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Abstract—This paper is about the development of systems
whose end users are professional people working in a specific
domain (e.g., medicine, geology, mechanical engineering); they are
expert in that domain, but not necessarily expert in nor even
conversant with computer science. In several work organizations,
end users need to tailor their software systems to better adapt
them to their requirements and even to create or modify software
artifacts. These are end-user development activities and are the
focus of this paper. A model of the interaction between users and
systems, which also takes into account their reciprocal coevolution
during system usage, is discussed. This model is used to define a
methodology aimed at designing software environments that allow
end users to become designers of their own tools. The methodology
is illustrated by discussing two experimental cases.

Index Terms—Design methodology, user-centered design, user
interface human factors, visual languages.

I. INTRODUCTION

CURRENT interactive systems determine an evolution in

the culture of computing and an evolution of the roles

of designers, programmers, and end users in the life cycle of

software products. Shneiderman [1] synthesizes this situation,

claiming that “the old computing is about what computers

can do, the new computing is about what people can do.” To

cope with this, new computing should permit humans to shape

software tools to their needs, i.e., to be and act as designers in

personally meaningful activities, to be and act as end users in

other activities [2], or, more drastically, to “enable daily media

consumer to become daily media producer” [3]. These are the

problems addressed in this paper: the methodology described

here is aimed at creating software systems that support end

users to become designers of their tools whenever necessary

for the achievement of goals chosen by themselves.

The “interaction” dimension in software systems pays much

attention on the human side and creates new challenges for

system specification, design, and implementation. Furthermore,
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it is well known that “using the system changes the users, and

as they change they will use the system in new ways” [4]. These

new uses of the system make the working environment and

organization evolve and force the designers to adapt the system

to meet the needs of the end-user organization and environment.

The new interactive systems should be developed to manage

this coevolution of users and systems [5].

In this perspective, we focus on the study of software en-

vironments to be used by a specific type of end users, e.g.,

professional people such as engineers, geologists, and medical

doctors. In this paper, the word “end user” denotes experts in

a specific discipline (e.g., medicine, geology), who, in gen-

eral, are not expert in computer science nor are willing to

be and use computer systems for their daily work activities.

Our approach to system development starts from the analysis

of end-user activities during their daily work and is aimed at

allowing end users to exploit and evolve the system without

being constrained by formalisms alien to their culture. We

develop software environments that not only support end users

in their specific field of activity but also allow them to tailor

these environments for better adapting to their needs and even

to create or modify software artifacts. The latter are defined

activities of end-user development (EUD), to which a lot of

attention is currently devoted by various researchers in Europe

(see [6]) and all over the world [7].

In this paper, a model of human–computer interaction (HCI)

that takes into account the coevolution of users and systems

during system usage is discussed. This model is used to de-

velop a design methodology to create easy-to-develop-and-

tailor visual interactive systems (VISs). Our approach stresses

the importance of user diversity. End users are diverse because

of their culture, education, skill, age, and training. In many

domains, there are different communities of end users that need

to collaborate to reach a common goal. Members of a com-

munity are, therefore, provided with an appropriate software

environment that is suitable to them to manage their own view

of the activity to be performed. Each environment is called a

“software shaping workshop” (SSW) [8] since it is developed

by exploiting the metaphor of the artisan workshop, where an

artisan finds all and only the tools necessary to carry out her/his

activities and properly shapes various materials (wood, iron,

etc.) into usable products. By analogy, people should find in

the SSWs all and only the tools necessary to shape software

artifacts. Such tools must be perceived as being useful and

must behave to be usable in the current situation. Overall, in

our methodology, an interactive software system is developed

as a network of SSWs customized to the culture and skills of

1083-4427/$25.00 © 2007 IEEE
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the stakeholders and organized in a hierarchical way. By giving

insights emerging from our recent experiences, we show how

the SSW methodology supports EUD.

This paper is organized as follows. Section II characterizes

end users and describes the HCI model adopted for our re-

search. Section III discusses our view on EUD. Section IV

illustrates the SSW methodology. Sections V and VI present

the application of this methodology to two different domains

(a medical domain and a mechanical engineering domain).

Section VII discusses related work, and Section VIII concludes

this paper.

II. END USERS IN THE INTERACTION

AND COEVOLUTION PROCESSES

End users are persons who use computer applications as part

of daily life or daily work, but are not interested in computers

per se [9]. In this paper, the focus is on end users that are profes-

sional people working in a specific domain. Such professionals

use computer environments to perform their daily work tasks

and have the responsibility for possible errors and mistakes,

even those that are generated by wrong or inappropriate use

of computer systems. Examples are physicians [8], [10], geolo-

gists [11], technicians, clerks, analysts, and managers [12], who

are increasingly required to use and even to develop software

applications for their work. Having provided the definition of

end user, for the sake of simplicity, in the rest of this paper, the

words “end user” and “user” will be considered as synonyms.

A. Professional People as Competent Practitioners

Before the computer age, professional people performed

their tasks in real environments operating on real entities,

using real tools, and communicating among them through real

documents. In these working environments, professional people

perform their activities as competent practitioners, in that “they

exhibit a kind of knowing in practice, most of which is tacit,”

and they “reveal a capacity for reflection on their intuitive

knowing in the midst of action and sometimes use this capacity

to cope with the unique, uncertain, and conflicted situations of

practice” [13].

Competent practitioners reason and communicate with each

other through documents, expressed using specific notations,

which represent abstract or concrete concepts, prescriptions,

or results of activities. Documents expressed in the domain

notations are created and interpreted using (often informally

defined) alphabets and rules, which codify the explicit knowl-

edge of the domain. They also convey what is called implicit

information. To provide some examples, scientific communities

develop “secondary notations,” often never made explicit, to

make their documents more readable: the use of bold characters

and specific styles indicates the parts of a document—paper

title, abstract, section titles—which synthesize its meaning

[8], [14]. Strips of images, such as those that illustrate proce-

dures or sequences of actions to be performed, are organized

according to the reading habits of the expected reader: from

left to right for western readers, from right to left for Arabic

ones. Furthermore, some icons, textual words, or images may

be meaningful only to domain experts: for instance, symbols

representing liver cells may have a specific meaning only for

hepatologists [10], whereas a radiograph may be meaningful

to physicians but not to other people [8]. In other words,

implicit information is significant only to people who possess

the knowledge to interpret it. Most of this knowledge is not

made explicit and codified; it is tacit knowledge, namely, it

is knowledge that domain experts possess and currently use to

carry out tasks and to solve problems, but that they are unable to

express in verbal terms, and that they may even be unaware of.

Tacit knowledge is related to the specific work domain and of-

ten to the specific situation. The use of specific notations allows

domain experts to exploit their tacit knowledge; documents and

messages constructed with these notations incorporate it as a

part of the implicit information.

In various domains, some activities must be carried out

by experts who do not constitute a uniform population but

belong to different communities characterized by different cul-

tures, goals, and tasks. More specifically, user diversity arises

due to: 1) different culture, skill, specific abilities (physical

and/or cognitive), and tasks to be accomplished; 2) different

roles assumed by the user in performing work activities; and

3) different context of activity and geographical dispersion

(of the community). For example, in the medical domain,

neurologists cooperate with neuroradiologists to interpret a

magnetic resonance image (MRI) and form a diagnosis; they

are members of two different communities who must analyze

and manage the same data set with different tools on the

basis of different knowledge they possess and from different

points of view. However, in this activity, as in many others,

members of different communities reach a common under-

standing and cooperate to achieve a common purpose [15].

It is worth noting that there are domains that require years

of intensive practice before practitioners achieve the most ef-

fective levels of skill [16]; end users belonging to the same

community, at different levels of domain experience, express

different abilities.

B. Real and Virtual Entities

In the computer age, workplaces are augmented by the use

of computer-based systems; however, professional people still

perform their activities as competent practitioners. Computer

systems integrate and often substitute the real tools, documents,

and sometimes also the real entities on which the end users

operate. The new tools, documents, and entities are virtual

entities (ves) in that they only exist as a result of the interpre-

tation of a program P by a computer. ves are dynamic systems

that are able to capture user inputs, compute a reaction, and

materialize a new state—the results of the computation—in

a form perceivable by the user. For example, Fig. 1 displays

a digital MRI, together with a set of widgets, which allows

users to manipulate and manage it. Different from traditional

MRIs, the digital MRI is an active document. Each pixel of

the MRI can be addressed and associated with a program, a

subprogram of P, which, for example, can be instantiated by

the user selecting that pixel. On the other hand, the whole image

disappears and is no longer accessible if P is switched off.
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Fig. 1. Web page with the first prototype of the B-NeuroRadio software
environment supporting neuroradiologists.

The appearance and the behavior of MRIs and widgets

depend on P: if the parameters of P are not properly tuned, or if

a different program P′ is used to interpret the data specifying

the MRI and the widgets, the MRI may appear differently

and/or behave in an unforeseen way. In other words, the ap-

pearance and the behavior of the digital MRI depend on the

original measurement and on the program being currently used.

The widgets themselves may appear and behave differently,

depending on the P definition and tuning. On the whole, the

window with the digital MRI, together with the set of widgets

represented in Fig. 1, constitutes an example of an interactive

software environment. In this case, the environment is designed

and developed to support neuroradiologists in their diagnostic

activities. More formally, it is a complex ve, i.e., a system

of ves, in which some represent entities to be worked on,

and others represent tools through which the work can be

performed.

Nowadays, virtual systems of this kind are increasingly made

available to end users to substitute or complement real tools

and/or documents in performing end-user tasks. End users

work in augmented environments operating on real and virtual

entities, using real and virtual tools, and communicating among

them through real and virtual documents.

C. Modeling the Interaction Process

We model the interaction between users and computer sys-

tems as a cyclic process, in which users and systems communi-

cate by materializing and interpreting a sequence of messages

at successive points in time. These messages are subject to two

interpretations: one performed by the user, depending on her/his

role in the task, as well as on her/his culture, experience, and

skills; and the second one is internal to the system, associating

the message with a computational meaning, as determined

by the programs implemented in the system. For the sake

of simplicity, let us restrict the discussion to VISs based on

window, icon, menu, and pointer interaction [17]; in this case,

the messages that are exchanged between user and system are

the whole images represented on the screen display that are

formed by texts, pictures, and icons.

Users interact by operating on the input devices of the

system, such as keyboards or mice. Users interpret the image

that appears on the screen according to their culture, skills,

and tacit knowledge. They are able to understand the mean-

ing of the messages because they recognize some subsets of

pixels on the screen as functional or perceptual units, called

characteristic structures (css) [18], [19]. Examples of css are

letters in an alphabet, symbols, or icons. Users associate each

cs with a meaning. The association of a cs with a meaning

is called user characteristic pattern (ucp). This association

depends on the capability of the user to interpret the implicit

information conveyed by the image on the screen. For example,

a neuroradiologist looking at Fig. 1 may well recognize and

interpret the digital MRI but, if not acquainted with Web tools,

may not understand how to interact with it. On the other hand,

a Web surfer may recognize several buttons, menus, and an

MRI. He/she recognizes each of these css as images, describing

the state of a virtual entity ve, with which he/she can interact.

In the image, no button or menu item is selected; therefore,

the surfer understands that the system is waiting for the user

to decide what to do next. However, the user has to interpret

the digital MRI, which is only possible for a surfer who also

possesses the specific explicit and tacit professional knowledge

of a neuroradiologist.

Users recognize complex css formed by more simple ones

(words formed by letters, plant maps formed by icons, etc.) and

attribute them a meaning that stems from the meaning of the

component css. The whole image on the screen is interpreted as

a complex ucp representing the state of the VIS with which the

end user is interacting.

From the computer point of view, a cs is a set of pixels

generated and managed by a computational process that is the

result of the computer interpretation of a program P. (Note that

in the following, words in bold denote entities perceived and

interpreted by the human user, whereas those in arial denote

processes and events perceived, translated, and materialized

by the computer.) The computer interpreting P creates the

virtual entity (ve) and manages its interaction with the user

(see Section II-B). A virtual entity is a virtual dynamic open

system. It is virtual in that it exists only as a result of the

interpretation of the program P by a computer, dynamic in that

its behavior evolves in time, and open in that the evolution

depends on its interaction with the environment. During an

interaction cycle, when the user operates on some input device

to manifest her/his requirement or command to the ve, the ve

captures the input events generated by the user action and reacts

to them by generating output events toward the user. Such

output events are materialized as css on the output devices of

the computer to become perceptible by the user. A cs depends

on the current state u of the program P, which represents

its computational meaning. In analogy with the definition of

user characteristic pattern, the association of the cs with u is

called the system characteristic pattern. A system characteristic

pattern is specified as cp = 〈cs, u, 〈int,mat〉〉, where cs is the

set of pixels materialized by the program P, u is a suitable

formal description of the state of P, int (interpretation) is a
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function associating that cs with u, and mat (materialization)

is a function associating u with cs. At each instant, the current

cp describes the state of the ve in that its knowledge permits

the computation of the reaction to the user input, i.e., the

computation of the next state of the program P and of the new

cs to be displayed, that is of the cp to be reached.

An example of a cs is (the fifth button from the right in

the toolbar above the MRI window in Fig. 1). Such a cs is the

manifestation of the current state of the ve annotation. It is the

input interface of the ve in that every user operation performed

on it is captured by the program P. Moreover, it is the output

interface in that every result computed by P is manifested as a

new cs. This ve has different materializations to indicate differ-

ent states of the computational process generating the ve: for

example, once it is clicked by the user, its background changes

color to give feedback to the user; moreover, the associated

computational process activates an annotation window.

The whole VIS constitutes a special virtual entity. A VIS is

a composed ve, characterized by the fact that in each step of

the HCI process, its cs is the whole image i on the computer

screen. A VIS is generated by a program P that organizes all

the subprograms that bring into existence its component ves.

Fig. 1 shows a whole screen image—the cs generated by a VIS

at a certain step of its interaction with a neuroradiologist.

The existence of the two interpretations of a cs—one per-

formed by the users and one performed by the computer

system—explains one of the problems that arise in HCI, which

is the communication gap between end users and designers [8].

The interpretation performed by the system reflects the designer

understanding of the task at hand, implemented in the programs

that control the machine. Designers develop the interactive sys-

tem and primarily focus on the computational and management

aspects, rather than on the solution of problems, the interaction

language often being too “general” and machine oriented rather

than situation and user’s problem oriented. Whereas end users

need to perform their tasks by reasoning in accordance to

their mental models, and to express this reasoning in notations

familiar to them, traditional design approaches force end users

to adopt computer-oriented notations that are alien to their

culture, generally not amenable to their reasoning, and often

misleading for them. In this way, end users are forced to break

the continuity of their reasoning to translate and express their

problems and solutions into computerized language. On the

whole, there is a communication gap between designers and end

users, originated by their different cultural backgrounds; they

adopt different approaches to abstraction since, for instance,

they may have different notions about the details that can be

abridged. Moreover, end users heuristically reason rather than

algorithmically, using examples and analogies rather than de-

ductive abstract tools; they document activities, prescriptions,

and results through their own developed notations, articulating

their activities according to their traditional tools rather than

according to computerized tools. End users and designers retain

distinct types of knowledge and follow different approaches

and reasoning strategies to modeling, performing, and doc-

umenting the tasks to be carried out in a given application

domain.

D. Coevolution of Users and Systems

An intriguing phenomenon, often observed in HCI studies,

is that “using the system changes the users, and as they change

they will use the system in new ways” [4]. In turn, the designer

evolves the system to adapt it to its new usages. In [20]

and [21], this phenomenon is called coevolution of users and

systems. Some seminal ideas were investigated by Mackay [22],

who actually speaks about coadaptation of users and systems.

Preliminary models were presented in [5] and [20].

Coevolution stems from two main sources: 1) user creativity,

in which the users may devise novel ways to exploit the system

to satisfy some needs not considered in the specification and

design phase; and 2) user-acquired habits, in which a user may

insist in following some interaction strategy to which they are

(or become) accustomed (this strategy must be facilitated with

respect to the initial design). An example of the first type is

the integration of nonnumerical data in spreadsheets, which

was included in later versions of spreadsheets, after the obser-

vation that users frequently forced the spreadsheet to manage

nonnumerical data for data archiving and other tasks [4]. Other

examples derive from the observation of users learning how to

interact with Web documents [21].

An example of coevolution stemming from user-acquired

habits is offered by the strategy for saving in a new directory

a file being edited. In earlier versions of many applications

(e.g., those of the MSOffice suite), after selecting the “Save as”

command, the user can create a new directory, which, however,

does not become the current directory. Users required a third

command—open the new directory—before saving their file. In

this editing situation, forcing the user to open the newly created

directory is obviously inconvenient. Having recognized this

contextual nuisance, more recent versions of MSOffice appli-

cations coevolved to encompass this user behavior: when a new

directory is created in the “Save as” context, it automatically

becomes the current one.

E. Model of Interaction and Coevolution Processes

As a result of the considerations in Sections II-C and D,

we propose an overall model that describes the two processes

occurring in an augmented working environment. The first

process—the interactive use of the system to perform activities

in the application domain—occurs in a short time scale: every

activity is the result of a sequence of interaction cycles in

which the user applies her/his intuitive knowing and reflects

on the obtained results, gaining new experience. The second

process—the coevolution of users and systems—results in a

continuous activity of revision of the system organization and

tools. These two activities are cyclically repeated in a long time

scale.

This novel model underlies the design methodology that

supports EUD, as described in Section IV. According to this

model, software engineers are required to produce interactive

software systems that are able to support the two processes. In

other words, such innovative systems must support end users in

their work practices and also in the EUD activities that will be

necessary to update the system according to coevolution.
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III. VIEW ON EUD

End users do not always perform repetitive activities; often,

they are required to face unforeseen situations, in which they

need to create new procedures and tools or to adapt existing

procedures and tools to solve problems that cannot be foreseen

in advance. End users are increasingly required to be able to

produce their own software, developing software artifacts in

support of organizational tasks [12]. On the whole, end users

need to act as designers in some steps of their activities and as

traditional users in other steps.

EUD has been defined as “the set of methods, techniques,

and tools that allow users of software systems, who are acting

as nonprofessional software developers, at some point to create

or modify a software artifact” [6]. In EUD, tasks that are

traditionally performed by software developers are transferred

to end users.

To satisfy such end users’ needs, an interactive system must

be designed to support end users when they are acting as

designers of their software tools and when they are simply

using the interactive system itself. These activities last for the

whole life of the interactive system because the coevolution

process never ends while the interactive system is in use. As

a consequence, the system life cycle starts with the design

and implementation of a first version of the system, which is,

thereafter, used by end users on the field. End users update the

system by their EUD activities. Due to coevolution, end users

also improve their knowledge, update their procedures in the

real world, and modify their working organization.

To support EUD activities and still have efficient software

environments, a participatory approach to system design is

adopted here [23]. The design team includes at least software

engineers, HCI experts, and representatives of end users. The

latter are involved since end users are the “owners of problems”

and have a domain-oriented view of the processes to be automa-

tized. In the following, they are also called domain-expert users

(d-experts for short). However, they are not expert in HCI nor

in software engineering: they can only contribute to the design

with their experience on the domain of activity. In turn, software

engineers have the knowledge about tools and techniques for

system development, and HCI experts have the knowledge on

system usability and human behavior. They are necessary to

the development of the system because they are the only ones

who can guarantee the usability and the performance of the

system. All these experts convey their experience to the design

and implementation; however, none is more important than the

others. All of them must recognize: 1) that each member of

the team complements the ignorance of the others; 2) the need

for reaching a mutual understanding; and 3) the need for peer

collaboration [24].

It is worth noting that in EUD, end users play two roles:

1) as d-experts, they reason on their own working activity and

design their own working environment; and 2) as competent

practitioners, they perform their working activities, determining

solutions to the problems in their domain and possibly adapting

virtual tools to their needs. For example, a physician, as a

d-expert, participates in the design of the interactive system that

supports the diagnostic activity and, as a competent practitioner,

uses the system to execute all the activities to reach a diagnosis

in a specific case.

Once the system is in use, the design team will ideally

observe end-user activities, the new usage of the system, and

the new procedures induced by the evolving organization, and

monitor end-user complaints and suggestions about the system

in use. On the basis of these observations, the design team

updates the system and sometimes also the underlying software

technologies. Coevolution results, therefore, in a cyclic process,

in which the usage of the system induces an evolution in

the user culture and organization, which, in turn, induces an

evolution of the system and of the technology. EUD must

facilitate this process, allowing end users to be active partners

in it. Therefore, the whole design team must remain active for

the whole life of the interactive system.

The definition of EUD is thus refined as follows: EUD

denotes the set of methods, techniques, and tools that allow

end users to create or modify the interactive system whenever

necessary and that support the continuous coevolution of the

system and its users.

IV. SSW METHODOLOGY

In the design methodology we propose, software environ-

ments appropriate for end users are designed in analogy with

artisan workshops, i.e., environments where end users manipu-

late virtual entities in a way similar to artisans manufacturing

their artifacts. In their workshops, traditional artisans such as

blacksmiths and joiners, at each step of their activities, can

extract from a repository the tools that are necessary for the

current activity and set back those ones that are not useful

anymore. In this way, every artisan adapts the environment to

her/his needs and has available all and only the tools needed

in the specific situation. By analogy, a software environment

is designed as a virtual workshop, in which the end user finds

a set of tools (virtual entities) whose shape, behavior, and

management are familiar to her/him, being codesigned by a

representative set of d-experts. Such an environment allows end

users to carry out their activities and adapt their environment

and tools without the burden of using a traditional programming

language, but using high-level visual languages tailored to their

needs. Moreover, end users get the feeling of simply manipulat-

ing the objects of interest in a way similar to what they might do

in the real world. Indeed, they are creating programs, through

which they later perform the necessary computations, without

writing any textual program code.

Obviously, whereas traditional artisans shape real supplies,

end users shape software artifacts. For this reason, we call

these environments SSWs [8]. End users play two roles that

must be maintained distinct, and, thus, two types of SSWs are

developed. When end users perform their working activities,

they use SSWs called application workshops, which are the

results of the design activities performed by a team composed

at least by software engineers, HCI experts, and d-experts. The

workshops used by the design team to perform their activities

are called system workshops. D-experts, as well as any other

expert in the design team, use a system workshop customized

to their culture and skills. The interactive system is, therefore,
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Fig. 2. General SSW network. Dashed arrows indicate communication paths,
and full arrows indicate generation and evaluation paths.

designed as a hierarchical network of SSWs, each specific for a

community of users.

The specification of SSWs is based on the concept of virtual

entity introduced in Section II. More specifically, an SSW

(either an application or system workshop) is a complex ve

constituted by virtual entities interacting with one another and

with the user through input/output devices. This ve is the result

of the interpretation of the program PSSW defining the SSW

appearance and behavior.

A. SSW Network

The SSW network is structured so that the different stake-

holders can participate in the application workshop’s design,

implementation, and use without being disoriented. In general,

a network is organized in levels. In each level, one or more

workshops can be used, which are connected by communication

paths. Fig. 2 presents a generic workshop network, which

include three levels.

1) Metadesign level (the top level)—software engineers use

a system workshop, called W-SE, to create customized

workshops to be used by other experts in the design team

and to participate themselves in the design, implementa-

tion, and validation activities.

2) Design level—HCI experts and d-experts cooperate in

the design, implementation, and validation activities: a

design member belonging to community X participates in

the design using a system workshop W-ReprX, created by

the software engineers and customized to the needs, cul-

ture, and skills of community X; various experts design

application workshops and also tailor their own system

workshop.

3) Use level—end users of the different communities co-

operate to perform a task: end users belonging to the

community X participate in task achievement using the

application workshop W-End-UserX customized to their

needs, culture, and skills.

On the whole, both metadesign and design levels include all

the system workshops that support the design team in perform-

ing the activity of participatory design. Such system workshops

can be considered user interface development environments

(UIDEs) [25]. The novel idea is that the UIDEs used by

d-experts are very much oriented to the application domain and

have specific functionalities, so that they are easy to use by

d-experts.

B. Roles in the Design Team

Software engineers are required to: 1) provide the software

tools necessary to the development of the overall interactive

system; and 2) participate in the design of application and

system workshops. From their workshops, software engineers

may reach any system and/or application workshop. In perform-

ing activities at the top level, software engineers produce the

initial programs PSSW, which generate the SSWs to be used and

refined at lower levels. They participate in the design of SSWs

also by modifying them to satisfy specific requests coming from

lower levels. Finally, they participate in the maintenance of

each SSW.

HCI experts participate in the design using their system

workshop. Through this workshop, they may access all the ap-

plication workshops at the bottom level to check their function-

alities; they can adapt them according to the requests coming

from the lower level and check their behaviors.

D-experts work at the design level by using their own system

workshop to participate in the design of application workshops.

Through their system workshops, they check the functionalities

and behavior of application workshops and can adapt them.

The design team activity keeps going through the interactive

system life cycle due to coevolution. In a first phase, called

design time, the design team develops application workshops

for the user communities addressed by the overall system.

Coevolution determines the adaptation of the workshops to the

new usage. Hence, in a successive phase, called coevolution

time, the design team performs adaptation activities informed

by coevolution. In these phases, HCI experts take the respon-

sibility of the usability and accessibility aspects, and software

engineers take the responsibility of the efficiency and imple-

mentation aspects. Both application and system workshops

must be maintained and coevolved during the system life cycle.

C. Communication Among SSWs

As shown by the arrows in Fig. 2, communication must

be guaranteed among application and system workshops. At

the use level, when working in a team, end users exchange

data related to their current task to achieve a common goal.

At the design level, HCI experts and d-experts exchange pro-

grams specifying workshops under construction. Whereas the

d-experts bring the domain knowledge into the design, HCI

experts primarily comment on the human factor aspects of the

workshops that are being developed. HCI experts and d-experts

also communicate with software engineers when it is necessary

to forge new tools for their activities.

Communication paths exist from a lower level to the up-

per one. This capability is given by allowing an end user or

a designer, interacting with a workshop, to annotate her/his
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problems, which might depend on either lack of functionalities

or poor usability, and to communicate them to all the experts

reachable in the network. For example, an end user in commu-

nity X, which finds some usability problems in using W-End-

UserX, can annotate them and send the annotation to W-ReprX

(Fig. 2). The representatives of community X, HCI experts, and

software engineers can analyze this annotation, communicate

among them, and agree on a possible solution to the usability

problem.

More formally, software engineers at the metadesign level

produce the initial programs PSSW and send them to the lower

levels. In the current implementation, a program PSSW is spec-

ified as an XML-based document. As such, this specification

can be annotated [26]. Later, software engineers receive from

lower levels copies of programs PSSW annotated by the different

designers and end users. They perform their activities to modify

the programs PSSW as required and send them back.

End-user representatives, acting as designers, exchange an-

notated PSSW among themselves and with the other members

of the design team for review and then send the modified

programs to the use level. Since they are also in charge of

SSW maintenance, they receive annotated programs PSSW from

the use level, possibly exchanging them with HCI experts, and

then send back the modified application workshops to the lower

level.

Finally, end users that use a PSSW to perform their tasks can

annotate it, or a part of it, for specific requests (to the d-experts,

to the HCI experts, and/or to the software engineers) and send

it to the design level.

The SSW network is modular, and the number of system and

application workshops may vary according to the needs of other

subcommunities of end users. The initial kernel of the network

includes at least W-SE at the metadesign level, a W-Repr at the

design level, and a W-End-User at the use level. End users will

utilize this initial system in the workplace; later, this system will

be updated according to the coevolution process.

D. Application of the SSW Methodology

Sections V and VI will describe two cases in which the SSW

methodology has been applied. The two cases refer to two con-

texts, which are apparently very different: the first case occurred

in the medical context, in a hospital organization. The second

case concerned an industrial context within a factory automa-

tion company. Although they appear distant, the two cases share

methodological and structural features, which is worthwhile to

highlight because they characterize the activity of end users

that act as codesigners of their own systems. The two cases

arisen as a result of coevolution processes in the work sites:

the introduction of new technologies induced new organization

of work, which, in turn, suggested the creation of new tools and

procedures. In both cases, end users started developing some in-

house tools and procedures. Because, usually, end users are not

HCI experts or software engineers, such in-house-developed

tools presented relevant usability problems. Our team of HCI

experts and software engineers was then requested to revise

and improve these tools. With reference to Fig. 2, our team

used the same W-SE workshop to develop two different SSW

networks, each one specific for an end-user community. Both

networks were developed following a “star life cycle” [27],

with a bottom-up participatory approach. Adopting the star life

cycle means that the results of every activity are evaluated

with respect to usability and feasibility before proceeding to

any other activity. The approach is bottom-up in that all the

prototypes were developed as evolutionary prototypes [25],

which were updated on the basis of the users’ requests and

of the evaluation results. The approach is also participatory in

that domain experts were part of the design team with a well-

defined role, as described in Section IV-B. The two projects

were developed in the same period; software engineers used

the same tools as common root of the development, but each

development was influenced by the different rhythms, styles of

work, and necessities of the two organizations. However, the

two processes were not independent for two reasons. The first is

that the program PSSW has the same structure and is built from

the same library of basic components, adapted to a different

context. The second reason is that the findings of one project

were discussed with the team of the other project. This helped

in refining the methodology and, consequently, improving the

tools available in the W-SE workshop.

V. APPLYING THE SSW APPROACH

IN A MEDICAL DOMAIN

To better illustrate the concepts about the SSW network, we

refer here to a prototype of a VIS that is designed to support

different communities of physicians, namely, neurologists and

neuroradiologists, who work in different wards or different

hospitals and are involved in the study of neurological diseases;

they need to reach an agreed diagnosis by exchanging consul-

tations on the cases at hand.

The improvement of the quality of the medical diagnosis

is the main goal of each physician. Due to the evolution of

research and technology in the medical domain, each specialist

may have the aid of medical examinations of different types,

i.e., laboratory examinations, X-rays, MRIs, etc. A team of

physicians with different specialization should analyze the

medical examinations giving their own interpretation accord-

ing to their “expertise.” However, the increasing number of

diagnostic tools and medical specializations, as well as the

increasing number of patients, does not permit the team of

specialists to meet as frequently as needed to analyze the clin-

ical cases, particularly when they work in different buildings

or even in different towns or states. Information technology

has the potential of overcoming this difficulty by providing

software environments that allow a synchronous and/or asyn-

chronous collaboration “at a distance.” Tools for supporting

the physicians to collaborate in their daily work already exist,

e.g., telemedicine, videoconferencing, etc. However, physicians

complain that these tools are very expensive and need large

system resources, and that they are often difficult to learn and

use. Some physicians more acquainted with information tech-

nologies have recently started to use cheap digital tools such as

e-mail and simple image processing systems to communicate

and cooperate in an asynchronous and distributed way to reach

their goals. In other words, they autonomously organized their
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Fig. 3. Network of SSWs involved in the medical case.

work to take advantage of the information technology, even

if in a naive way. They asked us to evolve the currently used

software tools to satisfy the evolved users and to fully exploit

the technology for improving their work practice.

Fig. 1 shows a screenshot of the first prototype we developed

and submitted to the physicians for a preliminary analysis. The

prototype was used as a basis for discussing users’ needs and

illustrating the computer-based possibilities we were able to

offer to support their work tasks. The physicians provided us

with interesting feedback, and we came out together with the

network of SSWs described in Section V-A.

A. SSW Network in the Case of Neurologists

and Neuroradiologists

The analysis of the work organization in this domain led us

to design the SSW network presented in Fig. 3. At the use level,

neurologists and neuroradiologists use application workshops,

i.e., W-Neurologist and W-NeuroRadio, respectively, which are

tailored to their culture, skills, and needs, in an asynchronous

and distributed way. Since neurologists and neuroradiologists

possess the knowledge about the language and notation of

the specific community they belong to, at the design level,

their representatives (d-experts) are provided with two sys-

tem workshops (W-ReprNeu and W-ReprNeuRa) to generate

and maintain the application workshops, and with two system

workshops (W-CompNeu and W-CompNeuRa) to generate and

maintain components to be used in the other system workshops

for their design activities. A fifth system workshop, i.e., W-HCI,

is used by HCI experts to check the human factor aspects of the

generated application workshops. HCI experts and d-experts

collaborate with software engineers (who use the system work-

shop W-SE at the metadesign level) in a participatory design

process, bringing their own knowledge and expertise to create

and evolve the two application workshops used by the two

communities of end users (neurologists and neuroradiologists).

The workshops in the network support the collaboration

of users at each level of the hierarchy. In particular, at the

use level, W-Neurologist and W-NeuroRadio help the different

specialists to achieve a diagnosis for a particular case. This

Fig. 4. Two application workshops. (a) Application workshop for neuro-
radiologists. (b) Application workshop for neurologists.

collaboration is obtained by performing EUD activities at the

use level [8] and exploiting the tools for electronic annotation

described in [26]. These workshops allow the specialists to

cooperate in virtual asynchronous meetings. The specialists

may use their own application workshops to perform their

daily work tasks: for example, a specialist may analyze the

available electroencephalogram (EEG) or MRI, perform anno-

tations and/or computations on them, select parts of them, and

define diagnoses and/or consultation requests. Each workshop

is equipped with a certain set of tools that are necessary to

carry out the work tasks and are customized to the specific user

community. For example, both application workshops devoted

to neurologists and neuroradiologists have an overview area on

the top of the screen, which may be used to browse MRIs or

EEG portions. The overview area is the electronic counterpart

of the diaphanoscope, which is used by the physicians in a

real meeting to analyze MRIs. Since neuroradiologists are only

interested in MRIs, in their application workshop, they find only

the MRI overview area [see Fig. 4(a)] together with tools to

process MRIs and to formulate diagnoses. On the other hand,
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Fig. 5. Neuroradiologist is accessing the request of consultation received from
the neurologist. The text of the annotation is magnified here for easy reading.

neurologists primarily study a great number of EEGs; however,

in some cases, they analyze MRIs. Thus, in their application

workshop, there are two overview areas, which are resizable

[see Fig. 4(b)], so that the neurologists can reduce (or even

completely close) the area containing the MRIs to expand the

EEG overview area according to their needs.

The two application workshops have similar layouts and

interaction possibilities: they present the overview area at the

top, a work area in the center, a menu area at the right side,

and a message area at the bottom to provide the user with

some explanations when necessary. In particular, from the menu

area, users can choose the login type (e.g., senior or practicing

physician), the available tools (e.g., a tool for sending a request

to a colleague, a tool for image processing, etc.), and the patient

to study.

The SSW network is modular, and it is possible, in the future,

to extend it by creating other SSWs for other stakeholders,

e.g., other physicians or clerks and managers dealing with

management and billing systems.

B. EUD at the Use Level

Let us discuss some examples of EUD at the use level. The

application workshop prototypes in Fig. 4 improve our first pro-

totype (Fig. 1). The improvement derives from the observations

collected during a field study. We observed that physicians,

when examining the images under study during their meetings,

point to structures of specific interest and make comments on

them. Other users, in other domains, have a similar behavior.

We then created suitable annotation tools that permit associ-

ating new widgets with particular structures identified in the

images [8], [11]. This is an EUD activity. To see how this

works in W-Neurologist and W-NeuroRadio, let us consider, for

example, that a neurologist has requested a consultation to the

neuroradiologist. He did this by annotating a specific MRI with

information that is useful to the neuroradiologist and sending

him a request for consultation. Fig. 5 shows W-NeuroRadio

once the neuroradiologist is examining the MRI annotated by

the neurologist. The annotation is shown in the window to

Fig. 6. Neuroradiologist has identified a suspect area in the MRI and has sur-
rounded it. From the “tools” menu, he is now selecting a tool to automatically
compute some values relative to the hyperdensity of the suspect area.

Fig. 7. By clicking on the suspect area, the neuroradiologist has obtained a
histogram of the hyperdensity.

the right of the MRI. The part of the annotation window that

reports indications about the patient symptoms, provided by the

neurologist, is magnified in Fig. 5 for better reading.

The neuroradiologist studies the MRI and identifies a suspect

area, surrounding it by using the tool for curve tracing (the

tool is activated through one of the icons on top of the MRI).

Then, he accesses the tools for image processing provided in

the “tools” menu of W-NeuroRadio (Fig. 6). The physician

selects “iperdensità” (“hyperdensity”) to compute a histogram

of the hyperdensity values and other parameters relative to the

suspect area. This new information is automatically associated

with the suspect area. A new widget is then created whose

characteristic structure is the set of pixels of the suspect area;

the user can click on it whenever s/he wants to display the

associated information. Fig. 7 shows W-NeuroRadio once the

user has selected the new widget and displayed the histogram

to study the hyperdensity of the suspect area.
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Fig. 8. W-Neurologist visualizes the hyperdensity basic parameters associated
with the circled area in the MRI.

The neuroradiologist replies to the neurologist’s consultation

request by providing his opinion that he writes in the bottom

area of the annotation window (the one that is empty in Fig. 7).

The whole text becomes a new annotation associated with the

suspect area in the MRI, and it is saved in the repository shared

by W-NeuroRadio and W-Neurologist.

The neurologist, using W-Neurologist and accessing the

same MRI, finds the updated annotation with the answer of

the neuroradiologist and a new widget on the MRI, namely,

the circled area to which the data evaluated by the neurora-

diologist are associated. This widget, being accessed through

W-Neurologist, behaves according to the neurologist culture:

when the neurologist selects it, the workshop reacts by present-

ing the associated data in a representation understandable by the

neurologist. In the example of Fig. 8, basic parameters associ-

ated with the hyperdensity of the circled area (the suspect area)

are shown instead of the histogram shown in W-NeuroRadio.

This is because the histogram would be difficult to interpret by

the neurologist.

The creation of a new widget through annotation is a tailoring

activity performed by end users.

C. EUD at the Design Level

Each workshop is the result of a participatory and cooper-

ative design performed by a team including d-experts (e.g.,

senior neurologists or neuroradiologists), HCI experts, and

software engineers. To this end, representatives of end users,

i.e., d-experts, interact with a system workshop to create the

application workshops by direct manipulation of virtual entities

prepared by software engineers and HCI experts. As we said in

Section IV-A, system workshops used by d-experts are a type

of UIDE customized to d-experts and to their context and tasks

to improve their ease of use.

Fig. 9 shows a screenshot of the system workshop

W-ReprNeuRa: the d-expert has partially composed the appli-

cation workshop shown in Fig. 4(a) devoted to neuroradiolo-

gists by selecting, from the repositories on the right side of

Fig. 9. System workshop W-ReprNeuRa during the interaction with a
d-expert to create the application workshop devoted to neuroradiologists.

the screen, the canvas on which the application workshop is

composed, the overview area, the work area, the archive area,

the Exit button, and the “Patient” menu. The d-expert is creating

a program by visually interacting with the system workshop and

is not writing any textual code.

The tools available to the different specialists are also cus-

tomized to their needs. For example, in their daily work,

neurologists and neuroradiologists study parts of EEGs and/or

MRIs in depth. As shown in Fig. 4(a), the neuroradiologist has

selected one part of the MRI from the MRI overview area,

which has been automatically loaded in a specific window,

called a workbench, to be studied and manipulated by the user.

Similarly, in Fig. 4(b), the neurologist has selected one portion

of an EEG from the EEG overview area and one of the MRIs

from the MRI overview area. Each image has been loaded

into a different workbench, and the neurologist can study and

manipulate them separately. In both cases, the workbenches

are customized to the image to be processed and to the needs

of the physician: they are equipped with a toolbar hosting

the tools to be used by the physician to study the image and

prepare requests of consultation to be sent to other specialists.

According to the principles of the SSW methodology, these

tools resemble the real tools the physicians use in their work

practice.

Two further system workshops are used by representatives of

end users to prepare customized workbenches. Fig. 10 shows

the system workshop called W-CompNeuRa used by a senior

neuroradiologist for creating the workbench to be used by neu-

roradiologists to study MRIs. With the aim of not disorienting

the user, this system workshop has the same layout organization

and interaction possibilities of the system workshop to be used

to create whole application workshops: it presents a title on

the top, a work area in the center, a set of repositories on the

right, a message area, and a button panel on the bottom. The

user can select objects from the repositories and drag and drop

them in the work area to create, in this case, a workbench. After

a workbench is saved, it appears as one of the benches avail-

able in the corresponding repository in the system workshop
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Fig. 10. System workshop W-CompNeuRa during the interaction with a
senior neuroradiologist to create the workbench for the neuroradiologist to
study MRIs.

W-ReprNeuRa presented in Fig. 9. It may, thus, be selected to

be added to the application workshop being created.

D. Communications in the Case of Neurologists

and Neuroradiologists

With reference to the SSW network illustrated in Fig. 3, com-

munications occur within the same level and between different

levels of the network. At the design level:

1) Senior physicians exchange with HCI experts the applica-

tion workshops they are developing through W-ReprNeu

or W-ReprNeuRa to evaluate and improve their usability;

in this case, programs PSSW are exchanged.

2) Senior physicians exchange with HCI experts compo-

nents of SSWs (e.g., subprograms that, when interpreted,

generate virtual entities of type “workbench”) they are

developing through W-CompNeu or W-CompNeuRa to

evaluate and improve their usability.

3) Senior neurologists interacting with W-ReprNeu to create

W-Neurologist can access the tailored components de-

veloped using W-CompNeu; also, in this case, programs

PSSW are exchanged.

4) Senior neuroradiologists interacting with W-ReprNeuRa

to create W-NeuroRadio can access the tailored compo-

nents developed using W-CompNeuRa; therefore, also in

this case, programs are exchanged.

5) Senior neuroradiologists interacting with W-ReprNeuRa

exchange programs and data with senior neurologists in-

teracting with W-ReprNeu to decide on the types of tools

for consultation and data representation they would like

to place at neurologists’ and neuroradiologists’ disposal

in W-Neurologist and W-NeuroRadio.

At the use level, neurologists and neuroradiologists exchange

data (textual or visual annotations, images) with the aim of

achieving a common diagnosis.

Communications between different levels may occur from

top levels to bottom levels and vice versa. In the first case,

programs specifying whole workshops are exchanged. For ex-

Fig. 11. Neuroradiologist is annotating the application workshop
W-NeuroRadio.

ample, d-experts create and send application workshops to end

users. In the latter case, annotations about usability problems

or new user needs are sent to the higher levels: for example,

at the design level, representatives of end users can send to

software engineers requests for developing new tools to be used

in their workshops; whereas at the use level, end users can

communicate to HCI experts or to d-experts their problems

in understanding the meaning of some data representations

or how to use some tools. We describe this second case in

more detail. Users interacting with an application workshop can

choose the “annotation mode” from the “tools” menu and, thus,

add textual and graphical annotations about usability problems

affecting the software environment with which they are work-

ing. Fig. 11 shows a screenshot taken during the annotation of

W-NeuroRadio on behalf of the neuroradiologist.

In the annotation mode, the user cannot perform her/his

task (in this case, analyzing and annotating MRIs) but can

interact with the workshop only to annotate it. To this end, a

button panel, appearing only in annotation mode (see Fig. 11),

provides tools that permit inserting textual annotations, deleting

annotations, designing closed curves over critical portions of

the workshop, and stopping the annotation mode.

By clicking on a portion of the screen, the user can highlight

a component of interest: as can be seen in Fig. 11, a colored

layer has appeared over the “menu area.” Then, by selecting

the “tracing closed curves” button, the user has highlighted an

area over the first two menus. Then, he has annotated in the

annotation window the problem related with these menus.

VI. APPLYING THE SSW APPROACH IN A

MECHANICAL ENGINEERING DOMAIN

We describe here a further example of an SSW network,

with reference to a prototype we have developed with a factory

automation company. The company is responsible for produc-

ing the operating software (and related user interfaces) for the

systems it sells to client companies. In the rest of this section,

by “company,” we refer to the factory automation company

and by “client companies,” to its clients. The company has the

following needs: 1) to create systems for factory automation
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Fig. 12. Application workshop developed for a factory automation company
(the numbers have been added on the screenshot for the sake of explanation in
the text).

that are customized and usable for their client companies, i.e.,

easy to learn, use, and adapt for experts in factory automa-

tion (but not in computer science); and 2) to create software

tools that support its personnel in the development, testing,

and maintenance of such systems. The company personnel are

organized into different categories of end users with different

responsibilities and skills, who need to perform various tasks

with the software tools. According to the SSW methodology,

specific software environments must be developed for each

community of end users. Similarly, the client companies need

different environments specific to their own organization and

for their tasks when operating the automation systems.

The analysis we performed with company personnel and

client companies led us to design a VIS that can be shaped to the

specific client company and structured in various environments,

each for a specific community of users. As an example, Fig. 12

shows the prototype developed for the assembly line operator,

which is devoted to the control of a pick-and-place robot.

The required functionalities of this environment are different

modalities of using the robot (automatic, manual, diagnostic,

setting, etc.); the possibility to choose among various tools to

be associated with the robot to modify its behavior and the

task to perform; and, finally, a number of options to create

annotations, get online help, save the work, etc. The robot

operation modality is chosen by clicking on one of the buttons

in the button panel indicated by the number (1) in Fig. 12; the

tools to be associated with the robot may be selected from the

archives of pieces, engines, trajectories, and grippers shown on

the right part of the interface (2); the behavior of the machine is

then shown in the work area (3); at the bottom, a message area

presents messages orienting the user during her/his interaction

with the system (4); the button panel offers the options of

annotation, help, saving, logging, and exiting (5).

A. SSW Network in the Case of Factory Automation

Due to the organization of the company development

process, in the designed SSW network, the system workshops

Fig. 13. SSWs in the case of factory automation.

at the design level are grouped into two levels (see Fig. 13). At

the upper sublevel, there is a system workshop (W-Company)

that is devoted to the company d-experts, who are in charge of

creating all virtual entities to be managed at the lower plane

(including system workshops since they are complex virtual

entities themselves); there is also a system workshop (W-HCI)

that is devoted to HCI experts to check the created virtual

entities. At the bottom sublevel, there is a system workshop

(W-Personnel) to be used by the company d-experts that are

in charge of generating the application workshops to be used

by the company end users and a system workshop (W-Client)

to be used by client company d-experts to create the application

workshops devoted to their end users.

Such application workshops are related to two kinds of

activities: 1) software mechanical design and testing of the au-

tomation systems; and 2) operation of the automation systems

in the client factory. The workshops supporting activities of

type 1 are devoted to different professionals working at the

company, such as mechanical and software testers and mechan-

ical programmers; the workshops supporting activities of type 2

are devoted to end users working in the client company, such as

assembly line operators and production managers.

The application workshop devoted to the assembly line oper-

ators has been previously described in Fig. 12. W-Client is the

system workshop permitting the mechanical engineers (client

company d-experts) to create this application workshop. Both

workshops are shown in gray in Fig. 13. W-Client permits the

creation of the application workshop through simple drag-and-

drop activities. Figs. 14 and 15 illustrate two different snapshots

of this system workshop, generated during the interaction of a

d-expert with the system workshop for creating the application

workshop shown in Fig. 12. In Fig. 14, the virtual entity

“canvas” has already been selected from the menu area on the

right side and has been positioned on the work area to become

the background of the workshop that is being created. The

mechanical engineer is now dragging and dropping the virtual

entity “bottoniera operativa” (operative button panel), which

will appear on the canvas in its initial state, i.e., as a cp whose

cs component is the displayed button panel, and the associated
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Fig. 14. Virtual entity “bottoniera operativa” (operative button panel) is
dragged and dropped on the canvas representing the background of the work-
shop being created.

Fig. 15. Using W-Client system workshop, a d-expert is creating the applica-
tion workshop shown in Fig. 12. The button “diagnostica” (diagnostic) is being
located on the operative button panel.

program is able to manage the user interaction. This is an

example of visual programming [18]. In Fig. 15, the application

workshop presented in Fig. 12 is partially composed. The

d-expert is now positioning a new button on the operative button

panel.

B. Communications in the Case of Factory Automation

In the network shown in Fig. 13, communications occur at

the design level:

1) between the system workshops at the top plane, de-

voted to company d-experts and to HCI experts, re-

spectively, who collaborate, interacting with their own

system workshop, in developing the system workshop W-

Personnel, which is devoted to the personnel working

in their company, and the system workshop W-Client,

which is devoted to the client company; they exchange the

programs PSSW specifying the system workshops under

development;

2) between a system workshop at the top plane and a system

workshop at the bottom plane whenever W-Personnel

and W-Client are generated or accessed from system

workshops W-Company and W-HCI. Also, in this case,

programs are exchanged.

At the use level, communications occur among the work-

shops devoted to the company personnel and among the work-

shops devoted to the company clients. In both cases, there is

an exchange of data (results of data acquisition, computations,

etc.) to test the final system (in the case of company personnel)

and to use the interactive system to perform work tasks (in the

case of the client companies).

Communications between different levels may occur: from

the design level to the use level, application workshops are sent

by company personnel or by the client company d-experts to

end users (programs PSSW are exchanged); from the use level

to the design level, annotations about usability problems or

new user needs are sent, as in the medical case examined in

Section V-D.

VII. RELATED WORK

The methodology described in this paper is the result of

our initial experiences in the design of interactive systems,

developed to support mechanical engineers, physicians, and

photointerpreters. In developing the methodology, we followed

a bottom-up iterative approach: from experiments [10] to the

abstraction of a model [28], and again back to experiments, then

to the revision of the model [8], [18], [19], [29]. In developing

our experiments, we realized that, as software engineers, we

know the technology; however, only domain experts understand

the practice in the working environment.

Knowledge about user practice and future use situations can

only be obtained by the collaboration with users, as agreed also

by other researchers [30], [31]. Moreover, the increasing spread

of computers in work environments determined the evolution of

computer users from being software engineers or programmers

to being just end users [8], [32].

The development of the methodology was influenced by

the experiences of other groups, with similar goals. In the

following sections, we briefly analyze those works that have

been influential to our research or that, to the best of our

knowledge, can be related to it.

A. Model-Based Approaches

The SSW methodology is model-based in that it refers to

a model of the interaction and coevolution processes of re-

lated members of a work domain to identify the causes of

usability difficulties affecting interactive systems. The model

is, thereafter, used to derive design procedures, which per-

mit the implementation of systems in which these difficulties

are eliminated or at least reduced. This model capitalizes on

the seminal interaction model proposed by Hutchins et al.

[33], which focuses on the human side of the interaction

process and identifies the existence of semantic and articulatory
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distances in evaluation and execution as the primary sources

of usability difficulties. However, interaction processes are

determined by a cognitive system (the human) and a computing

system (the computer), which, in turn, form a unique system,

called a “syndetic system” in [34], i.e., a system composed by

binding subsystems of a different nature. To properly model

the interaction process, one must also model the computing

system, highlighting the problems arising on the computer side,

i.e., capturing and interpreting the human actions. This stance

is clearly posed in the model proposed in [35] and is also

adopted by our model. However, we characterize each cycle

of the interaction process as an exchange of messages that are

subject to two interpretations: one that is performed by the user,

and the second one that is internal to the system, associating

the image on the screen with a computational meaning, as

determined by the programs implemented in the system. The

messages exchanged in the interaction process are seen as signs,

which the humans must interpret within the context of their

activity. This view is analogous to that independently proposed

in computer semiotics [36], [37], a new discipline that “ana-

lyzes computer systems and their context of use under a spe-

cific perspective, namely as signs that users interpret to mean

something” [38].

B. Participatory Design Approaches

The SSW methodology is a participatory one, in that the

design is performed by an interdisciplinary team, including

representatives of end users, i.e., the domain experts [23].

Participatory approaches exploit techniques that are derived

from social science that support communication and collabo-

ration within the interdisciplinary team: these techniques move

from system descriptions to collaborative construction of mock-

ups, to cooperative prototyping and game-like design sessions.

Most of these techniques not only analyze solutions after setting

up goals but also use fantasy and imagined futures to study

specific actions [39].

The Future Workshop technique foresees group meetings run

by at least two facilitators to identify and analyze common

problematic situations, generate visions about the future, and

discuss how to realize these visions [40]. It is worth noting

that in the Future Workshop technique, the word “workshop”

denotes a seminar emphasizing exchange of ideas and practical

methods. In our methodology, “workshop” denotes a small

establishment where manufacturing or handicrafts are carried

[41], as it is usual in the language of some professional people

we collaborate with.

In cooperative prototyping [42], prototyping is viewed as a

cooperative activity between users and designers. Prototypes

are developed by software engineers, then are discussed with

users, and are possibly experienced by them in work-like

situations. Prototype modifications may be immediately made

by direct manipulation, also by users, during each session of

participatory design. However, in this approach, prototypes just

represent an interactive digital evolution of paper-based mock-

ups: real systems are then reprogrammed, and all modifications

require a large programming effort that is made by designers

after each session.

The SSW methodology favors the asynchronous exchange

of ideas through the exchange of annotations and prototypes.

It views prototyping as a cooperative incremental activity, in

which all the stakeholders participate in the development of

the final system. Each stakeholder operates on prototypes ac-

cording to their own view, through the use of SSWs. Moreover,

the use of prototypes permits the participation of d-experts and

end users in the creation of software tools that they can tailor,

customize, and program themselves in line with participatory

programming [43]. Participatory programming is regarded as

a way to transcend participatory design, but exploits tradi-

tional techniques of participatory design (in situ observations,

interviews, workshops) to allow domain experts and software

engineers to collaborate in developing and tailoring software

tools.

On the whole, the SSW methodology favors the so-called

“translation problem” among different stakeholders because it

allows each stakeholder participating in the design process to

interpret and experiment with the workshop being designed

from her/his own point of view. This stance recalls the proposal

in [44]. Moreover, we do not provide a mere translation, but

present each stakeholder with a software environment support-

ing her/his own view of the task to be performed.

C. EUD

The SSW methodology has been influenced by the work

performed in EUD-Net, the network of Excellence on EUD,

funded by the European Commission during 2002 and 2003

[6]. In the literature, end-user programming and end-user com-

puting are often used as interchangeable terms; for example,

in [45], the authors discuss “enhancing editors with end-user

programming capabilities.” They also say that “end-user com-

puting is needed in domains or applications where the activity

cannot be planned in advance,” and that it should have the

flavor of “on-the-fly” computing, i.e., it should emerge during

the user activity, when the user needs to create a combina-

tion/repetition/abstraction construct, according to some con-

crete situation. Brancheau and Brown [12] describe end-user

computing as “the adoption and use of information technology

by people outside the information system department, to de-

velop software applications in support of organizational tasks.”

The EUD-Net collaboration preferred the term EUD to indicate

the active participation of end users in the software devel-

opment process; this can range from providing information

about requirements, use cases, and tasks, including participa-

tory design, to activities such as customization, tailoring, and

coevolution.

A system acceptable by its users should have a gentle slope

of complexity: this means that it should avoid big steps in

complexity and keep a reasonable tradeoff between ease-of-use

and functional complexity. For example, systems might offer

end users different levels of complexities in performing EUD

activities, going from simply setting parameters, to integrating

existing components, up to extending the system by developing

new components [46], [47]. In this line, Mørch [48] proposes

three levels of tailoring: customization, integration, and exten-

sion. Customization usually consists of configuring a set of



COSTABILE et al.: VISUAL INTERACTIVE SYSTEMS FOR END-USER DEVELOPMENT 1043

preferences performed by the user through a preference form

by setting parameters for the various configuration options the

application supports. Integration goes beyond customization

and allows users to add new functionalities to an application

by linking together predefined components without accessing

the underlying implementation code. Extension refers to the

case in which the application does not provide, by itself or by

its components, any functionality that accomplishes a specific

user need; thus, adding a new functionality generates a radical

change in the software. The SSW methodology encompasses

all these levels of tailoring. It also takes into consideration the

results in [22] and [49], where empirical studies are reported

on the activities end users are willing to perform. Mackay [22]

analyzes how users of a UNIX software environment try to

customize the system. She finds that many end users do not

customize their applications as much as they could. This de-

pends on the fact that it takes too much time and deviates from

other activities. Nardi [49] conducted empirical studies on the

users of spreadsheets and CAD software. She found that those

users perform activities that generate new software artifacts and

are even able to master the formal languages embedded in these

applications when they have a real motivation for doing so.

Software technology has advanced to the point that we can

build tools for end users to design systems by interacting with

icons and menus in graphical microworlds. Several researchers

working on EUD capitalize on this and describe technologies

for component-based design environments (e.g., [50]), libraries

of patterns, and templates. There are various proposed design

environments that do not require users to program per se;

instead, they design by instructing the machine to learn from

examples [51]. In this line, system workshops devoted to d-

experts permit creating programs just by visually composing

virtual entities selected from repositories, as described in the

two case studies.

Giving end users ways to easily create their own programs is

important; however, it is not enough. Like their counterparts in

the world of professional software development, end users need

support for other aspects of the software life cycle. In particular,

referring to the case of errors in end-user programs, such as

formula errors in spreadsheets, Burnett et al. [52] discuss a

strategy that gives end users the ability to perform quality-

control methods. Myers et al. [53] work to develop natural

programming languages and environments to permit people to

program by expressing their ideas in the same way that they

think about them.

D. Metadesign

EUD can be considered a two-phase process: the first phase

being designing the design environment, and the second one

being designing the applications using the design environment.

These two phases are not clearly separated and are executed

several times in an interleaved way because the design environ-

ments evolve both as a consequence of the progressive insights

the different stakeholders gain into the design process and as a

consequence of the comments of end users at work.

Our approach is consistent with this concept of metadesign,

which is explored in [54]. Metadesign is a process in which

end users are able to act as designers and contribute to the

coevolution of the system. Metadesign must enable humans to

shape their sociotechnical environments and empower them to

adapt their tools to their own needs.

In this perspective, metadesign highlights the novel vision of

interactive systems that is adopted by the SSW methodology.

Specifically, it emphasizes that all the stakeholders involved

in the design of the system are “owners” of a part of the

problem [54], and, therefore, each is provided with an SSW,

through which the stakeholder can contribute to shape software

artifacts. HCI experts, software engineers, and end users acting

as developers, each one through her/his SSW, can access and

modify the system of interest in accordance with her/his own

culture, experience, needs, and skills. They can also exchange

among themselves and evaluate the results of these activities to

converge on a common design. In light of these considerations,

we view metadesign as a design paradigm that includes end

users as active members of the design team and provides

all the stakeholders in the team with suitable languages and

tools to foster their personal and common reasoning about the

development of interactive software systems that support the

end users’ work.

E. User Diversity

The SSW methodology emphasizes the need of develop-

ing different software environments for end users working

in the same domain but with different roles. Similarly, the

Design Aid for Intelligent Support System (DAISY) is a design

methodology for building decision support systems in complex

experience-centered domains [55]. It provides a technique for

identifying the specialized needs of end users within a specific

range of domain experience. In other domains, systems can

have multiple end users with multiple roles. As an example,

the Dynamic Interaction Generation for Building Environments

(DIGBE) is a system that creates end-user interfaces adapted

to the multiple end users with different roles that collaborate

to the management of a building control system [56]. An

expert user, typically a building manager, sets the initial state

of the systems dedicated to other expert users (i.e., managers,

operators, and technicians). The generated prototypes are sim-

ilar to the prototypes developed in recent years through the

SSW methodology in the mechanical engineering case study

described in Section VI.

The SSW methodology emphasizes the importance of both

context of activity and working organization and, as suggested

by activity theory [57], considers software systems as artifacts

having a mediating role between objects and subjects of activ-

ities. In fact, end users work in a context outside the computer

and are required to apply their intuitive knowing to reflect on

the current situation and decide what to do next. Following

Schön [13], we assume that end users perform their activity as

competent practitioners. The interactive system should support

end users in exploiting their practical competence and skill.

VIII. CONCLUSION

We have presented the SSW methodology that is aimed at

designing software systems that support end users to tailor
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and even design their tools, i.e., to perform EUD activities.

Insights emerging from our recent experiences have been

provided.

This paper contributes to the research on EUD by:

1) founding EUD on a model of the interaction and coevo-

lution processes; 2) providing the SSW design methodology,

based on that model, to build software environments (SSWs)

that are customized to the needs of the end-user communities

to which they are devoted and that allow them to perform

EUD activities. The SSWs also provide tools that support the

communication among d-experts, HCI experts, and software

engineers and their collaborative participation in the design

process.

The SSW approach improves the interaction between users

and systems by providing advantages from different points of

view.

1) A pragmatic point of view: the approach permits a pro-

gressive refinement of the specification of the interaction

process defined from the point of view of the software

engineers, at the top level, into a concrete specification

of the same process in terms of the notations familiar

to the end users (e.g., mechanical engineers, medical

doctors), thus supporting a gentle slope of complexity

[46], [47].

2) A semantic point of view: the approach favors the match

between the computational meaning of the software tools

and the meaning usually given to them by the different

users (HCI designers, domain experts, and end users).

At each level of the hierarchy, every SSW adopts an

interaction visual language [19] based on the notations

of the users working with it. The SSWs present do-

main experts with virtual entities whose characteristic

structures and computational constructs resemble those

of the entities experts use in their traditional working

environment.

3) A communication point of view: the approach per-

mits message exchange among the different stakeholders

through the SSW network. Messages are presented to the

various communicants in their contexts of activity and

according to their interpretation schemata.

End users involved in the two described projects are collab-

orating with enthusiasm to the development of the SSW pro-

totypes. They understand and appreciate the novel approach of

being involved in collaborative design processes, through which

they can have a more active role than simple consumers of new

technologies. The possibility of having software environments

that they can easily adapt to their needs is a new perspective

that excites them very much. Moreover, SSWs permit end users

to carry out some activities much faster than the conventional

face-to-face methods that usually require a long time (e.g.,

exchanging consultations). The comments we collected after

observing people using the developed prototypes are a clear

sign that this approach is well accepted by users and generates

more pleasure and fun in their overall experience with new

technology.
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