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Visual Importance Pooling for
Image Quality Assessment

Anush Krishna Moorthy and Alan Conrad Bovik, Fellow, IEEE

Abstract—Recent image quality assessment (IQA) metrics
achieve high correlation with human perception of image quality.
Naturally, it is of interest to produce even better results. One
promising method is to weight image quality measurements by
visual importance. To this end, we describe two strategies—vi-
sual fixation-based weighting, and quality-based weighting. By
contrast with some prior studies we find that these strategies can
improve the correlations with subjective judgment significantly.
We demonstrate improvements on the SSIM index in both its
multiscale and single-scale versions, using the LIVE database as
a test-bed.

Index Terms—Image quality assessment (IQA), quality-based
weighting, structural similarity, subjective quality assessment,
visual fixations.

I. INTRODUCTION

I
MAGE quality assessment (IQA) is important for many

applications. IQA methods fall into two categories: subjec-

tive assessment by humans and objective assessment by algo-

rithms designed to mimic human subjectivity. While subjec-

tive assessment is the ultimate gauge of image quality, it is

time-consuming, cumbersome, and cannot be implemented in

systems where a real-time quality score for an image or video

sequence is needed. Thus, algorithms which predict subjective

image quality accurately and rapidly are of considerable value.

How “well” an algorithm performs is defined by how well

it correlates with human perception of quality. To this end

databases of images and subjective scores have been assem-

bled, including the VQEG dataset [1] and the LIVE database

[2]. In [3], a variety of leading IQA algorithms were tested

and their performances were reported using statistical cri-

teria such as the Spearman rank-order correlation coefficient

(SROCC), the root mean square error (RMSE) (after nonlinear

regression) and the linear correlation coefficient (CC) (after

nonlinear regression) between the DMOS scores and the scores

predicted by the algorithm. Amongst the algorithms tested,

the Multi-Scale Structural SIMilarity Index (MS-SSIM) [4]

and the Visual Information Fidelity index (VIF) [5] performed
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consistently well using of a variety of measures of correlation

with the human perception of quality.

The MS-SSIM and the Single-Scale SSIM (SS-SSIM) [6]

indices are particularly well-suited for application in real-time

systems. SS-SSIM remains quite attractive owing to its extreme

simplicity and excellent performance relative to old standards

such as the MSE [7]. VIF is an alternate approach to IQA based

on Natural Scene Statistics (NSS); however, in [8], it has been

demonstrated that the SSIM and VIF metrics are equivalent.

Hereafter, the acronym SSIM refers to either MS-SSIM or

SS-SSIM. The larger acronyms will be used when there is a

need to distinguish them.

In this paper, we explore the possibility of improving the per-

formance of the SSIM metrics, by assigning visual importance

weights to the SSIM values. In [6] and [4], a mean score is cal-

culated at the end from the SSIM maps. While each level of

MS-SSIM is scaled by a different parameter, this scaling re-

flects the importance of resolution on quality, but does not take

into account any factors such as the visual importance of image

features.

It is intuitively obvious that each region in an image may not

bear the same importance as others. Visual importance has been

explored in the context of visual saliency [9], fixation calcula-

tion [10], and foveated image and video compression [11]–[15].

However, region-of-interest based image quality assessment re-

mains relatively unexplored. It is the furtherance of this area of

quality assessment that motivates this paper.

Under the hypothesis that certain regions in an image may be

visually more important than others, methods used to spatially

pool the quality scores from the SSIM maps are an appealing

possibility for improving SSIM scores. In [16], the effect of

using different pooling strategies was evaluated, including local

quality-based pooling. It was concluded that the best possible

gains could be achieved by using an information-theoretic ap-

proach deploying “information content-weighted pooling.” In

this paper, we further investigate quality based pooling and also

consider pooling based on predicted human gaze behavior.

There are two hypotheses which may influence human per-

ception of image quality. The first is visual attention and gaze

direction—“where” a human looks. The second hypothesis is

that humans tend to perceive “poor” regions in an image with

more severity than the “good” ones—and hence penalize im-

ages with even a small number of “poor” regions more heavily.

Existing IQA algorithms, on the contrary, do not attempt to com-

pensate for this prejudice. By weighting more heavily quality

scores from lower scoring regions, such a compensation can

be achieved. This idea of heavily weighting the lower scoring

regions is a form of visual importance. This was also recog-

nized by the authors of [16], who noted that weighting low
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quality regions heavily made intuitive sense. However, their ap-

proach, which involved weighting quality scores as a monotonic

function of quality, led to the conclusion that quality-weighted

pooling yields incremental improvement, at best. By contrast,

in our approach, we show that quite significant gains in perfor-

mance can be obtained using the right strategy.

In this paper, we investigate pooling SSIM scores using the

concepts of visual importance as gauged by a visual fixation

predictor, and visual importance as gauged by heavily weighting

the lowest SSIM map scores. These lowest SSIM map scores are

pooled as sample percentiles. We attain improvements in both

the single and the multiscale versions of SSIM.

The use of visual importance has been previously explored,

albeit differently than the way we approach the issue. The au-

thors in [17] evaluated the use of a number of factors that influ-

ence visual attention to produce an Importance Map (IM) [17],

[18]. The IM was then used to weight IQA indices, resulting in

measurable improvements.

However, in [19], the authors conclude that using visual

fixations features do not improve SSIM performance. In [19],

ground-truth data is used, while we use fixations generated

from an algorithm. However, the authors observe, “It seems

that the saliency information and the degradation intensity have

to be jointly considered in the pooling function.”

The rest of the paper is organized as follows. Section II re-

views the Structural Similarity algorithms (both the single and

the multiscale versions). Section III reviews the fixation finder

that we use in this paper. Section IV reviews the concept of

percentile scores. Section V explains how our proposed algo-

rithm functions. We present the results of using our algorithm

in Section VI and conclude the paper in Section VII.

II. STRUCTURAL SIMILARITY INDEX

The SSIM correlates quite well with human perception of

image quality [3]. SS-SSIM and MS-SSIM are space-domain

IQA metrics. There also exist non-spatial IQA extensions of

SSIM such as the Complex-Wavelet SSIM index (CW-SSIM)

[20], [21].

A. Single-Scale SSIM

Consider two aligned-discrete non-negative signals,

and .

These can be two image patches from images under compar-

ison, drawn from the same location in both images. Let

and be the means of , the variances of and

the covariance between and , respectively.

The SSIM index evaluates three terms—luminance ,

contrast , and structure [6]

(1)

(2)

(3)

where are small

constants, is the dynamic range of the pixel values, and

and are scalar constants. Commonly, and

. The constants and prevent instabilities

from arising when the denominator tends to zero.

The general form of the SSIM index between and is

(4)

where and are parameters which define the relative im-

portance of the three components. Usually, ,

yielding

(5)

At each coordinate, the SSIM index is calculated within a

local window. As in [6], we use a 11 11 circular-symmetric

Gaussian weighting function , with

standard deviation of 1.5 samples, normalized to sum to unity

. The statistics and are then

redefined as

In most implementations, the ensemble mean SSIM index

map is used to evaluate the overall image quality, which is a

simple form of pooling.

B. Multi-Scale SSIM

The perception of image details is dependent upon a mul-

titude of scale-related factors, including but not restricted to,

the sampling density of the image signal, the distance from the

image plane to the observer and the perceptual capability of the

observer’s visual system. In general, the subjective quality of an

image also depends on these parameters. Moreover, images are

naturally multiscale. To enable evaluation of image quality at

multiple resolutions, in [4], the Multi-Scale SSIM (MS-SSIM)

index was proposed.

In MS-SSIM, quality assessment is accomplished over mul-

tiple scales of the reference and distorted image patches (the sig-

nals defined as and in the previous discussion on SS-SSIM)

by iteratively low-pass filtering and downsampling the signals

by a factor of 2 (Fig. 1). The original image scale is indexed as
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Fig. 1. Multi-scale SSIM. � � low-pass filtering, � �� downsampling by 2.

Fig. 2. Plot of ������� as a function of � for SS-SSIM. The sample points
were equally spaced values of � between 1 (indicates no weighting) and 750.

1, the first down-sampled version is indexed as 2 and so on. The

highest scale is obtained after iterations.

At each scale , the contrast comparison (2) and the structure

comparison (3) terms are calculated and denoted and

, respectively. The luminance comparison (1) term is

computed only at scale and is denoted . The overall

SSIM evaluation is obtained by combining the measurement

over scales

(6)

The highest scale used here is .

The exponents are selected such that

and . The specific parameters used in [4] and here

are

and

, respectively. Again the spatial pooling

strategy used in [4] was the ensemble mean.

III. GAFFE

Although human beings are continuously bombarded with a

slew of visual data, the human visual system is streamlined to

select and assimilate only those features that are relevant. When

shown an image or a video sequence, the human visual system

actively scans the visual scene using fixations linked by rapid,

ballistic eye moments called saccades [22]. Most visual infor-

mation is acquired during a fixation and little or no information

is gathered during a saccade [23]. Hence, an understanding of

how the human visual system selects certain regions for scrutiny

is of great interest, not only in the areas of image compression

and machine vision, but also in assessing the quality of images.

Given that certain regions in an image are more important

than others; specifically, given that, when shown an image, a

human tends to fixate at certain points on the image, it is of

interest to develop algorithms that attempt to predict where a

typical human looks on an average. In [10], this is summarized

as the computer/machine vision researcher’s dilemma: “How

do we decide where to point the cameras next?” In an attempt

to answer this question, researchers have produced some suc-

cessful fixation finding algorithms, such as the one in [9] which

seeks regions of high saliency, and the Gaze-Attentive Fixation

Finding Engine (GAFFE), which uses image statistics measured

at the point of gaze from actual visual fixations [10]. Here we

use GAFFE to find points of potential visual importance for de-

ciding IQA weights.

In [10], an experiment to record human eye moments was per-

formed and the gaze coordinates corresponding to the human

eye moments were recorded. This experiment was conducted

on a subset of images from the van Hateren database of im-

ages [24], and these images as well as the eye movement data

for each image is available as a part of the DOVES database

[25], available online at [26]. The images selected from the

van Hateren database were images that contained minimal con-

textual information, so as not to influence the fixations. Then,

the features: luminance, contrast, luminance-bandpass, and con-

trast-bandpass were calculated at image patches around the hu-

mans’ fixation points, and compared to the same features gen-

erated by randomly selected fixations. The randomly selected

fixations were such that the statistics of the eye moments were

maintained, even though the fixations themselves did not de-

pend upon the underlying image being analyzed. Further, an

eccentricity-based analysis was performed, where each image

patch was associated with the length of a saccade. For each fea-

ture, and for each image, the ratio of the average patch features

at eccentricity of the observer’s fixations and the randomly

generated fixation was computed, and averaged across all the

images and used in weighting the features. Bootstrapping [27]

was then used to obtain the sampling distribution of this ratio to

evaluate the statistical significance of the image statistic under

consideration.

Given an image, GAFFE selects the center of the image as

the first fixation, then foveates the image around this point. The

foveated image is then filtered to create a fixation map, using the
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Fig. 3. Plot of (a) CC and (b) RMSE as a function of � for SS-SSIM. The sample points were equally spaced values of � between 1 (indicates no weighting) and
750.

above described features. The four feature maps thus obtained

are linearly combined, where each feature is scaled by a factor

. The scaling factors are

and

. These weights are normalized to sum to unity. The al-

gorithm uses a greedy criterion to find the maximum value of

the weighted selection map as the next fixation point, foveates

the image around this point, then repeats the process. An in-

hibition-of-return mechanism using an inverted Gaussian mask

centered at each fixation point is imposed so that fixations do

not land very close to each other.

Thus, given an image, GAFFE algorithm outputs a set of vec-

tors that define a set of the points which may correlate well with

human fixations. It is important to note however that GAFFE

was not designed to account for highly contextual cues, such as

facial features, which are often fixation attractors.

A software implementation of GAFFE is available at [28] and

the algorithm is explained in detail in [10].

IV. PERCENTILE SCORING

Here, we define terms which will be used through the rest of

the paper. The motivation for percentile scores is also explained.

A term that is commonly known amongst statisticians is quar-

tiles [29]. Quartiles denote the lowest 25% values of an ordered

set. In an ordered set, the first quartile is the set of the first 25%

of the values, the second quartile is the next 25% and so on.

Quartiles are actually the 4-quantiles; where quantiles are points

taken at regular intervals from a distribution function. Similarly,

deciles are the lowest 10% values obtained from an ordered set

(the 10-quantiles). Generalizing this, the th percentile of an or-

dered set is the lowest % values of that set. Given a set, the ele-

ments are first ordered by ascending order of magnitude with the

lowest % values being denoted as the th percentile. Recall our

concept of the visual importance of low-quality image patches

as defined in Section I. Our hypothesis suggests that regions of

poor quality in an image can dominate the subjective perception

of quality. A reasonable approach to utilize the visual impor-

tance of low-quality image patches is to more heavily weight the

lowest % scores obtained from a quality metric. This was done

in [16] using several monotonic functions of the SSIM scores

as the weights but with desultory effect. By contrast, we obtain

substantial improvements by weighting the lowest percentiles

heavily, as explained below.

In our further discussion involving percentile scores, assume

that a quality map of the image has been found using one of

the above discussed SSIM quality metrics, and that these values

have been ordered by ascending value.

V. VISUAL IMPORTANCE POOLING FOR SSIM

Here, we incorporate both modes of visual importance con-

sidered, fixations and percentile scores, to produce modified ver-

sions of the SS-SSIM and MS-SSIM indices. Specifically, we

develop SSIM indices that use these features both individually

and simultaneously.

Thus, three new versions of SSIM are considered: FIXA-

TION-SSIM or F-SSIM, since GAFFE fixations are used to

produce the SSIM score weights; Percentile-SSIM or P-SSIM,

since the approach uses percentile weighting; and PF-SSIM,

which combines the two modes of visual importance weighting

to rate images.

A. F-SSIM

Given a set of image-coordinates that may be perceptually im-

portant—the fixations—two important decisions are required.

First, how many fixations should be used per image? Second,

given fixations per image, what is the scaling factor by which

SSIM values at these fixations should be weighted relative to

other pixels?

The number of fixations found in [10] were ten fixations/

image (on an average). However, these fixations were generated

based on the subjective study carried out, where each image was

shown to the subject for 5 s. Conversely, the design of the LIVE
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Fig. 4. Plot of ������� as a function of � and � for SS-SSIM with JPEG2000 distortion. The �(percentage)-axis consists of values of � in the range 0%–25%
with a step-size of 1%, the �(weights)-axis consists of values of � in the range 1–8000 with a step size of 100. SROCC value peaks at around 6%. Note that the
cases � � � and � � ��� (not shown here) correspond to the original SSIM.

database [2] (which we use as the algorithm test-bed) did not

employ time-restrictions during its creation. More specifically,

the subjects were allowed to look at the images for as long as

they wanted, until they made their decision. Hence, we elected

to keep the number of fixations at a constant (although

GAFFE can be programmed to compute any number of fixa-

tions). Each fixation is extrapolated by a 11 11 2-D Gaussian

function centered at the fixation. Since fixations are recorded

at single coordinates and since areas of visual importance may

be regional, the Gaussian interpolation used in GAFFE serves

to associate the fixations with regions subtending a small visual

angle. Each 11 11 region is then scaled by a factor .

The peak values of the weights applied to the “fixated” re-

gions (the Gaussian centers) relative to the weights of the non-

fixated areas is in the ratio . The testing was performed

by randomly selecting one of the types of distortion from the

LIVE database [2] and simulating various values of . We found

that the value of that maximizes the correlation between the

objective and subjective scores (from the LIVE database) re-

mained approximately the same over various distortion types.

In Figs. 2 and 3, we see the absolute value of the Spearman

rank ordered correlation coefficient (SROCC) the linear corre-

lation coefficient (CC) and the RMSE plotted as a function of

the weighting parameter for SS-SSIM. Through such empir-

ical testing we found a value to yield good results,

although varying this ratio in the range did not

the change performance much.

Thus, the F-SSIM index is defined as

(7)

where is the SSIM value at pixel location

are the image dimensions and are the SSIM weights.

For MS-SSIM, we reduce the size of the Gaussian mask pro-

gressively with the scale. The mask size at a scale is given

by

At each scale, we reduce the number of fixations by a factor

of two. Specifically

where is the ceiling function, and is the scaling index.

The pixels that do not fall under the fixation masks are left

untouched: .

B. P-SSIM

Here, we follow on the hypothesis that poor quality regions
disproportionately affect subjective quality assessment. This
suggests that weighting the scores by their rank ordering may
produce better results [30]. Many ways of weighting are pos-
sible. Here, we consider simple percentile weighting, yet, the
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Fig. 5. Plot of ������� as a function of � and � for SS-SSIM with JPEG2000 distortion. The �(percentage)-axis consists of values of � in the range 0%–25%
with a step-size of 1%, the �(weights)-axis consists of values of � in the range 1–8000 with a step size of 100. Note a gradual increase at � � �%, with �, highest
correlations are obtained when ���� � � � 	���. The case � � � corresponds to the original SSIM.

questions remain—what percentile should be used? and how
much should we weight the percentile score by? In order to
arrive at a solution we tried values of from 5%–25% in 1% in-
crements. Rather than using an arbitrary monotonic function of
quality (such as the smooth power-law functions used in [16]),
we use the statistical principle of heavily weighting the extreme
values—in this case, lowest percentiles. Thus, the lowest %
of the SSIM scores are (equally) weighted. Non-equal weights
of the rank-ordered SSIM values are possible, but we have not
explored this deeper question [31], [32]. Similar to the approach
used for F-SSIM a random subset of distortions from the LIVE
database was selected and various values of (5%–25% in
1% increments) were simulated. In our analysis, we found the
value % yields good results; however, small perturbations
in do not alter the results drastically. We note that in [30] a
similar form of pooling is used for video quality assessment,
where only lowest 5% of the spatial scores are pooled together.

Given a SSIM map, we arrange the SSIM values in ascending
order of the magnitude and scale the lowest % of these values
by a factor of . Again, the ratio by which these pixels are
weighted is . Although we choose , a variation
of this ratio in the range did not affect the per-
formance much. The pixels that do not fall within the percentile
range, are left unchanged . We note that this yielded
better performance than when for the pixels that do not
fall within the percentile range.

These empirical choices are validated by the results seen in
Figs. 4–7, where 3-D plots of absolute value of SROCC, CC,

and RMSE for SS-SSIM as a function of and are seen for
JPEG2000 distortion. A clear peak is visible around %,
with the value of the SROCC, CC, and RMSE peaking/attaining
a minimum in the range . This trend remains
unchanged across distortion types.

As was the case for F-SSIM, the implementation differs
slightly when incorporated into MS-SSIM. Since the per-
centiles scores are a measure of a ratio given a set, we did
not deem it necessary to reduce the percentile being weighted
at each level. We, however, experimented with reducing the
weights in the same way as discussed for F-SSIM. We found
that such a weighting scheme did not notably improve the
results. Indeed, we found that the greatest gains were achieved
by weighting only the second level i.e., of the multi-
scale decomposed image set. This corroborates the observation
made in [4], where the highest gains relative to SS-SSIM were
achieved at .

C. Combined Percentile and Fixation-Based SSIM (PF-SSIM)

Since gains are achieved by using both of the individual

concepts of calculated fixations and percentile scores (as will

be demonstrated in Section VI), it is natural to consider using

them together to further improve on the achieved gains. Hence,

in PF-SSIM, first F-SSIM is implemented, then the values

are sorted and weighted as described in P-SSIM. The values

thus obtained are normalized to lie between 0 and 1. The

order of implementation, i.e., F-SSIM followed by P-SSIM or
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Fig. 6. Plot of CC as a function of � and � for SS-SSIM with JPEG2000 distortion. The � (percentage)-axis consists of values of � in the range 0%–25% with a
step-size of 1%, the �(weights)-axis consists of values of � in the range 1–8000 with a step size of 100. CC value attains a maximum at around 6%. Note that the
cases � � � and � � ��� (not shown here) correspond to the original SSIM.

Fig. 7. Plot of RMSE as a function of � and � for SS-SSIM with JPEG2000 distortion. The �(percentage)-axis consists of values of � in the range 0%–25% with
a step-size of 1%, the �(weights)-axis consists of values of � in the range 1–8000 with a step size of 100. RMSE value attains a minimum at around 6%. Note that
the cases � � � and � � ��� (not shown here) correspond to the original SSIM.

vice-versa does not seem to change the results much, and hence

we quote results for the order mentioned above only.

The parameters used for weighting the fixations and the per-

centile scores are given in Table I.

VI. RESULTS

A. Computed Scores

In order to validate the algorithm, the LIVE database of im-
ages was used as a test bed. The specific contents of the type
of distortions present in the database are: JPEG2000: 227 im-
ages, JPEG: 233 images, White Noise: 174 images, Gaussian

TABLE I
TABLE INDICATING THE WEIGHTS FOR F-SSIM, P-SSIM AND PF-SSIM.

SS � SINGLE-SCALE, MS � MULTI-SCALE, M � SCALE OF RESOLUTION, EX.,
ORIGINAL IMAGE � � �, ONCE-DOWNSAMPLED IMAGE � � �, AND SO ON

Blur: 174 images, Fast Fading: 174 images. The database in-
cludes DMOS subjective scores for each image.

We present the results for F-SSIM, P-SSIM, and PF-SSIM.
The algorithms were evaluated against the DMOS scores using
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TABLE II
LINEAR CORRELATION COEFFICIENT VALUES (AFTER NONLINEAR

REGRESSION)—F-SSIM, P-SSIM, PF-SSIM (SINGLE-SCALE)

TABLE III
LINEAR CORRELATION COEFFICIENT (AFTER NONLINEAR REGRESSION)

—F-SSIM, P-SSIM, PF-SSIM (MULTISCALE)

TABLE IV
RMSE (AFTER NONLINEAR REGRESSION)—F-SSIM,

P-SSIM, PF-SSIM (SINGLE-SCALE)

TABLE V
RMSE (AFTER NONLINEAR REGRESSION)—F-SSIM,

P-SSIM, PF-SSIM (MULTI-SCALE)

TABLE VI
SROCC VALUES—F-SSIM, P-SSIM, PF-SSIM (SINGLE-SCALE)

three popular metrics: the Spearman rank ordered correlation
coefficient (SROCC), the linear correlation coefficient (CC)
(after nonlinear regression), and the RMSE (after nonlinear
regression). The nonlinearity chosen to fit the data is a five-pa-
rameter logistic function (a logistic function with an added
linear term, and constrained to be monotonic) given by

where is the score obtained from the objective metric.
The results are tabulated in Tables II–VII. In all tables, SS

Single-scale MS Multi-scale WN White Noise Gblur
Gaussian Blur, and FF Fast Fading.

We calculate all metrics for all distortions, for both MS-SSIM
and SS-SSIM.

TABLE VII
SROCC VALUES—F-SSIM, P-SSIM, PF-SSIM (MULTI-SCALE)

B. Performance Metrics

It was noted in [3] that the SROCC operates only on the rank
of the data points while assuming an equal spacing between the
datapoints. Images which generate clustered scores, although
different in rank, may not differ much in quality—since the
scatter is only indicative of measurement noise. Further, since
each point is treated with the same importance as the other
points, data sets which exhibit saturation are not good candi-
dates for evaluation by the SROCC. While we have included
SROCC values for completeness, it may be argued as in [3] that
the RMSE and the CC (after nonlinear regression) are better
choices for measurement of quality across data-sets. However,
it may also be argued that the nonlinear regression may affect
results owing to the regression procedure. Even though all three
metrics have certain drawbacks, we continue to evaluate IQA
algorithms based on these metrics for want of a better analysis
technique.

C. F-SSIM Performance

We used GAFFE as the fixation finding algorithm. Prior work
closest in concept to ours used recorded visual attention [19].
The use of GAFFE was owing to its performance and reason-
able computational expense. As explained earlier, the number
of fixations were fixed at . Having said this, we still
believe that the variation of the number of fixations given a fix-
ation finding algorithm is a topic of interest, as are other fix-
ation-finders or ROI-finders, such as image “saliency” [9]. We
note that temporal saliency has recently been explored for video
quality assessment [33].

The improvements afforded by F-SSIM were not across the
board, and indeed were limited to the Gaussian blur and Fast
Fading distortion types. These distortions tend to destroy the
structure of perceptually significant features such as edges. This
was true for both SS-SSIM and MS-SSIM, although the gains
relative to SS-SSIM were much more substantial. This is to
be expected, since MS-SSIM has a very high correlation with
human subjectivity that may be pushing reasonable expected
limits of algorithm performance.

The improvement in performance using P-SSIM was more
substantial. Indeed, the improvement afforded by single-scale
P-SSIM is so significant that it competes with standard
MS-SSIM! This suggests that using percentile scoring in com-
bination with simple SSIM is a viable alternative to the more
complex MS-SSIM. Yet, using P-SSIM for MS-SSIM affords
even better gains.

Finally, combining P-SSIM and F-SSIM into PF-SSIM pro-
duced desultory improvement, if any. While both approaches
are individually successful, P-SSIM appears to be more so, and
the benefits of combining them is not obvious. However, this
may change as the state-of-the-art in “fixation-finding” evolves,
as that field remains in a nascent state.
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VII. CONCLUSION

We found that by visual importance weighting of the com-
puted fixations and by using error percentile scores, better agree-
ment with subjective scores can be produced for IQA metrics,
in contradiction to prior studies in [16] and [19]. The increase in
correlation between the modified IQA metrics and the subjective
DMOS scores by the use of these concepts was demonstrated to
be significant for both single-scale and multiscale SSIM, using
the LIVE database of images. The degree of significance de-
pended, in some cases, on the type of distortion.
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