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Visual Haze Removal by a Unified Generative

Adversarial Network
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Abstract— Existence of haze significantly degrades visual
quality and hence negatively affects the performance of visual
surveillance, video analysis, and human–machine interaction.
To remove haze from a visual signal, in this paper, we propose
a generative adversarial network for visual haze removal called
HRGAN. HRGAN consists of a generator network and a discrim-
inator network. A unified network jointly estimating transmission
maps, atmospheric light, and haze-free images (called UNTA) is
proposed as the generator network of HRGAN. Instead of being
optimized by minimizing the pixel-wise loss, HRGAN is optimized
by minimizing a novel loss function consisting of pixel-wise loss,
perceptual loss, and adversarial loss produced by a discrimina-
tor network. Classical model-based image dehazing algorithms
consist of three separate stages: 1) estimating transmission
map; 2) estimating atmospheric light; and 3) restoring haze-free
image by using an atmospheric scattering model to process the
transmission map and atmospheric light. Such a separate scheme
is not guaranteed to achieve optimal results. On the contrary,
UNTA performs transmission map estimation and atmospheric
light estimation simultaneously to obtain joint optimal solutions.
The experimental results on both synthetic and real-world image
databases demonstrate that HRGAN outperforms the state-of-
the-art algorithms in terms of both effectiveness and efficiency.

Index Terms— Dehazing, visual quality improvement, genera-
tive adversarial network, convolutional neural network.

I. INTRODUCTION

S
EVERE weather conditions (e.g., fog, haze, and smoke)

would significantly compromise the quality of the images

acquired by the cameras. The performance of a lot of computer

vision algorithms (e.g., tracking [1], object detection [2], and

classification) would be adversely affected by the low-quality

images [3]–[6]. So it has a great significance to study how to

restore hazy images.

A large number of image dehazing methods have been

brought forward [7]–[14]. According to whether or not to

utilize physical models, these methods can be divided into

two categories. One is model-based method, and the other
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is model-free method (e.g., IMDM [3]). The model-based

method is a mathematical inversion process of restoring

the haze-free image with the unknown factors (i.e. the

transmission map and the atmospheric light). Because the

physical-based analytical models can describe the composi-

tion of hazy images, the model-based dehazing methods can

achieve state-of-art performance.

Although many model-based image dehazing methods have

been proposed, most of these methods estimate the trans-

mission map and the atmospheric light separately. Obviously,

the separate manner cannot guarantee that final solutions are

joint optimal solutions.

Recently, several Convolutional Neural Networks(CNN)-

based image dehazing methods have been brought

out [15], [16]. In these methods, CNN [17] is used to estimate

the transmission map first, then traditional method is applied

to estimate the atmospheric light, finally the transmission

map and the atmospheric light are used to restore haze-free

images via atmospheric scattering model [18]. Although

these methods have made significant progresses, in fact,

the transmission map and the atmospheric light are still

estimated separately. Therefore, the aforementioned problem

is not solved in these CNN-based methods.

In order to overcome aforementioned drawback, we propose

a unified network which jointly estimates transmission map,

atmospheric light, and the haze-free image called UNTA. That

is, UNTA can obtain joint optimal solutions.

The optimization of traditional CNN-based image dehazing

algorithms is to minimize the mean squared error (MSE)

between the restored haze-free image and ground-truth images.

The pixel-wise image difference can be decreased by decreas-

ing the MSE. However, the less pixel-wise image difference

cannot present better perceptual dehazed result. Instead of

MSE, in this paper, we utilize a more effective loss which

consists of pixel-wise loss (e.g., MSE), perceptual loss, and

adversarial loss. The perceptual loss is the difference between

the high-level features of restored haze-free image and ground-

truth image. By minimizing perceptual loss, perceptual rele-

vant differences of dehazed results can be decreased. In this

paper, we propose a novel Generative Adversarial Network

(GAN)-based framework for image haze removal (called

HRGAN). Sample results of the proposed HRGAN are shown

in Fig. 1. Similar to previous GAN, our network consists

of two networks: a generator network and a discriminator

network. The adversarial loss is produced by discriminator

network. The adversarial loss pushes restored haze-free image

to the realistic haze-free image.
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Fig. 1. Sample results of HRGAN. Top: the input hazy image. Bottom: the
dehazed image.

Fig. 2. Visual comparison between direct regression model and our proposed
HRGAN. Left: input hazy image. Middle: dehazed result of direct regression
model. Right: dehazed result of HRGAN.

The generator network of previous GAN-based image

processing method [19] directly generates resulting images

from input images. However, the direct regression model is

not suitable for image dehazing. In this paper, we choose

UNTA as generator network. As shown in Figure 2, this

direct regression model may lead to serious color distortion.

By contrast, HRGAN based on UNTA can generate visually

appealing haze-free images. The main reason is that UNTA is

based on the atmospheric scatting model. As described above,

atmospheric scatting model can reveal physical characteristics

of hazy images.

Li et al. [20] proposed a CNN-based framework which

could directly generate haze-free image (referred to as

AOD-Net). In their method, the transmission map and

atmospheric light are unified into one variate, and CNN

is used to solve this variate. Although their method has

made great progress, the MSE is the only one loss in their

method. As previously mentioned, the network trained by

pixel-wise loss could lack high-frequency details of resulting

haze-free images. Compared with our method, pixel-wise loss,

perceptual loss, and adversarial loss are utilized to produce

superior visual haze-free image. In addition, the running time

of HRGAN is less than half of AOD-Net.

The novelty, contribution, and characteristic of the proposed

method are as follows.

(1) We propose HRGAN which is a GAN-based image haze

removal network. Compared with previous CNN-based

method, HRGAN is optimized by an effective loss

consisting of pixel-wise loss, perceptual loss calculated

on feature maps of the VGG16 network [21], and adver-

sarial loss produced by discriminator network.

(2) UNTA which can simultaneously estimate transmission

map and atmospheric light is proposed as the gen-

erator network of HRGAN. Compared with previous

model-based image dehazing methods, the UNTA has

the capacity to obtain joint optimal solutions.

(3) HRGAN cannot only produce superior visual haze-free

images but also be implemented very efficiently.

The rest of the paper is organized as follows. The related

work are described in Section II. The proposed method is pre-

sented in III. Experimental results are presented in Section IV.

Finally, Section V concludes the paper.

II. RELATED WORK

In this section, we briefly review the literature for existing

model-based image dehazing methods and Generative Adver-

sarial Networks (GAN).

A. Single Image Dehazing

The model-based image dehazing methods are based on the

atmospheric scattering model [18], [22], [23] which assumes

that a hazy image I is composed of direct attenuations ID

and airlight IA , respectively. Specifically, the atmospheric

scattering model can be written as

I (x, y) = ID(x, y) + IA(x, y)

= J (x, y)t (x, y) + A(1 − t (x, y)) (1)

where I (x, y) is the observed hazy image, J (x, y) is the

corresponding haze-free image, A represents the atmospheric

light, t (x, y) is the transmission map, and (x, y) is the position

of the image.

When the atmosphere is homogeneous, the transmission

map t (x, y) can be described as

t (x, y) = e−βd(x,y) (2)

where d(x, y) indicates the distance between the camera and

the scene, and β represents the scattering coefficient of the

atmosphere.

The model-based image dehazing method can be divided

into handcrafted-feature-based method and CNN-based

method.

The handcrafted-feature-based image dehazing methods

are based on handcrafted-features. Generally speaking, these

methods estimate the transmission map by hand-crafted fea-

tures followed by estimating atmospheric light, finally restore

haze-free image by using transmission map and atmospheric

light via atmospheric scattering model. The main difference

of these methods is the way to estimate transmission maps.

For instance, He et al. [24] proposed a valid method based

on dark channel prior (DCP) to estimate transmission maps.

Meng et al. [25] presented a regularization method to esti-

mate transmission maps by exploring the inherent boundary

constraint. Tang et al. [26] proposed a learning-based method

which uses the random forest [27] to learn the correlation

between the transmission maps and four types of handcrafted

features (i.e. multi-scale dark channel [24], multi-scale local

max contrast [28], hue disparity [29], and multi-scale local
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Fig. 3. The architecture of HRGAN. Top: Generator network. Bottom: Discriminator network.

max saturation). Zhu et al. [30] proposed to create a linear

model based on a color attenuation prior for the depth map

of the hazy image. In addition, Berman et al. [31] presented

a non-local method based on the haze-line prior to estimate

transmission maps.

Because of the great capacity of extracting features,

CNN-based methods have received a lot of attention. The

CNN-based methods can be divided into two categories.

In the first category [15], [16], CNN is used to learn the

mapping between hazy images and their corresponding trans-

mission maps. Subsequently, the transmission maps and the

atmospheric light estimated by traditional method are used

to recover haze-free image via atmospheric scatting model.

In another category [20], taking a hazy image as input, CNN

could output a hazy-free image directly.

B. Generative Adversarial Networks

Goodfellow et al. [32] proposed Generative Adversarial

Network (GAN). A typical GAN consists of two parts: a

generator network and a discriminator network. The purpose of

the generator network is to generate images which are used to

make a fool of discriminator network, and the goal of the dis-

criminator network is to distinguish the generating haze-free

images from realistic haze-free images. Conditional Generative

Adversarial Network (CGAN) is proposed by Mirza and

Osindero [33]. The additional conditional information is added

into traditional GAN, which makes the generator generate

more effective results. GAN recently becomes one of the

focus in the computer vision, and is applied in numerous

tasks such as image super-resolution [19], image-to-image

translation [34], text-to-image translation [35], and image in-

painting [36].

III. PROPOSED METHOD

A. Network Architecture

The architecture of the proposed HRGAN is illustrated

in Figure 3. The network consists of two networks: a generator

network and a discriminator network.
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Fig. 4. The architecture of transmission maps module.

1) Generator Network Architecture: The generator network

aims to generate hazy-free image. The generator network

takes the hazy image as input, and produces hazy-free image.

As shown in the top part of Figure 3, the generator net-

work consists of three components: transmission map module,

atmospheric light module, and processing module.

a) Transmission map module: The task of the trans-

mission map module is to estimate transmission maps. The

architecture of transmission map module is illustrated in

Figure 4. The dilated convolution [37] achieves great success

in semantic segmentation [38]. Inspired by the success, three

parallel dilated convolutional layers with different dilated

factors are used to extract multi-scale features. It is known that

different dilation factor can extract different scales of features.

With dilated factors being 1, 2, and 3, the 3 parallel branches

of transmission map architecture can extract features of small-

scale, middle-scale, and large-scale, respectively. The features

extracted for each dilated factor are processed in separate

branches and fused to generate the final result. As the same

as the method proposed by Ren et al. [16], pooling layers and

up-sampling layers are used after each convolutional layers.

The down-sampling factor of the pooling layer is 2. The

up-sampling factor of the up-sampling layers is 2. In the

last convolutional layers, the 1 × 1 convolutional filter is

utilized to perform a linear transformation of the multi-scale

feature maps produced by multi-branch dilated convolution.

Compared with traditional convolutional filter, the network

parameters of dilated convolutional filter is much fewer. For

example, the receptive field of traditional 7 × 7 convolutional

filter is 7×7. In contrast, 3×3 dilated convolutional filter with

dilated factors 3 has the same receptive field. The parameter

number of each traditional convolution filter is 49. By com-

parison, the parameter number of each dilated convolutional

filter is only 9.

b) Atmospheric light module: Atmospheric light module

aims to estimate atmospheric light A in Eq.(1). As shown

Fig. 5. The architecture of atmospheric light module.

in Fig. 5, the atmospheric light module consists of one

convolutional layer, one sigmoid activation layer, and one

pooling layer. W and H are the dimensions of the input image.

The size of convolutional filters is h×w, the convolution stride

is fixed to 1 pixel, and the padding is 0 pixel. Max-pooling is

performed over a (W − (w − 1)) × (H − (h − 1)) window.

c) Processing module: From Eq.(1), the haze-free image

J (x, y) can be formulated as

J (x, y) =
I (x, y) − A(1 − t (x, y))

t (x, y)
. (3)

The transmission map module and the atmospheric light mod-

ule produce the transmission map t (x, y) and the atmospheric

light A, respectively. The purpose of processing module is

to combine the transmission map t (x, y), the atmospheric

light A, and the hazy image I (x, y) to restore haze-free image

J (x, y) from Eq. (3).

2) Discriminator Network Architecture: The discriminator

network is utilized to distinguish generated haze-free images

from realistic images. On the contrary, the generator network

is utilized to fool the discriminator network. Following the

structure proposed in [32], in this paper, the generator network
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and discriminator network are alternately updated by solving

the min-max problem:

min
G

max
D

EJreal∼ptrain (Jreal )[log D(Jreal )]

+ EI∼pG (I )[log(1 − D(G(I ))] (4)

where I represents input hazy image, Jreal is realistic hazy-

free image, G(•) represents generator network, and D(•) is

discriminator network.

The architecture of discriminator network is shown in the

bottom part of Figure 3. It consists of five convolutional layers

with 3×3 convolutional filters, LeakyRELU activation layers,

batch normalization layers [39], two fully connection layer

and sigmoid activation layer. The number of output channels

of the five convolutional layers is 64, 64, 128, 256, and 256,

respectively. The five convolutional layers are followed by two

fully connection layers: the first has 512 channels, the second

performs 2-way classification and thus contains 2 channels

(one for realistic haze-free image, the other for generated

haze-free image).

B. Loss Function

Pixel-wise Euclidean loss, adversarial loss, and perceptual

loss are utilized to form the loss function. The loss function L

is formulated as

L = L E + λA L A + λP L P (5)

where L E is pixel-wise euclidean loss, L A is adversarial

loss which is from the discriminator network, L P represents

perceptual loss, and λA and λP are respectively the weights

of adversarial loss and perceptual loss.

1) Euclidean Loss: The pixel-wise euclidean loss is com-

posed of two components, one is the euclidean distance

between the generated haze-free images and its correspond-

ing ground-truth images, the other is the euclidean distance

between the estimated transmission maps and its correspond-

ing ground-truth transmission maps.

The pixel-wise euclidean loss is calculated as:

L E = L J + λt L t

=
1

CW H

C∑

c=1

W∑

x=1

H∑

y=1

(G(I )c,x,y − Jc,x,y)
2

+ λt

1

W H

W∑

x=1

H∑

y=1

(Gt (I )x,y − tx,y)
2 (6)

where I is the input hazy image, L J represents the loss of the

haze-free image, L t represents the loss of the transmission

map, and λt is the weights of L t . C , W , and H are the

dimensions of the input image. c, x , and y are the location

of the input image. And the function G(•) and Gt (•) is

to generate the haze-free image and the transmission map,

respectively.

2) Adversarial Loss: The task of adversarial loss is to

make haze-free images produced by generator network much

closer to realistic haze-free images. When training generator

network, the min-max problem (4) is reduced to minimize

log(1 − D(G(I ))). At the beginning of the training stage,

log(1 − D(G(I ))) could saturate [32]. Because log(D(G(I )))

can provide stronger gradients during training stage, we max-

imize log(D(G(I ))) to train generator network instead of

training generator network to minimize log(1−D(G(I ))). The

adversarial loss L A would be minimized during training stage.

For N training images, L A can be defined as:

L A =
N∑

n=1

− log D(G(Ii )) (7)

where D(G(Ii )) is the probability that the dehazed

image G(Ii ) is a realistic haze-free image.

3) Perceptual Loss: Perceptual loss based on high-level fea-

tures extracted from pertained network is wildly used in image

super-resolution [40]. In addition, perceptual losses measure

image visual similarities more effectively than pixel-wise loss.

Inspired by this, in this paper, we define a perceptual loss

to increase perceptual similarities between restored haze-free

images and realistic images. The perceptual loss can be

written as:

L P =
1

C f W f H f

C f∑

c=1

W f∑

w=1

H f∑

y=1

(φ(J )c,x,y − φ(G(I ))c,x,y)
2

(8)

where C f , W f and H f are the dimensions of the respective

feature maps within the VGG-16 network [21] and the effect

of φ is to obtain the feature maps from the VGG-16 networks.

C. Optimization

We optimize the transmission map t (x, y) and atmospheric

light A using Stochastic Gradient Descent (SGD) with momen-

tum. The gradients of loss L with respect to transmission

map t (x, y) and atmospheric light A are computed respec-

tively as:

∂L

∂ t (x, y)
=

∂L

∂ J (x, y)

∂ J (x, y)

∂ t (x, y)

=
∂L

∂ J (x, y)

−I (x, y) + A

t2(x, y)

∂L

∂ t (x, y)
=

∂L

∂ J (x, y)

∂ J (x, y)

∂ A

=
∂L

∂ J (x, y)

1 − A

t (x, y)
(9)

where ∂L
∂ J (x,y)

is calculated in the loss layer. The gradients
∂L

∂t (x,y)
and ∂L

∂ A
are passed down to the transmission map

module and atmospheric light module respectively to update

the network parameters with standard back-propagation.

IV. EXPRIMENTAL RESULTS

A. Datasets

We synthesize hazy image using haze-free image and its

corresponding depth map from the NYU2 Depth dataset [41].

For each image, the depth d(x, y) and scattering coef-

ficient β are used to calculate transmission map t (x, y)

using Eq. (2). Next, a haze-free image, the atmospheric

light A, and the transmission map t (x, y) are used to
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TABLE I

AVERAGE PSNR, SSIM, AND MSE OF HRGAN WITH DIFFERENT LOSS

FUNCTION ON INDOOR TEST SYNTHETIC HAZY DATASETS.
√

MEANS

THAT THE CORRESPONDING LOSS TERM IS USED

synthesize hazy image via the atmospheric scatting model

(i.e. Eq. (1)). The atmospheric light A is assumed to be

uniform globally. We set the atmospheric light A = [a, a, a],
where a ∈ [0.7, 1.0], and select the scattering coefficient

β ∈ {0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6}. One thousand haze-

free images are randomly chosen from the NYU2 Depth

dataset. For each hazy-free image, we create ten training

images by using randomly sampled scatting coefficient β

and atmospheric light A to synthesize hazy images. Finally,

we have 10000 training images.

We create an indoor test synthetic dataset containing 300

images which is generated by using images and its correspond-

ing depth maps from the Middlubury stereo dataset [42]–[44].

In addition, 500 outdoor synthetic hazy images from SOTS

dataset [45] are used as outdoor test synthetic dataset. All

these test images are not used in the training stage.

B. Experiment Settings

We train the networks on an NVIDIA TITANX GPU.

The proposed method is implemented using the MatConvNet

toolbox [46]. All the training images are resized to 320 ×
240. We set the parameters of batch-size, weight decay, and

momentum to 10, 0.001, and 0.9, respectively. The initial

learning rates of transmission map module and atmospheric

light module are 10−6 and 10−3, respectively. And the learning

rates of both modules decrease by factor of 10 after every

20 epochs. Training stage stops at 80 epochs. The parameters

are initialized as follows: λt = 1, λA = 102, and λP =
5 × 10−4. The kernel size h × w of convolutional layer in

atmospheric light module is set to be 15 ×15. As the same as

traditional GAN [32], the generator network and discriminator

network are alternately updated.

To quantitatively assess image dehazing methods, three

metrics are used to evaluate the performance on synthetic

images: Peak Signal-to-Noise Ratio (PSNR), Structural Simi-

larity (SSIM) [47], and Mean Squared Errors (MSE). Because

there are no ground-truth images for real-world images,

the performance on real-world images is evaluated visually

and subjectivity.

C. Ablation Study

Table I shows the average PSNR, SSIM, and MSE of

HRGAN with the different loss function on indoor test syn-

thetic datasets.
√

means that the corresponding loss term

Fig. 6. The dehazed results of HRGAN with different loss function.

is used. L J is always used. Lal = 1
C

C∑
c=1

(Gal(I )c − Ac)
2 is

added into the Euclidean Loss L E = L J + λt L t + λal Lal ,

where Lal represents the loss of atmospheric light A, λal is

the weights of Lal , and the function Gal(•) is to generate

the atmospheric light. There are the following observations

from Table I: (1) The transmission map euclidean loss L t

is beneficial to the dehazed results. (2) By utilizing the

perceptual loss L P and the adversarial loss L A, the PSNR

and SSIM becomes higher and the MSE becomes lower. Thus,

we know that both the perceptual loss L P and the adversarial

loss L A can improve dehazed results. (3) The atmospheric

light loss Lal cannot improve the dehazed results. Because,

from Eq. 1, we know the atmospheric light can be solved

by the input hazy image, the output dehazed images, and the

transmission map. When we supervise the L J and L t , Lal is

supervised implicitly.

The dehazed results with different loss function are shown

in Figure 6. It can be observed that the results without L t

have significant color distortions. The reason is that there

is a strong correlation between transmission map module

and atmospheric light module. An inaccurate transmission

map estimation would lead to an inaccurate atmospheric light

estimation. An inaccurate atmospheric light estimation tends

to change the color of the dehazed result. By observing the

last three images in Figure 6, we can find that the effect of

L P and L A is to make the dehazed result visually appealing.

Table II shows the average PSNR and SSIM of HRGAN

with different number of parallel branches and different dilated

factors in the transmission maps module. From Table II,

we can easily find that compared with the module with five

parallel branches, three parallel branches has similar SSIM and

PSNR. However, the module with five parallel branches has

more number of parameters and longer running time. Com-

pared with the module with one parallel branch, the dehazed

performance of the module with three parallel branches is

much better. Thus, the module with three branches makes

a good balance of dehazed performance and speed. From

Table II, we can find that with the increase of dilated factors,

the dehazed results would become worse. The main reason is

that too large dilated factor would lead to block artifacts.
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Fig. 7. Comparison of different methods on test synthetic hazy images: First: Aloe. Second: Laundry. Third: Monopoly, Fourth: Buildings, Fifth: Road.
The first three hazy images are from indoor test synthetic hazy datasets, the last two hazy images are from outdoor test synthetic hazy datasets. (a) Synthetic
hazy images. (b) CAP [30]. (c) MSCNN [16]. (d) AOD-Net [20]. (e) HRGAN. (f) Ground-truth images. (Red rectangles in the top-right corner is the
zoom-in views.)

TABLE II

AVERAGE PSNR AND SSIM OF HRGAN WITH DIFFERENT NUMBER OF

PARALLEL BRANCHES AND DIFFERENT DILATED FACTORS IN THE

TRANSMISSION MAPS MODULE ON INDOOR TEST SYNTHETIC

HAZY DATASETS. THE NUMBER IN THE BRACKET IS THE

DILATED FACTORS. FOR EXAMPLE, (1, 2, 3) MEANS THE

MODULE CONSISTS OF THREE PARALLEL BRANCHES,
THE DILATED FACTORS OF PARALLEL

BRANCHES IS 1, 2, AND 3

Table III shows the average PSNR and SSIM of HRGAN

with different loss weights on indoor test synthetic hazy

datasets. From Table III, we can easily find that with increase

of λP , the value of PSNR and SSIM would be decrease. The

reasons is that instead of reducing the difference of the pixel-

level, the perceptual loss is used to reduce the difference of

high-frequency information. As we know, the effect of dis-

criminator network is to make the generated dehazed images

more similar to ground-truth. Therefore, with the increase λA,

the value of PSNR and SSIM is increase.

TABLE III

AVERAGE PSNR AND SSIM OF THE PROPOSED HRGAN WITH

DIFFERENT WEIGHTS OF LOSS FUNCTION ON INDOOR

TEST SYNTHETIC HAZY DATASETS

D. Quantitative Results on Synthetic Images

Table IV and Table V compares our proposed HRGAN with

DCP [24], BCCR [25], CAP [30], NLD [31], MSCNN [16],

AOD-Net [20] in terms of PSNR and SSIM on indoor test syn-

thetic hazy datasets and outdoor test synthetic hazy datasets,

respectively.

It can be observed from Table IV and Table V that our

proposed HRGAN rank first in terms of PSNR and SSIM on

both two datasets. As described in Section III, HRGAN is

optimized by an effective loss consisting of pixel-wise loss,

perceptual loss, and adversarial loss. By minimizing pixel-wise

loss, HRGAN can get high PSNR performance. The perceptual

loss and adversarial loss can make HRGAN get great SSIM.

Figure 7 shows the dehazed results produced by different

methods on test synthetic hazy datasets. Figure 7(a) presents
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TABLE IV

AVERAGE PSNR AND SSIM ON INDOOR TEST SYNTHETIC HAZY DATASETS

TABLE V

AVERAGE PSNR AND SSIM ON OUTDOOR TEST SYNTHETIC HAZY DATASETS

Fig. 8. PSNR of the dehazed images shown in Figure 7.

the hazy images which are from the test synthetic datasets.

Figure 7(b)-7(e) shows the results of CAP [30], MSCNN [16],

AOD-Net [20], and our proposed HRGAN, respectively.

Figure 7(f) gives the ground-truth images.

By observing the dehazed results in Figure 7(b), we can

find that the dehazed results generated by CAP have some

color distortions (e.g., the fourth and fifth line in Figure 7(b)).

We note that the dehazed results of MSCNN have

some remaining haze by observing the dehazed results

in Figure 7(c). We can find that the dehazed results of

AOD-Net have some remaining haze (e.g., the first and second

line in Figure 7(e)), and some color distortions (e.g., the sky

in the fourth and fifth images). In contrast, the dehazed results

of our proposed HRGAN in Figure 7(f) is more visually

appealing and closer to ground-truth haze-free images.

Figure 8 and Figure 9 show the PSNR and SSIM of the

dehazed results produced by different algorithms on the five

images in the Figure 7. It can be easily found that HRGAN

achieves the greatest PSNR and SSIM for all the five images.

In summary, our proposed HRGAN achieves the best per-

formance subjectively and objectively against the state-of-art

dehazing methods on both indoor and outdoor synthetic hazy

images.

E. Qualitative Results on Real-World Images

Figure 10 demonstrates the dehazed hazy-free images and

transmission maps restored by HRGAN. Because most of

Fig. 9. SSIM of the dehazed images shown in Figure 7.

Fig. 10. The dehazed results of HRGAN. Left: input hazy images. Middle:
the restored haze-free images. Right: the restored transmission maps. (Best
viewed in color).

the image haze removal algorithms can obtain nice visual

performance on general real-world images, it is difficult to

rank them. To demonstrate the superiority of our method,

we evaluate our proposed algorithm against the state-of-art

image haze removal algorithms (CAP [30], DehazeNet [15],

MSCNN [16], AOD-Net [20]) using five highly challenging

real-world image shown in Figure 11.
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Fig. 11. Comparison of different methods on real-world images. (a) The hazy images. (b) CAP [30]. (c) DehazeNet [15]. (d) MSCNN [16].
(e) AOD-Net [20]. (f) HRGAN. (Red rectangles are used to highlight the improvements obtained by HRGAN. Red rectangles in the top-right corner is
the zoom-in views).

The blind image quality assessment (BIQA) models can

be used to evaluate the performance of dehazed results of

real-world images [48]–[53]. However, the current image qual-

ity models are mainly designed for degraded images, so the

evaluation performance of dehazed results is unsatisfactory.

Therefore, the BIQA models are not used to evaluate the

dehazed results in our paper.

As shown in figure 11(b), CAP may blur image textures

(e.g., as shown in the fifth line of Figure 11(b), the details

of the mountain are lost). And shown in the fourth line

of Figure 11(b), the dehazed result is much darker than it

should be. DehazeNet produces undesirable results in regions

with heavy hazes (e.g., as shown in the second and fifth

line of Figure 11(c), there are remaining haze in the region

of distant mountains). As show in the second, third, and

fourth line of MSCNN, the dehazed results of MSCNN

have some remaining haze. In addition, as shown in the

fifth line of Figure 11(d), the colors of the sky region

are over saturated. The dehazed results of AOD-Net [20]

sometimes may result in color distortion (e.g., as illustrated

in the fifth line of Figure 11(e), the mountain region is

much darker than it should be). In addition, there are some

remaining haze in the third and fourth line of Figure 11(e)).

In contrast, the dehazed results of HRGAN (shown

in Figure 11(f)) achieve higher visual quality and less color

distortions.

CAP [30] is based on the handcrafted features. Because

handcrafted features are weak to perform image dehazing,

the dehazed results are not satisfactory. Compared with

handcrafted features, the features learned by CNN-based

method [15], [16] include more various kinds of information.

However, the effective features are only used to estimate

transmission maps instead of producing haze-free image. For

this reason, as stated in Section I, the dehazed results of

these two CNN-based methods are not optimal. Because the

AOD-Net optimize the network by minimizing only pixel-wise

loss, the dehazed results cannot achieve high visual quality.

F. Running Time

Efficiency is important for a computer vision

system [54], [55]. The running time comparison on CPUs with

DCP [24] (accelerated by the guided image filtering [56]),

BCCR [25], CAP [30], DehazeNet [15], MSCNN [16] and

our proposed HRGAN is shown in Table VI. All the methods

are implemented in MATLAB, on the same machine (Intel(R)

Core(TM) i7-4790 CPU @3.60GHz, and 16 GB memory).

It can be seen from Table VI that our proposed HRGAN is

much faster than other methods. In addition, AOD-Net [20] is

implemented in PyCaffe. With four different image resolution

640×480, 800×600, 1024×768, and 1600×1200, AOD-Net

costs 1.108, 1.72, 3.252, and 6.298 seconds, respectively.

It can be observed in Table VI that our proposed HRGAN
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TABLE VI

COMPARISON OF AVERAGE RUNNING TIME ON CPUS (IN SECONDS)

TABLE VII

COMPARISON OF AVERAGE RUNNING TIME ON GPUS (IN SECONDS)

costs less than half of the running time of AOD-Net. The

running time comparison on GPUs with MSCNN [16], AOD-

Net [20], and our proposed HRGAN is shown in Table VII.

All the results are tested on the NIVIDIA TITANX. It can

be found that our method is faster than other CNN-based

methods, especially the size of input image is large. The

number of parameter of DehazeNet, MS-CNN, AOD-Net

and our proposed HRGAN is 8.2K, 8.0K, 1.7K, and 3.5K,

respectively. It can be found that compared with DehazeNet

and MS-CNN, the model size of our proposed HRGAN is

smaller. In addition, from Table VI and VII, we can know our

proposed HRGAN is faster than DehazeNet and MS-CNN.

Although the model size of our proposed HRGAN is bigger

than AOD-Net, the running time (shown in VI and VII) of

our proposed HRGAN is faster than AOD-Net on both CPUs

and GPUs. The high efficiency of HRGAN mainly benefits

from the fact that the atmospheric light module based on

light-weight CNN significantly simplifies the estimation of

atmospheric light.

V. CONCLUSION

In this paper, we have proposed a GAN-based image haze

removal network called HRGAN. HRGAN consists of two

networks: a generator network and a discriminator network.

The generator network of HRGAN is a unified network jointly

estimating transmission map, atmospheric light, and haze-free

image. Apart from pixel-wise loss, adversarial loss produced

by the discriminator network and perceptual loss are utilized

in optimization task. Experimental results demonstrate that

HRGAN achieves remarkably high efficiency and outperforms

state-of-art methods on both synthetic and real-world images.
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