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Abstract

Traditional visualization techniques for multidimensional data
sets, such as parallel coordinates, glyphs, and scatterplot matri-
ces, do not scale well to high numbers of dimension. A common
approach to solving this problem is dimensionality reduction. Ex-
isting dimensionality reduction techniques usually generate lower
dimensional spaces that have little intuitive meaning to users and
allow little user interaction. In this paper we propose a new ap-
proach to handling high dimensional data, named Visual Hier-
archical Dimension Reduction (VHDR), which addresses these
drawbacks. VHDR not only generates lower dimensional spaces
that are meaningful to users, but also allows user interactions in
most steps of the process. In VHDR, dimensions are grouped
into a hierarchy, and lower dimensional spaces are constructed us-
ing clusters of the hierarchy. We have implemented the VHDR
approach into XmdvTool, and extended several traditional mul-
tidimensional visualization methods to convey dimension cluster
characteristics when visualizing the data set in lower dimensional
spaces. Our case study of applying VHDR to a real data set con-
firms that this approach is effective in supporting the exploration
of high dimensional data sets.

Keywords: Dimension reduction, high dimensional visualiza-
tion, visual data mining.

1 Introduction

High dimensional data sets are becoming commonplace in an in-
creasing number of applications, including digital libraries, simu-
lations, and surveys. It is no longer unusual to have data sets with
hundreds or even thousands of dimensions. However, traditional
visualization techniques for multidimensional data sets, such as
glyph techniques [1, 19, 4, 18], parallel coordinates [12, 21], scat-
terplot matrices [5], and pixel-level visualization [15], do not scale
well to high dimensional data sets. For example, Figure 1 shows
the Iris data set, which has 4 dimensions and 150 data items, dis-
played using parallel coordinates. Individual data items and clus-
ters can be seen clearly from the display. Figure 2 shows a subset
of the Census Income data set [10], which has 42 dimensions and
200 data items. While the number of data items in this display
is comparable to Figure 1, individual data items can no longer be
seen clearly from this display, since the number of dimensions has
greatly increased. A large number of axes now crowd the figure,
preventing users from detecting any patterns or details. Even with
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low numbers of data items, high dimensionality presents a serious
challenge for current display techniques.

Figure 1: Iris data set (4 dimensions, 150 data items) in Parallel
Coordinates. Individual data items can be seen clearly.

To overcome the clutter problem, one promising approach fre-
quently described in the literature is dimensionality reduction [9].
This idea is to first reduce the dimensionality of the data while
preserving the major information it carries, and then visualize the
data set in the reduced dimensional space. There are several pop-
ular dimensionality reduction techniques used in data visualiza-
tion, including Principal Component Analysis (PCA) [13], Multi-
dimensional Scaling (MDS) [17], and Kohonen’s Self Organizing
Maps (SOM) [16, 6]. These approaches have a major drawback
in that the generated low dimensional subspace has no intuitive
meaning to users. In addition, little user interaction is generally
allowed in those highly automatic processes, thus users have dif-
ficulty applying their domain acknowledge to improve the quality
of the dimensionality reduction process.

The clutter problem not only exists in visualizing data sets with
high dimensionality, but also when visualizing data sets with a
large number of data items. Our previous work has addressed the
clutter problem in the latter situation using an Interactive Hierar-
chical Display (IHD) framework [7, 8, 24]. The underlying princi-
ple of this framework is to develop a multi-resolution view of the
data via hierarchical clustering, and to design extensions of tradi-
tional multivariate visualization techniques to convey aggregation
information about the resulting clusters. Users can then explore
their desired focus regions at different levels of detail, using our
suite of navigation and filtering tools [7, 8].

Inspired by the IHD framework, we now propose a new
methodology for dimensionality reduction that combines au-



Figure 2: A subset of the Census Income data set (42 dimensions,
200 data items) in Parallel Coordinates. Individual data items can-
not be seen clearly.

tomation and user interaction for the generation of meaningful
subspaces, called the Visual Hierarchical Dimension Reduction
(VHDR) framework. First, VHDR groups all dimensions of a data
set into a dimension hierarchy. This hierarchy is then visualized
using a radial space-filling hierarchy visualization tool, named In-
terRing. Users can interactively explore and modify the dimension
hierarchy, and select interesting dimension clusters at different
levels of detail for the data display. A representative dimension for
each selected dimension cluster is then determined automatically
by the system or interactively by the users. Finally, VHDR maps
the high-dimensional data set into the subspace composed of these
representative dimensions and displays the projected subspace us-
ing traditional multidimensional displays. We have implemented
a fully functional prototype of the above approach, as well as sev-
eral extensions to traditional multidimensional visualization meth-
ods that convey dimension cluster characteristics when visualizing
the data set in lower dimensional spaces. We have applied VHDR
to several real data sets using our prototype and found that this
approach is helpful in exploring high dimensional data sets. The
prototypes have been integrated into XmdvTool, a public-domain
visualization package developed at WPI [20].

VHDR employs the process of dimension clustering, which is
orthogonal to data clustering approaches. Thus it has no conflicts
with data clustering intended to cope with large-scale data sets.
We have combined the VHDR approach with our previous hierar-
chical data visualizations easily and did not encounter any funda-
mental problems.

The remainder of this paper is organized as follows: Section
2 provides an overview of the VHDR approach, while Sections 3
through 7 describe details of each stage of the VHDR pipeline.
Section 8 presents a case study that uses VHDR to explore a high
dimensional data set. Section 9 presents related work, and Section
10 summarizes our work and presents open issues for future work.

2 Overview of Visual Hierarchical Di-
mension Reduction

Figure 3 shows the system structure of the VHDR framework. The
methodology can be divided into five steps:

� Step 1: Dimension Hierarchy Generation

First, all the original dimensions of a multidimensional data

Figure 3: System Structure of VHDR

set are organized into a hierarchical dimension cluster tree
according to similarities among the dimensions. Each origi-
nal dimension is mapped to a leaf node in this tree. Similar
dimensions are placed together and form a cluster, and simi-
lar clusters in turn compose higher-level clusters. Users have
the option of using the system-provided automatic clustering
approach, of using their customized clustering approaches,
or specifying a hierarchical dimension cluster tree manually.

� Step 2: Dimension Hierarchy Navigation and Modification

Next, users can navigate through the hierarchical dimension
cluster tree in order to gain a better understanding of it. Users
can also interactively modify the hierarchy structure and sup-
ply meaningful names to the clusters. The hierarchical di-
mension cluster tree is visualized in a radial space-filling dis-
play named InterRing, which contains a suite of navigation
and modification tools.



� Step 3: Dimension Cluster Selection

Next, users interactively select interesting dimension clus-
ters from the hierarchy in order to construct a lower dimen-
sional subspace. Several selection mechanisms are provided
in InterRing to facilitate dimension cluster selection. Se-
lected clusters are highlighted.

� Step 4: Representative Dimension Generation

In this step, a representative dimension (RD) is assigned or
created for each selected dimension cluster. The selected
dimension clusters construct the lower dimensional space
through these RDs. RDs are selected to best reflect the ag-
gregate characteristics of their associated clusters. For ex-
ample, an RD can be the average of all the original dimen-
sions in the cluster, or can be an original dimension located
in the center of the cluster. Users have the option to select
one of the system-provided RD generation methods or use a
customized one.

� Step 5: Data Projection and Visualization

Finally, the data set is projected from the original high di-
mensional space to a lower dimensional space (LD space)
composed of the RDs of the selected clusters. We call its
projection in the LD space the mapped data set. The mapped
data set can be viewed as an ordinary data set in the LD
space and can be readily visualized using existing multidi-
mensional visualization techniques. This is an advantage of
VHDR; it is so flexible that it can be applied to any existing
multidimensional data visualization technique. In order to
provide further dimension cluster characteristics in the LD
space, such as the dissimilarity information between dimen-
sions within a cluster, we attach the dimension cluster char-
acteristics information to the mapped data set and provide
the option to display it using extensions to the data visual-
ization techniques.

Users can return to any of the previous steps at any time to
refine the process iteratively. For example, after the LD space has
been generated, users can still modify the dimension hierarchy,
redo the selection, and generate a different LD space.

One significant advantage of the VHDR approach is that the
generated lower dimensional space is meaningful to users, in that:

� As long as users understand the similarity measure used in
dimension clustering, the meaning of the dimension hierar-
chy is straightforward.

� Through dimension hierarchy visualization and navigation,
if users find that a cluster contains some dimensions that
have no semantic relationship with other dimensions in the
cluster according to their knowledge of the data domain,
they can manually remove them from this cluster. Similarly,
they can merge two clusters that are semantically related.
Thus each cluster can have a clear domain-specific meaning
guided by a domain expert.

� Users can label the dimension clusters with “meaningful”
names, thus helping the interpretation of the dimension clus-
ters during later data exploration.

� Users interactively select the dimension clusters to be visu-
alized in the LD space according to their knowledge of the
data domain. As a result, the structure of the LD space is
meaningful to them.

� Users can select the RD generation approach or even explic-
itly select the RDs, hence they know how the RDs are gen-
erated and how to interpret them.

Another advantage of the VHDR approach is that it integrates
automatic and interactive techniques. As a tool designed to assist
people in visualizing high dimensional data sets, the VHDR ap-
proach avoids trivial and boring manual work during the majority
of the process. At the same time, an interactive visualization ap-
proach has been introduced into the dimension reduction process
to allow users to apply their domain knowledge. This combination
of automatic and interactive methods is reflected in that:

� VHDR provides an automatic dimension clustering ap-
proach. Users can adjust the automatic approach by replac-
ing the similarity measure calculation methods by their own
similarity measures or changing other algorithmic parame-
ters in the system. They can also use their own dimension
clustering approach by customizing the system, or even pro-
vide a dimension hierarchy directly by creating a dimension
hierarchy file in the appropriate format.

� VHDR provides a tool suite for interactively navigating and
modifying the dimension hierarchy.

� VHDR provides automatic and manual brushing mecha-
nisms in the dimension hierarchy visualization. Users can in-
teractively select interesting dimension clusters using a com-
bination of the different brushing approaches.

� VHDR provides several alternative RD generation ap-
proaches. Users can interactively select one of them. Users
can also customize the prototype to add more RD generation
approaches.

� VHDR provides several options to visualize the dissimilarity
information of the dimension clusters in the RD space. Users
can interactively select one of them or turn this information
on/off.

In the following sections, we will describe the details of each
of the above five steps of VHDR.

3 Dimension Hierarchy Generation

Many possible dimension clustering algorithms, such as factor
analysis or algorithms adapted from multidimensional data clus-
tering techniques, could be employed to form a dimension hierar-
chy. We have implemented a bottom-up agglomerative dimension
clustering algorithm in our prototype. The following is a descrip-
tion of this algorithm:

� Similarity Measure: To avoid complex calculations in order
to cope with large scale data sets, we judge if the similarity
between a pair of dimensions is below a similarity threshold
using a simple counting approach rather than calculating its
absolute value. More precisely, we count the number of data
items in the data set whose normalized values of these two
dimensions have differences less than the similarity thresh-
old. If this number exceeds a certain percentage of the total
data points in the data set, we regard the similarity of these
two dimensions as being below the similarity threshold. For
a dimension cluster, we use the average of all its decedent
dimensions as its value for difference calculation.



� Data Clusters: To cope with large scale data sets, we make
use of partial results of a bottom-up data clustering algorithm
applied on the data set. The idea is that if several data items
form a dense cluster, we can use the cluster center in the sim-
ilarity measure as long as we use the number of data items
included in the cluster in the counting mentioned above. In
practice, we select all the data clusters with extents smaller
than a specified threshold. These clusters contain all the data
items in the data set exactly once. Then we use these data
clusters instead of the original data items to measure simi-
larities between dimensions. Since the precondition of this
approach is that there exists a data hierarchy, which is com-
mon in our tool but may not be available in other tools, we
only provide this approach as an option to the users.

� Iterative Clustering: To form the hierarchical tree structure,
we define a series of decreasing similarity thresholds corre-
sponding to bottom-up clustering iterations. In each itera-
tion, dimensions that have not formed any clusters and clus-
ters formed from the previous iteration are considered. If any
pair of them has a similarity below the similarity threshold,
the pair is recorded as a similar pair. Then the dimension
or cluster that forms the largest number of similar pairs is
extracted as a new cluster center. All the other dimensions
and clusters that form similar pairs with it are put into the
new cluster and their similar pairs are deleted. Repeating the
above approach will form more new clusters. The current it-
eration ends when there are no similar pairs left. The whole
clustering process terminates when all the dimensions have
been included into a root cluster.

Our dimension clustering algorithm is a simplistic process.
However, it satisfies our need in that it computationally inexpen-
sive even when handle large-scale data sets with high dimension-
ality and large numbers of records, and generates dimension hier-
archies that appear reasonable for the real data sets we tested.

4 Dimension Hierarchy Navigation and
Modification

4.1 Dimension Hierarchy Navigation

It is important for users to be able to navigate the dimension hi-
erarchy to get a better understanding of it. Navigation tools are
also useful in dimension cluster selection by making the selection
process easier. In VHDR we use a radial space-filling hierarchy vi-
sualization tool named InterRing to navigate the dimension cluster
tree (See Figure 6 (a)). Details of InterRing can be found in [25].

In InterRing, we use the color of the nodes to redundantly con-
vey the hierarchical structure of the dimension cluster tree. We
have designed and implemented a color assignment approach ac-
cording to the following principles:

� nodes belonging to the same cluster should have similar col-
ors;

� a parent node’s color should be related to the colors of its
children; and

� a larger child (a cluster with a higher population) contributes
more to its parent’s color than its smaller siblings.

To give users focus + context interactivity, we provide a multi-
focus distortion operation in InterRing. In this distortion, a focal

area enlarges to occupy some of the space of its siblings. Several
foci can coexist and a focus can be a descendant of another focus.
The distortion operation involves a simple “drag and drop” action.
No extra space or windows are used in this distortion technique.

There are many other useful navigation and filtering tools in In-
terRing, including rotation, drilling-down/rolling-up, and zoom-
ing/panning. The rotation operation allows users to rotate the In-
terRing display around its center in both directions to allow dimen-
sion labels to be more readily discerned. Drilling-down/rolling-up
allows users to hide/show all the descendants of a cluster. Zoom-
ing in/zooming out and panning operations allow users to enlarge
the InterRing and move around to examine details.

4.2 Dimension Hierarchy Modification

In interactive hierarchy modification, users can change the dimen-
sion cluster tree by removing a sub-cluster from a cluster and drop-
ping it into another cluster. We provide this modification function
to users for two reasons:

� Although users can adjust the dimension clustering process
by setting different parameters and changing similarity cal-
culation methods, it is still an automatic process. This does
not enable users to interactively take part in this process.

� Users are often experts of the data sets being visualized.
They usually know that some relationships exist in the data
sets based on their experience and knowledge in their fields.
These relationships may be undetected by the automatic di-
mension clustering approach. Hence allowing users to inter-
actively adjust the generated dimension cluster tree benefits
the whole process.

5 Dimension Cluster Selection

In order to construct a lower dimensional subspace, users need to
select some interesting dimension clusters from the dimension hi-
erarchy. In our implementation, we provide both an automatic and
a manual brushing mechanism. The automatic method is called
“structure-based brushing”. It allows users to select/unselect mul-
tiple clusters with similar sizes or dissimilarities. The manual
method is called “simple brushing”. It involves simple clicking to
select or unselect one node each time. The combination of these
two different mechanisms makes the selection flexible. To find
more details of the brushing, please refer to [25].

Selected dimension clusters are highlighted using the Xmdv-
Tool system highlighting color in the middle area of the nodes.
Their cluster names are explicitly shown, while the names of the
unselected clusters are shown only when the cursor passes over
them.

6 Representative Dimension Generation

The selected dimension clusters form a low dimensional (LD)
space. However, the question arises as to how we can visualize
a dimension cluster in the LD space. We generate a representative
dimension (RD) for each selected cluster and visualize it in the LD
space as a reasonable representation of the dimension cluster.

RDs can be either assigned or created. We have developed
several different approaches to assigning or creating RDs. As-
signment approaches include selecting a dimension located in the
center of a cluster, user-selected RDs, or randomly selecting one
dimension from a cluster. Creation approaches include using the



weighted average of all the dimensions in a cluster as its RD, and
applying Principal Component Analysis (PCA) to all the dimen-
sions in a cluster and using the first principal component as its RD.
Analyzing these approaches we find that:

� The RDs generated by the assignment approaches have clear
meaning to the user, but for outliers that change greatly
within the dimension cluster, the variance is hidden from the
user. The drawback can be overcome by visualizing the dis-
similarity information of the cluster in the data display (see
Section 7.2), or checking the dimension cluster in detail by
constructing an LD space composed of the leaf nodes of this
cluster.

� The RDs generated by the creation approaches reflect the
overall structure of the cluster better than the assignment ap-
proaches, but their meaning is not as explicit as those gener-
ated by the assignment approaches. However, it is much bet-
ter than applying PCA to the whole data set, since the num-
ber of dimensions in the whole data set is generally much
larger than in a dimension cluster, and some dimensions of
the whole data set could have no meaningful interrelation-
ships.

7 Data Mapping and Visualization

Having selected a set of dimension clusters and generated RDs
for them, we construct a lower dimensional space using these
RDs with/without dissimilarity information of the selected clus-
ters. The original data set is projected into this lower dimensional
space.

To better convey dimension cluster characteristics, we provide
extensions to glyph [1, 19, 4, 18], parallel coordinates [12, 21],
and scatterplot matrices [5] to allow RDs to convey cluster dis-
similarity information in the LD space. We discuss dissimilarity
visualization in Section 7.2.

7.1 Data Projection

In VHDR, the system maintains a selected cluster list (SC list)
and the current RD generation approach. A new LD space is
constructed when the SC list is updated or the RD generation ap-
proach is changed. Hence we meet the problem of when and how
to project the data set from the original high dimensional space to
the LD space. We have explored two options:

� Option 1: Every time the SC list is updated or the RD gen-
eration approach is changed, project all the data items of
the data set from the original high dimensional space to the
new LD space, one by one, and store their projected values
into a data structure in memory. When redrawing the multi-
dimensional displays, directly read from this data structure
as input for the multi-dimensional displays. We call this ap-
proach pre-mapping;

� Option 2: In every display redrawing event, for every data
item, we read it from the original data set, map it to the lower
dimensional space according to the SC list, and then draw the
mapping result. We call this approach online-mapping.

The pre-mapping approach does the mapping once for every
SC list or RD update, no matter how many times we redraw the
displays. However, it requires memory to store the mapping re-
sults. Memory is a critical resource when displaying large data

sets, since the original data set already occupies a large amount of
memory. Moreover, when users update the SC list often (which
can happen when users are in search of the most interesting lower
dimensional spaces), this method’s advantage in time savings will
be diminished.

The online-mapping approach needs no extra memory. But on a
first glance, it wastes time to recalculate the mapping result. How-
ever, compared to the time used to draw a data item on the screen,
the time needed to calculate a mapping of that data item is neg-
ligible; we have observed no significant difference between the
response times of the two mapping approaches. For this reason
we adopted the online-mapping approach in our system.

7.2 Dissimilarity Visualization

Users are often concerned about the extent to which the dimen-
sions in a dimension cluster are correlated to each other, since
an RD is useful only when the dimensions within its cluster are
reasonably correlated. We have extended glyph, parallel coor-
dinates, and scatterplot matrix displays so they graphically pro-
vide the dissimilarity information of selected dimension clusters to
users in the LD space. We call this dissimilarity visualization. We
can perform dissimilarity visualization from two different view-
points: from that of the individual data items, or from that of the
whole data set. We name the former the “local degree of dissim-
ilarity (LDOD)” and the latter the “global degree of dissimilarity
(GDOD)”. They are defined as follows:

� LDOD - the degree of dissimilarity for a single data item in
a dimension cluster. We use a mean, a maximum, and a min-
imum value to describe it. The mean is the mapped image of
the data item on the representative dimension. The minimum
is the minimum value among the values of the data item on
all the original dimensions belonging to the dimension clus-
ter. The maximum is the maximum value among the values
of the data item on all the original dimensions belonging to
the dimension cluster. Note that all the dimensions have been
normalized so values lie between 0 to 1.

� GDOD - the degree of dissimilarity for the entire data set
in a dimension cluster. It is a scalar value and can be cal-
culated according to the similarity measures between each
pair of the dimensions in the cluster. We use a simplified
approach, namely, we use directly the radius of a dimension
cluster as its GDOD. A dimension cluster radius is initially
assigned as the similarity threshold of the iteration in which
the dimension cluster is formed in the VHDR automatic di-
mension cluster approach (Section 3). It can be affected by
interactive modification to the hierarchy.

LDOD and GDOD information are useful to users. By study-
ing the LDOD, users can discover outliers that have large LDODs
while most data items have small LDODs in a dimension clus-
ter, and can learn the overall dimension cluster correlation infor-
mation by aggregating LDOD information of all the data items.
By examining the GDOD, the overall dimension cluster correla-
tion information will be immediately known, thus users can avoid
using clusters with large dissimilarities to form the lower dimen-
sional space. We provide LDOD and GDOD information to users
visually so that they can gain a qualitative understanding of cluster
characteristics.

Our current approach to visualize GDOD is named the Axis
Width Method. In multidimensional visualizations that contain



axes, we make the width of the representative dimensions propor-
tional to the GDOD of the dimension clusters they represent. A
wider axis represents a dimension cluster with a larger GDOD.
Currently, we have applied this method to parallel coordinates,
scatterplot matrices, and star glyphs. In scatterplot matrices,
GDOD is mapped to the width of the frames of the plots. Fig-
ure 4 (a) shows the Axis Width Method in parallel coordinates.

We have explored several different approaches to visualizing
the LDOD:

� Approach 1: The Three-Axes Method for Representing
LDOD. which is borrowed from the hierarchical parallel co-
ordinates [7]. The basic idea of this method is to use two
extra axes around a representative dimension to indicate the
minimum and maximum of the corresponding dimension
cluster for every data point. The three-axes method can be
applied to parallel coordinates and star glyphs. For parallel
coordinates, good correlation within a cluster would mani-
fest itself as nearly horizontal lines through the 3 axes, while
lines with steep slope indicate areas of poor correlation (see
Figure 4 (b)).

� Approach 2: The Mean-Band Method for Representing
LDOD, which is borrowed from hierarchical parallel coordi-
nates [7]. A band is added to each data point ranging in width
from the minimum to the maximum for each representative
dimension. Narrow bands indicate a good correlation, while
wide bands indicate a bad correlation. This method can be
applied to parallel coordinates, scatterplot matrices, and star
glyphs. However, it suffers from the overlaps introduced by
the bands (see Figure 4 (c)).

� Approach 3: Diagonal Plots for Representing LDOD in
Scatterplot Matrices. Having observed the fact that the diag-
onal plots (mapping a dimension against itself) in the scat-
terplot matrix convey little useful information, we map the
minimum and maximum of the dimension cluster to the x
and y coordinates of the diagonal plot of its representative
dimension. Thus in the diagonal plots, if a point has an equal
maximum and minimum, it will be represented as a point on
the diagonal. On the contrary, if a point has a large LDOD,
which means there is a large difference between maximum
and minimum and thus a large difference between its x and
y coordinates, it will lie a significant distance from the diag-
onal. Thus a diagonal plots with points spread out in the plot
away from the diagonal indicates low correlation within that
dimension cluster (see Figure 4 (d)).

8 Case Study

In the above sections, we have presented the VHDR approach as
a sequence of steps. In practical use, VHDR is not so rigid. Users
can go back to a previous step at any time and begin a new loop to
form different LD spaces from different points of view based on
their own strategy. For example, a user could explore the overall
structure of a data set by forming an LD space using large dimen-
sion clusters. Then he could check the detail of some clusters by
constructing another LD space using their leaf nodes.

In our case study, we use a 42 dimensional, 20,000 element data
set derived from part of the unweighted PUMS census data from
the Los Angeles and Long Beach areas for the years 1970, 1980,
and 1990 [10]. We will refer to it as the Census dataset. Figure

5 (a) shows the parallel coordinates display of it. It is almost im-
possible to find any meaningful patterns from the display without
dimension reduction.

Figure 6 (a) shows the automatically generated dimension hi-
erarchy of the Census dataset. We explored the overall struc-
ture of the hierarchy, and found some clusters with large dis-
similarities between each other through structure-based brush-
ing and dissimilarity displays. We assigned a leaf node in each
cluster as its RD. These RDs are “education”, “age”, “sex”,
“weeks worked in year”, and “income” respectively. We hoped
that they could form a lower dimensional space that could reveal
the main trend in this data set. In fact, we found many interesting
data clusters from this space. For example, Figure 5 (b) shows a
group of high-income males who have high education and work
most of the year.

Then, we examined the details of a cluster we were interested in
(see Figure 6 (b)). It seemed odd to us that some dimensions, such
as “region of previous residence” were put together with dimen-
sions such as “income”. According to our experience, we felt that
they were not related. Hence we remove the unrelated dimensions
from that cluster (see Figure 6 (c)). Then we checked the lower di-
mensional space composed of all the leaf nodes of that cluster and
found out that most, but not all, people of low income have low
wage per hour and low capital gain. Several smaller clusters ap-
pear as distinct configurations of value ranges for each dimension
(Figure 5 (c)).

9 Related Work

There are three major approaches to dimensionality reduction.
Principal Component Analysis (PCA) [13] attempts to project data
down to a few dimensions that account for most of the variance
within the data. Multidimensional Scaling (MDS) [17] is an itera-
tive non-linear optimization algorithm for projecting multidimen-
sional data down to a reduced number of dimensions. Kohonen’s
Self Organizing Maps (SOM) [16, 6] is an unsupervised learning
method for reducing multidimensional data to 2D feature maps
[3].

There are many visualization systems that make use of exist-
ing dimensionality reduction techniques [23, 3, 11]. Galaxies and
ThemeScape [23] project high dimensional document vectors and
their cluster centroids down into a two dimensional space, and
then use scatterplots and landscapes to visualize them [22]. Bead
[3] uses MDS to lay out high dimensional data in a two or three
dimensional space and uses imageability features to visualize the
data.

Recently, many new dimensionality reduction techniques have
been proposed to process large data sets with relatively high di-
mensionality. For example, Random Mapping [14] projects the
high dimensional data to a lower dimensional space using a ran-
dom transformation matrix. Kaski [14] presented a case study of
a dimension reduction from a 5781-dimensional space to a 90-
dimensional space using Random Mapping. The Anchored Least
Stress method [26, 22] combines PCA and MDS and makes use of
the result of data clustering in the high dimensional space so that
it can handle very large data sets. This work inspired us to make
use of the data hierarchy in the dimension clustering process.

All the above approaches have the common drawback that their
generated display spaces typically have no clear meaning for the
users. In the VHDR approach, we reduce the dimensionality in an
interactive manner so as to generate a meaningful low dimensional
subspace.

Ankerst et al. [2] use similarity measures between dimensions



Figure 4: An LD space of the Census Dataset constructed of 4 dimension clusters. These clusters are composed of 3, 4, 2, and 1 original
dimensions respectively from left to right of the displays. Figure (a), (b), (c) use parallel coordinates and Figure (d) is a scatterplot matrix.
Figure (a) displays the GDODs using the Axis Width Method. Figure (b) displays the LDODs using the Three-Axes Method. Figure (c)
displays the LDODs using the Mean-Band Method. The bands have been reduced to 6 percent of their original width. Figure (d) displays
the LDODs using the Diagonal Plot Method. From all these figures, it can be noticed that the second cluster and the third cluster have
lower correlations than the first and last cluster. Note the number of dimensions in a cluster is embedded in the cluster label.

Figure 5: The Census dataset (42 dimensions, 20,000 data items) in parallel coordinates. Figure (a) shows the original high dimensional
space. Figure (b) and (c) show two lower dimensional subspaces generated by VHDR.

to order and arrange dimensions in a multidimensional display.
They arrange the dimensions so that dimensions showing similar
behavior are positioned next to each other. Their work inspired us
to use similarity among the dimensions to group them.

10 Conclusion and Future Work

In this paper, we present the VHDR framework, a visual in-
teractive approach for dimension reduction. The main contri-
bution of the VHDR approach is that it can generate lower
dimensional spaces that are meaningful to users by allowing
them to interactively take part in the dimension reduction pro-
cess. Other contributions include the mechanisms for conveying
cluster dissimilarity. We have implemented the VHDR frame-
work and incorporated it into the XmdvTool software package
(http://davis.wpi.edu/˜xmdv), which will be released
to the public domain as XmdvTool Version 6.0. We have applied
it to several real data sets and found that it is effective in coping
with high dimensional data sets.

In our future work, we will improve this approach in the fol-
lowing aspects:

� implementing and comparing different dimension clustering
approaches;

� exploring a dissimilarity display method that could be ap-
plied to most, if not all, data visualization techniques in a
consistent fashion;

� exploring automated techniques for generating or selecting
interesting views of subsets of the hierarchy;

� evaluating the VHDR approach with user studies and exper-
iments and improving the VHDR approach according to the
results and feedback from users.
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Figure 6: Dimension hierarchy of the Census dataset in InterRing. Figure (a) shows the automatically generated hierarchy. Figure (b)
shows the detail of a cluster after brushing and rotation. Figures (c) shows the modified hierarchy after moving some dimensions from that
cluster to elsewhere.
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