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Visual Image Retrieval
by Elastic Matching of User Sketches

Alberto Del Bimbo, Member, IEEE, and Pietro Pala, Member, IEEE

Abstract—Effective image retrieval by content from database requires that visual image properties are used instead of textual
labels to properly index and recover pictorial data. Retrieval by shape similarity, given a user-sketched template is particularly
challenging, owing to the difficulty to derive a similarity measure that closely conforms to the common perception of similarity by
humans. In this paper, we present a technique which is based on elastic matching of sketched templates over the shapes in the
images to evaluate similarity ranks. The degree of matching achieved and the elastic deformation energy spent by the sketch to
achieve such a match are used to derive a measure of similarity between the sketch and the images in the database and to rank
images to be displayed. The elastic matching is integrated with arrangements to provide scale invariance and take into account
spatial relationships between objects in multi-object queries. Examples from a prototype system are expounded with considerations
about the effectiveness of the approach and comparative performance analysis.

Index Terms—Image database, image retrieval by sketch, shape similarity-based retrieval, elastic matching.

1 INTRODUCTION

HE intrinsic visuality of the information contents asso-

ciated with pictorial data advises against the use of
indexing and retrieval based on textual keywords as tradi-
tionally used in text documents. Iconic indexes have been
proposed in [25], to effectively support image retrieval by
content. Iconic indexes may be in the form of symbolic de-
scriptions of pictorial data or pictorial data relationships
but may also include the actual values of object features, or
be in the form of abstract images taking the salient character-
istics of the original image. The use of iconic indexes natu-
rally fits with the accomplishment of image retrieval accord-
ing to visual querying by-example. In this approach, the user
reproduces, on the screen, the approximate visual represen-
tation of the pictorial contents of images to be retrieved, and
retrieval is reduced to the matching of the user visual repre-
sentation against image representations in the database.

A number of techniques have appeared in the literature,
which deal with content representation and visual retrieval
of single images; differences between these approaches are
related to the types of facets of pictorial data that are taken
into account. Representation of image content in terms of
spatial relationships has been expressed through symbolic
strings that capture relative object positions either in the
image [3] or in the scene space [7]. To reduce the complex-
ity of the representation, objects are usually abstracted as
simplified geometrical elements such as points or minimum
enclosing rectangles. In this approach, further developed by
other authors in [4], [6], [13], [16], [17], visual queries are
parsed into symbolic strings [5]. Retrieval is thus reduced to
check the match between two symbolic strings.
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Querying by color or texture similarity has been pro-
posed in several systems [2], [14], [15], [22], [23], [24]. Que-
ries typically request images that contain colors or textures
similar to those selected from a menu or a sample reference
image. Matching is usually performed by comparing global
measures such as histograms [24], or evaluating a distance in
the original [10], [20] or a transformed feature space [14], [23].

Retrieval by content based on similarity between imaged
object shapes and user drawn sketches has been addressed
by a few authors [8], [10], [11], [12], [20]. In this case, the
problem is complicated by the fact that a shape does not
have a mathematical definition that exactly matches what
the user feels as a shape. Well-known distance measures
commonly used in mathematics are not suitable to repre-
sent shape similarity as perceived by humans in the reality.
Human perception is not a mere interpretation of a retinal
patch, but an active interaction between the retinal patch
and a representation of our knowledge about objects.

Solutions proposed in the literature follow different ap-
proaches and emphasize different aspects of the problem.
In the QVE system [11], retrieval by shape similarity is car-
ried out by evaluating the correlation between a linear
sketch and edge images in the database. High values of
correlation require that the shape drawn by the user must
be close to the shapes in the images, which is nearly impos-
sible in practice. To model user imprecision, the correlation
is evaluated with respect to a search area with limited hori-
zontal and vertical shifts. In [12], shapes are represented as
an ordered set of boundary features. Each boundary is
coded as an ordered sequence of vertices of its polygonal
approximation. Features are collections of a fixed number
of vertices. This representation allows to roughly evaluate
similarity as the distance between the boundary feature
vector of the query and those associated with the target
images. Boundary features of objects in database images are
organized into a quite complex index tree structure. Im-
provements of this approach, with more effective query
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processing, have been proposed in [19]. Shape representa-
tion based on global features such as area, circularity, ec-
centricity, major axis orientation and moment invariants
has been used in the QBIC system [10], [20]. A reliable
characterization of shapes requires the extraction of a great
number of features, for most of which, there is no warranty
that our notion of perceptive closeness is mapped into the
topological closeness in the feature space. In the QBIC sys-
tem, shape similarity is evaluated as the weighted Euclid-
ean distance in a low dimensional feature space.

In this paper, we propose a different measure of shape
similarity, based on elastic deformation of user sketches to
match image data. Similar techniques have been previously
used for optimization problems [9] and trajectory fitting
[21], [27]. Elastic matching promises to approximate human
ways of perceiving similarity and to possess a remarkable
robustness to shape distortion. In this approach, the sketch
is deformed to adjust itself to the shapes of the objects in
the images. The match between the deformed sketch and
the imaged object, as well as the elastic deformation energy
spent in the warping are used to evaluate the similarity
between the sketch and the image. The elastic matching is
integrated with arrangements to provide scale and partial
rotation invariance, and with filtering mechanisms to prune
the database.

In the following, in Section 2, the elastic approach to shape
matching is introduced, expounding the model of shape
similarity, the numerical solution and how similarity ranks of
the matched images are obtained. In Section3, it is ex-
pounded how spatial relationships between objects are rep-
resented and used to retrieve images. In Section 4, evidence
about the effectiveness of the approach is provided with re-
trieval examples and a comparative performance analysis.

2 THE ELASTIC APPROACH TO SHAPE MATCHING

Suppose we have a one-dimensional sketched template,
modeled by a second order spline 7 = (rx,ry) :R - R’ (that

is a piecewise first degree polynomial function). We will
always assume that the template is parameterized with re-
spect to the arclength, and normalized so as to result of
length one.

We have an image I : R’ — [0, 1]—we suppose the lumi-
nance at every point normalized in [0, 1] —that we search
for a contour with a shape similar to that of 7. We have
italicized the word similar to stress that, in general, the im-
age will contain no contour exactly equal to the template. It
is not just a matter of noisy images, which we can, to a lim-
ited extent, model and cope with. The image and the tem-
plate can be different to begin with. This makes traditional
template matching brittle.

To make a robust match even in the presence of defor-
mations, we must allow the template to warp. If

0= (ex,ey) :R — R? is the deformation, then the deformed

template ¢ (also parameterized with respect to arclength)
is given by:

The template must warp taking into account two oppo-
site requirements. First, it must follow as closely as possible
the edges of the image. The match between the deformed
template and the edge image Ir can be measured as:

M= _[01 IE((i(s))ds.

If we normalize Iy so that I € [0, 1], then M € [0, 1]. A
value M = 1 means that the template lies entirely on image
areas where the gradient is maximum (i.e., on image edges),
while M = 0 means that the template lies entirely in areas
where the gradient is null.

The second requirement to be taken into account is the
deformation of the template. We measure an approximation
of the elastic deformation energy for the template given by:

E=S+8B
2
(de. V> (de, YV (a0 (de
- e Dy ke y
_a."o{[ 7 ) +( e j ]ds+ﬁj’o [dsz ] + E: ds.

The quantity S, depending on the first derivative, is a
rough measure of how the template 7 has been strained by
the deformation 6 , while the quantity B, depending on the
second derivative, is an approximate measure of the energy
spent to bend the template. Therefore, we assume S and B
to be, respectively, measures of the strain energy and bend
energy associated with the deformed template 7+6 with
respect to the original template 7 .

Note that the elastic deformation energy depends only
on the first and second derivatives of the deformation 6 .
This prevents penalizing discontinuities and sharp angles
that are already present in the template 7, and penalizes
only the degree of departure from those discontinuities.
Also, since the elastic deformation energy depends only on
the derivatives of 6 , a pure translation of the template, for
which 6 is constant, does not result in additive cost. This
makes our scheme inherently translation invariant.

In order to discover the similarity between the original
shape of the template and the shape of the edge areas on
the image, we must set some constraints on deformation [26].
Hence, our goal is to maximize M while minimizing Z. This
can be achieved by minimizing the compound functional:

4}
2o Y (a0, Y| .
B [?‘9;} +( dszy] — I ((s))ds. )

2.1 Numerical Solution

Since the compound functional (1) involves second order
derivatives, a numerical solution using piecewise third-
degree (fourth-order) splines, which guarantees the neces-
sary degree of continuity, can be derived [1].

If Bi(s) are the fourth order B-splines, the deformation @
can be written as:

F =
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Fig. 1. Elastic deformation of a horse-like template over an edge image with plots of S, B, and M: (a) the original image; (b) different steps of the
deformation process; (c) plots of S, B, and M.

N
FE ) N -~ (aF  oF oF  oF
6(C,s) =) ¢'B,(s), VFIC)=| =, ..., = =, o) — |-
where C = (El, ., EN), with ¢ = (ci,c;) and ci,c; real coeffi- It can be derived that:
cients. The minimization of the functional j—"(é) obtained oF
substituting (2) into (1), with respect to vari- Ea
ables(c,, ..., ) ,¢,, ...,c)'), can be achieved through a gradi- ' TN
ent descent technique. Thus, variables are determined it- "‘J; 2[21, CxBf(S)Bi(S)]dS+
eratively according to: N
1 .
- - - B 2| » c.B/(s)B(s) |ds —
Ck +1) = C(k) - eV F(C), jo [z; (€5l )}
al(9(s
where: J‘;#Bk(s)ds,

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 4, 2009 at 09:41 from IEEE Xplore. Restrictions apply.



124 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 2, FEBRUARY 1997

and
aF
ac_]; =
ocfl 2{2 c;B;(s)B,;(s):lds +
ﬁJ.Ol 2[2 c;Bl”(s)B,:'(s)}ds -
101(6
.[0 (3]/(S)>Bk (S)ds,
where:
Bi(s) = dBdLS(S) and B/(s) = %

Taking the summations out of the integrals, we obtain:

N N 1 8IE o
T s 2p8csin- [ 20 a0
(;C—j: - Zai cLf(i, k) +2B N cig(i k) - j:w@(s)ds, )
with

fli,K) = [} B(s)Bi(s)ds and g(i, ) = [ B/(5)B{(s)ds

The first two terms of (3) and (4) depend on o and 8 and
model the elasticity of the template, that is the ability of
every point of the template to move in the same direction as
its neighbors. The higher « and f are, the less the template
can warp. In fact, for high values of these two weights, even
a minimal deformation of 6 causes a consistent contribu-
tion for the value of F. In our approach, the values of o and
B are initially low and are increased during the deformation
process. In this way, at the initial steps of the deformation
process, a precise adaptation is achieved for those parts of
the contour which are similar in both the template and the
image, and an approximate adaptation is determined for
those which are not equally represented in the two. Subse-
quently, increased values of a and f essentially compel the
template to regularize its deformation without loss of match.

The last term in (3) and (4) models a strength that moves
a point of the template in the same direction as the edge
image gradient VI; evaluated at that point. Since this
strength is null if I is constant, the template, to correctly
warp, needs to locate where VI is not null. If we want to
follow a correct gradient descent path, we must use non-
binarized edge images, that is we must deform the template
over a blurred edge image.

In Fig. 1, they are shown an original raw image stored in
the database and different steps of the deformation process
of a sketched template roughly representing a horse, over
one of the two horse shapes in the blurred edge image.
Graphs are also shown reporting the values of strain en-
ergy, bend energy, and match in the deformation process.
They can be noticed the effects of increasing the values of o
and B during the deformation process: The template starts

to warp in a somehow irregular manner, in order to adjust
itself to the horse boundary. Deformations which should
determine a too large expense of strain and bend energy,
such as the adaptation to the rider contour or to the horse
legs are not exploited. In the final steps, higher values of o
and f impose the template to regularize its deformation on
the horse shape and, as a consequence, the values of strain
and bend energy decrease.

2.2 Template Matching

After a template reached convergence over an image shape,
we need to measure how much the two are similar. Similar-
ity is a fuzzy concept, and to measure it we need to take
into account a number of things. A first thing to be taken
into account is, of course, the degree of overlapping M
between the deformed template and the gradient of the
image. Another factor to be considered is how much the
template had to warp to achieve that match in terms of
strain energy S and bend energy B.

Parameters S, B, and M alone are not enough to operate
a good discrimination between different shapes. First of all,
we have to consider that the values of S and B are some-
how depending on the nature of the template shape. Fig. 2
shows three examples of template deformations; for each
example, the template, the original image and the original
image with the deformed template superimposed are
shown. Table 1 reports the final values of S, B, and M for
the three examples. It can be noticed that the deformation
of the horse template over the horse shape image Fig. 2a is
characterized by values of S and B which are fairly the
same as those corresponding to the deformation of the cir-
cular template over the coffee-pot image Fig. 2c. While a
good match of a complex shape can require high values for
S and B, a noncomplex shape can reach a good match with
very low values of elastic deformation energy. A reliable
solution is to consider a measure of the template shape com-
plexity, in addition to the parameters of the deformation
process. In our approach, the complexity of the template is
measured as the number N of zeroes of the curvature
function associated with its contour. When N is low, as in
the case of the circular template, we expect to have low val-
ues of S and B for a correct deformation (Fig. 2b and Ta-
ble 1b), while if N'is high, as in the case of the horse tem-
plate, we consider good values of deformation also values
of S and B which, otherwise, should be discarded (Fig. 2a,
and 2¢ and Table 1a and 1c¢).

Finally, we have to take into account that S and B give
only a quantitative measure of the template deformation,
while to estimate the similarity between the template and
the image shape we must give also a qualitative measure of
the deformation. This is imposed by considering the corre-
lation C between the curvature function associated with the
original template and that associated with the deformed one.

All these five parameters (S, B, M, N, C) are classified
by a back-propagation neural network subject to appropri-
ate training. For each input array, the neural classifier gives
one output value ranging from 0 to 1, which represents the
similarity between the shape in the image and the shape of
the template.
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Fig. 2. Examples of template elastic deformations.

TABLE 1
FINAL VALUES OF STRAIN, BEND, AND MATCH PARAMETERS
FOR THE EXAMPLES SHOWN IN FIG. 2

Example S B M
(@ 3.72 1.00 0.84
(b) 0.14 0.27 1.00
(0) 3.70 0.95 0.85

2.3 Template Scaling and Rotation

When the user draws the sketch that will be used as a tem-
plate, it is in an arbitrary scale and, in general, has an un-
known relation with the scale of the objects it has to match.
If we cover the image with a coordinate system (x, y), each
interesting objects can be identified by its minimum enclosing
rectangles (MER), with sides parallel to the coordinate axes,
and lower left and upper right corners {(x1, ¥1), (x2, y2)}. We
consider the aspect ratio of the rectangle:

Yo=Y

Xy =%

The sketch is similarly enclosed in its MER with extrema
{(9?1, ), (%,, 7, )} , which has an aspect ratio:

2

=1
Rl

b=

=
R

2

We can assume that the user, while making a query,

draws an object approximately with the same aspect ratio
of the object he wants to retrieve. For this reason, we can
mark as nonmatched all those objects in the image whose
aspect ratio is not such that:

<—<Kk,

Al =
o™

where x is a fixed threshold. All the interesting rectangles
that pass this sieve are candidates for matching. To speed
up this checking, aspect ratios are organized into a binary
tree index structure. Each node of the tree includes pointers
to image rectangles with that aspect ratio. We have found,
after tests discussed in Section 4, that the matching is im-
proved if we normalize the sizes of both the template in the
sketch and the shape in the image.

(o)

Fig. 3. (a) Sketched template of a five-tips star; (b) Matched images
according to the elastic matching algorithm. The test set includes im-
ages representing a star rotated by three degree multiples with respect
to the sketched template. Only matched images with a similarity rank
greater than 0.7 are shown.

TABLE 2
VALUES OF S, B, M, C AND SIMILARITY RANKS FOR THE STAR
TEMPLATE OF FIG. 3 FOR TEST IMAGES ROTATED
BY ¢; DEGREES.

o S B M C Similarity
rank
0 1.65 0.59 0.94 0.996 0.942
3 1.98 0.60 0.94 0.996 0.940
6 2.75 0.66 0.95 0.996 0.938
9 3.92 0.75 0.94 0.995 0.920
12 5.08 0.81 0.92 0.995 0.889
15 6.80 0.91 0.89 0.995 0.810
18 8.86 0.98 0.86 0.995 0.621
21 10.51 1.06 0.82 0.995 0.338
24 12.54 1.64 0.59 0.978 0.005
27 14.88 1.90 0.61 0.972 0.002

The elastic matching approach is not rotation invariant,
since rotation contributes to the elastic deformation energy.
However, small rotations (of the order of 12-15 degrees)
usually can be coped with by the elastic matching algo-
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rithm. As an example, in Fig. 3 the five-tip star template is
made to warp over a set of I; images, each one representing
a star rotated by an angle ¢;, of i »+ 3 degrees. From Table 2,
it can be noticed that as the rotation angle increases, the
deformation energies increase too, while the match de-
creases. For rotation angles greater than 18 degrees, the
recognition ratio falls because of the high values of the
elastic deformation energies and the low values of match.

3 CONSIDERING SPATIAL RELATIONSHIPS

We use spatial relationships between object MERs both as a
mean to filter uninteresting database images and as a mean
to make a more precise multi-object query. This is done by
a slight modification of a method developed in [16].

Spatial relationships are defined by considering both re-
lationships between projections of MER boundaries, and
mutual objects orientations.

Projection of rectangles on the two coordinate axes de-
termine begin (b,, b,) and end (e,, ¢,) boundaries of the ob-
ject along x- and y-axis directions, respectively. Boundaries
are sorted by introducing two precedence operators: “<”
(left-right, below-above) and “=" (same location as). Therefore,
all possible relationships between projections of two ob-
jects, 0; and 0;, are ranked in five categories Cij (disjoint, meet,
contain, inside, partly_overlap):

—_
<
—
)

=
—
o
A
S8
=
—
B
<

<
. — —
<
=
— =
S S S S
. - - I
I
o
=
—_— O =
=}
<

o; disjoint 0;A

<
—

Sy
\: s
—
L

)
<
—
o
f—
A
S
B <
—_
\O N
N 5

o0; meet ojé

<

Il
<>
=
—
2
[

o, contain 0;A [[ex(oj) = ex(ol.)] ~ [bx(oi) = bx(of)] A]
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(
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(0 contain o) -
(
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Concerning orientations, we have to make image de-
scriptions in terms of spatial relationships coherent with
those operated by our visual perception. In practice, it is
almost impossible for the user to reproduce object mutual
orientations exactly as they are in the searched image. To
cope with this inherent imprecision of the user query, given

an object o; its orientation with respect to o; was evaluated
by considering the position of the o; centroid with respect to

the o; boundaries. If (c,(0;), ¢,(0;)) are the projections of the

centroid of o; on the two axes, the orientation of o; with re-

spect to 0]»
0, (o 0?,0° o)with:

ijr ijr ijs

is represented by the orientation vector,

o - 1 if co)< bx(o/)
oo bx(oj) <c.(o)
O; i (o)) < ex(o/.)
0 if ex(oj) <c,(0)

o - 1 if c,(o)< by(oj)
] 0 if b}/(of) < Cy(oi)
O,;l- i cy(oi) < ey(oj)
0 if ey(o].) < cy(oi).

Therefore, the spatial relationship R;; = R(0;, 0;) of o; with
respect to o; is represented by a symbolic 5-tuple:

R; =[c;.6,]

3.1 Signature Files

If we have a picture I; (the image in the database) contain-
ing N; objects oy, ..., oy , its description in terms of spatial
relationships is represented by the set of all the relation-
ships R;; such that i, j € {1, ..., Nj} and i < j. The cardinality
of this set is N;j(N; — 1)/2. Given a second picture I, (the

sketch) containing N, objects of, ..., o}~ (the templates), we

have to filter out images that do not have N, objects in the
same spatial relationships as the sketch, having no knowl-
edge on the kind of objects represented in the two pictures.
The problem is to find an injective function p such that:

p:f{l,..., Ny} {L...,N},

and
R(of,07) = R(op([),op(j)) ijell, .., N}, )

As we have no a priori knowledge about the nature of
the objects, the number of all of these p functions (5) is
given by:

N,!

D =—1
(N, —N,)!

NN

To speed up the search, binary codeword signature files [18]
are evaluated for the images in the database and for the
user sketch. In this way, instead of testing all D, ~combi-

nations of spatial relationships, we test Dy, , signature files

correspondences.
A signature file is composed of five fields (one field for
each category C;), each field being itself composed of n,

bits. Each spatial relationship between two objects o;, 0; is

represented by one bit set in the signature file. The category

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 4, 2009 at 09:41 from IEEE Xplore. Restrictions apply.



DEL BIMBO AND PALA: VISUAL IMAGE RETRIEVAL BY ELASTIC MATCHING OF USER SKETCHES 127

of the spatial relationship determines the field in the sig-
nature file, while the bit to be set in this field is determined

with a hashing function H = H(i, j,@ij) > {0, e (nb - 1)}, de-
fined as follows:

H(i,j,éij) = [no*i +(j i)+ npru+ nz*v]mod(nb),

where 1y, 11y, and n, are integer parameters and u and v are
defined as:

3 i (0j=1) » (0f=1)
w=42 if (0j=0) A (0} =1)
1 i (0;=0) » (0;=0)
3 i (0j=1) ~ (0f=1)
v=12 if (0;=0) A (Of =1)
1 if (0j=0) » (0j=0)

To improve the performance of the filter, the number of
bits 1, and the values of the parameters ny, n;, and n, are cho-
sen so as to reduce the probability of hash collisions. In the
worst case condition, all the relationships between N objects in
an image (which are N(N — 1)/2) belong to the same category.
Assuming N as the maximum number of objects for each da-
tabase image, 1, can be chosen such that 1, > N(N — 1)/2. Val-
ues of 1y, 1y and n, are derived through statistical analysis to
achieve uniform distribution of collisions and then minimize
their probability of occurrence.

As an example, the spatial relationships between the ob-
jects in Fig. 4 are:

Ry, = [disjoint, 0,0,1,1],
Ry; = [disjoint, 0, 0,1, 1],
Ry, = [disjoint, 1,1, 0, 0].

disjoint meet contain inside pantly overlap

[ofo 0o riiioliJoioiooiooiooJo oo0ooo0o00[o0000000[00000000

Fig. 4. Synthetic image with three sample objects and its signature file.

Assuming n, = 8, ny = 11, n; = 48, and n, = 16, we have
that H(1,2,0,0,1,1) =4, H(1,3,0,0,1,1) =5,and H2, 3, 1,
1,0, 0) = 7, respectively. Since the category of all these rela-

tionships is disjoint, the signature file of the sample image
has the fourth, fifth, and seventh bit of the field disjoint set
to one, as shown in Fig. 4.

Images whose signature files does not match the sketch
signature file are filtered out. Matching of signature files
does not ensure the exact correspondence between spatial
relationships in the query and the image, since equal sig-
natures may be due to hash collisions.

4 EXPERIMENTAL RESULTS
AND PERFORMANCE ANALYSIS

Based on the techniques previously expounded, a proto-
type system has been developed for image retrieval by
sketch, according to shape similarity. The following infor-
mation structures are associated with each raw image of the
database: One image description file, including a symbolic
description of all spatial relationships between image ob-
jects; one image signature file, built according to the hashing
discussed in Section 3.1 and used to filter out images with
different spatial relationships; edge images of rectangular areas
(one for each interesting shape) of 128 x 128 size, extracted
through Canny edge detection.

In the very general case of sketches composed of multi-
ple templates, a candidate image is retrieved if and only if:

1) it has two—or more—areas of interest in the same
spatial relationships as the templates drawn on the
screen;

2) the shapes contained in the areas of interest match the
templates of the sketch within a certain degree.

The query sketch is represented as a polygonal and in-
stantiated as a linear combination of B-spline functions with
Mot knots. Elastic matching is applied only to images that
pass a composite filtering mechanism, based on spatial re-
lationships matching (for multiple templates) and aspect
ratio checking (for each template). For the experiments pre-
sented in this section, signature files were derived with 1, = 8
bits for each field, assuming the maximum number N of
objects in the database images is four. Values of ny, 1y, n,
were chosen to make the probability of hash collisions
equal to 0. A threshold x = 2 has been used for the aspect
ratio filtering. The average number of steps of the deforma-
tion process depends on how much the image and the
sketch shapes are similar. After 20 steps, the match pa-
rameter M is compared with a fixed threshold. The defor-
mation process is completed only for those shapes which
pass this test.

The neural network that derives the similarity ratings,
was a three layered 5-12-1 back propagation net. To de-
termine similarity ratings on the basis of the shape com-
plexity, the matching parameters and the amount of defor-
mation, the net was trained using a set of sketched templates
representing shapes with complexity ranging from zero to
eight. Images of the training database included real objects
shapes with different degrees of similarity with respect to the
templates. Teaching outputs were adjusted manually, ac-
cording to human similarity perception. Training and testing
sets were both composed of about 350 examples.

Similarity ratings S; evaluated for each of the N tem-
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plates, are used to compute a compound similarity coeffi-
cient R = Zil S; for the whole image, which measures how

much the user sketch globally matches the image. Retrieved
images are sorted depending on the values of R and visu-
alized on the computer screen.

4.1 Similarity Retrieval Effectiveness

Effectiveness of similarity retrieval according to the elastic
matching approach was tested on a sample of users. In the
test, we asked both the users and the system to rank a set of
images with reference to their similarity to a few sketches,
and we measured to what extent system answers conformed
to those provided by the interviewed people.

We selected 22 sample images of bottles from a database
of Morandi’s paintings, and we drew three sketches
roughly representing the shapes of three of these bottles.
Images recall a familiar object to almost any people; never-
theless, bottle shapes are different though similar; in de-
ciding their similarity ranking with reference to the sample
sketches, the user must somehow capture both local and
global properties of shape contours and make a form of
adaptive matching, which generally cannot be transposed
in algorithmic form.

We asked the people to assign for each sample image
and each reference sketch, a value ranging from zero to one,
representing the perceived similarity between the two. Each
person had approximately 15 minutes to fill in the test
forms. We collected answers from 42 people, all with uni-
versity education. These were workers in the fine art field
(15%), workers in other fields like engineering and literature
education (10%), students in the fine art field (41%), students
in engineering (34%). 75% of these people were male. Age
was under 30 for the 83%, and under 40 for the 95%. Images
used in the test set and sketches presented to the interviewed
people are shown in Figs. 5a and 5b, respectively.

Answers confirmed that similarity is to a certain extent a
subjective measure and that the range of the variability of
human judgment must be considered different from shape
to shape. For each of the 22 images, we derived three statis-

tical functions p(i), representing the ranking of the ith im-
age with reference to the sketch j in the similarity list. For

each function p;(i), a mean value p,(i) and a standard de-

viation oj(i) were derived, representing the average ranking
of the ith image for a given sketch j in the similarity list, and
a measure of the agreement about a ranking close to the
p;(i)th rank, respectively. Finally, for each image i and rank

k, a function Q]» (i, k) with values in [0, 100] was considered,
representing the percentage of people that ranked the ith
image in the kth position with reference to the sketch j.

To measure the system performance and take into ac-
count the variability and shape dependency of the human
judgment, we considered the percentage of people who
ranks an image in the same position as the system, or in the
very close neighbor. We considered for each bottle image i

and reference sketch j, a window of width oj(i) centered in

the similarity rank P(i) given by the elastic matching algo-
rithm. The measure of the distance between the system and

human similarity ranking for a reference sketch j and a test
image i, was represented by the sum of the percentage of
people who ranked the ith image in a position between

P,(Z)—{G’T(l)—l and Pj(i)+{"fz(

function S(i) defined as:

i)—l. Therefore, we considered the

x)%“fﬂ
Si(i) = ZQ

b

In Fig. 6, plots of Sj(i) as a function of rankings Py(i) are
presented. They show the agreement between the inter-
viewed people and the system in ranking the ith image in
the Pj(i) position, for each of the three sample sketches.
Only ranks from one to six are shown since they represent
the agreement on the most similar bottles. As it can be no-
ticed, there is a very large agreement between the inter-
viewed people and the system in the assignment of the
similarity ranks. With reference to sketch 3, since only a few
thin bottles were present in the test set, after these have
been correctly ranked in the highest positions, the similarity
ranking agreement between humans and the system decays
due to the practical impossibility to assign precise ranks for
the other images. In no cases was the agreement below the
50%. In Figs. 7, 8, and 9, query results are shown for each of
the three sketches.

An example of sketch-based retrieval of Italian sacred
pictures of the 12th-13th century is shown in Fig. 10. For
this test we used a database of 100 samples, including the
22 Morandi images, 10 sacred pictures, and sample pictures
of diverse objects with dissimilar shapes. In the query, we
drew a rough sketch of a crucified Christ with a special
posture of head, arms and legs. Retrieved images with the
highest similarity ranks are shown, where approximately
the same postures are present.

In Fig.11, a query with multiple templates is shown
where the user asks for images with a crucified Christ
hanging not too high up over a person standing at a close
distance on his right side. Retrieved images are shown
which include figures having mutual relationships and
shapes like those in the sketch.

With reference to this example, 95% of database images
were filtered out through signature file comparison.

4.2 Comparative Performance Analysis

In this section, we analyze the performance of the elastic
template matching approach, ETM in the following, com-
pared with QBIC [10], [20], and QVE [11] systems. We
compared the three techniques with respect to computa-
tional complexity, similarity retrieval effectiveness, and
robustness to shape variability.

4.2.1 Computational Complexity

Computational complexity is analyzed for queries with a
single sketched template. Query processing steps and fil-
tering methods adopted by the QBIC and QVE systems are
briefly reviewed first.

In the QBIC system, database images are subject to edge
extraction (automatic tools are provided for a restricted
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class of images; manual identification of contours is other-
wise required) and reduced to 64 x 64 binary edge images.
Both for images in the database and the user sketch, a set of
22 features are computed, namely area, circularity, eccen-
tricity, major axis orientation, and a set of its algebraic mo-
ment invariants. Moment invariants are derived as a func-
tion of central moments up to degree 8 [10]. A low dimen-
sional feature space is obtained by applying the Karhunen-
Loéve transform to the 22-dimensional feature vectors. For
a single template, filtering of nonrelevant images is ob-
tained through a search in an R*-tree index structure.
Similarity is evaluated as a weighted Euclidean distance in
the feature space.

In the QVE system, database images are subject to edge
extraction, thinning and binarization, and are stored as 64 x
64 binary edge images. The user sketch is scaled up to a 64
x 64 binary mask and partitioned into 64 block of 8 x 8 size.
No filtering mechanism is proposed. Matching is per-
formed by evaluating a logical correlation between each
block of the sketch and a corresponding search area in the
image, with horizontal and vertical shifts (from one to four
pixels) to model a limited warping of the sketch.

Table 3 compares the computational complexity of the
three systems. Complexity of both QVE and QBIC systems
depends on the size of the binary edge images. In QBIC,
computation of features is performed only once for each
query template and the query is resolved as a sublinear,
very selective search through the index structure. QVE re-
quires to apply the matching procedure to each database
image. The complexity of ETM query processing for each
image depends on the number of knots ny,, of the spline
used to model the template deformation, and on the num-
ber of iterations #n;,, needed to complete the deformation
process. Experiments carried out have shown that 20 knots
suffice to model the deformation of quite complex tem-
plates such as that reported in Fig. 1. Query processing re-
quires a sublinear filtering of database images, and elastic
matching for all the images that pass the filter.

4.2.2 Similarity Retrieval Effectiveness

Comparison of similarity retrieval effectiveness was ana-
lyzed under the test discussed in Section 4. We used QBIC
Version 1.1 under OS/2 WARP Connect Version 3; QVE
algorithms were replicated according to the specifications
given in [11]. Fig. 6 compares plots of the agreement be-
tween the human and system similarity rankings for the
three sketches, by the three systems.

ETM shows a good ranking agreement for all the three
sketches, as was discussed extensively in Section 4.1. Both
QBIC and QVE systems exhibit substantially different
ranking agreements depending on the silhouette of the
template presented to the system: They manifest a consid-
erable loss of performance in the similarity matching of the
third template. Effective similarity retrieval is provided
particularly according to global shape properties (for ex-
ample roundness or squareness of the bottle body). But,
they both provide only a very limited ability to evaluate
similarity according to local properties. In the third query,
although several bottles retrieved are long and narrow,
bottles with a very different neck juncture from the sketch
are ranked as more similar than those with the same one.
Similarity rankings Pj(i) derived by the three systems are
presented in Table 4.

TABLE 4
RANKS OF MORANDI’S BOTTLE IMAGES AS THEY ARE DERIVED
BY THE ELASTIC TEMPLATE MATCHING (ETM), QBIC, AND QVE
SYSTEMS, FOR THE THREE SAMPLE SKETCHED TEMPLATES

10 19 9 9
11 15117 | 6

12 | 2 |[22 ] 19

ETM QBIC QVE
bottle n. T1 T2 T3 T1 T2 T3 T1 T2 T3
1 7 2 15 5 1 19 9 3 1
2 10| 8 |10} 8 [ 10| 6 5 [ 13 [ 11
3 5 3 [13 [ 6 2 (1610 [ 1
4 4 1 14 2 4 14 |[13 [ 2
5 1 4 16 7 6 10 3 8
6 2 5 18 3 3 12 6 7
7 22 | 22 [12 )20 [ 20 | 15 ] 19 [ 15
8 6 10 [ 22 | 4 7 | 21 1 14
9 17 118 | 5 18 [ 15 [ 11 |[ 17 [ 22
11
21
1
12
17
9

3
2
7
8
14
12
19
22
21 | 13|16 ] 5 | 9
13
15
18
16
20
4
5

TABLE 3 2 13 [ 6 |20 5 (20 4 | 6

COMPLEXITY OF THE THREE SYSTEMS 13 8 113 | 21 s T2 7 18

System Computational Typical n. o) 14 16 | 16 | 4 16 | 7 |[21 [ 17

Complexity Operat. 15 11 7 [ 11 8 8 8 4

o) 16 1815 8 |[16]19] 9 J20] 12

ETM [400M 0 - Mied ® 240000 OMigross 17 9 [20 191011 ] 1 2 [ 10

Niter) 18 1211 31313 4 |15] 16
@ 19 21 [19 [ 7 19181714 ] 21 | 21
QBIC [200A7+3000]® 822200 o) e A e T e T

®) N

QVE 200704 O(N") 21 1312 2 14]14] 5 12]11] 10
IN+N (1-2VN e 22 | 14141 |57 3 11|96

Only the most significant operations are considered.

1
( )Avemge number of operations required for each image shape that passes the

spatial and aspect ratio filters. Typical number of operations is evaluated for

Nppots = 20 and n,,,. = 30 (assuming that 20% of shapes require 70 deforma-

iter
. . 2 . ,

tion steps and remaining ones 20). )Number of operations required to com-

pute the feature values for the sketch. Typical number of operations is evalu-

ated for N = 64. Retrieval requires evaluation of a weighted Euclidean dis-

tance between the feature values of the sketch and those in the nodes of the
. 3 . . . .
R¥*-tree index. )N umber of operations required for each image shape in the

database. Typical number of operations is evaluated for N = 64.

4.2.3 Robustness to Shape Variability

Perceiving as similar objects that have undergone a great
variation in shape, remaining somehow themselves, is a
typical ability of humans. Retrieval robustness with respect
to a sketched query was intended as the ability of the sys-
tem to retrieve objects of the same type as the sketch, irre-
spective of shape variations of database instances. For this
test, we used the three sample sketches as in Section 4 and
the test database of 100 samples, including the 22 Morandi’s
images and sample pictures of diverse objects with dis-
similar shapes.
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Fig. 5. a. Test set of 22 bottle images from the Morandi’s catalogue; b. sketched templates used in the test.
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Fig. 6. Comparative results of the ETM, QBIC, and QVE retrieval effectiveness. Plots report the values of the agreement between system and
human measure of similarity (continuous line), and values of the average agreement (dotted line), for the first six ranked bottles.”
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Fig. 7. Matched images with highest similarity ranks for the sketched
template 1. Only the six highest ranked images are shown.

Fig. 10. Retrieval results for the sketch representing a crucified Christ.

Fig. 8. Matched images with highest similarity ranks for the sketched
template 2. Only the six highest ranked images are shown.

Fig. 11. Retrieval results for the sketch representing a crucified Christ
with a close standing person.

1 TABLE 5
RETRIEVED ITEMS OF THE SAME TYPE AS THE SKETCH IN THE
FIRST n POSITIONS FOR THE THREE SKETCHED TEMPLATES

Ranking 1-5 1-10 122 | 1-30 1-40
Interval
System
Ty | ETM 5 10 21 22 22
QBIC 4 7 11 12 14
QVE 5 10 20 21 21
Ranking 1-5 1-10 | 122 | 1-30 140
Interval
System
. . L o T ETM 5 10 22 22 22
Fig. 9. Matched images with highest similarity ranks for the sketched QBIC 4 7 1 12 15
template 3. Only the six highest ranked images are shown. QVE 5 10 0 51 55
Ranking 1-5 1-10 | 122 | 1-30 | 1-40
Interval
System
T3 ETM 5 10 22 22 22
QBIC 4 9 13 16 19
QVE 5 10 20 21 21

The total number of bottle-like shapes in the database is 22.
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Table 5 reports results provided by the three systems.
The number of retrieved items of the same type as the
sketch are reported for different ranking intervals. Both
ETM and QVE exhibit good tolerance to shape variations.
They both retrieve in the first ranked positions all or most
of the objects with the same structure as the sketch, al-
though with different shapes, in all the three cases. QBIC
exhibits a lower performance. In all the three cases, a lot of
misspelled items are retrieved. The system fails to rank all
the 22 bottles in the first 40 positions of the retrieval list.
Several retrieved objects of different types have somehow
similar global shape properties.

5 CONCLUSIONS

In this paper, we presented a technique for image retrieval
by shape similarity which is based on elastic matching of
sketched templates over the shapes in the images.

The sketch-based retrieval by-content system is intended
as a special part of a multimedia system, especially oriented
to support fine art specialists and researchers to discover
shape similarities or, more generally, relationships between
different paintings which are not explicitly expressed or
known. Retrieval by shape similarity and relative positions
supports the critic in the analysis of the artists” periods, as
well as of the influences and commonalities between differ-
ent paintings. We are presently working on the develop-
ment of additional facilities to enable queries by shape
similarity based only on parts of the object boundary and to
support effective indexing of the pictures in the database
according to common shape attributes.
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