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Abstract 
W e  antroduce a novel method for vasual homang. 

Usang thas method a robot can be sent t o  desared po- 
sataons and oraentataons an 3-0 space specafied b y  san- 
gle amages taken from these posafzons. Our method 
determanes the path of the robot on-lane The start- 
zng posataon of the robot as not constrazned, and a 3-0  
model of the envaronment a s  not requared. The method 
as based on recoverang the epapolar geometry relatang 
fhe current amage taken b y  the robot and the target 
amage. Usang ihe epapolar geometry, most of  the pn-  
rameters whzch specafy the dafferences in posataon and 
oraentataon of the camera between the two amages are  
recovered. However, sance not all of the parameters 
ran be recovered from two amages, we hace developed 
specafic methods to bypass these massang parameters 
and resolve the ambaguztaes that ezast We present two 
homang algorathms for  two standard projectaon mod- 
els, weak and full perspectave. We have performed 
samulataons and real experaments whach demonstrate 
the robustness of the method and that the algorathms 
always converge t o  the target pose. 

1 Introduction 
Robot navigation and manipulation often involves 

the execution of commands which intend to move a 
robot (or a robot arm) to desired positions and ori- 
entations in space. A common way to specify such a 
command is by explicitly providing the robot with the 
three-dimensional coordinates of the desired position 
and the three parameters defining the desired orienta- 
tion. This method suffers from several shortcomings. 
First, it requires accurate advance measurement of the 
desired pose. This is particularly problematic in flex- 
ible environments, such as when a robot is required 
to position itself near an object which may appear at  
different positions at different times. Secondly, due 
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to  occasional errors in measuring the actual mdion  
of the robot, the robot may be unable to put itself 
sufficiently accurately in the desired positioii. 

In this paper we propose a different approach to 
the problem of guiding a robot to desired positions and 
orientations. In our method the target pose is specified 
by an image taken from that pose (the tarqei im.aae). 
‘The task given to the robot is to move to a posit,ion 
where an image taken-by a camera mount,ed on the 
robot will be identical to the target image. During 
the execution of this task the robot is allowed to take 
pictures of the environment, compare them wit,h the 
target image and use the result of this comparison to 
determine its subsequent steps. We refer to the use 
of images to guide a robot to desired positions and 
orientations by visual homing. 

We introduce a new method for visual homing. Our 
method differs from previous methods [a, 3 ,  5 ;  11, 12, 
17, 181 in many respects. The method requires the 
pre-storage o i  the target image only. It then proceeds 
by comparing the target image to  images taken bv the 
robot, one a t  a time. No 3-D model of the environ- 
ment is required, and the method requires no mem- 
ory of previous images taken by the robot. ‘Thus, the 
method uses minimal information and can deal also 
with a moving target. We present two homing algo- 
rithms for two standard projection’ models, weak and 
full perspective. The algorithnis are based on recov- 
ering the epipolar geometry relating the current im- 
age taken by the robot. and the target image. Corre- 
spondences between points in the current and target 
images are used for this purpose. (The problem of 
finding correspondences hetween feat,ure points, how- 
ever, is not addressed in this paper.) Using the epipo- 
lar geometry, most of the parameters which specify 
the differences in position and orientation of the cam- 
era between the two images are recovered. However, 
since not all the parameters can be recovered from two 
images, we develop specific methods to bypass these 
missing parameters and resolve ambiguities when such 
exist. The path produced by our algorithm is smooth 
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and optimal to the extent that  is possible when only 
two images are compared. Furthermore, both simu- 
lations and real experiments demonstrate the robust- 
ness of the method and that the path produced by the 
algorithm always converges a t  the target, pose. 

2 Homing Under Weak-Perspective 
2.1 Derivation 

Our objective is to  move the robot to an unknown 
target position and orientation S ,  which is given in 
the form of an image I of the scene taken from that 
position. At any given step of the algorithm the robot 
is allowed to take an image I’ of the scene and use it to  
determine its next move. Denote the current unknown 
position of the robot by S’, our goal then is to  lead 
the robot to S .  

WLOG we can assume that  the pose S is the iden- 
titypose. L e t P ,  = ( X - ~ , Y , , Z , ) T , l F i < n , b e a s e t o f  
n object points. Under weak-perspective projection. 
the image at  the target pose is given by 

xi =xi, 2% = y;:. 

A pcint. pi = (xi, yl)T in the current image I’ is 
given by 

P:: = [SRPi1(1,2) + t ,  

where R is a 3 x 3 rotation matrix, s is sorne positive 
scale €actor, t E R2 is the translation in the image, 
and [.](1,2) denotes the projection to  the first and sec- 
ond coordinates of a vector 

[6, 7, 91 showed that using at  least four correspond- 
ing points in two images the epipolar constraints re- 
lating them can be recovered. From these constraints 
the scale can be derived. It can be verified that the 
translation component orthogonal t o  the epipolar lines 
can be recovered. The translation component paral- 
lel to the epipolar lines cannot be determined from 
this equation but is estimated using one pair of corre- 
sponding points. The estimate improves as the error 
in the viewing direction diminishes For the rotation 
components it can be easily shown that every rota- 
tion in space can be decomposed into a product of 
two rotations, a rotation around some axis that  lies 
in the image plane followed by a rotation of the im- 
age aroiind the optical axis. The image rota.tion can 
be compen’sated for by rotating the epipolar lines in 
the current image until they become parallel to  the 
epipolar lines in the target image. Differences in the 
viewing direction, however, cannot be resolved from 
two images. This is the reason why structure from 
motion algorithms that assume an orthographic pro- 
jection require a t  least three images to recover all the 
motion parameters [6, 151. 

Although two images are insufficient to resolve the 
differences in viewing direction completely, the axis 
of rotation required to bring the robot to the target 
pose can still be recovered from the images leaving 
the angle of rotation the only unrecoverable param- 
eter. Knowing the axis of rQtation will allow us to 
gradually rotate the robot until its viewing direction 
will coincide with the target viewing direction. In ad- 
dition, the direction of rotation is subject to  a twofold 
ambiguity; namely, we cannot determine whether ro- 
tating to the right or to  the left will lead us faster to 
the target orientation. In [l] we show that the axis 
of rotation is orthogonal to  the epipolar lines. Thus, 
the possible viewing directions lie on a great circle on 
the viewing sphere which passes through the viewing 
directions of the target and current images. Therefore 
by rotating the camera parallel to  the direction of the 
epipolar lines we can compensate for the differences in 
the viewing direction. 

2.2 Resolving the ambiguity 
We have been able to  determine the great circle 

on the viewing sphere along which the robot should 
rotate. However, we have not determined which di- 
rection on the circle is the shorter of the two directions 
connecting the current and target viewing directions. 

To resolve this ambiguity we introduce a similarity 
measure that can be applied to  the current and tar- 
get images. While the robot is changing its viewing 
direction along the great circle we will evaluate the 
similarity between the images and see whether they 
become more or less similar. Using this information 
we will be able to  determine if the robot is changing its 
viewing direction along the shortest path to  the target 
viewing direction, or if i t  is rotating in the other direc- 
tion, in which case we can correct its rotation. This 
similarity measure should vary with a change in the 
viewing direction, but be invariant to  scale changes, 
translation, and image rotation. 

The measure of similarity we have chosen is based 
on the apparent angles formed by triplets of points in 
the current and target images. Figure 1 shows several 
examples of how apparent angles change 8s the view- 
ing direction moves on a great circle. Given an angle 

in the srpn‘Ip and  a great circle on the vievong sphere 
we denote the apparent angle as a function of the an- 
gle on the great circle 6’ by $(@) $(@) has the following 
characteristics: it is a periodic function whose period 
is 2 ~ .  Furthermore, $ ( e )  = -d(O + T ) .  Also, d(@) has 
a single maximum a t  some angle, Q,,,, and a single 
minimum, obtained a t  Omzn = Om,, + T .  Finally, each 
angle between the maximum and minimum appears 
exactly twice in the function. 
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Figure 1: Three examples showing the effect of changing the 
viewing direction along a great circle on projected angles. 

Our measure of similarity is based on testing 
whether the apparent angles seen in the images taken 
by the robot are approaching the corresponding angles 
in the target image. In identifying the correcb direc- 
tion several issues have to  be addressed. First, there 
exists a second viewing direction on the great circle 
which gives rise to the same apparent angle as in the 
target image. We call this direction a fa l se  target. For- 
tunately, it is not difficult to distinguish between the 
target and the false target because every angle in the 
scene gives rise to a different false target. Secondly, 
there exist “good” and ‘%ad  sections on the great 
circle, where a section is considered ‘(good” if when 
rotating in the correct direction along this section the 
apparent angle approaches its value in the target im- 
age. 

Figure 2(a) shows an example of $(e).  The thick 
segments denote the ‘‘good” sections of the great cir- 
cle, and the thin segments denote the “bad” sections 
of the great circle. It can be seen that a “good” sec- 
tion exists around the target viewing direction, and 
as we get further away from the target “bad” sections 
appear. Consequently, suppose we consider the ap- 
parent angles in the current image, count how many 
of them approach the target, and use majority to de- 
cide on the correct direction then we are likely to  make 
a correct choice near the target viewing direction. Our 
chances to  be correct, however, deteriorate as we get 
away from the target. 

We therefore define a similar measure for the mir- 
ror image. Again, the great circle can be divided to 
“good)) and (‘bad” sections. where now “good” scc- 
tions are sections in which walking in the wrong direc- 
tion will make the apparent angle approach the mirror 
image (Fig. 2(b)). This measure is likely to  point to  
the correct directionsin the neighborhood of the mirror 
image. 

Since each of the two measures, the similarity to the 
target and mirror images, are reliable in different parts 
of the great circle we would like to  use each of them 

Figure 2: “Good” (thick lines) and “bad” (thin lines) sections 
with respect to the desired angle at the target (left) and mirror 
(right) images obtained while moving along a great circle on the 
viewing sphere. 

a t  the appropriate range of viewing directions. We do 
so by checking which of the two measures achieves a 
larger consensus. The rationale behind this procedure 
is that for every arigle in the scene each of the measures 
covers more than half 3f the great circle. 

To check the quality of our decision procedure we 
tested the p m e d w e  or1 10GO greal circles chosen 
at  random. For each circle 1000 point triplets were 
chosen at  random. We plotted in Fig. 3 the average 
percentages p t ( 0 )  and pm(0) of target and mirror an- 
gles respectively flhich point tu the correct direction. 
In order to  show the srandard deviation of those func- 
tions ~ ~ ( 0 )  and um(0),  we plotted p(O)kn(O).  In these 
plots the target and rnirror angles are q u a l  to I)” and 
180’ respectively. Note that for every O along the 
great circle max(pt(8),p,(0)) > 0.5. Therefore, the 
decision as to  which way to go is determined by finding 
which direction is supported by more angles by one of 
the two similarity measures. 

P 5 0  100 150 i00 250 500 3 5 0  400 
Anplc t r o m  target 

Figure 3: The plot shows the percent of angles (and stan- 
dard deviations) which point in the correct direction for a given 
viewing direction on the great circle using the target and the 
mirror avgl- 

We have shown how we can estimate the motion 
parameters which separat,e the current pose of the 
robot from the target pose. The rotation of the im- 
age has been recovered completely. For the translation 
components in the image plane we have an estimate. 
However the rest of the parameters, the translation in 
depth (indicated by a scale change) and the change 
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in the viewing direction were estimated only as a di- 
rection, while their magnitude, the distance in depth 
between the two images and the angular separation 
between the viewing directions were not determined. 
In the rest, of this section we show how we can estimate 
the missing distances to  the target pose. Estimating 
these missing distances will enable the robot to per- 
form a smooth motion to  the target by combining a t  
every step a similar fraction of each of the motion 
components. 

We begin .by deriving the component of translation 
along the optical axis from the scale changes. Suppose 
the scde  between the current and the target image is 
given by s, and suppose that a t  the following step the 
scale becomes s . It can be easily shown that the 
number of steps of this size is n = s’ / (s  - s’). 

We estimate the angulm separation between the 
current and target viewing directions using a Max- 
imum Likelihood est>imator of this angle which uses 
the percentage of angles which point, t o  the correct 
direction (Figure 3 ) .  Details can be found in [l]. 

3 Full Perspective Homing 
In this section we consider the problem of homing 

under perspective projection. Below we describe our 
method for homing when the focal length of the cam- 
era i s  known. For this case we show how the motion 
parameters can be recovered, and develop methods to  
resolve t.he ambiguity in the direction and recover the 
distance to  the target.position. In [l] we extend this 
formulation to  the case that, the focal length is un- 
known. 
3.1 Homing with a known focal length 

Again, we wish to move a robot to an unknown tar- 
get position and orientation S, which is given in the 
form of an image 1 of t,he scene taken from that posi- 
tion. At any given point in time the robot is allowed to  
.take an image I’ of the scene and use it t o  determine 
its next move. Denote the current unknown position 
of the robot by S’, our goal then is to  lead the robot to  
S. Below we assume that the same camera is used for 
both the target image and images taken by the robot 
during its motion, and that the internal parameters 
of the camera are all known. The external parame- 
ters. tha.t is: the relative posit,ion and orientation nf 
the camera in these pictures is unknown in advance. 

To determine, the motion of the robot we would 
like to recover the relative position and orientation 
of the robot S’ relative to  the target pose S. Given 
a target image I taken from S and given a sec- 
ond image I’ taken from s’, by finding sufficiently 
many correspondences in the two images we estimate 
the motion parameters using the algorithm described 
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in [4, 161, which is based on the linear algorithm pro- 
posed in [ l o ,  141. This algorithm requires at least eight 
correspondences in the two images. Other, non-linear 
approaches can be used if fewer correspondences are 
available [8]. 

‘The algorithm proceeds by first recovering the es- 
sential matrix E relatine corresDondine Doints in the 
two images. Once the essential matrix is recovered, 
i t  can be decomposed into a product of two matrices 
E = .RT, the rotation matrix R and a matrix T which 
contains the translation components. The rotation 
matrix, which determines the orientation differences 
between the two ima.ges, can be fully recovered. The 
translation coniponents, in contrast, can be recovered 
only up to  an  unknown scale factor. These recovered 
translation components determine the position of the 
epipole in the current image, which indicates the di- 
rection to  the target position. In the next section we 
show hcw to  determine whether the target position is 
in front or behind the current position of the robot. 
However we cannot determine the distance io t,he tar- 
get. position. 

After we recover the motion paramet,e-rs we direct 
the robot t o  inove a small step in the direction of the 
target. In additmion, given the rotation matrix R we 
calculate the axis and angle of rota.tion t.hat separates 
the current orientation of the robot froni the target 
orientation and rotate the robot arm about this axis 
by a small angle. After performing t,his step the robot 
takes a second image. Using this image we recover the 
distance to  the target position and use this distance 
to  perform a smooth motion. 

3.2 Resolving the  ambiguity in ,the direc- 
tion to the  target 

We have seen so far how given the current and tar- 
get image the translation required to  take the robot 
to  the target position is indicated by the position of 
the epipole in the current image. However, using the 
epipole the direction to  the target can be recovered 
only up to  a twofold ambiguity, namely, we know the 
line which includes the two camera positions, but we 
do not know whether we should proceed forward or 
backward along this line to  reach the target position. 
Below we show how by fiirt,her manipulating t,be two 
images we can resolve this ambiguity. 

Using the current and target images we have com- 
pletely recovered the rotation matrix relating the two 
images. Since a rotation of the camera is not affected 
by depth we may apply this rotation to  the current im- 
age to  obtain an  image t,hat is related to  the target im- 
age by a pure translation. After applying this rotation 
the two image planes are parallel t o  each other and the 



epipoles in the two images fall exactly in the same po- 
sition. Denote this position by ( w ~ ,  wy, f)T. We may 
now further rotate the two image planes so as to bring 
both epipoles to the position ( O , O ,  f)T. Denote this 
rotation by Ro. Notice that there are many different 
rotations that can bring the epipoles to ( O , O ,  f ) T ,  all 
of which are related by a rotation about ( O , O ,  f ) T .  For 
our purpose it will not matter which of these rotations 
is selected. 

After applying Ro to the two images we now have. 
the two image planes parallel to  pach other and or- 
thogonal to  the translation vect,or. The translation 
between the two images, therefore, is entirely along 
the optical axis. Denote the rotated target image by 
I and the rotated current image by I’. , Relative to 
the rotated target image denote an object point by 
P = (X, Y, 2). Its coordinates in I are given by 

and its corresponding point (x’, y’, f)* E I’, 

fX 2‘ 1 __. z +t’  
t represents the magnitude of translation along the 
optical axis, and its sign is positive if the current po- 
sition is in front of the target position, and negative if 
the current position is behind the target position. We 
can therefore resolve the ambiguity in the direction by 
recovering the sign of t. To do so we divide the co- 
ordinates of the points in the target image with their 
corresponding points in the current image, namely 

This implies that 

X t = Z( -  - 1). 
21 

Unfortunately, the magnitude of Z is unknown. Thus, 
we cannot fully recover t from two images. However, 
its sign can be determined since 

Notice that since we have applied a rotation to  the 
target image Z is no longer guaranteed to  be positive. 
However, we can determine its sign since we know the 
rotation Ro, and so we can determine for every image 
point whether it moved to  behind the camera as a 

of t can be recovered. Since it is sufficient to look 
at  a single pair of corresponding points to  resolve the 
ambiguity in the translation we may compute the sign 
of t for every pair of corresponding points and take 
a majority to obtain a more robust estimate of the 
actual direction. 
3.3 Recovering the distance to the target 

To estimate the distance to  the target position we 
let the robot move one step and take a second image. 
We then use the changes in the position of feature 
points due to this motion to  recover the distance. 

Using the current and target images we have com- 
pletely recovered the rotation matrix relating the two 
images. Since a rotation of the camera is not affected 
by depth we may apply this rotation to  the current 
image to  obtain an image that  is related to  the tar- 
get image by a pure translation. Below we refer by I’ 
and I” to  the current and previous images taken by 
the robot after rotation is cornpensated €orso that the  
image planes in I ,  I’, and I” are all parallel. 

We begin by observing that any two images related 
purely by a translation give rise to the same epipolar 
lines. Given qn image I and a second image I‘ which 
is obtained by a translation by t = ( t z , t y ,  t Z I T ,  nctice 
first that the two images have their epipoles ir. the 
same phhion .  This is because t,he homogeneous co- 
ordinates of the epipole in I‘ are identical to t ,  while 
the homogeneous coordinates of the epipole in I are 
identical to  -t. Consider now a point (x, y,f)’ E I ,  
and its corresponding point (XI, y’, f)* E 1’, 

Denote the epipole by ( v , , w y )  = (ft2./tZ,fty/tz), it 
can be readily shown that both (z,y) aqd (x’,y’) lie 
on the same line through ( T I , ,  vy)* since 

2’- TIZ 2 - T I ,  

Y’ - VY Y - vy 
- - ~- 

We turn now to  recovering the distance to  the tar- 
get position. Given a point p = ( x , y ,  f)T E I, sup- 
pose the direction from the current image I’ to  the 
target position is given by t = (tr,ty,ta)T, and that 
between the previous image I” and the current im- 
age the robot performed a step at in that direction. 
Denote by n the remaining number of steps of size 
at separating the current position from the target (so 
that  n = l/a). The x coordinate of a point in the 
target, current, and previous images are 

result of this rotation. 
can be inferred directly from the data,  thus the sign 

Finally, the sign of z/x’ - 1 fX f (X + t.1, = j ( X  + (1 -t a)tx) z ,  x‘= z + t,* Z + ( l + a ) t ,  
= - 
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respectively. 
t Z  we obtain that 

Eliminating X and 2 and dividing by 

(2’ - x) (2’’ - ?J,) 

(d’ - 2’) (2 - U,) 12 = 

The same coiriputation can be applied to the y coor- 
A h a t e  nf the p i n t .  In fzct,, we ~51: cbtain B bcttcr 
recovery of n if we replace the coordinates by the po- 
sition of the point along the epipolar line f i  the three 
images. (Thus, n is obtained as a cross ratio along 
this linn.) 

Even though a single corresponding point is suf- 
ficient t o  determine the distance to the target posi- 
tion we can combine the information obtained from 
all the poirits to obtain a more robust estimate of the 
distance. Notice that this computation will amplify 
noise in the image when either 12’’ - dl or 12 -. v,I 
are small. Thus, the values obtained for points which 
irmoduce a significant change in position between the 
previous and current images and which their position 
in the target image is further away from the epipole are 
more reliable then points which introduce only a small 
change or points which appear close to the epipole in 
the target image. 

4 Experimental results 
We have tested our homing algorithm under weak 

perspective on a thousand initial poses chosen at  ran- 
dom. The algorithm converged successfully in all 
cases. Figure 4 shows the effect of uncertainty in 
the vertex position measured in the image on the con- 
vergence of the algorithm. Figure 4(a) shows how the 
error in all the components of the pose converge to 
zero when there is no uncertainty. In Figure 4(b) the 
effect of uncertainty is shown. The uncertainty only 
effects the final stages of the algorithm when the error 
is very small. The algorithm converges more slowly 
until a solution is found. 

Figure 4: The convergence of the components of the pose 
as the algorithm progresses. The pose is composed of seven 
components: the three Euclidean coordinates of the viewing 
direction, two components of the translation, the scale factor, 
and the image rotation. (a) No noise; (b) Noise level of 1%. 

Figure 5 shows +n example of applying the perspec- 
tive procedure to  simulated data  in a noise-free and a 

noisy environment. As can be seen, in the noise-free 
example, the robot moved in the shortest path to the 
target while changing its orientation gradually until it 
matched the target orientation. Notice that since at 
the first step the robot could not yet estimate itZ dis- 
tance to the target its first rotation differed from the 
rest of the rotations. 

Figure 5: A simulation of homing under perspective projec- 
tion. The solid line represents the distance of the robot from the 
target position, and the dashed line represents the angle sepa- 
rating the current orientation from the target orientation. Left: 
no noise. Right: Gaussian noise added to the pixel positions at 
every image. 

Finally, we mounted a CCD camera on a robot arrn 
(SC@RB@T ER-9, from Eshed Robotec Inc.). The 
arm was set in a target position arid an image was 
taken (target, see Fig. 6(f)). The arm was then set 
in another positioii, from which part of the target 
scene was visible (source, see Fig. 6(a)). The cor- 
respondences between the source and the target was 
provided manually. ‘Then, the algorithm described in 
Section 2 was run. We maintained correspondences 
between successive frames by tracking the points us- 
ing a correlation based tracking algorithm. We took 
twenty features so that we can afford losing some of 
the features along the way (because of noise and oc- 
clusion) without impairing oul  ability ;U lecovel Liic: 
epipolar constraints. In computing the epipolar lines 
a t  every step of the algorithm we used a t  least ten cor- 
responding points using and applied a least squares fit. 

The different steps of the experiment are shown 
in Fig. 6(a)(h), where (a) is the source image, b-h 
the intermediate steps. The final image is shown in 
Fig. 7(a),  note the similarity between it and the tar- 
get image shown to  its right(b). The joint values of 
the robot in its final position after the homing was 
completed were different, from target joint values, by 
less than 1’ for the five revolute joints, and by less 
than icim for the linear shift bar 

5 Conclusions 
In this paper we have introduced a novel method for 

visual homing. Using this method a robot can be sent 
to  desired positions and orientations specified by im- 
ages taken from these positions. The .method requires 
the pre-storage of the target image only. It then pro- 
ceeds by comparing the target image to images taken 
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Figure 6: A run of an experiment with a six degrees of freedom robot: (a) The initial image; (b-f) Intermediate images; Top images: 
the images seen by the robot. Bottom: the position of the robot taken from a fixed camera. 

Figure 7: (a) The final image after homing was ccjmpleted; (b) 
The target image. Top images: the images seen by the robot. 
Bottom: the position of the robot taken from a fixed camera. 

by the robot while it moves, one at a time. Unlike 
existing approaches, our method determines the path 
of the robot on-line, and so the starting position of 
the robot is not constrained. Also, unlike existing 
methods, which are largely restricted to  planar paths, 
our method can send the robot to  arbitrary positions 
and orientations in 3-D space. Nevertheless, a 3-D 
model of the environment is not required. Finally, our 
method requires no memory of previous images taken 
by the robot. Thus, the method uses minimal infor- 
mation and can deal also with a moving target. 
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