sense.

8 Conclusion

Visual Genome provides a multi-layered understanding of

pictures. It allows for a multi-perspective study of an image,
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from pixel-level information like objects, to relationships that

require further inference, and to even deeper cognitive tasks

like question answering. It is a comprehensive dataset for

training and benchmarking the next generation of computer

vision models. With Visual Genome, we expect these mod-

els to develop a broader understanding of our visual world,

complementing computers’ capacities to detect objects with

abilities to describe those objects and explain their interac-

tions and relationships. Visual Genome is a large formalized

knowledge representation for visual understanding and a

more complete set of descriptions and question answers that

grounds visual concepts to language.
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