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Visual Input for Pen-Based Computers

Mario E. Munich, Member, IEEE, and Pietro Perona, Member, IEEE Computer Society

Abstract—The design and implementation of a camera-based, human-computer interface for acquisition of handwriting is presented.
The camera focuses on a standard sheet of paper and images a common pen; the trajectory of the tip of the pen is tracked and the
contact with the paper is detected. The recovered trajectory is shown to have sufficient spatio-temporal resolution and accuracy to
enable handwritten character recognition. More than 100 subjects have used the system and have provided a large and heterogeneous
set of examples showing that the system is both convenient and accurate.

Index Terms—Systems and applications, active and real-time vision, pen-based computing, pen-based interface.

1 INTRODUCTION AND MOTIVATION

WITCHES, turn-knobs, sliders, keyboards, and mouses are

currently the most popular interfaces between humans
and machines. However, they are far from perfect. They are
effective for many tasks, but for many other tasks they are
inconvenient, inadequate, or too bulky.

The first shortcoming is size. Exponential progress in
VLSI and storage technology makes it possible to miniatur-
ize computers and embed them in gadgets as diverse as
digital cameras, cell phones, personal digital assistants
(PDAs), dolls, and personal computers (PCs). The size of the
typical PC and PDA is today mainly determined by the size
of their human-machine interfaces: while we can shrink the
size of the electronics and storage devices, a keyboard is
nonshrinkable since it must fit the human fingers.

The second shortcoming is inconvenience. When we
communicate with a machine we must abandon our
favorite means of communication: talking, gesturing,
sketching, handwriting, and adopt the machine’s mean’s
of communication: typing, mouse-clicking, knob-turning.
Learning to use a keyboard effectively requires time and
patience. Ditto for menu-based mouse interfaces. Current
interfaces were designed for habitual computer users and
for a limited range of tasks. If the “computer revolution” is
to reach and benefit the majority of the world population,
more intuitive interfaces have to be designed. If machines
are to become our helpers, rather than ever more
complicated tools, they must be designed to understand
us, rather than us having to learn how to use them.

The third shortcoming is inadequacy. Our machines and
the rest of our world are not well-integrated because
machines lack a sensory system. A machine does not know
what is happening in its neighborhood, rather it sits and
waits for a human to approach it and touch skillfully some
of its hardware. Our desktop, our white-board, the visitor in
our office are completely unknown to our office PC. There
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are many tasks that a machine will simply not do because
its interfaces are inadequate.

One avenue towards improving human-machine inter-
faces is to imitate nature and develop “senses” for machines.
Take vision: cameras may be miniaturized, thus allowing the
development of small and cheap hardware; humans can
easily read the body language, sketches, and handwriting
produced by other humans—if a machine could do the same,
this would provide a natural, friendly, and very effective
vision-based interface. This interface would allow capturing
much information that current interfaces ignore.

The computer industry recognized the advantages of
using handwriting as the human-machine communication
modality. Pen-based interfaces provide convenience, flex-
ibility, and small size. After the unsuccessful introduction
of the visionary Apple Newton in the early 1990s, a new
generation of pen-based PDAs has established itself in the
market. These PDAs (e.g., the popular PalmPilot) represent
an interesting compromise. Their input device is the
computer screen: The screen must be as large as possible
for convenience of use and as small as possible for
portability. The optimal size, as identified by the market
(approximately 12x8 cm), makes PDAs acceptable but
definitely not excellent on both counts.

Handwriting may also be captured using a video camera
and computer vision techniques, rather than the traditional
tablets and touch-sensitive screens. This is an attractive
alternative because cameras may be miniaturized thus
making the interface much smaller. Furthermore, a vision-
based system would allow the user to write at will on any
convenient surface, e.g., write on a piece of paper with a
normal pen, on a blackboard, etc., regardless of size and
location.

In this paper, we present the first fully online, vision-based
interface for conveniently and accurately capturing both
handwriting and sketching. The interface is designed to be
small and simple to use. It is built with a single consumer-
electronics video camera and captures handwriting at high
temporal (60Hz) and spatial (about 6,000x2,500 samples)
resolution without using a special writing instrument. It
allows the user to write atnormal speed within a large writing
area (more than half a letter-size page) with an output quality
that is sufficient for recognition. The input interface consists
of a camera, a normal piece of paper, and a normal pen. The
camera focuses on the sheet of paper and images the pen tip;
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computer analysis of the resulting images enables the
trajectory of the pen to be tracked and contact of the pen
with the paper to be detected.

The paper is organized as follows: In Section 1.1, we
summarize previous work in this area. This will allow us to
motivate our approach and design, which are described in
Section 2. Section 3 presents a number of experiments that
explore the performance of the system. A few concluding
observations, as well as themes for future research, are
collected in Section 4.

1.1 Previous Work

The literature on handwriting recognition (see [10], [22],
[25] for very comprehensive surveys) is divided into two
main areas of research: offline and online systems. Offline
systems deal with a static image in which the system looks
for the handwritten words before doing recognition. Online
systems obtain the position of the pen as a function of time
directly from the interface. Online systems have better
information for doing recognition since they have timing
information and since they avoid the initial search step of
their offline counterparts. The most popular input devices
for handwriting are electronic tablets for online capturing
and optical scanners for offline conversion. We are of course
interested in building online human machine interfaces.

The integration of the electronic and physical aspects of
an office has been explored by two ambitious experimental
systems. The Digital Desk [30], [31] developed at Rank
Xerox EuroPARC merges physical objects (paper docu-
ments and pencils) with their electronic counterparts using
computer vision and video projection. A computer screen is
projected onto a physical desk using a video projector,
while a camera is set up to watch the workspace such that
the surface of the projected image and the surface of the
image area coincide. A tablet digitizer or a finger tracked by
the camera, like the system developed at INPG, Grenoble
[4], [5], are used to input mouse-type information into the
system, allowing one to select or highlight words on paper
documents, cut and paste portions of text, draw figures, etc.
The Liveboard [6], [19] developed by Xerox is similar in
concept to the digital desk. This device is the replacement
for the pads of flip-chart paper used in meetings. A
computer screen is projected onto a white-board and a
cord-less pen is used as input. The same image could be
displayed onto boards placed at different locations and the
input from each of the boards overlaid on all of them,
allowing in this way for remote collaboration. The Digital
Desk and the Liveboard are steps towards the integration of
paper documents into the computing environment; these
systems motivate the development of human-computer
interfaces that can collect and interpret sketches and
handwriting, and that do not require special hardware
such as tablets and instrumented pens.

A few vision-based interfaces [2], [14], [15], [18], [32] for
handwriting are described in the literature. The MEMO-
PEN [18] consists of a special pen that carries a small
CCD camera close to its tip, a stress sensor, a micro
computer, and a memory. The camera captures a series of
snapshots of the writing, while the stress sensor detects the
pressure applied on the ballpoint to have a record of the
pen-up/-down strokes. The images captured by the camera
only include a partial portion of the writing, so the whole
handwritten trace is recovered by overlaying successive

snapshots. This system is quasi online since timing
information is provided by the causality of image collection;
however, the corresponding recognizer would need to look
for the ink trace on the images before doing recognition.
Also, the user is forced to write with a special purpose
stylus rather than with a common pen. Alternative
approaches [2], [32] consist of a video camera aimed to a
user writing on a piece of paper. The camera provides a
sequence of images at a frequency of 19 Hz. The last image
of the sequence is thresholded in order to segment out the
written text. The temporal order of the handwriting is
reconstructed with a batch process by detecting the trace of
ink produced between each two successive images. This
detection may be obtained by performing image differen-
cing between successive images at the location of the
segmented text. The user is required to write with a white
pen under carefully controlled lighting conditions [2]. This
system provides the location of the pen tip on each image,
but it still requires batch processing after all text have been
written. Besides, the ink trace detection method is prone to
errors due to changes in lighting conditions and small
movements of the writing surface.

In contrast with the mentioned systems, our approach
[14], [15] is fully online. It obtains data from a fixed video
camera and it allows the user maximum flexibility in
choosing virtually any pen and writing surface. We track
the pen tip in real time in order to reconstruct its trajectory
accurately and independently of changes in lighting. As we
show in Section 2.5 (see also Fig. 5), our interface increases
the spatial resolution of the interface by a factor of 10 (as
compared with the batch ink-trace approach [2], [32]) and
improves robustness with respect to lighting and small
motions of the writing surface. The pen tip is tracked
continuously both when the user is writing and when the
pen is traveling on top of the paper. The detection of the
strokes corresponding to the ink trace is the added burden
that our system pays for all the described improvements.

2 VISION SYSTEM FOR PEN TRACKING

Our design of the interface is subject to the following
constraints: All components (camera, frame grabber, com-
puter) must be cheap and readily available; the user has to
be able to write in a comfortable position using a normal
pen; the interface has to be simple and intuitive so that
user’s training time and effort is minimal; the acquired
handwritten trajectory has to have sufficient spatio-tempor-
al information to enable recognition.

The first premise constrains the selection of the video
camera to commercial consumer electronics devices. Typical
low-cost cameras have spatial resolution of 480x640 pixels
(rows x cols) at a frequency of 30 Hz. Most cameras are
interlaced, so each frameis composed of two half-frames with
a maximum resolution of 240x640 pixels at a frequency of
60 Hz. Given that the cut-off temporal frequency of hand-
writing is below 20 Hz [12], [24], [29], we are well above the
Nyquist frequency of handwriting by working at 60 Hz,
making sure that no frequency component of handwriting is
lost. The spatial resolution of the interface should be such that
it enables clear legibility of the acquired handwriting. Fig. 1c
presents one example image provided by a camera located
30 cm above the writing hand, as shown on Fig. 1b. The
resulting acquired trajectory is a signature shown magnified
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Fig. 1. Overview of the System. (a) Block Diagram of the system. The camera feeds a sequence of images to the preprocessing stage (Section 2.1).
This block initializes the algorithm, i.e., it finds the initial position of the pen and selects the template (rectangular subregion of the image)
corresponding to the pen tip. In subsequent frames, the preprocessing stage has only the function of cutting a piece of image around the predicted
position of the pen tip and feeding it into the next block. The pen tip detector (Section 2.2) has the task of finding the position of the pen tip in each
frame of the sequence. The filter (Section 2.3) is a recursive estimator that predicts the position of the tip in the next frame based on an estimate of
the current position, velocity, and acceleration of the pen. The filter also estimates the most likely position of the pen tip for missing frames. The
ballpoint detector (Section 2.5) finds the position of the very end of the pen tip, i.e., the place where the pen is in contact with the paper when the user
is writing. Finally, the last block of our system checks for the presence of ink on the paper at the positions where the ballpoint of the pen was detected
(Section 2.6). (b) Experimental setup. The system does not require any calibration. The user has the flexibility of arranging the relative positions of
the camera and the piece of paper in order to write comfortably as long as the system has a clear sight of the pen tip. (c) Image provided by the
camera. The user has a writing area larger than half a letter-size page. This image is the last frame corresponding to the trajectory shown in (d). The
pen tip is tracked continuously, both when the user is writing (pen-down strokes) and when the pen is moving on top of the paper (pen-up strokes).
The complete tracked trajectory is shown in (d). (e) Pen-down strokes corresponding to trajectory (d). (f) and (h) Two more examples of handwritten
sequences acquired with the interface. (h) and (i) Corresponding pen-down strokes.

in Fig. 1d. This sequence approximately occupies 20 image Fig. 1 shows the block diagram of the system, the
pixels per centimeter of writing; the spatial accuracy of the experimental setup, an example of an image provided by
interface is 0.1 pixels; thus, the resolution of the system is the camera, and three pen tip trajectories captured with the
about 200 samples per centimeter. This signature, as well as ~ interface along with their corresponding pen-down strokes.
the other trajectories presented in the figure are easily These examples show an important c.li.fference between. our
readable, showing that this ratio of image pixels per 1nterface. and cor.wentlonal. handwriting capture dev.lc'es:
centimeter of writing provides sufficient information for a We obtain a continuous trajectory by t.rackmg the position
human to perform recognition. All handwriting examples of the pen tip in each of the images in the sequence; for

. . .. . . some applications this trajectory must be segmented into
shown in this paper follow a similar ratio of pixels per . .
: - strokes corresponding to ink trace (pen-down strokes) and
centimeter of writing.

: . . trok T nding to movement above the paper (pen-
In order to satisfy the other premises, our interface does not Strokes rortesps § to movere ove the paper (pe

require calibration and provides the user with the flexibility of ggwir;l; f)i)és"l;};ewrerhet;o?hedszsilgge; c{[ (; rif;i;; ifl;n(_)lfl%{e-
arranging the relative positions of the camera and the piece of ;. .c2 o 210 the main contributions of this paper.

paper. Only two conditions are imposed onto the user, one is

that the camera should be located so thatithasa clearsightof 2.1 Initialization and Preprocessing

the pen tip and the other is that the writing implement should  The detection and localization of the position of the pen tip in
have sufficient contrast with the piece of paper. the first frame and the selection of the template to be used for
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Fig. 2. Tracking Initialization. (a) Image provided to the user. The white rectangle is the initialization box. (b) The user has to place the pen tip inside
the box so that the system can acquire the tracking template. Image differencing is used to detect when the pen tip gets inside the box. The figure
shows the result of image differencing when the pen enters the tip acquisition area. (c) The boundaries of the pen tip are extracted using Canny’s
edge detector inside the initialization box. Only pixels with high contrast are selected. The dots display the boundary pixels and the cross indicates
their centroid. Subpixel resolution in the location of edge elements is achieved by fitting a parabolic cylinder to the contrast surface in the
neighborhood of each pixel. (d) Orientation of the boundary edge elements obtained with Canny’s detector. (e) The different boundaries of the pen
tip are obtained by clustering the orientation of the edge elements into the four quadrants and interpolating lines through the corresponding clustered
pixels. (f) In the case in which only one of the boundaries is reliably detected, the other pen tip boundary is obtained by searching the image
brightness profile along lines perpendicular to the detected boundary. Points of maximum contrast on these profiles define the missing boundary.
The detection of the boundaries of the pen tip is performed on a sequence of frames in order to increase the robustness of the template extraction.
The final centroid position is obtained as the mean of the location of the centroid in each individual frame. (g) The triangular model of the pen tip is
completely specified with the location of the centroid of the tip, the orientation of the axis of the tip, and the positions of the finger and of the ballpoint.
The pen tip axis is defined as the line passing through the centroid of the boundary pixels, whose orientation is the mean of the orientation of the
boundary lines. (h) Image brightness profile across the estimated pen tip axis. The positions of the ballpoint and of the finger are extracted by
performing a 1D edge detection on the profile. Subpixel accuracy is obtained by fitting a parabola to the edge detection result. (i) Final template of the
pen tip automatically extracted by the interface.

detection in subsequent frames is the first problem to solve.
There are two possible scenarios: 1) The user writes with a pen
that is familiar to the system or 2) an unknown pen is used.
The familiar-pen case is easy to handle: The system may use a
previously stored template representing the pen tip and
detect its position in the image by correlation.

There are a number of methods to initialize the system
when the pen is unknown. Our initialization method is a
semiautomatic one that requires a small amount of user
cooperation. It is based on a few reasonable assumptions:

We assume that the user is writing with a dark-colored pen
on a light-colored piece of paper; we assume that the pen tip
is conical in shape; and we assume that the edges between
the pen tip and the paper have a larger contrast than the
edge between the pen tip and the finger (see Fig. 2i). The
first assumption restricts the pen to be used with the system
to have a well defined contrast with the paper. Hence,
transparent pen or pens without contrast could not be used.
The restriction is not severe since pens come in all sort of
colors and it is quite simple to get one that satisfy the
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Fig. 3. Pen Tip Detector. The detection of the pen tip is obtained in our system by locating the maximum of the normalized correlation between the pen
tip template and a subimage centered on the predicted position of the pen tip. The system analyzes the values of the maximum normalized correlation
to detect whether the pen tip is within the predicted region of interest. If the value of maximum correlation is lower than a threshold, the system emits an
audible signal and continues to look for the pen tip in the same place, waiting for the user to realize that tracking has been lost and that the pen tip must
be returned to the region of interest. The system waits for a few frames; if the pen tip does not return to sight, then tracking stops.

requirement. The second assumption is true for most
commercial pens. The third assumption restricts the paper
to being lighter than human skin. The requirement is easily
satisfied writing on a piece of common white paper.

We display the image captured by the camera on the
screen of the computer. A rectangular box is overlaid on this
image, as shown in Fig. 2a. The user is required to place the
pen tip inside the displayed box, ready to start writing. The
system watches for activity within this box, which is
measured by image differencing between frames. After the
pen tip enters the box, the system waits until there is no more
activity within the box, meaning that the user has taken a
comfortable position to start writing. When the activity
within the box has returned to low for a period of time (bigger
than 200 ms), the system acquires the pen tip template, sends
an audible signal to the user, and starts tracking.

Fig. 2i shows the pen tip, whose conical shape projects
onto the image plane as a triangle. One of the borders of this
triangle corresponds to the edge between the pen tip and the
user’s finger and the two other boundaries correspond to the
edges between the pen tip and the piece of paper. Detection
and extraction of the pen tip template is reduced to finding
the boundary points of the pen tip, computing the
corresponding centroid, and selecting a portion of the image
around the centroid. The edges between the pen tip and the
paper have bigger contrast than the edge between the pen tip
and the finger, thus, we only look for these two boundaries in
the detection and extraction of the template. The boundaries
of the pen tip are located using Canny’s edge detector [3], as
shown in Fig. 2¢. Since detection and extraction of the pen tip
from a single frame is not very reliable due to changes in
illumination, the system collects information about the pen
tip for a few frames before extracting the template. The
algorithm is summarized in Fig. 2.

The selection of the pen tip template is performed only at
the beginning of the acquisition. The function of the
initialization and preprocessing module in subsequent
frames is only to extract a region of interest centered around
the predicted position of the pen tip. The region of interest is

used by the following block of the system to detect the actual
position of the centroid of the pen tip in the current image.

2.2 Pen Tip Detection

The second module of the system has the task of detecting the
position of the pen tip in the current frame of the sequence. The
solution of this task is well-known in the optimal signal
detection literature [8], [26]. Assuming that the signal to be
detected is known exactly except for additive white noise, the
optimal detectoris amatched filter,i.e., alinear filter thatlooks
like the signal to be detected. In our case, the signal consists of
the pixels that represent the pen tip and the noise has two
components: One component is due tonoise in the acquisition
of the images; the other one is due to shadows, due to pen
markings onthe paper,and duetochangesin theapparentsize
and orientation of the pen tip during the sequence of images.
The acquisition noise is the result of a combination of many
factors, like changes in illumination due to light flickering or
automatic gain of the camera, quantization noise, changes in
gain of the frame grabber, etc., where not all these factors are
additive. Changes in the apparent size and orientation of the
pen while the user is writing significantly distorts the pen tip
image, as shown in Fig. 3. Clearly, neither component of the
noise strictly satisfies the additive white noise assumptions of
the matched filter; however, as a first approximation, we will
assume that the pen tip canbe detected in each frame using the
matched filter. In our system, the final localization of the pen
tip is performed by fitting a triangle to the image of the tip as
described in Section 2.5.

2.3 Filtering

The filter predicts the most likely position of the pen tip on the
following frame based on the current predicted position,
velocity, and acceleration of the pen tip and on the location of
the pen tip given by the pen tip detector. The prediction
provided by the filter allows the interface to reduce the search
area, saving computations while still keeping a good pen tip
detection accuracy. The measurements are acquired faster
and the measured trajectory is smoothed by the noise
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TABLE 1
System Parameters

Parameter

Value

Pen tip template size

25x25 pixels

to find a clean arca where to write)

Initial dead time (given to the user to move the paper

2 sec. (120 frames)

Image difference threshold

15 (3 bits of noisc)

the pen tip template

Number of pixels required to detect movement 20 pixels
Number of pixels required to detect lack of movement 30 pixels
Time of no pen tip movement waited before acquiring 200 ms

Time used to acquire information on the pen tip

1 sec. (60 frames)

threshold (used with Canny’s edge detector)

Edge detector scale 3 pixels
Contrast threshold (used with Canny’s edge detector) 0.7
Distance from parabolic cylinder axis to center of pixel 0.5 pixcels

Correlation window size

15x15 pixels

KF output noise covariance matrix (R)

diag(10~%, 107%)

KF state noise covariance matrix (Q)

diag(0,0,0,0,107%, 10~%)

KF initial estimation error covariance matrix (Fp)

diag(1,1,10 2,10 2,10 5,10 7)

Maximum normalized correlation value considered as a match

0.75

Maximum velocity denoting pen not moving

0.5 pixels per frame

Time waited before stopping

0.5 sec (30 frames)

Minimum number of points in a sequence

150 samples

Minimum velocity threshold used for trajectory scgmentation

0.75 pixels per frame

Maximum curvature threshold used for trajectory segmentation

0.05 pixels per frame?

System parameters used in the real-time implementation.

rejection of the filter. A Kalman Filter [1],[9], [11] is arecursive
estimation scheme that is suitable for this problem. We tested
several different first- and second-order models for the
movement of the pen tip on the image plane. The model that
provided the best performance with the easiest tuning was a
simple random walk model for the acceleration of the pen tip
on the image plane. The model is given by (1):

x(k+1) = x(k)+ v(k) +3a(k)
vik+1) = v(k)+a(k) (1)
ak+1) = a(k)+mn.(k)
y(k) = x(k)+ny(k),
where x(k), v(k), and a(k) are the two-dimensional

components of the position, velocity, and acceleration of
the pen tip and n,(k) and n,(k) are additive zero-mean,
Gaussian, white noise processes. The output of the model
y(k) is the position of the pen tip corrupted by additive
noise. The filter parameters used in the real-time imple-
mentation of the system are listed on Table 1.

2.4 Missing Frames

The algorithm described in Section 2.2 detects the position
of the pen tip in each frame of the sequence. Unfortunately,
some intermediate frames could be missing due to
problems in image acquisition or, in the case of the real-
time implementation, due to synchronization problems
between the host computer and the frame grabber. It is
desirable to sample the handwritten trajectory at a constant
rate; hence, there is a need for estimating the most likely
position of the pen tip for the missing frames. The Kalman
smoother [1], [9] is the scheme used in our system to solve
this estimation problem (for more information, see [14]).

2.5 Ballpoint Detection
The pen tip detector finds the most likely position of the
centroid of the pen tip, a point that will be close to the
center of gravity of the triangular model of the pen tip (see
Section 2.1). The position of the ballpoint' is obtained using
an algorithm similar to the one used in the initialization; the
major difference is that the pen is now in movement, so we
need to compute one ballpoint position for each frame.
Using Canny’s edge detector, we find the position and
orientation of the boundary edges of the pen tip. The edge
detector is only applied to small windows in order to save
computations and to speed up the processing of the current
frame. We calculate the expected position of the boundaries
using the orientations of the boundaries in the previous
frame, the distance from the ballpoint and the finger to the
centroid of the pen tip, as well as the current detected position
of the centroid. A few points on these boundaries (in the case
of the real-time system, we use five points) are chosen as the
centers of the edge detection windows; we look for points in
each window that have maximum contrast; the edges are
found by interpolating lines through these points; the axis of
the pen tip is computed as the mean line defined by the pen
boundary edges; the image brightness profile through the
axis of the tip is extracted in order to find the positions of the
ballpoint and of the finger (see Fig. 4).

2.6 Pen Up Detection

The trajectories obtained by tracking the ballpoint are not
suitable for performing handwriting recognition using
standard techniques. Most of the recognition systems to date
assume that their input is only formed by pen-down strokes,
i.e., portions of the trajectory where the pen was in contact

1. The term ballpoint is loosely used to indicate the actual ballpoint of
pens and the pencil lead of pencils.
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Fig. 4. Fine localization of the ballpoint. (a) Image of the pen tip displaying the elements used to detect the ballpoint. The cross “+” in the center of the
image shows the centroid of the pen tip provided by the pen tip detector. The points marked with a star “*” show the places where the boundaries of the
pen were found using edge detection. The lines on the sides of the pen tip are the boundary edges and the line in the middle is the pen tip axis. The other
two crosses “+” show the estimated positions of the ballpoint and of the finger. (b) Brightness profile along the axis of the pen tip. The positions of the
ballpoint and of the finger are obtained by performing a 1D edge detection on the profile. This 1D edge detection is computed by correlating the profile
with a derivative of a Gaussian function. The spatial resolution of the interface is defined by the accuracy on the localization of the ballpoint. The desired
locations are extracted with subpixel resolution by fitting a parabola to the correlation peaks. (c) Result of correlating the image profile with a derivative
of a Gaussian function. (d) Blow-up of the region between the dotted vertical lines in (c). The parabolic fit of the peak identifies the position of the

ballpoint. The vertex of the parabola plotted with a cross “x” corresponds to the estimated subpixel position of the ballpoint.

with the paper. Our interface has only one camera from which
we cannot detect the 3D position of the ballpoint; therefore,
contact has to be inferred indirectly. A stereo system would
solve this problem at a cost in additional hardware,
calibration, and visibility of the pen tip.

The detection of the times when the pen is lifted and,
therefore, not writing is accomplished in our system by using
the additional information provided by the ink path on the
paper. Given a particular position of the ballpoint, the system
checks whether there is an ink trace on the paper at this place

or not. The image brightness at any given place varies with
illumination, writer’s hand position, and camera gain. More-
over, the image contrast could change from frame to frame
due to light flickering and shadows. Hence, the detection of
the ink trace on the paper using image brightness is quite
difficult, as illustrated by the example of Fig. 5.

We can get several observations from the simple example
of Fig. 5. The ink trace is narrow (1-2 pixels), so even a small
error in locating the ballpoint could lead to a mismatch
between the ballpoint and the ink trace. The handwritten
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110

280 300 320 340

210

150

Gl 60 %0 120 180

Sample point #
(d)

Fig. 5. Difficulties in detecting the ink trace. (a) The plot shows one sequence acquired with the interface. The dots indicate the ballpoint position over
time. (b) The image displays a portion of the last frame of the sequence (we can see part of the pen tip on the right side of the image) showing the
corresponding ink trace deposited on the paper. (c) Recovered ballpoint trajectory overlaid on the image of the ink trace. The sample points land over
the ink trace most of the time with the exception of points at the beginning of the sequence (shown on the left side of the image). This happens
because there might have been a displacement of the paper generated by one of the strokes (probably the long horizontal stroke between samples
20 and 40). (d) Each column of the picture shows the brightness profile of the image along lines that pass through each sample point and are
perpendicular to the direction of motion. Brightness is measured at the position of the ballpoint and on five pixels on each side of the ballpoint along
the mentioned perpendicular. We note that the ink trace is not always found at the ballpoint position (row 6 of the plot). We can see the ink trace
being a few pixels off the ballpoint pixel at the beginning of the sequence (samples 1-20), then stabilizing on the ballpoint (samples 20-35) until the
pen tip appears on the profile (samples 35-40) and later disappearing because of a pen up stroke (samples 40-55). From this example, we observe
that we cannot rely on the ink trace captured in the last image of the sequence, but we should rather detect the presence of ink as the ballpoint
trajectory is being acquired (see Sections 2.6.1-2.6.4).
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Fig. 6. Pen up/down classification. Block diagram of the pen-up/-down
classification subsystem. We detect when the pen is up or down using a
bottom-up approach. The brightness of each point in the trajectory is
compared with the brightness of the surrounding pixels. This compar-
ison provides a measure of the confidence of ink absence. A Hidden
Markov Model is used to model the transition of the confidence measure
between the states of pen up and pen down. Using the local confidence
measure and the estimated HMM state sequence, the system classifies
each point of the trajectory as pen up or pen down. The measure of ink
absence is difficult to obtain and prone to errors, so it is better to divide
the trajectory of the ballpoint into strokes and aggregate the point-wise
classification into a stroke-wise classification.

strokes are quite distorted due to the pixelization of the
image, e.g., diagonal straight strokes present a staircase
pattern. The value of brightness corresponding to the ink
trace varies within the same image (and even more across
images), soweneed to detect the ink trace in alocal and robust
way. Thelocal ink measurement should be performed as soon
as possible since the paper might move in the course of the
session. Working in this way, there would be a good fit of the
sample points on top of the ink trace and the system would
provide pen-up/-down information as the writing is pro-
duced, in an online fashion. However, the measurement has

335 340 345 350

(a)

tobe done after the pen tip moves away; otherwise, the pen tip
will obstruct the paper and the ink trace. Fig. 6 shows a block
diagram of the pen-up/-down detection subsystem. The
following sections describe in more detail each of the blocks
presented in the figure.

2.6.1 Local Ink Detection

The detection of the ink trace is performed locally for each
point of the trajectory by comparing the brightness at the
ballpoint with the brightness of surrounding pixels (see
Fig. 7). A confidence measure of ink absence is obtained in a
probabilistic setting. The brightness of inkless pixels is
assumed to be a Gaussian-distributed random variable. The
parameters of the corresponding Gaussian p.d.f. are
estimated locally using the brightness of points located on
a circle centered at the ballpoint. We assume that all these
points correspond to inkless pixels. The ink absence
confidence measure is computed as the probability of the
brightness at the ballpoint pixel given that this pixel is
inkless. If there is ink present at the ballpoint pixel, this
measure is low, close to zero; otherwise, the measure is
high, close to one. The selection of this particular confidence
measure is very convenient since it provides automatic
scaling between zero and one.

The measurements of brightness cannot be obtained until
the pen tip has left the measurement area; otherwise, the ink
trace will be covered by the pen tip, by the hand of the user,
or by both. The system assumes a simple cone-shaped
model for the area of the image covered by the pen and the
hand of the user. The ballpoint is located at the vertex of the
cone, the axis of the pen tip defines the axis of the cone, the
position of the finger has to be inside the cone, and the
aperture of the cone is chosen to be 90 degrees. This simple
model allows the system to determine if the user is left
handed or right handed and whether a particular ballpoint
position is within the cone. The system waits until the cone
is sufficiently far away from the area of interest before
doing any brightness measurements. Left-handed users are
challenging since they usually cover with their hands the
most recently written pen strokes; hence, the system has to
wait much longer than for right-handed users in order to

Ink absence confidence value:0.075

# samples

80 100 120 140 160
brightness

(b)

Fig. 7. Local ink absence detection. (a) Typical pen-down sample point. The center cross corresponds to the estimated position of the ballpoint of the
pen. The detection of ink is performed locally by comparing the brightness at the ballpoint with the brightness of the pixels located on a circle
centered at the ballpoint position. The brightness at each point is obtained by interpolation [13]. (b) Histogram of the brightness values measured on
the circle and corresponding Gaussian p.d.f. estimated from these values. The vertical line shows the value of brightness corresponding to the
ballpoint’s position. The ink absence confidence measure corresponds to the area below the Gaussian p.d.f. between —oo and the ballpoint’s
brightness. This confidence measure is equal to 0.075 for this example, indicating that ink is likely to be present.
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Fig. 8. Local model of pen up/down. Hidden Markov Model that models the transitions between pen-up and pen-down states. The observation of the
model is the ink absence confidence measure, an intrinsically continuous variable as it was defined in Section 2.6.1. The HMM output is a set of
discrete symbols, so we need to quantize the value of the confidence measure in order to define the output symbols. The confidence measure is a
probability, so it is scaled between zero and one. The interval [0, 1] is divided into 16 equal intervals to quantize each confidence measure value and
to translate it into observation symbols. The resulting HMM after training is shown in the figure. The bar plots display the output probability

distributions of each state that are learned purely from the examples.

perform ink detection. We have acquired data from left-
handed users for the experiment of Section 3.3, but we
haven’t compared the accuracy of pen-up/-down detection
for left- and right-handed users.

2.6.2 Local Pen-Up/-Down Modeling

Theink absence confidence measure described in the previous
section could be used to decide whether a particular sample
point corresponds to pen up or pen down. However, making
hard decisions based on a single measurement is likely to fail
due to noise and errors in brightness measurements. A soft-
decision approach that estimates the probability of each
individual point being a pen up or a pen down is more robust.
A further improvement is provided by modeling the prob-
ability of transition between these two states (pen up or pen
down), given the currentmeasurementand the previous state.
A Hidden Markov Model (HMM) with two states, one
corresponding to pen up and the other corresponding to pen
down, is a suitable scheme to estimate these probabilities. The
HMM learns the probabilities of moving from one state to the
other and the probabilities of rendering a particular value of
confidence measure from a set of examples in an unsuper-
vised fashion. The HMM used in our system has the topology
presented in Fig. 8. We use the forward-backward algorithm
[23] to train the HMM using a training set of handwritten
sequences collected with the system. The training set consists
of examples of cursive handwriting, block letters, numbers,
drawings, signatures, and mathematical formulas in order to
sample the variability of the pen up/down transition for
different types of writing. The mostlikely state of the system at
each point in the handwritten trajectory is estimated using
Viterbi’s algorithm [7], [23].

2.6.3 Trajectory Segmentation

The previous two sections describe local measures used to
classify each sample of the handwritten trajectory as either
pen up or pen down. The measurement of ink absence is
subject to errors, so the performance may be improved by
dividing the handwritten trajectory into different strokes and
by aggregating the sample-wise classification into a stroke-
wise classification.

The handwritten trajectory is segmented into strokes
using two features, the curvilinear velocity of the pen tip
and the curvature of the trajectory. Selection of these two
features was inspired by the work of Viviani and Mc Collum
[27], Viviani and Terzuolo [28], Plamondon and Clémente
[20], and Plamondon and Maarse [21], and also by the
intuitive idea that on the limit points between two different
handwriting strokes the velocity of the pen is very small,
the curvature of the trajectory is very high, or both. The set
of segmentation points is the result of applying a threshold
on each of the mentioned features. These thresholds were
obtained experimentally and their values are presented on
Table 1. Fig. 9 shows several examples of trajectories and
the corresponding segmented strokes.

2.6.4 Stroke Classification

Having divided the trajectory into strokes, we proceed to
classify the strokes as either pen-up or pen-down. We
experimented with two approaches, one based on the ink
absence confidence measure and the other using the state
sequence provided by the HMM. In the first approach, the
mean of the ink absence confidence measures for all points in
the stroke was used as the stroke confidence measure. In the
second approach, a voting scheme was used to assess the
likelihood of a particular stroke being a pen-up or pen-down,
this likelihood provided the stroke confidence measure. If
needed, hard classification of each stroke as pen up or pen
down can be obtained by applying a threshold on the stroke
confidence results. The hard classification, as well as the
likelihood of pen up/down, are the stroke descriptors that
our interface provides to a handwriting recognition system.

2.7 Stopping Acquisition

We have mentioned that the system automatically stops if
the value of maximum correlation is very low since this
would imply that the pen tip has moved outside the search
window (or that there was such a change in illumination
that the pen tip no longer matches the template). The user
can exploit this behavior to stop the acquisition by taking
the pen tip away from the search window. There is another
stopping possibility offered to the user. The system checks
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Fig. 9. Trajectory segmentation. Several examples of trajectories acquired with the interface and the corresponding strokes obtained after
segmentation. Successive strokes are indicated alternately with solid and dashed lines. The threshold in curvilinear velocity was chosen so that
points that remain within the same pixel in two consecutive frames are discarded (see Table 1).

whether the pen tip has moved at all between consecutive
frames and counts the number of consecutive frames in
which there is no movement; if this number reaches a
predefined threshold, the system stops the acquisition.
Thus, if the user wants to finish the acquisition at the end of
a desired piece of handwriting, he can hold the pen tip still
and the system will stop the acquisition.

2.8 Real-Time Implementation

The interface was implemented using a video camera, a
frame grabber, and a Pentium II 230MHz PC. The camera
was a commercial Flexcam ID, manufactured by Videolabs,
equipped with manual gain control. It has a resolution of
480x640 pixels per interlaced image at 30Hz. The frame
grabber was a PXC200 manufactured by Imagination. Fig. 10
shows the graphical user interface (GUI) of the windows-
based application that runs our system.

3 EXPERIMENTAL RESULTS

3.1 System Specifications

Temporal and spatial acquisition resolutions are key para-
meters that define the performance of the interface. The
maximum working frequency provided by the camera is
60 Hz, so the temporal resolution of the system is at most
16.67 ms. The system is able to work at maximum frame rate
since the total processing time per frame is 14ms. However,
some frames are missed due to a lack of synchronization
between the CPU and the frame grabber. A component of the
system (see Section 2.4) estimates the most likely state of the
system in the case of missing frames. This scheme is useful if
the number of missing frames is small, otherwise, the system
would drift according to the dynamics of the model of (1). We
have used the system for acquiring hundreds of handwritten
sequences in real time, experiencing a missing frame rate of at
most 1 out of every 200 frames. We have shown in references
[14], [16], [17] the performance of a signature verification
system in which signatures are captured in real-time with our
interface. Signatures are written at higher speeds than normal
handwriting and, therefore, a bigger image neighborhood has

to be searched in order to find the pen tip. We acquired
signature sequences by enlarging the search area and turning
off the pen-up detection block of the system. In these
experiments, we experienced a missing frame rate of at most
1 out of every 400 frames. We observe that the system
occasionally loses track of the pen tip when the subject
produces an extremely fast stroke. This problem of losing
track of the pen tip could be solved in the future by using a
more powerful CPU or dedicated hardware (that is able to
process a larger search area). Nevertheless, after a few trials,
the user learns how to utilize the system without exceeding its
limits.

The spatial resolution of the system was estimated in
static and dynamic conditions. We acquired a few
sequences in which the pen tip was held fixed at the same
location, so any differences in the acquired points were
due to noise on the image acquisition and errors in pen tip
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Fig. 10. Real-time application. This image shows the GUI (Graphical
User Interface) of the windows-based application that implements our
system. The biggest window is a Dialog Box that allows the user to input
parameters and run commands. The top-left window displays the image
captured by the camera in order to provide visual feedback to the user.
The bottom-left window shows the acquired trajectory after having done
point-wise pen up/down classification with a hard threshold.
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Sequence used for dynamic resolution computation
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Fig. 11. Spatial resolution of the interface. The first figure corresponds to points acquired while the pen tip was kept still at a fixed position. This
sequence is used to estimate the static resolution of the system. The second figure shows a straight line drawn with a ruler that is used to estimate the
dynamic resolution of the system. The standard deviations of the error from the ideal position are given in the table as the estimated static and dynamic
resolution of the system. One could take two standard deviations (roughly 0.1 pixels) to obtain a more conservative value of the spatial resolution.

localization. We repeated this experiment 10 times,
placing the pen at different positions and using different
illumination. The static resolution of the system was
estimated by computing the average standard deviation
of the points acquired in each of the sequences. We also
acquired 10 sequences of a subject drawing lines of
different orientations with the help of a ruler. The lines
were carefully drawn to be straight, so any differences
from a straight line would be due to noise in the image
acquisition and errors in ballpoint localization. We fit a line
through the acquired points and computed the distance
between the points and the fitting line. The dynamic
resolution of the system was estimated by computing the
average standard deviation of the mentioned distance in
each of the sequences. Fig. 11 shows two sequences used to
compute the spatial resolution and summarizes the
resolution of the system.

We note that the vertical resolution is almost the same for
the two experiments, but the horizontal resolution varies by
a factor of two from one experiment to the other. This
difference is possibly due to the subject holding the pen
mostly in a vertical writing position for the static resolution
experiment. In any case, we observe that the system has
quite a good resolution of less than one tenth of a pixel.

Table 1 summarizes all the parameters used in the
implementation of the real-time system. Fig. 12 shows
several examples of complete handwritten sequences
acquired in real time with our system. A few portions of
one of the sequences are blown-up in order to depict the
level of acquisition noise.

3.2 Pen Up Detection Experiments

Only the pen tracking and the local ink detection
components of the system have been implemented in the
real-time application. In order to evaluate the performance
of the complete pen-up detection subsystem, we collected
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Fig. 12. Example sequences. The first row shows examples of sequences captured with the real-time system. We collected examples of cursive
writing, block letters, printed letters, drawings, and mathematical symbols. The second row displays enlargements of portions of the sequence “Maria
Elena.” The dots represent the actual samples acquired with the interface. The sequences present a very low acquisition noise.
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TABLE 2
Point-Wise Classification Results

local measurcments (%) | HMM modeling (%)

FAR 24.6 28.6
FRR 10.05 5.33

Comparison of the error rates of point-wise ink detection obtained using
the ink absence confidence measure and the HMM model. The
classification threshold used for the ink absence confidence measure
is 0.4. We observe that none of the approaches is clearly better than the
other. The HMM one has a lower FRR while the local measurements
one has lower FAR. As we pointed out before, we have to wait until the
pen tip is out of sight in order to measure brightness, so many pen-up
points that correspond to a stroke that passes on top a segment of ink
trace were misclassified as pen-down points. This is the main reason for
the apparently large value of the FAR.

20 sequences comprising various types of handwriting

(cursive, block letters, printed letters, numbers, drawings,
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signatures, and mathematical formulas). We used half of
these sequences for training the HMM and the other half for
testing. We obtained ground truth by classifying by hand
each of the points of the test sequences as a pen up or pen
down. We also classified by hand each of the strokes in
which the test sequences were divided by the segmentation
algorithm. Two types of error measurements were used to
evaluate the performance of pen down detection: the false
acceptance rate (FAR), which measured the percentage of
pen-up points (segments) that were classified as pen down
by the system, and the false rejection rate (FRR), which
provided the percentage of pen-down points (segments)
that were classified as pen up by our system. The examples
of Figs. 1, 9, and 12 were used for training the HMM.

3.2.1 Point-Wise Classification Results

All points in the test sequences were hard classified as
either pen down or pen up in this experiment. Two
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Fig. 13. Point-wise classification results. The first row shows three test sequences. The figures of the second row display each segment of the
sequences with a thickness that is proportional to the average of the confidence of the endpoints. Most of the thicker segments corresponds to portions
of the trajectory that should be classified as pen down. The third row shows only points of the trajectories that have been classified as pen down using
the ink absence confidence measure. The fourth row presents only points that have been classified as pen down by the HMM. We see that there are
several segments that appear in areas where there should be no ink trace on the paper. This misclassification is due to a bad measurement of the
confidence of ink absence. From the plots of the third and fourth row, it seems that the HMM approach has lower FRR at the cost of a higher FAR.
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TABLE 3
Stroke Classification Results

local measurements (%) | HMM modeling (%)

FAR 9.27 11.22
FRR 24.55 8.18

Comparison of the error rates of stroke classification obtained using the
ink absence confidence measure and the HMM model. For the first
case, the average ink absence confidence measure was used as the
classification parameter. The classification threshold was set to 0.2
(strokes with stroke confidence lower than the threshold were classified
as pen down). For the second case, the percentage of points in the
stroke classified as pen down by the HMM was used as the classification
parameter. The classification threshold was also set to 0.2 in this case.
We observe that the HMM has a much better FRR than the local
measurements at the expense of a slightly worse FAR. We note that in
most of the cases in which the stroke-up classification fails (reflected in
the FAR), it is due to an incorrect segmentation, like the “C” in the
sequence “PEDRO MUNICH” or the crossing stroke of the “x” in the
mathematical formula of Fig. 14. These incorrectly segmented strokes
were always classified as pen down in the ground truth. Leaving out
these segments in the computation of the performance, we obtained a
reduction in the FAR for both methods of approximately 1 percent
(absolute error) while the FRR is unchanged.

different approaches were compared: The first one used the
value of the ink absence confidence measure as the
classification parameter; the second approach used the
HMM to classify each point. The hard classification was
provided by the most likely HMM state sequence obtained
with Viterbi’s algorithm. Table 2 shows the resulting error
rates. Fig. 13 presents the results of these two approaches on
three test sequences.

3.2.2 Stroke Classification Results

All test sequences were segmented into strokes and each
stroke was classified as either pen down or pen up in this
experiment. Two classification approaches were compared:
the first one was based on the ink absence confidence
measure; the second one was based on the HMM. In the
first approach, the stroke confidence measure was com-
puted as the average of the ink absence confidence measure
of all points in the stroke. For the case of the HMM, the
stroke confidence measure was calculated using a voting
scheme. The ratio between the number of points classified
as pen down by the HMM and the number of points in the
stroke provided the stroke confidence measure. Table 3
shows the resulting error rates. Fig. 14 presents the results
of stroke classification on three test sequences.

3.3 Signature Verification

As mentioned before, the real-time interface was used as
front-end for a signature verification system [14], [16], [17].
We acquired 25-30 true signatures and 10 forgeries from
105 subjects, adding to an approximate total of 4,000 sig-
nature samples. We collected data over the course of a few
months in which subjects would provide signatures at
different times during the day. The interface was placed
next to a window, so natural sunlight was used for
capturing signatures at day time, while electric lighting
was used for acquiring signatures during the night. The
subjects were asked to provide data in three different
sessions in order to sample their signature variability. Given
the number of subjects involved in the experiment, the
position and orientation of the camera was different from
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session to session and from subject to subject. Fig. 15 shows
some examples of acquired signatures. We achieved a
verification error rate of less than 1.5 percent for skilled
forgeries and a verification error rate of less than 0.25 per-
cent for random forgeries. These rates correspond to the
condition of equal false acceptance rate and false rejection
rate. These results and the techniques used for verification
will be reported in a forthcoming paper.

3.4 Discussion

The examples presented in Section 3 show that the interface is
quite convenient and accurate for acquiring short hand-
written trajectories. The system has not been tested for
acquiring long sentences or even full pages of text. The main
difficulty in this case would be perspective and radial
distortion. This is not a problem for some applications, e.g.,
our signature verification algorithm which encodes hand-
writing in an affine-invariant parameterization. Perspective
distortion of the image could be corrected easily if paper with
apredefined pattern of symbols, e.g., a set of crosses located at
a known distance from each other, was used; however, this
would make the interface less convenient and general.

Besides signature verification, informal tests by human
observers found the output of the interface well within the
resolution limits for easy reading and interpretation.
However, the interface has not been tested for handwriting
recognition. The results of the pen-down detection experi-
ments are encouraging. The stroke confidence measure
provides a soft classification of the pen-down and pen-up
strokes that could be used in a handwriting recognizer.

The usability of the interface has been tested by more
than a hundred different subjects during the signature
verification experiment. The acquisition of signatures took
place under various lighting conditions and camera posi-
tion, showing the robustness of the interface with respect to
variability of the user’s setup.

Handwriting was captured at different scales with the
interface. Changes of scale were introduced by the user when
he adjusted the position and orientation of the camera to write
more comfortably. These scale changes were small enough to
be handled with a fixed set of system parameters. Larger scale
changes would require adaptation of the system parameters
to the acquisition setup. An appropriate procedure may be
designed for the user to help the system in this task.

4 CoONCLUSION AND FURTHER WORK

The design and implementation of a novel human-computer
interface for handwriting was presented. A camera is focused
on the user writing on a piece of paper with a normal pen. We
have shown that the handwriting trajectory is successfully
recovered from its spatio-temporal representation given by
the sequence of images. This trajectory is composed by
handwritten strokes and pen movements between two
strokes. The temporal resolution is sufficient. The spatial
resolution is approximately a tenth of a pixel, which allows
capturing handwriting at sufficient spatial resolution within
an area corresponding to half a sheet of letter paper using a
cheap 480x640 pixels camera. The spatial resolution approxi-
mately corresponds to 20 samples per millimeter of writing,
resolution that is five times lower than that of commercial
tablets (100 lines per millimeter), but that is obtained with a
much smaller and cheaper interface. The classification of
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Fig. 14. Stroke classification results. The corresponding strokes for the sequences of Fig. 13 are shown on the first row. Successive strokes are
plotted alternatively with solid or dashed lines. The figures of the second and third rows correspond to classification using the ink absence confidence
measure; the figures of the fourth and fifth rows correspond to classification using HMM. The figures of the second and fourth row displays each
stroke with a thickness that is proportional to the stroke confidence measure. The plots of the third and fifth rows show only the strokes classified as
pen down in each case. The classification-based HMM seems to provide better results than the one based on the ink confidence measure.

pen-up and pen-down portions of the trajectory of the pen is
obtained by using local measurements of the brightness of
the image at the location in which the writing end of the pen
was detected.

Several modules of the interface are susceptible to
improvement. We used only one pen tip template for the
whole sequence acquisition. This template could be auto-
matically updated once the peak value of correlation fell
below a certain threshold. Since the information about the

boundaries and the axis of the pen tip, as well as the position
of the ballpoint and the finger, are computed for each frame
by the ballpoint detection module, the automatic extraction of
anew pen tip template involves no extra computational cost.

The region of interest used to detect the location of the
pen tip has constant size in the current implementation of
the system. The size of this region could be driven by the
uncertainty on the predicted position of the pen tip, i.e., the
size could depend on the covariance of the predicted
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Fig. 15. Signature verification. The first row of the figure shows examples of true signatures acquired with the interface. The second row presents
examples of corresponding skilled forgeries also captured with our system.

location of the pen tip. Smaller regions would be required in
cases of low uncertainty, reducing in this way the
computational cost of performing correlation between the
region of interest and the pen tip template.

The ballpoint detection in the current frame of the
sequence is based on the orientation of the axis and of the
boundaries of the pen tip in the previous frame. We could
improve the robustness of the ballpoint detection by
modeling the change of axis and boundaries orientations
from frame to frame. A recursive estimation scheme could
be used to predict the desired orientations, allowing one to
reduce the size of the windows used to perform edge
detection and to decrease the number of computations.

We used a Gaussian model for the brightness of inkless
pixels. The estimation of the model parameters was per-
formed using the brightness of points lying on a circle
centered at the ballpoint position, assuming that all the circle
points are inkless points. Clearly, this model is not strictly
adequate for a random variable which takes values on the
interval [0,255] and the assumption is not completely valid
since some circle points could correspond to the ink trace.
This model could be improved by using a probability density
function suitable for representing a random variable that
takes values on a finite interval. However, as a first order
approximation, we have shown that this model provides
good results in pen-up/-down classification.

The classification of strokes into pen-up strokes and pen-
down strokes is based on local measurements of brightness. A
few other local measurements such as the local orientation of
the ink at the position of the ballpoint, the correlation of this
orientation with the local direction of the trajectory of the pen
tip, etc., could be used in order to improve the classification
rates. These local measurements of direction would decrease
the FAR since a sample would be classified as “pen down”
only if an ink trace with the corresponding direction is found
at the location of the sample. These additional local measures
could be naturally included in the system by increasing the
dimensionality of the observation of the HMM.

The set of examples used to estimate the HMM parameters
and to evaluate the pen-up/-down classification perfor-
mance included examples of different types of writing
provided by only one subject. More example sequences
provided by different subjects should be acquired in order to
estimate this performance in a writer-independent setting.
Also, abigger set of examples should be used to obtain a more
accurate HMM for pen down detection.
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