
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 5, OCTOBER 2007 635

Visual Learning by Evolutionary and Coevolutionary
Feature Synthesis

Krzysztof Krawiec, Member, IEEE, and Bir Bhanu, Fellow, IEEE

Abstract—In this paper, we present a novel method for learning
complex concepts/hypotheses directly from raw training data.
The task addressed here concerns data-driven synthesis of recog-
nition procedures for real-world object recognition. The method
uses linear genetic programming to encode potential solutions
expressed in terms of elementary operations, and handles the
complexity of the learning task by applying cooperative coevo-
lution to decompose the problem automatically at the genotype
level. The training coevolves feature extraction procedures, each
being a sequence of elementary image processing and computer
vision operations applied to input images. Extensive experimental
results show that the approach attains competitive performance
for three-dimensional object recognition in real synthetic aperture
radar imagery.

Index Terms—Computer vision (CV), cooperative coevolution
(CC), evolutionary computation (EC), machine learning (ML), pat-
tern recognition, visual learning.

I. INTRODUCTION

V
ISUALlearning is theprocessofautonomousacquisitionof

knowledge from visual data, aimed at improving the future

performance of an intelligent system. As such, it is a vital compo-

nent of any real-world application that engages visual informa-

tion, for instance, enabling an autonomous robot to move safely

bybuildinga“mentalmap”of its environment,making itpossible

for a medical diagnostic support system to learn how to discrim-

inate cases of different diseases represented by microscopic im-

ages, or helping an intelligent multimedia interface to adapt to the

changing operating environments and different users.

Visual learning requires synergy between computer vision

(CV) and machine learning (ML). It is a challenging domain,

with difficult real-world tasks, for several reasons.

• First, visual learning is a complex (modular) task. It starts

from raw image data and ends with a final decision in a spe-

cific scenario, usually involving several intermediate steps

of information processing. This implies a need for decom-

position, which is nontrivial in itself.

• Second, the visual training data is represented in a way

that is inconvenient for most standard ML methods, which

work best with a low number of scalar attributes (features),

Manuscript received July 6, 2006; revised October 11, 2006. This work
was supported in part by the Air Force Research Laboratory under Grant
F33615-99-C-1440 and in part by Research Grant DS-91-427. The contents
of the information do not necessarily reflect the position or policy of the U.S.
Government.

K. Krawiec is with the Institute of Computing Science, Poznań University of
Technology, 60965 Poznan, Poland (e-mail: krawiec@cs.put.poznan.pl).

B. Bhanu is with the Center for Research in Intelligent Systems, University
of California, Riverside, CA 92521 USA (e-mail: bhanu@cris.ucr.edu).

Digital Object Identifier 10.1109/TEVC.2006.887351

and generally do not consider the relationships (e.g., spa-

tial) among attributes. Raster images are, on the contrary,

large, structured, two-dimensional arrays. Therefore, spe-

cialized procedures and operators are required to access,

aggregate, and transform the input (e.g., image filtering,

segmentation, feature extraction) into an appropriate form.

• Third, the amount of data that has to be processed during

training is usually much higher than in standard ML appli-

cations (a few or a few dozen attributes versus thousands or

millions of pixels). This imposes significant requirements

on the effectiveness of the search in the hypothesis space.

• Finally, the real-world image data are usually noisy and

contain plenty of irrelevant factors that have to be sieved

out during learning.

This paper describes an approach for recognizing objects

in real-world images that addresses all the above issues and

attempts to solve them by using important ideas from ML,

evolutionary computation (EC) and computer vision, and com-

bining them in a novel way. It is organized as follows. Section II

describes motivations for this research, discusses related work

in visual learning, and identifies contributions of this paper.

Section III presents in detail the proposed methodology of

evolutionary visual feature synthesis. Section IV describes

experimental settings, implementation of the proposed method,

and results in a difficult domain of real-world object recognition

in radar modality. Finally, Section V provides theoretical and

experimental conclusions of this paper.

II. MOTIVATION, RELATED WORK, AND CONTRIBUTIONS

A. Motivation

The primary motivation for the research described in this

paper is the lack of a general methodology for the design and

development of recognition systems. The manual design of

such systems for most real-world tasks is tedious, time-con-

suming, and expensive. Though satisfactory in performance in

constrained situations, the handcrafted solutions are usually

limited in the scope of applicability and have poor adaptation

ability in practical applications (for instance, real-world out-

door navigation with changing environmental conditions). As

the difficulty of real-world problems approached in practice

increases, the above limitations become severe obstacles. In

some aspects, this is similar to the way the complexity of the

software development process made the developers struggle

until the software engineering offered appropriate techniques.

B. Related Work

The interest in visual learning research has been so far rather

limited in both ML and CV communities, although the impor-

1089-778X/$25.00 © 2007 IEEE

636 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 5, OCTOBER 2007

TABLE I
RELATED WORK IN VISUAL LEARNING (EC—EVOLUTIONARY COMPUTATION, GP—GENETIC PROGRAMMING, NN—NEURAL NETWORKS,

CC—COOPERATIVE COEVOLUTION, LGP—LINEAR GENETIC PROGRAMMING, PR—PATTERN RECOGNITION)

tance of vision in the development of intelligent systems has

been well recognized. Contemporary recognition systems are

mostly open-loop and the human input is still predominant in

the design of such systems. In most approaches reported in the

literature, learning is limited to parameter optimization [4] that

usually concerns a particular processing step, such as image

segmentation, feature extraction, etc. Only a few contributions,

summarized in Table I, attempt to close the feedback loop of the

learning process at the highest (e.g., recognition) level and test

the proposed approach in a real-world setting. Note that, to the

best of our knowledge, only a few approaches [5], [12], [13],

[16], [22], [23], [30] have been reported that learn using raw

images as training data, and therefore, produce the entire ob-

ject recognition system. Moreover, some of these methods [10],

[18], [29] use domain-specific knowledge and are highly spe-

cialized towards a particular application.

C. Previous Work and Contributions of This Paper

This paper continues our previous research [6], [13], [14] on

the use of cooperative coevolution (CC) [25] for the decompo-

sition of feature synthesis task for pattern recognition and com-

puter vision problems. In particular, in [13] we considered the

task of coevolutionary feature synthesis where the cooperation

between individuals from different populations takes place at

the phenotype level (phenotypic CC). Technically, each popu-

lation maintained by the CC algorithm was devoted to the de-

velopment of a single feature extraction procedure. The geno-

type-phenotype mapping that produces the actual feature ex-

traction procedure took place in each population independently.

Then, the resulting feature extraction procedures were used to-

gether to describe the training images in terms of feature values,

which were subsequently fed into a ML classifier that performed

the actual recognition.

The results obtained in [13] were encouraging and proved,

among others, the scalability of phenotypic CC with respect to

the number of decision classes. We also observed that the recog-

nition performance depends heavily on the ability of the classi-

fier to make use of synergy, i.e., to benefit from combination of

feature values. This makes it difficult to judge whether the per-

formance of the system as a whole should be attributed to the

“intelligence” of the classifier, or to the nature of the coevolu-

tionary process. In other words, the actual manner in which the

populations cooperate becomes intricate due to the intermedia-

tion of the classifier.

For this reason, in this paper we propose a different approach,

where the cooperation takes place at the genotype level (geno-

typic CC). The individuals (bit strings) evolved in particular

populations are first concatenated. The resulting compound

bit string is subject to genotype-phenotype mapping, which

results in a single feature extraction procedure that is evaluated

in the same way as in the phenotypic CC. This makes the

interpopulation cooperation tighter, more direct, and easier to

explain and investigate. Thanks to that, in experimental part, we

perform a series of experiments on a medium-size recognition

task, focused on the parameterization of the coevolutionary

process. Among others, we analyze the sensitivity of algorithm

convergence to the number of cooperating populations and to

the number of registers (local variables) used by the feature

extraction procedures. This provides an in-depth insight into

the coevolutionary process, as opposed to [13], where we

focused on scalability, metaclassifiers, and on the ability to

recognize distorted objects, in binary recognition as well as in

multiple-class recognition tasks. The differences between this

paper and [13] are briefly summarized in Table II.

The particular contributions of this paper are the following.

1) This paper continues and deepens the research on a

novel general methodology of automatic learning/syn-

thesis of recognition procedures, initially proposed in

[13]. This methodology: (a) uses raw image data for

training; (b) does not require domain-specific knowl-

edge; and (c) attains good performance on a complex,

real-world object recognition task. Learning proceeds

with a database of training examples (images) parti-

tioned into decision classes and a set of general-purpose

image processing and feature extraction operators.

The method uses EC to search in the space of image

KRAWIEC AND BHANU: VISUAL LEARNING BY EVOLUTIONARY AND COEVOLUTIONARY FEATURE SYNTHESIS 637

TABLE II
COMPARISON OF THIS PAPER AND OUR PREVIOUS CONTRIBUTION ON RELATED TOPIC [13]

representations (features) and relies on representation

inspired by linear genetic programming (LGP) [1] to

encode the feature extraction procedures as EC individ-

uals.

2) We focus on the pioneering genotypic CC, a variant of

the paradigm of EC [25], to handle the complexity of

the task, and investigate the sensitivity of search con-

vergence to the setting of particular parameters such as

the number of coevolving populations and the number

of registers used for storing intermediate results.

3) We use real-image data to demonstrate our approach and

provide a comparison of performance between the geno-

typic coevolutionary approach (CC) and genetic algo-

rithm (GA).

III. TECHNICAL APPROACH

Our approach, proposed in its general form in [3], [13],

and [14], evolves feature extraction procedures and operates

in a learning-from-examples paradigm. The learner/inducer

acquires knowledge autonomously from the set of training

examples (raster images) , which is a representative

sample taken from the dataset that forms the recognition

problem under consideration. The technique solves a classifi-

cation problem and learns in a supervised manner, i.e., requires

to be partitioned into mutually disjoint decision classes .

The output of the learner is the synthesized recognition system

that implements the feature-based recognition paradigm, with

processing split into two stages: feature extraction, carried

out by a feature extraction procedure , and decision making,

performed by a trained classifier . The interface between

these modules is a vector of scalar features.1

The novelty of this methodology is in integrating image pro-

cessing and feature extraction into the learning process. There-

fore, the learner is able to design an intermediate (internal)

image representation, i.e., globally or locally processed ver-

sions of the input image that selects or emphasizes those vi-

sual features which are appropriate for solving the task at hand.

Thus, the learner is not forced to compute the features directly

from the input image, but is allowed to create processed (glob-

ally or locally) versions of the input image and use them as

the source of (global or local) features. The entire recognition

system becomes a learner’s hypothesis in ML terms, as opposed

to most approaches where hypothesis space is spanned over a

fixed space of predefined features. This paradigm, often referred

1In this paper, we use a different notation than in [13]: S for solutions (pre-
viously O),X for individuals (previously I), and I for images (previouslyX).

to as feature synthesis has also been known in ML literature as

feature construction or constructive induction [19].

By feature extraction procedure , we mean a function that,

given an image from the domain of raster images ,

produces its description in terms of at most scalar features,

where is an upper limit imposed on the number of features

A well-designed feature extraction procedure (module) is

clearly a necessity for attaining high recognition rate, and that

is why its design is usually so demanding and resource-con-

suming. To automate that design and include it in the learning

loop, we pose it as a search problem in the discrete space of all

feature extraction procedures , with each search state corre-

sponding to a unique feature extraction procedure . This

search is guided by a maximized evaluation (fitness) function

, such that, given the training data ,

is an estimate, for all examples from , of the proba-

bility of correct recognition using (details on are provided

later).

In the above setting, the task of synthesizing the globally op-

timal image representation given the training data can

be formalized as

In our learning-from-examples setting, is defined by the

training data and their partitioning into decision classes ,

so its characteristics are not known a priori. In such a case,

the task of finding has exponential time complexity with

respect to the number of scalar features and with respect to

the number of possible realizations of particular scalar features.

This prohibits the use of an exhaustive search algorithm even

for relatively small values of .

Heuristic or metaheuristic search is, therefore, the only plau-

sible method that can be applied to the synthesis task that can

yield reasonably good suboptimal solutions ,

in polynomial time. In fact, for some problems, the

solutions found during the heuristic search may even be glob-

ally optimal; however, as we do not know the upper bound of

recognition performance in realistic settings, we cannot discern

them from the suboptimal ones.

A. Representation of Evolving Recognition Procedures

The overall architecture of the learning system, presented in

Fig. 1 shows clear distinction between general-purpose evolu-

tionary engine and domain-oriented fitness function . For each

638 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 5, OCTOBER 2007

Fig. 1. The overall architecture of our learning system.

evaluated individual , fitness function interprets it as feature

extraction procedure, runs it on all images from the training

set , and estimates the predictive accuracy of the computed

feature values. In this way, provides feedback to the search

process and closes the learning loop.

To effectively search the space of feature extraction proce-

dures, the learning proceeds in the framework of EC (Fig. 2).

The evolutionary algorithm (EA) maintains a population of

procedures that are encoded in individuals (solutions) , which

are modified and recombined during the evolutionary search.

The procedures compete with each other by means of their fit-

ness values , which reflect the utility of particular image repre-

sentation for solving the problem posed by the training data .

The best procedure found in the evolutionary run becomes

the feature extraction module of the final synthesized recogni-

tion system.

An important issue that influences the performance of the

proposed approach is the representation of individuals. To

speed up the convergence of the search process and provide

the system with basic knowledge, we assume that certain ele-

mentary building blocks are given a priori to the learner in the

form of basic image processing, feature extraction, and feature

transformation operations.

The representation framework for the proposed evolutionary

learning is inspired by a variation of LGP [1]. LGP is a hybrid of

GAs and genetic programming (GP). Here, an individual’s chro-

mosome encodes a feature extraction procedure as a fixed-

length string of numbers that is interpreted as a sequential pro-

gram. The procedure is composed of (possibly parameterized)

basic operations that work on input data (images). The major

advantage of this linear representation is low susceptibility to

destructive crossovers and avoidance of code bloat problems,

which are important considerations for GP.

The technical encoding of procedures has been originally pro-

posed in [13] and may be summarized as follows.

• A procedure is encoded by a fixed-length string of bytes

(valued [0 255]) that defines a sequence of operations,

i.e., image processing and feature extraction steps.

• The particular operations work on registers (working

variables) that are used for both input and output during

procedure execution. Image registers store processed

images (i.e., entities with domain in), whereas scalar

registers (real-number) store scalar features (i.e., entities

with domain in). All image registers have the same

dimensions as the input image . Each image register,

apart from storing the image, maintains the position of a

single rectangular mask that may or may not be used by

a particular operation. To keep the number of parameters

reasonably low, there are image registers and number

registers, with the latter ones corresponding to features.

• An operation is encoded in a chunk of four consecutive

chromosome bytes, with the following elements (see

Fig. 3).

(i) Operation code (opcode), which univocally iden-

tifies the operation to be executed.

(ii) Mask flag—decides whether the operation should

be performed globally (work on the entire image)

or locally (limited to the mask).

(iii) Mask dimensions (ignored if mask flag is “off”).

Mask location is maintained by image registers

and depends on the actual image contents.

(iv) The remaining part of the encoded operation

describes the argument list. For most operations

(e.g., , MedianFilter, Erode), each

argument is interpreted as identifier (number) of

image or scalar register to fetch input data (input

argument) or store the result (output argument).

The opcode determines the number and types of

arguments. However, for some operations (e.g.,

scalar arithmetic), an argument may directly en-

code a scalar constant. The distinction between

register reference and scalar constant is made

independently for each argument by testing its

most significant bit reserved for that purpose (not

marked in Fig. 3).

As an example, the second instruction (Op. #2) of the procedure

shown in Fig. 3 illustrates the encoding of image thresholding

operation (opcode 22) performed locally in image fragment

limited by rectangular mask (mask flag 1) of size 14 (square

mask dimension), using threshold value fetched from scalar

register #1 (pointed by argument #1), on the image fetched

from image register #2 (pointed by argument #3), and storing

the result in image register #2 (pointed by argument #3). An

operation may use the same register(s) for input and output,

thus overwriting its input arguments by output arguments. For

each operation, at least one argument must refer to register(s)

that serve as output(s) for the operation.

To guarantee the correct execution of the encoded procedure,

each chromosome element is interpreted modulo cardinality of

its domain. For instance, with 70 elementary operations at hand,

the opcode 82 will be interpreted as . There-

fore, all individuals are feasible and there is no need for possibly

time-consuming correction of syntactically incorrect solutions,

as any string of bytes implements a correct feature extraction

procedure.

Technically, the elementary GP operations used in this paper

are implemented by means of common image processing and

feature extraction procedures imported from Intel Image Pro-

cessing Library [9] and OpenCV Library [21]. The set of oper-

ations is virtually the same as the one used in our former work

on phenotypic CC for feature synthesis [13]; for the complete

KRAWIEC AND BHANU: VISUAL LEARNING BY EVOLUTIONARY AND COEVOLUTIONARY FEATURE SYNTHESIS 639

Fig. 2. Standard EA applied to the feature synthesis task (card(:)—set cardinality). This figure serves as reference for the CC algorithm (Fig. 4).

Fig. 3. Illustration of an exemplary LGP procedure S and its interpretation during execution for a single image I . Thick register frame denotes change of register’s
value.

list of operations, the reader is referred to [13, Table iii]. These

operations may be grouped into the following categories.

• image processing operations: unary and binary

;

• mask-related operations ;

• feature extraction operations:

• unary: producing a single output value , or a

pair of numbers ;

• binary .

Apart from these image-related operations, we provided also

unary and binary operations imple-

menting basic arithmetic and logic.

For simplicity, there are no separate registers for storing

logical values. The logical operations use the scalar registers,

with zero value being interpreted as logical “false,” and nonzero

value interpreted as logical “true.”

Given the above settings, a procedure processes a single

input image in following steps.

1) Initialization of register contents: Each of the image reg-

isters is set to . The locations of masks are set to con-

secutive salient features found in the image, ordered with

respect to their strength. Specifically, we compute the re-

sponse of 5 5 low-pass filter to the image, and set the

mask in the th image register, , to the location

corresponding to th maximum of filter response. As a re-

sult, mask locations mark bright “blobs” in input image.

Scalar registers are set to the midpoint coordinates of corre-

sponding masks, in particular, scalar registers and

store the and coordinates of the th image mask.

2) Execution: The operations encoded by are carried

out one by one. For each operation, the stored output

value(s) override the former register contents (see example

in Fig. 3).

3) Interpretation: The values obtained in scalar registers after

execution of the entire procedure are interpreted as the

features computed by for image . Let denote the

value computed by and stored in the th scalar register,

, after processing the image . The overall result

of processing carried out by for an image is, therefore,

a vector of scalar features

640 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 5, OCTOBER 2007

The resulting vectors of features , computed for all images

from the training set , are the basis for estimating the utility

of for recognizing the objects from the training data . The

details of this process are provided at the end of Section III-C.

Fig. 3 shows the processing and data flow for execution of

an exemplary procedure of length for a single input

image in a simple setting (, two image registers and two

scalar registers). The first four bytes of the procedure encode

the operation of image norm (city-block distance), computed

pixelwise:

where denotes brightness of pixel in image ,

and and denote, respectively, the height and

width (in pixels) of image . This operation requires two image

arguments, and , which are taken from image registers #1

and #2. The result of the operation, , is stored in scalar reg-

ister #1. The next operation in this example is image thresh-

olding that reads the input image from image register #2, the

threshold value from the scalar register #2, and stores the

image (in image register #2), processed according to the fol-

lowing equation:

As a result of thresholding, the contents of this image register

changes and it does not contain the input image anymore. The

third operation adds a scalar to all pixels in the image, according

to the equation

It uses the image fetched from the image register #2 (pre-

viously modified by the second operation) and the scalar value

fetched from scalar register #1 as input arguments, and stores

the resulting image in the image register #1.

The overall result of execution of is here a two-element

vector of features , reflecting the

final (postexecution) state of scalar registers. Note that, in fact,

has already been computed by the first operation

of , and the remaining two operations do not influence the

result. Such dead code, often found in experimentally evolved

solutions, though apparently superfluous, could act as introns in

the genetic code and may improve the individual’s resistance

to destruction in genetic modifications [15]. Thus, procedure

length constitutes a kind of upper limit of solution complexity,

but it does not force a particular level of complexity, as not all

instructions have to be effective.

Analogously, although the number of scalar registers is a

fixed parameter of the learning process, it only imposes an upper

limit on the number of computed scalar features. Experiments

show that some code fragments often produce and store in reg-

isters constant scalar values that in fact do not depend on the ac-

tual input image (similar to the dead code branches in tree-like

GP individuals [11]). In the example shown in Fig. 3, the first of

the computed features is constant and does not de-

pend on input image, as the distance between an image

and itself is 0 for any input image. As constant scalar features (

values) do not differentiate any images, they do not contribute to

fitness function . This phenomenon gives the learning process

the possibility of dynamically adjusting the number of evolved

scalar features, and allows the effective number of features to be

less than .

B. Cooperative Coevolution (CC)

According to Wolpert’s “no free lunch” theorem [33], the

search for a universal, best-of-all metaheuristic algorithm is

futile, for both optimization and learning problems. In other

words, the average performance of any metaheuristic over a

set of all possible fitness functions is the same. In the real

world, however, not all fitness functions are equally probable

or meaningful. Most real problems are characterized by some

features that make them specific. The practical utility of a

search/learning algorithm depends, therefore, on its ability

to detect and benefit from that specificity. In particular, the

complexity of the problem and the way it may be decomposed

are such characteristics.

To cope with the inherent complexity of the visual learning

task posed above, we should find a way to decompose the

problem into subproblems rather than trying to solve it in

one step. For that purpose, we use CC [25], a variation of

standard EA, which in the last few years has been reported

as a promising approach to handle the increasing complexity

of problems posed in artificial intelligence and related disci-

plines. There are two important factors that make CC different

from standard EA. First, instead of having just one population

of individuals, CC maintains populations ,

. Second, individuals in a particular population

encode only part of the solution to the problem, as opposed to

EA, where each individual encodes complete solution to the

problem.

Fig. 4 presents the CC algorithm in detail. It is essentially

equivalent to the standard EA (compare to Fig. 2), except for the

evaluation phase (lines 8 to 15 of the algorithm). To evaluate an

individual from th population , it is temporarily combined

(line 10) with representatives , i.e., selected individuals from

the remaining populations , , , to form the

solution . Then, the entire solution is evaluated by means of

the fitness function (line 11) and gets the resulting fitness

value (line 12). Evaluation of an individual from th population

does not affect the remaining populations. The remaining part

of the iteration (lines 17–22) follows the standard EA and it is

executed independently for each population.

The joint evaluation scheme forces the individuals from par-

ticular populations to cooperate. As a result, the evolutionary

search in a population is driven by the context built up by the

representatives of remaining populations. The choice of repre-

sentatives from other populations is, therefore, critical for

the convergence of the evolutionary process. Although many

KRAWIEC AND BHANU: VISUAL LEARNING BY EVOLUTIONARY AND COEVOLUTIONARY FEATURE SYNTHESIS 641

Fig. 4. CC algorithm (card(:)—set cardinality).

different variants are possible here, it has been shown experi-

mentally that the so-called CCA-1 scheme works best [31]. In

CCA-1, in the first generation a representative of th popula-

tion is an individual drawn randomly from it (line 4 in Fig. 4).

In the following generations, a representative of population

is its best individual with respect to the previous generation

(line 22). Therefore, only one representative per population is

used for evaluation, as opposed to CCA-2 (not used here), where

there are two such individuals (the best and a randomly chosen

one [31]).

The major advantage of CC is that it provides the possibility

of breaking up a complex problem into components without

specifying explicitly the objectives for them. The way the in-

dividuals from populations cooperate emerges as the evolution

proceeds. In [3], we provided experimental evidence for the use-

fulness of CC in feature construction for standard ML problems.

In [13], and here we show that CC (phenotypic in [13] or geno-

typic in this paper) is also especially appealing to the problem of

visual learning, where the overall objective is well defined, but

there is no a priori knowledge about what should be expected at

intermediate stages of processing, or such knowledge requires

an extra effort from the designer.

C. Using CC to Decompose Feature Extraction Procedures

In the proposed methodology, we use CC to scale down the

task of synthesis of feature extraction procedures. One can con-

sider here different approaches depending on the way the task is

to be decomposed. Conceptually, three basic levels may be con-

sidered (see Fig. 5). In each of them, the individuals in popula-

tions are represented as strings of bytes; however, these methods

differ in the level at which the cooperation takes place.

(a) Cooperation at chromosome level: Each population ,

, is evolving a fragment (substring of bytes)

of a single procedure . To build a procedure, all the

substrings are concatenated and interpreted as a single

procedure.

(b) Cooperation at feature level: Each population is

evolving a complete procedure . Each is exe-

cuted independently and the features computed

by them are joined to form a compound feature vector .

(c) Cooperation at classifier level: Proceeds like (b), how-

ever, the feature vectors resulting from execution of

particular procedures are used independently for induc-

tion of separate classifiers instead of being combined. The

cooperation takes place during classifiers’ voting.

In our previous work [13], we examined the cooperation

at feature (b) and classifier (c) levels, focusing on the pattern

recognition perspective. These two variants may be jointly

termed as phenotypic, as the composition of solutions takes

place after the genotype-phenotype mapping. Such setting,

though effective in terms of recognition accuracy, has some

drawbacks outlined in Section II-C. Thus, in this contribution,

we follow the variant (a), which is a special case of genotypic

CC, with solution composition taking place prior to geno-

type-phenotype mapping. In particular, we break up the task at

chromosome level, with each population being responsible for

optimizing a predefined, fixed length fragment (substring) of

procedure code.

642 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 5, OCTOBER 2007

Fig. 5. Possible levels of cooperation in the proposed approach.

The system architecture outlined earlier in Fig. 1 may now be

detailed with respect to the CC algorithm presented in Fig. 4.

The evaluation of an individual from th population starts

with creating temporary procedure composed of and of

representatives , , of the remaining populations (see

line 10 in Fig. 4). This process is straightforward and consists

in concatenating ’s chromosome with the chromosomes of all

s, in the order consistent with the values of indices and .

The procedure is then executed for all images from the

training set (see Section III-B). The values computed by

for all training images, together with the images’ class labels ,

constitute the learning dataset that is the basis for evaluation

of an individual

The next step of fitness computation consists in estimating the

utility of (and, indirectly, of and) for recognizing/classi-

fying images from . For this purpose, we perform a multiple

train-and-test cross validation using a fast ML inducer, with the

training data temporarily subpartitioned into disjoint sub-

sets , ; , . The internal

partitioning of into sets is fixed prior to evolutionary run

to provide comparability of fitness values across different gener-

ations. In each iteration of cross validation, the inducer is trained

on the temporary training subset and produces a classifier

that is subsequently tested on the temporary testing subset

. The resulting estimate of recognition ratio becomes

the evaluation of fitness for the solution-procedure

Fig. 6. Software implementation of the evolutionary feature synthesis system.

where denotes set cardinality. This value is subse-

quently assigned to the individual (see line 12 of CC

algorithm in Fig. 4). Note that it does not affect the representa-

tives of the remaining populations.

IV. EXPERIMENTS

The objective of the computational experiments is to explore

the idea of LGP-based synthesis of recognition procedures

using genotypic CC for search, in the context of demanding

real-world object recognition task that involves images of

three-dimensional objects. The experiments have been carried

out in software environment integrating image processing

and computer vision libraries written in C (Image Processing

Library [9] and Open Computer Vision Library [21]), and

higher level soft-computing libraries written in Java (WEKA

Machine Learning Library [32] and ECJ Evolutionary Compu-

tation Library in Java [17]). Fig. 6 shows the overall software

architecture of the system.

KRAWIEC AND BHANU: VISUAL LEARNING BY EVOLUTIONARY AND COEVOLUTIONARY FEATURE SYNTHESIS 643

Fig. 7. The representatives of three decision classes. Top row—visual photographs, bottom row—corresponding 48 � 48 pixel SAR images.

TABLE III
DATASET STATISTICS

A. The Data

Similarly to our previous work [13], the proposed approach

has been tested on the demanding task of object recognition in

synthetic aperture radar (SAR) imagery. The MSTAR public

database [28] of SAR images taken at one foot resolution has

been used as the data source. The task posed to the system was to

recognize images representing three different vehicles (decision

classes): BRDM, D7, and T62 (see Fig. 7), at 15 depression

angle and any azimuth .

Let us emphasize that recognizing objects in SAR images is

hard in general. Some of the difficulties associated with the ob-

ject recognition task in real SAR images are [2] the following.

• Nonliteral nature of the data. Radar images appear dif-

ferent than the images acquired in the visible spectrum.

Bright spots on the images, called scattering centers, corre-

spond to those parts of the object which reflect radar signal

strongly. No line features are present for vehicle images at

this resolution.

• Low persistence of features under rotation (high rotation-

variance).

• High levels of noise and low resolution.

From the MSTAR database, 507 images of three objects

classes (see Fig. 7) have been selected. The resulting set of

images has been split into disjoint training and testing parts (see

Table III) to provide a reliable estimate of the recognition ratio

for the learned recognition system. This selection was aimed at

providing uniform azimuth coverage: for each class, there is a

training image for approximately every 5.62 of azimuth, and a

testing image for every 2.9 –5.37 of azimuth, on the average.

This training data is used for evolutionary feature syn-

thesis. The testing images are used only for verifying selected

TABLE IV
CONDITIONS IMPOSED ON PARAMETER SETTINGS TO PROVIDE

COMPARABILITY OF RESULTS

(usually the best ones) evolved procedures after training comes

to an end. The original images have different sizes, so they are

cropped to 48 48 pixels. The original images are also com-

plex (two-channel), with real and imaginary parts corresponding

to signal magnitude and phase, respectively; however, only the

magnitude image part is used in the experiments. No other form

of image preprocessing (e.g., speckle removal) is applied. As

opposed to the contribution [13], where we considered different

training sets, here the training task and the data described above

are fixed and are used in all the experiments, while we consider

different settings of the evolutionary parameters.

B. Parameter Setting

The major objective of the experiment was to compare geno-

typic CC to EA using different parameter settings, particularly,

the number of registers and the number of coevolving popu-

lations . As EA and CC approaches differ significantly, some

parameters have been set as to provide comparability of their

results. We treat EA as CC running with population, and

compare EA and CC runs using the conditions for parameter

settings, as given in the following Table IV.

Condition (1) provides the same flexibility in synthesizing

feature extraction procedures for both approaches. Condition (2)

ensures that the same number of complete solutions is evaluated

in each generation. Condition (3) makes the comparison objec-

tive from practical viewpoint, and, in conjunction with condition

(2), it ensures that EA and CC may run approximately for the

same number of generations. Note that in terms of the number

of generations, minor differences in favor of EA are possible

due to the extra time needed by CC to maintain selection and

recombination in multiple populations.

When applying conditions (1) and (2), we used a symmetric

model of decomposition, i.e., each population receives frac-

tion of EA individuals and fraction of the total code length

644 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 5, OCTOBER 2007

TABLE V
PARAMETER SETTINGS

used in the corresponding EA experiment. It is to be ob-

served that the small number of individuals in EA may lead to

small CC populations, for which it may be difficult for CC to

maintain sufficient diversity among individuals in populations,

and the search may become ineffective. In our experiments, we

found that using less than 1000 individuals in total does not

allow the evolutionary dynamics of CC to exploit the search

space properly. As a result, in the following experiments, the

total number of individuals is set to a rather large value of 2000.

This large number of evolved individuals and time-consuming

fitness function required us to set the time limit of evolutionary

run to 8000 seconds to allow for a sufficient number of genera-

tions. The results are obtained using a PC with Pentium 1.8 GHz

processor.

The remaining parameters, grouped in Table V, have been

fixed for all the runs. In particular, we used generational GA

[20], and the tournament selection with tournament pool size 5.

Tournament size has been set to 5 as a compromise between 2

(which seems to be most popular, and also the simplest possible,

setting for GA), and 7, used commonly in GP. Some preliminary

experiments have shown that this setting provides satisfactory

selective pressure on the one hand, and prevents premature con-

vergence to low-quality local optima on the other hand. The ap-

proach did not exhibit statistically significant sensitivity to small

changes (4 6) of this parameter.

The one-point crossover operator used here works on pairs of

parent individuals by selecting a randomly chosen cutting point

in their chromosomes and exchanging the “tails.” The chromo-

some cutting is allowed between any pair of consecutive bytes

(three possibilities) of LGP encoding of a single operation, i.e.,

not only between LGP operations (quadruples of bytes), but also

within them. Note that, in this way, a particular operation (a

quadruple of chromosome bytes) may be disrupted. Despite this,

the resulting operation is always syntactically correct and has

valid interpretation, as it is the opcode that determines how the

remaining elements of operation encoding are interpreted, and,

in particular, what kind of modulo mapping (see Section III-B)

should be applied to each of them. For instance, assume the pro-

cedure shown in Fig. 3 undergoes crossover and its second op-

eration becomes disrupted between bytes 3 and 4, and byte 4 is

being replaced by value 12 coming from another individual. The

opcode of the resulting new operation does not change (22) and

encodes morphological opening. This opcode determines that

byte 4 (argument #3 of the operation) is still interpreted as the

number of image register used as an output for this operation.

Given 2 image registers, argument #3 will now refer to the first

image register (as), in contrast to the situation be-

fore crossover, when argument #3 referred to the second image

register. Thus, in this particular example, crossover changes the

address of register that is used by the operation to store its result.

We found out that this nonrestrictive crossover improves the

convergence speed of the algorithm by allowing more flexibility.

The experiments described here aim at reaching one good

solution per run. Thus, we do not have to maintain elitism, and

we keep track of the best solution found so far. This is why we

decided to make all the individuals subject to crossover with

, which ensures a thorough search.

The mutation operator used randomly selects a byte in indi-

vidual’s chromosome and replaces it with a randomly gener-

ated number. Similar to crossover, this genetic operator always

leads to a syntactically correct and interpretable feature extrac-

tion procedure thanks to opcode-dependent interpretation and

modulo mapping. Individuals resulting from crossover undergo

such mutation with a probability 0.1. This relatively high muta-

tion probability is due to the presence of the “modulo mapping”

in the procedure execution (see Section III-B), which causes

many mutations to be ineffective (the chromosome changes, but

its interpretation/execution does not).

To induce classifiers within the fitness function (see Fig. 1)

we used the J4.8 induction algorithm, a WEKA [32] imple-

mentation of the last public release of popular decision tree in-

ducer C4.5 [26]. The wrapper within fitness function works with

folds of cross validation to speed up the computation.

All the remaining parameters are set to default values used in

the software packages ECJ [17] and WEKA [32].

C. Results

1) Experiment I. Number of Populations: The first of the

experiments described here concerns the sensitivity of the ap-

proach to the number of populations. For this purpose, we set

the total procedure length instructions, i.e.,

bytes, as such a value allows for relatively many symmetric

decompositions into , 3, 4, 6, and 9 populations (

has not been considered due to the issue of population size dis-

cussed earlier).

The leftmost four columns of Table VI illustrate the settings

imposed by conditions (1) and (2) for this experiment (see

Table IV). For instance, for , each CC population con-

tains individuals and works on code fragment

composed of bytes. The right part of Table VI

and Fig. 8 show the fitness of the best individual found in

particular evolutionary runs. Three series of runs have been

carried out, for different number of registers , 4, 5. To

provide for statistical evidence, all evolutionary runs have been

repeated ten times, starting with different initial populations,

so Table VI and Fig. 8 present the average performance of the

best individuals together with their 0.95 confidence intervals.

Results presented in Table VI and Fig. 8 clearly indicate that

CC outperforms EA for and 3 populations, CC outper-

forms EA working with the same number of registers as . For

larger values of , CC’s advantage declines—in extreme case,

, cooperation ceases to be effective. This may be explained

as follows. In CC, each evaluated solution is, in fact, composed

of an individual that undergoes evaluation and represen-

tatives of the remaining populations (see Fig. 4). In the CCA-1

scheme used here, the representatives are fixed during the entire

KRAWIEC AND BHANU: VISUAL LEARNING BY EVOLUTIONARY AND COEVOLUTIONARY FEATURE SYNTHESIS 645

TABLE VI
THE AVERAGE FITNESS OF BEST INDIVIDUALS EVOLVED IN TEN INDEPENDENT RUNS FOR DIFFERENT NUMBER OF

POPULATIONS n (TOTAL CODE LENGTH 36 BYTES, 2000 INDIVIDUALS, 8000 s)

Fig. 8. The average fitness of best individuals evolved in ten independent runs with 0.95 confidence intervals (total code length 36 bytes, 2000 individuals, 8000 s).

evaluation phase within a particular CC generation (lines 8–15

in Fig. 4). When a new best individual is found, it becomes the

representative of the population it belongs to. If, in a particular

generation, such an improvement happens in of popula-

tions, the set of representatives changes in fraction. Obvi-

ously, tends to decrease as evolution proceeds, and when the

search starts to saturate, usually drops to 0 or 1 per generation.

Thus, at further stages of evolutionary process, the representa-

tives usually do not change at all or change only in fraction.

Therefore, the CC search is technically less thorough than EA

search, especially for large .

The importance of also seems to be dependant on . A low

value of leads to relatively large differences in performance

depending on , especially for , whereas for and

the differences are less prominent. It seems that, for

larger values of , there is more chance for the evolutionary

process to synthesize useful (though worse than for and

or 3) features, even if the cooperation is difficult due

to the large number of populations . For low , the quality of

cooperation is more critical. In absolute terms, the differences in

favor of CC are not large, but in most prominent cases they are

statistically significant. For , the false positive probability

related to -Student test amounts to 0.057, 0.026, 0.036, when

comparing fitness of the best CC solution evolved with , 3,

4 populations, respectively, to the fitness of corresponding EA

solution. For and 5, these figures are larger, but do not

exceed 0.15.

This result seems to be remarkably good, keeping in mind

that the recognition problem under consideration is difficult, and

that CC devotes some extra time to maintain multiple popula-

tions , perform selection and mating in each of them indepen-

dently, keep track of the best representatives , and assemble

temporary solutions from individuals and population repre-

sentatives. In our experimental setting, this overhead amounts

to about 5% of the total computation time for chosen values of

, but may grow as increases. Nevertheless, as Table VI shows,

CC performs better despite this extra burden. We can, there-

fore, conclude that our feature synthesis method may indeed

benefit from CC-based chromosome-level (genotypic) problem

decomposition.

The evolutionary runs lasted for 133.8, 123.1, and 116.4 gen-

erations on the average, for , 4, and 5, respectively. This

tendency was expected, as, though the number of registers

(and the number of features at the same time) does not influ-

ence the execution time of LGP procedure alone, the classi-

fier training that takes place within computation of fitness func-

tion becomes more time-consuming as increases. Within each

group (i.e., for fixed), the EA and CC runs lasted approx-

imately for the same number of generations, which confirms

our expectation formulated with respect to conditions (1)–(3)

(Table IV). Note also that execution time of our fitness func-

tion may vary depending on the actual code implemented by the

evaluated solution. For instance, for MSTAR images, extraction

of spatial moments from an image takes about two orders of

magnitude more time than scalar multiplication of two numeric

registers.

Fig. 9 shows fitness graphs (learning curves) for particular

number of populations , for the experiments with . Each

646 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 5, OCTOBER 2007

Fig. 9. Fitness graphs (mean over ten runs of best solution found so far) for
runs with k = 3 registers (cf. Table VI and Fig. 11).

TABLE VII
THE AVERAGE FITNESS OF BEST INDIVIDUALS EVOLVED IN TEN INDEPENDENT

RUNS FOR DIFFERENT NUMBER OF REGISTERS k (TOTAL CODE LENGTH

32 BYTES, 2000 INDIVIDUALS, 8000 s)

data point represents a mean of ten runs of the best solution

found so far in a particular generation. As the termination con-

dition was time-based, some runs ended earlier than the others,

so the graph has been limited to 100 generations only, to avoid

fluctuations resulting from lack of statistical support (for each

series of runs, all ten runs lasted for at least 100 generations).

It may be observed that most graphs exhibit saturation, so fur-

ther performance improvement by runtime extension is highly

improbable. However, the runs for large number of population

(and), which generally performed worse, show an

opportunity for further improvement. Confidence intervals are

not shown in Fig. 9, as all of them were below 0.001.

2) Experiment II. Number of Registers: In this experiment,

we investigate the sensitivity of the genotypic CC to the number

of registers , which also determines the number of features. To

focus on this aspect, in CC runs we consider only popula-

tions, the simplest form of decomposition possible in this frame-

work, which also provided good results in Experiment I. At this

time, there is no need to divide the LGP chromosome into a dif-

ferent number of parts, we use shorter feature extraction proce-

dures composed of 32 bytes, i.e., instructions. Thus,

in case of CC, we coevolve two populations, each working on

four consecutive instructions of LGP code. All runs have been

repeated ten times, starting with different initial populations.

Table VII and Fig. 10 present mean fitness for corresponding

EA and CC runs for a different number of registers (and thus

features) . The general conclusion is that both

EA and CC seem to work best for . The deteriora-

tion for may seem surprising, as, from ML perspective,

having more distinct and well-discriminating features is usually

better than having less of them. However, increasing the number

of features increases the computational cost of classifier induc-

tion in wrapper (see Section III-B). For instance, for CC and

, the mean run length amounted to 184.2 generations, but

for that figure reduces to 74.5 generations only. Thus,

the potential gain resulting from extra features is compensated

by the increased processing time. On the other hand, fea-

tures are definitely not enough to perform recognition of three

different classes of objects at a satisfactory performance level.

For , 4, 5, and 7 registers, CC significantly outper-

forms EA (t-Student’s amounts to 0.002, 0.08, 0.017, and

0.01, respectively). For the remaining values of , none of the

methods is better. Thus, we conclude, that moderate number of

registers enables effective cooperation between populations, by

co-building common feature extraction procedures, or evolving

mutually complementary features.

The rightmost two columns of Table VII also present refer-

ence results of experiments ran for a much smaller total number

of individuals (300). It may be easily observed, that in this case

there is no clear winner: EA and CC seem to outperform each

other quite randomly for different values of . This confirms our

hypothesis, that a low number of individuals divided into sep-

arate populations does not allow the CC to exhibit enough

evolutionary dynamics in each separate population. CC needs

larger populations to attain qualitative progress in comparison

to EA.

3) Experiment III. Test Set Performance: The results pre-

sented so far offer a good description of the performance of the

approach on the training set, but do not tell us much about the

predictive ability of the synthesized recognition systems. Fig. 11

shows the receiver operating characteristics (ROCs) curves, for

the best CC individuals found in runs reported in the second row

of Table VII, i.e., for , , and the total number of indi-

viduals to be 2000. The ROC curves are computed for each deci-

sion class separately, with the selected decision class playing the

role of the positive class, and the remaining two classes treated

as a negative class. Each curve shows the true positive ratio (TP,

the share of correctly recognized objects), as a function of false

positive ratio (FP, the share of incorrectly classified objects), for

the best recognition systems obtained in ten independent runs.

These parametric curves have been obtained from the testing

set, by varying the confidence threshold that controls the inter-

pretation of the output of the trained classifier. Usually, 3 7

different threshold values have been sampled to build up a single

graph in Fig. 11. The confidence threshold imposes a lower limit

on the ratio of a posteriori probabilities of positive and negative

decision classes produced by the classifier for a particular ex-

ample. If, for a particular test example, the ratio is lower than

a threshold, no recognition decision is made and the example

remains unclassified. The ROC curves clearly show that the ap-

proach maintains good recognition ability on the test set. This

applies mostly to the D7 decision class, for which ROC curves

approach the ideal point (,). For instance, the

point marked by cross corresponds to recognition system having

KRAWIEC AND BHANU: VISUAL LEARNING BY EVOLUTIONARY AND COEVOLUTIONARY FEATURE SYNTHESIS 647

Fig. 10. The average fitness of best individuals evolved in ten independent runs with 0.95 confidence intervals for different number of registers k (total code length
32 bytes, 2000 individuals, 8000 s).

Fig. 11. ROC curves for particular decision classes, obtained for the testing set
using the best CC individuals found for n = 2 and k = 3 (one curve per run
(ten runs); see second row of Table VII).

and , i.e., such that it correctly rec-

ognizes over 90% images of D7 vehicle, while mistaking only

7.2% of BRDM and T62 images for D7. Our previous research

results obtained for phenotypic CC [13], [14] indicate that fur-

ther improvements are possible by combining many recognition

systems (preferably those that produce significantly different

ROCs), and aggregating their outputs by voting.

4) Examples of Synthesized Feature Extraction Procedures:

One of the important virtues of the proposed approach is the

readability of the synthesized feature extraction procedures.

Fig. 12 presents the processing carried out by the best procedure

found in one of the evolutionary runs. This procedure has been

elaborated by CC working with populations and .

It effectively computes two features and stores them in two (of

a total of four) scalar registers. In this example, we used the

naïve Bayesian classifier [32] to demonstrate that the evolved

recognition systems are also able to produce a continuous

response (contrary to C4.5’s discrete decision making). The

processing is shown for test-set representatives of all three

decision classes used in experiments: BDRM2 image taken at

342.3 aspect, D7 image taken at 102.3 aspect, and T62 image

taken at 346.5 aspect.

For each of the input images, Fig. 12 shows execution of

the procedure in the form of a data-flow graph. Each column

of images in the figure shows how the contents of a partic-

ular image register changes with procedure execution; for

better readability, images have been enhanced (by means of

iplHistoEqualize function from IPL [9]), but this does not affect

the actual LGP processing. The execution of the procedure

starts from the top and proceeds downwards through several

intermediate image processing steps. Rounded boxes denote

global operations (working on the entire image), while slanted

boxes correspond to local operations (working on the marked

rectangular mask). Transparent and gray boxes correspond to

operations encoded in LGP fragments elaborated by popu-

lations and , respectively. The operations used in this

particular example are: AbsDiff—pixelwise absolute differ-

ence of a pair of images, 3 3—high-pass filtering

using a 3 3 mask, CrossCorrel—cross correlation of a pair

of images, PushROIX—(local) shifts horizontally the current

image’s mask to the closest local maximum of brightness,

Gaussian—(local) image smoothing using 3 3 Gaussian

mask, MorphClose—morphological closing operation (for

simplicity, all morphological operations work with 3 3 square

as a structural element), LogicalOr—pixelwise logical “OR”

operation (computed bitwise from the arguments). Note that, as

it is common for GP, not all input data (initial register contents)

and not all intermediate results are utilized for the final decision

making (e.g., the result of CrossCorrel is not further processed).

Eventually, two of the executed operations yield scalar fea-

tures: the coordinate of the shifted mask , and the nor-

malized difference of two processed images . The overall

processing ends with the final recognition decision made by the

classifier (previously trained on the training set). The numbers

in the “Output” box denote a posteriori probabilities yielded by

the classifier. For all three input images, the recognition system

makes a correct decision, yielding maximum a posteriori prob-

ability for the decision class the presented image belongs to.

In case the of genotypic decomposition discussed in this

paper, particular populations can specialize in different stages

of the recognition task. It may be hypothesized, that populations

648 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 5, OCTOBER 2007

Fig. 12. A synthesized processing graph of a selected best-of-run procedure evolved by means of CC, processing exemplary images from particular decision
classes.

delegated to the development of the early parts of procedure

would tend to specialize in image processing, whereas popula-

tions working on the final parts of the procedure would focus on

feature extraction and aggregation. This supposition is partially

confirmed in the example presented in Fig. 12. In a sense, two

modes of cooperation between elaborated solution parts may be

observed here. Technically, each population evolved a separate

scalar feature: populations and evolved features and

, respectively. Nevertheless, is actually not only due to

: its value depends on the result produced by the PushROIX

operator call, which takes place in the code chunk evolved

by .

V. CONCLUSION

In this paper, we proposed a coevolutionary learning method

that performs automatic problem decomposition at the geno-

type (chromosome) level. The approach enables the learner to

acquire knowledge from complex examples by autonomously

transforming their representation. The proposed approach and

the results of its experimental evaluation allow us to formulate

the following conclusions and observations.

1) The paradigm of coevolution allows us to decompose the

task of representation synthesis into several semi-indepen-

dent cooperating subtasks. In this way, we exploit the in-

herent modularity of the learning process, without the need

of specifying explicit objectives for the particular stages

of information processing. In particular, the experimental

analysis indicates the conditions that allow the genotypic

CC to outperform the EA; these conditions are: (i) a large

population (order of thousands of individuals); (ii) a mod-

erate number of populations ; and (iii) a small

number of registers .

2) By incorporating feature synthesis into the learning loop,

the evolutionary learner searches for performance im-

provement by modifying representation of the training

data. The approach manipulates feature extraction pro-

cedures, as opposed to most methods, which are usually

limited to learning meant as parameter optimization. This

allows for discovering well-discriminating features, which

are often sophisticated and novel for human experts.

3) The procedural approach to feature synthesis gives the

learner access to complex, structural input data that other-

wise could not be directly used. As a result, the learning

process requires only raw training data that are usually

easy to acquire, i.e., images and their class labels. It does

not rely on domain-specific knowledge, using only general

vision-related knowledge encoded in basic operations. The

approach is well-scalable: its computational complexity

(mostly the cost of fitness function call) grows linearly

with the size of the training set. If the problem is difficult

and requires using more features, the approach also scales

linearly with it.

4) We provide evidence for the possibility of solving, using

the proposed approach, a demanding real-world task of

visual learning. The encouraging experimental results for

SAR object recognition are obtained without recurring to

means that are commonly used in conventional approaches

to the design of recognition systems, such as comparing

KRAWIEC AND BHANU: VISUAL LEARNING BY EVOLUTIONARY AND COEVOLUTIONARY FEATURE SYNTHESIS 649

input images to the database of object models, explicit es-

timation of object pose, hand tuning of basic operations

for a specific application, and, in particular, introducing

SAR-specific concepts or features like “scattering center.”

On this task, the CC-based genotype-level decomposition

leads to statistically significant performance improvement,

as compared with standard EA paradigm. This result may

generalize to other visual and nonvisual learning applica-

tions. It is an important argument in favor of CC for tack-

ling complex learning problems and offers an interesting

research direction.

5) The proposed method may be characterized as feature-

based. Compared to model-based recognition, there is no

need for the possibly expensive matching of an image with

models from the database. Thus, our synthesized recogni-

tion systems attain high recognition speed during the run-

time (i.e., testing). The average time required by the en-

tire recognition process, starting from the raw image and

ending up with the final recognition result, totaled 4.9 ms

on the average on Pentium 1.8 GHz processor, for a single

48 48 image and a procedure composed of 18 opera-

tions. This recognition speed makes our approach suitable

for real-time application.

In its canonical form our approach is close to but does not al-

ways outperform human-designed recognition systems working

in SAR modality. Nevertheless, more sophisticated solutions

based on this idea are able to reach that frontier. In particular, in

[13], we show how further improvement may be obtained by ag-

gregating outputs of many recognition systems obtained using

the proposed approach.

As mentioned in Section II-C, the approach discussed here

may be characterized as working on the genotypic level, as op-

posed to phenotypic-level CC described previously in [13] (cf.

Fig. 5). Due to the differences in learning tasks used in both

papers, we cannot exactly compare these two approaches. Nev-

ertheless, as the overall problem domain (vehicle recognition in

SAR images) is the same, and the computer implementations

share a relatively large portion of the code, in the following we

consider both of these approaches.

When testing the phenotypic approach in [13] we consid-

ered, among others, a multiclass learning task concerning three

classes of vehicles: BRDM, ZSU, and T62 (see [13, Sec. IV.E, p.

422]). On that task, the test-set accuracy of classification varied

from 94.6% to 96.1%, depending on the classifier used (C4.5

and SVM; [13, Fig. 15(a)]). In particular, the near-optimum

test-set performance in terms of false positives and true positives

amounted to 0.0345 and 0.9590, respectively [13, Fig. 15(b)].

The BRDM-ZSU-T62 learning task used in [13] exhibits

some similarity to the learning task BRDM-D7-T62 considered

in this paper, where the ZSU decision class has been replaced

by the D7 class (see Table III). The genotypic approach applied

to BRDM-D7-T62 problem reaches per-class test-set false-pos-

itive ratios ranging from 0.1 to 0.18, and true-positive ratios

ranging from 0.91 to 0.94, depending on the decision class

(Fig. 11). Though this might indicate some superiority of the

phenotypic coevolution, one should note that phenotypic results

have been obtained at a much greater computational expense,

with a powerful committee of ten classifiers working in parallel,

each of them using a different set of features evolved in an

independent evolutionary process. The genotypic coevolution,

on the contrary, used three registers and, hence, only three

features to recognize the targets.

In terms of recognition performance, there is not enough

evidence to claim the superiority of any of the two approaches.

However, genotypic CC considered here outperforms the stan-

dard EA in a systematic way (see Figs. 8 and 10) and allows

a better understanding of the dynamics of the evolutionary

process. In phenotypic CC [13], on the contrary, the mutual

interactions between features encoded in coevolving individ-

uals are very complex, due to the memetic adaptation that takes

place during classifier training, and make it difficult to predict

the outcome of fitness calculation. For instance, an individual

may be mistakenly rewarded for evolving a poor-discriminating

feature if the classifier cleverly uses only features from the

remaining populations. In genotypic CC presented in this paper,

such mistakes are impossible, as each of the evolved features

results from the cooperation of all populations.

From the more general perspective of the NFL theorem [33],

we cannot expect the genotypic or phenotypic CC to beat each

other, or other metaheuristics. To draw definitive conclusions

concerning hypothetical superiority of genotypic or phenotypic

coevolution, a separate study would be required, preferably

using a less sophisticated learning task. Such study could aim

at identifying the class of learning tasks that are effectively

solved by CC in its different variants, as shown in Fig. 5.

REFERENCES

[1] W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic Pro-

gramming. An Introduction. on the Automatic Evolution of Computer

Programs and Its Application. San Mateo, CA: Morgan Kaufmann,

1998.

[2] B. Bhanu, D. E. Dudgeon, E. G. Zelnio, A. Rosenfeld, D. Casasent, and

I. S. Reed, Eds., “Introduction to the special issue on automatic target

detection and recognition,” IEEE Trans. Image Process., vol. 6, no. 1,

pp. 1–6, Jan. 1997, (Guest Editors).

[3] B. Bhanu and K. Krawiec, “Coevolutionary construction of features for

transformation of representation in machine learning,” in Proc. Genetic

and Evol. Comput. Conf., 2002, pp. 249–254.

[4] B. Bhanu and S. Lee, Genetic Learning for Adaptive Image Segmenta-

tion. Norwell, MA: Kluwer, 1994.

[5] B. Bhanu and J. Peng, “Adaptive integrated image segmentation and

object recognition,” IEEE Trans. Syst., Man, Cybern.-Part C, vol. 30,

pp. 427–441, Nov. 2000.

[6] B. Bhanu, Y. Lin, and K. Krawiec, Evolutionary Synthesis of Pattern

Recognition Systems. New York: Springer-Verlag, 2005.

[7] B. Draper, A. Hanson, and E. Riseman, “Learning blackboard-based

scheduling algorithms for computer vision,” Int. J. Pattern Recogn.

Artif. Intell., vol. 7, pp. 309–328, Mar. 1993.

[8] J. Y. Goulermas and P. Liatsis, “A collective-based symbiotic model

for surface reconstruction in area-based stereo,” IEEE Trans. Evol.

Comput., vol. 7, no. 5, pp. 482–502, Oct. 2003.

[9] “Intel Image Processing Library,” Intel Corporation, 2000, Reference

manual.

[10] M. P. Johnson, P. Maes, and T. Darrell, “Evolving visual routines,”

in Proc. 4th Int. Workshop Synthesis and Simulation of Living

Systems: Artificial Life IV, R. A. Brooks and P. Maes, Eds., 1994,

pp. 373–390.

[11] J. R. Koza, D. Andre, F. H. Bennett, III, and M. A. Keane, Genetic

Programming III: Darwinian Invention and Problem Solving. San

Mateo, CA: Morgan Kaufmann, 1999.

[12] K. Krawiec, “Pairwise comparison of hypotheses in evolutionary

learning,” in Proc. 18th Int. Conf. Mach. Learn., C. E. Brodley and A.

P. Danyluk, Eds., 2001, pp. 266–273.

650 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 5, OCTOBER 2007

[13] K. Krawiec and B. Bhanu, “Visual learning by coevolutionary fea-

ture synthesis,” IEEE Trans. Syst., Man, Cybern.-Part B, vol. 35, pp.

409–425, Jun. 2005.

[14] K. Krawiec and B. Bhanu, “Coevolution and linear genetic program-

ming for visual learning,” in Lecture Notes in Computer Science, E.

Cantú-Paz et al., Ed. New York: Springer-Verlag, 2003, vol. 2723,

Proc. Genetic Evol. Comput., pt. I, pp. 332–343.

[15] J. R. Levenick, “Inserting introns improves genetic algorithm success

rate: Taking a cue from biology,” in Proc. 4th Int. Conf. Genetic Algo-

rithms, 1991, pp. 123–127.

[16] Y. Lin and B. Bhanu, “Evolutionary feature synthesis for object recog-

nition,” IEEE Trans. Syst., Man, Cybern., Part C, vol. 35, no. 2, pp.

156–171, May 2005, Special issue on knowledge extraction and incor-

poration in evolutionary computation.

[17] S. Luke, “ECJ evolutionary computation system,” 2002. [Online].

Available: http://www.cs.umd.edu/projects/plus/ec/ecj/

[18] M. A. Maloof, P. Langley, T. O. Binford, R. Nevatia, and S. Sage,

“Improved rooftop detection in aerial images with machine learning,”
Mach. Learn., vol. 53, pp. 157–191, 2003.

[19] C. J. Matheus, “A constructive induction framework,” in Proc. 6th Int.

Workshop Mach. Learn., 1989, pp. 474–475.

[20] Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Pro-

grams. Berlin, Germany: Springer-Verlag, 1996.

[21] “Open Source Computer Vision Library,” Intel Corporation, 2001, Ref-

erence manual.

[22] J. Peng and B. Bhanu, “Closed-loop object recognition using reinforce-

ment learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 2,

pp. 139–154, Feb. 1998.

[23] ——, “Delayed reinforcement learning for adaptive image segmenta-

tion and feature extraction,” IEEE Trans. Syst., Man, Cybern., vol. 28,

no. 3, pp. 482–488, Aug. 1998.

[24] R. Poli, “Genetic programming for image analysis,” in Proc. 1st Int.

Conf. Genetic Program., J. R. Koza, Ed., Jul. 1996, pp. 363–368.

[25] M. A. Potter and K. A. De Jong, “Cooperative coevolution: An archi-

tecture for evolving coadapted subcomponents,” Evol. Comput., vol. 8,

pp. 1–29, 2000.

[26] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo,

CA: Morgan Kaufmann, 1999.

[27] M. Rizki, M. Zmuda, and L. Tamburino, “Evolving pattern recognition

systems,” IEEE Trans. Evol. Comput., vol. 6, no. 6, pp. 594–609, Dec.

2002.

[28] T. Ross, S. Worell, V. Velten, J. Mossing, and M. Bryant, “Standard

SAR ATR evaluation experiments using the MSTAR public release

data set,” in Proc. SPIE: Algorithms for Synthetic Aperture Radar Im-

agery V, Orlando, FL, 1998, vol. 3370, pp. 566–573.

[29] J. Segen, “GEST: A learning computer vision system that recognizes

hand gestures,” in Machine Learning. A Multistrategy Approach.

Volume IV, R. S. Michalski and G. Tecuci, Eds. San Mateo, CA:

Morgan Kaufmann, 1994, pp. 621–634.

[30] A. Teller and M. M. Veloso, “PADO: A new learning architecture

for object recognition,” in Symbolic Visual Learning, K. Ikeuchi

and M. Veloso, Eds. Oxford, U.K.: Oxford Univ. Press, 1997, pp.

77–112.

[31] R. P. Wiegand, W. C. Liles, and K. A. De Jong, “An empirical analysis

of collaboration methods in cooperative coevolutionary algorithms,” in

Proc. Genetic and Evol. Comput. Conf., 2001, pp. 1235–1242.

[32] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning

Tools and Techniques With Java Implementations. San Mateo, CA:

Morgan Kaufmann, 1999.

[33] D. Wolpert and W. G. Macready, “No free lunch theorems for opti-

mization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr.

1997.

Krzysztof Krawiec (M’07) received the M.S.,
Ph.D., and Habilitation degrees in computer science
from the Poznań University of Technology, Poznań,
Poland, in 1993, 2000, and 2005, respectively.

Since 1993, he has been with the University of
Computing Science, Poznan University of Tech-
nology, as an Assistant Professor. From 2002 to
2003, he worked as a Visiting Researcher at the
Center for Research in Intelligent Systems, Univer-
sity of California, Riverside, CA. He is the coauthor
of Evolutionary Synthesis of Pattern Recognition

Systems (New York: Springer, 2005). His research interests include pattern
recognition, visual learning, evolutionary computation, and data mining.

Dr. Krawiec is a member of the Association for Image Processing, the Polish
Member Society of the International Association of Pattern Recognition. In
2000, he received the award for the best Ph.D. thesis from the Association for
Image Processing. In 2001 and in 2005, he received the Minister of National
Education Award.

Bir Bhanu (S’72–M’82–SM’87–F’95) received the
S.M. and E.E. degrees in electrical engineering and
computer science from the Massachusetts Institute
of Technology, Cambridge, the Ph.D. degree in
electrical engineering from the Image Processing
Institute, University of Southern California, Los
Angeles, and the M.B.A. degree from the University
of California, Irvine.

He has been the founding Professor of Electrical
Engineering and served its first Chair at the Univer-
sity of California, Riverside (UCR). He has been the

Cooperative Professor of Computer Science and Engineering and Director of
Visualization and Intelligent Systems Laboratory (VISLab) since 1991. Cur-
rently, he also serves as the founding Director of an interdisciplinary Center
for Research in Intelligent Systems (CRIS), UCR. Previously, he was a Se-
nior Honeywell Fellow at Honeywell Inc., Minneapolis, MN. He has been on
the faculty of the Department of Computer Science, University of Utah, Salt
Lake City, and has worked at Ford Aerospace and Communications Corpora-
tion, CA, INRIA-France, and IBM San Jose Research Laboratory, CA. He has
been the principal investigator of various programs for DARPA, NASA, NSF,
AFOSR, ARO, and other agencies and industries in the areas of learning and
vision, image understanding, pattern recognition, target recognition, biomet-
rics, navigation, image databases, and machine vision applications. He is the
coauthor of Evolutionary Synthesis of Pattern Recognition Systems (New York:
Springer-Verlag, 2005), Computational Algorithms for Fingerprint Recognition

(Norwell, MA: Kluwer, 2004), Genetic Learning for Adaptive Image Segmen-

tation (Norwell, MA: Kluwer, 1994), and Qualitative Motion Understanding

(Norwell, MA; Kluwer, 1992), and the co-editor of Computer Vision Beyond

the Visible Spectrum, (New York: Springer-Verlag, 2004). He holds 11 U.S. and
international patents and over 250 reviewed technical publications, including 90
plus journal papers in the areas of his interest.

Dr. Bhanu has received two outstanding paper awards from the Pattern Recog-
nition Society and has received industrial and university awards for research ex-
cellence, outstanding contributions, and team efforts. He has been on the edito-
rial board of various journals and has edited special issues of several IEEE trans-
actions (PAMI, IP, SMC, R&A, IFS) and other journals. He has been General
Chair for the IEEE Conference on Computer Vision and Pattern Recognition, the
IEEE Workshops on Applications of Computer Vision, the IEEE Workshops on
Learning in Computer Vision and Pattern Recognition, Multimodal Biometrics;
Chair for the DARPA Image Understanding Workshop, and Program Chair for
the IEEE Workshops on Computer Vision Beyond the Visible Spectrum. He is a
Fellow of the American Association for the Advancement of Science (AAAS),
the International Association of Pattern Recognition (IAPR), and the Interna-
tional Society for Optical Engineering (SPIE).

