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Abstract— Here, we present a general framework for com-
bining visual odometry and lidar odometry in a fundamental
and first principle method. The method shows improvements in
performance over the state of the art, particularly in robustness
to aggressive motion and temporary lack of visual features. The
proposed on-line method starts with visual odometry to estimate
the ego-motion and to register point clouds from a scanning
lidar at a high frequency but low fidelity. Then, scan matching
based lidar odometry refines the motion estimation and point
cloud registration simultaneously. We show results with datasets
collected in our own experiments as well as using the KITTI
odometry benchmark. Our proposed method is ranked #1 on
the benchmark in terms of average translation and rotation
errors, with a 0.75% of relative position drift. In addition
to comparison of the motion estimation accuracy, we evaluate
robustness of the method when the sensor suite moves at a high
speed and is subject to significant ambient lighting changes.

I. INTRODUCTION

Recent separate results in visual odometry and lidar odom-

etry are promising in that they can provide solutions to 6-

DOF state estimation, mapping, and even obstacle detection.

However, drawbacks are present using each sensor alone.

Visual odometry methods require moderate lighting condi-

tions and fail if distinct visual features are insufficiently

available. On the other hand, motion estimation via moving

lidars involves motion distortion in point clouds as range

measurements are received at different times during contin-

uous lidar motion. Hence, the motion often has to be solved

with a large number of variables. Scan matching also fails in

degenerate scenes such as those dominated by planar areas.

Here, we propose a fundamental and first principle method

for ego-motion estimation combining a monocular camera

and a 3D lidar. We would like to accurately estimate the

6-DOF motion as well as a spatial, metric representation of

the environment, in real-time and onboard a robot navigating

in an unknown environment. While cameras and lidars have

complementary strengths and weaknesses, it is not straight-

forward to combine them in a traditional filter. Our method

tightly couples the two modes such that it can handle both

aggressive motion including translation and rotation, and

lack of optical texture as in complete whiteout or blackout

imagery. In non-pathological cases, high accuracy in motion

estimation and environment reconstruction is possible.

Our proposed method, namely V-LOAM, explores advan-

tages of each sensor and compensates for drawbacks from

the other, hence shows further improvements in performance

over the state of the art. The method has two sequentially

staggered processes. The first uses visual odometry running
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Fig. 1. The method aims at motion estimation and mapping using a
monocular camera combined with a 3D lidar. A visual odometry method
estimates motion at a high frequency but low fidelity to register point clouds.
Then, a lidar odometry method matches the point clouds at a low frequency
to refine motion estimates and incrementally build maps. The lidar odometry
also removes distortion in the point clouds caused by drift of the visual
odometry. Combination of the two sensors allows the method to accurately
map even with rapid motion and in undesirable lighting conditions.

at a high frequency as the image frame rate (60Hz) to

estimate motion. The second uses lidar odometry at a low

frequency (1 Hz) to refine motion estimates and remove

distortion in the point clouds caused by drift of the visual

odometry. The distortion-free point clouds are matched and

registered to incrementally build maps. The result is that

the visual odometry handles rapid motion, and the lidar

odometry warrants low-drift and robustness in undesirable

lighting conditions. Our finding is that the maps are often

accurate without the need for post-processing. Although

loop closure can further improve the maps, we intentionally

choose not to do so since the emphasis of this work is to

push the limit of accurate odometry estimation.

The basic algorithm of V-LOAM is general enough that it

can be adapted to use range sensors of different kinds, e.g.

a time-of-fly camera. The method can also be configured to

provide localization only, if a prior map is available.

In addition to evaluation on the KITTI odometry bench-

mark [1], we further experiment with a wide-angle camera

and a fisheye camera. Our conclusion is that the fisheye

camera brings in more robustness but less accuracy because

of its larger field of view and higher image distortion.

However, after the scan matching refinement, the final motion

estimation reaches the same level of accuracy. Our experi-

ment results can be seen in a publicly available video.1.

II. RELATED WORK

Vision and lidar based methods are common for state

estimation [2]. With stereo cameras [3], [4], the baseline

provides a reference to help determine scale of the motion.

However, if a monocular camera is used [5]–[7], scale of the

motion is generally unsolvable without aiding from other

sensors or assumptions about motion. The introduction of

RGB-D cameras provides an efficient way to associate visual

images with depth. Motion estimation with RGB-D cameras

1www.youtube.com/watch?v=-6cwhPMAap8
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[8], [9] can be conducted easily with scale. A number of

RGB-D visual odometry methods are also proposed showing

promising results [10]–[12]. However, these methods only

utilize imaged areas where depth is available, possibly wast-

ing large areas in visual images without depth coverage. The

visual odometry method used in our system is similar to [8]–

[12] in the sense that all use visual images with additionally

provided depth. However, our method is designed to utilize

sparse depth information from a lidar. It involves features

both with and without depth in solving for motion.

For 3D mapping, a typical sensor is a (2-axis) 3D lidar

[13]. However, usage of these lidars is difficult as motion

distortion is present in point clouds as the lidar continu-

ally ranges and moves. One way to remove the distortion

is incorporating other sensors to recover the motion. For

example, Scherer et al.’s navigation system [14] uses stereo

visual odometry integrated with an IMU to estimate the

motion of a micro-aerial vehicle. Lidar clouds are registered

by the estimated motion. Droeschel et al.’s method [15]

employs multi-camera visual odometry followed by a scan

matching method based on a multi-resolution point cloud

representation. In comparison to [14], [15], our method

differs in that it tightly couples a camera and a lidar such that

only one camera is needed for motion recovery. Our method

also takes into account point cloud distortion caused by drift

of the visual odometry, i.e. we model the drift as linear

motion within a short time (1s) and correct the distortion

with a linear motion model during scan matching.

It has also shown that state estimation can be made with

3D lidars only. For example, Tong et al. match visual features

in intensity images created by stacking laser scans from a 2-

axis lidar to solve for the motion [16]. The motion is modeled

with constant velocity and Gaussian processes. However,

since this method extracts visual features from laser images,

dense point clouds are required. Another method is from

Bosse and Zlot [17], [18]. The method matches geometric

structures of local point clusters. They use a hand-held

mapping device composed of a 2D lidar and an IMU attached

to a hand-bar through a spring [17]. They also use multiple 2-

axis lidars to map an underground mine [18]. In this method,

the trajectory is recovered by batch optimization processing

segmented data with boundary constraints connecting in

between the segments. The method is appropriate for offline

survey but unsuitable for online real-time applications.

The proposed method is based on our work in [19], [20],

where a visual odometry method, DEMO, and a lidar odome-

try method, LOAM, are proposed separately. LOAM requires

smooth motion and relies on an IMU to compensate for high

frequency motion. In this paper, LOAM is modified such

that the new method, V-LOAM, takes the visual odometry

output as motion prior followed by the lidar odometry. The

camera model in the visual odometry is also modified and

compatible with fisheye cameras. A new set of experiments

are conducted and results show V-LOAM delivers lower drift.

Incorporating high-frequency visual odometry and a fisheye

camera also enables the system to handle rapid motion.

III. COORDINATE SYSTEMS AND TASK

The problem addressed in this paper is to estimate the

motion of a camera and lidar system and build a map of

the traversed environment with the estimated motion. We

assume that the camera is modeled by a general central

camera model [21]. With such a camera model, our sys-

tem is able to use both regular and fisheye cameras (see

experiment section). We assume that the camera intrinsic

parameters are known. The extrinsic parameters between the

camera and lidar are also calibrated. This allows us to use a

single coordinate system for both sensors, namely the sensor

coordinate system. For simplicity of calculation, we choose

the sensor coordinate system to coincide with the camera

coordinate system – all laser points are projected into the

camera coordinate system upon receiving. As a convention

of this paper, we use left uppercase superscription to indicate

coordinate systems. In the following, let us define

• Sensor coordinate system {S} is originated at the

camera optical center. The x-axis points to the left,

the y-axis points upward, and the z-axis points forward

coinciding with the camera principal axis.

• World coordinate system {W} is the coordinate system

coinciding with {S} at the starting position.

With assumptions and coordinate systems defined, our

odometry and mapping problem is stated as

Problem: Given visual images and lidar clouds perceived

in {S}, determine poses of {S} with respect to {W} and

build a map of the traversed environment in {W}.

IV. SYSTEM OVERVIEW

Fig. 2 shows a diagram of the software system. The overall

system is divided into two sections. The visual odometry

section estimates frame to frame motion of the sensor at

the image frame rate, using visual images with assistance

from lidar clouds. In this section, the feature tracking block

extracts and matches visual features between consecutive

images. The depth map registration block registers lidar

clouds on a local depthmap, and associates depth to the visual

features. The frame to frame motion estimation block takes

the visual features to compute motion estimates.

To summarize the lidar odometry section, let us define

a sweep as the 3D lidar completes one time of full scan

coverage. If the slow axis of the lidar spins continuously,

a sweep is typically a full-spherical rotation. However, if

the slow axis rotates back-and-forth, a sweep is a clockwise

or counter-clockwise rotation toward the same orientation.

In our system, a sweep lasts for 1s. The lidar odometry

section is executed once per sweep, processing point clouds

perceived within entire sweeps. First, the sweep to sweep

refinement block matches point clouds between consecutive

sweeps to refine motion estimates and remove distortion in

the point clouds. Then, the sweep to map registration block

matches and registers point clouds on the currently built map,

and publishes sensor poses with respect to the map. The

sensor pose outputs are integration of the transforms from

both sections, at the high frequency image frame rate.
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Fig. 2. Block diagram of the odometry and mapping software system.

V. VISUAL ODOMETRY

This section summarizes the visual odometry method.

With lidar clouds, the method registers and maintains a

depthmap using estimated motion of the visual odometry.

When computing motion, it involves three types of visu-

al features in terms of the source of depth: depth from

the depthmap, depth by triangulation using the previously

estimated motion, and depth unavailable. However, to use

fisheye cameras with over 180◦ field of view, let us use

the term “distance” from now on (a feature’s depth is the

projection of its distance in Sz direction). Let us use right

superscript k, k ∈ Z+ to indicate image frames, and I to

indicate the set of visual features. For a feature i, i ∈ I,

that is associated with distance, its coordinates in {Sk} are

denoted as S
X
k

i = [Sxk
i
, Syk

i
, Szk

i
]T . For a feature with

unknown distance, we use its normalized coordinates instead,
S

X̄
k

i = [S x̄k
i
, S ȳk

i
, S z̄k

i
]T , where ||SX̄

k

i || = 1. We model the

sensor motion as rigid body transformation. Let R and T be a

3×3 rotation matrix and a 3×1 translation vector describing

the frame to frame motion. We formulate the motion as

S
X
k

i = R S
X
k−1

i
+ T. (1)

In the case that a feature’s distance is available, we can

associate the distance to S
X
k−1

i
. However, the distance of

S
X
k

i is always unknown. Since the motion between frames

k − 1 and k is not computed at this stage, we are not able

to retrieve the distance of S
X
k

i either from the depthmap or

by triangulation. Let Sdk
i

be the unknown distance of S
X
k

i ,
Sdk

i
= ||SX̄

k

i ||. Substituting S
X
k

i with Sdk
i
S

X̄
k

i in (1) and

combining the 1st and the 2nd rows with the 3rd row, we

can eliminate Sdk
i
. This gives us two equations as follows,

(S z̄ki R1 −
S x̄k

i R3)
S

X
k−1

i
+ S z̄ki T1 −

S x̄k

i T3 = 0, (2)

(S z̄ki R2 −
S ȳki R3)

S
X
k−1

i
+ S z̄ki T2 −

S ȳki T3 = 0. (3)

Here, Rl and Tl, l ∈ {1, 2, 3}, are the l-th rows of R and T.

For a feature without distance, both distances of S
X
k−1

i

and S
X
k

i are unknown. Substituting the terms in (1) with
Sdk−1

i

S
X̄
k−1

i and Sdk
i
S

X̄
k

i , respectively, and combining all

three rows to eliminate Sdk−1

i
and Sdk

i
, we can obtain,





−S ȳk
i
T3 +

S z̄k
i
T2

S x̄k
i
T3 −

S z̄k
i
T1

−S x̄k
i
T2 +

S ȳk
i
T1



R S
X̄
k−1

i = 0. (4)

The above procedure tells that a feature with known

distance provides two equations as (2)-(3), while a feature

with unknown distance provides one equation as (4). When

solving for motion, we stack all equations and formulate the

motion estimation problem with six unknowns representing

the 6-DOF motion. The problem is solved by the Levenberg-

Marquardt method. The motion estimation is adapted to a

robust fitting framework to handle feature tracking errors.

A weight is assigned to each feature based on its residuals

in (2)-(3) or (4). Features with larger residuals are assigned

with smaller weights, while features with residuals larger

than a threshold are considered outliers and assigned with

zero weights. The optimization terminates if convergence is

found or the maximum iteration number is met.

When maintaining the depthmap, new points are added to

the depthmap upon receiving from lidar clouds. Only points

in front of the camera are kept, and points that are received a

certain time ago are forgotten. The depthmap is downsized to

keep a constant point density, and projected to the last image

frame whose transform to the previous frame is established,

namely frame k−1. We represent points on the depthmap in

spherical coordinates using a distance and two angles. The

points are stored in a 2D KD-tree based on the two angular

coordinates. When associating distances to the features, we

find the three closest points on the depthmap from each

feature. The three points form a local planar patch, and the

distance is interpolated from the three points by projecting

a ray from the camera center to the planar patch.

Further, if the distances are unavailable from the depthmap

for some features but they are tracked more than a certain

distance, we triangulate them using the sequences of images

where the features are tracked. Fig. 3 shows an example of

reconstructed features corresponding to Fig. 1 (left image).

The green dots are features whose distances are associated

from the depthmap, and the blue dots are by triangulation

(the red dots in Fig. 1 have unknown distances).

VI. LIDAR ODOMETRY

The frame to frame motion estimated by the visual odom-

etry is further refined by the lidar odometry method. The

lidar odometry contains two major steps for coarse to fine

processing of point clouds: a sweep to sweep refinement

step matches point clouds between consecutive sweeps to

Fig. 3. An example of depthmap and reconstructed visual features
corresponding to the left image in Fig. 1. The colored points represent the
depthmap, where color codes elevation. The green dots are features whose
distances are from the depthmap, and the blue dots are obtained by structure
from motion (the red dots in Fig. 1 have unknown distances).
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Fig. 4. Illustration of visual odometry drift. The orange curve represents
nonlinear motion estimated by the visual odometry, and the blue line
represents the visual odometry drift. We model the drift as linear motion
within a sweep (lasting for 1s). The drift creates distortion in lidar clouds.
The sweep to sweep refinement step corrects the distortion by matching
lidar clouds between consecutive sweeps with a linear motion model.

refine motion estimates, and a sweep to map registration step

matches and registers point clouds on the map.

Fig. 4 illustrates functionality of the sweep to sweep re-

finement step. The orange curve represents nonlinear motion

of the sensor estimated by the visual odometry. The drift of

the visual odometry is usually considered as slow motion. We

model the drift with contact velocity within a sweep (lasting

for 1s), represented by the blue line. When using motion

recovered by the visual odometry to register lidar clouds,

the drift causes distortion in the lidar clouds. The sweep to

sweep refinement step incorporates a linear motion model in

lidar cloud matching to remove the distortion.

Let us use right superscript m, m ∈ Z+ to indicate sweep-

s, and Pm to indicate the lidar cloud perceived during sweep

m. For each Pm, we extract geometric features combing

points on sharp edges, namely edge points, and points on

planar surfaces, namely planar points, by computation of the

curvature in local scans. We avoid selecting points whose

neighbor points are selected, and points on boundaries of

occluded regions or local surfaces that are roughly parallel

to the laser beams. These points are likely to contain large

noises or change positions over time. Fig. 5 gives an example

of edge points and planar points detected from a sweep when

the sensor navigates in front of a building.

Let Em and Hm be the sets of edge points and planar

points extracted from Pm. We match Em and Hm to the

lidar cloud from the previous sweep, Pm−1. Here, note that

after completion of sweep m− 1, the distortion in Pm−1 is

corrected. Hence, we only need to apply the linear motion

model for the current sweep. Define T
′ as a 6 × 1 vector

describing the visual odometry drift during sweep m, and

define tm as the starting time of this sweep. For a point i,
i ∈ Em ∪ Hm, perceived at time ti, the corresponding drift

between tm and ti is linearly interpolated as,

T
′

i = T
′(ti − tm)/(tm+1 − tm). (5)

For each point in Em, we find the two closest edge points

Fig. 5. An example of detected edge points (blue) and planar points (green)
from a sweep. The sensor points to a building during data collection.

Fig. 6. Illustration of sweep to map registration step. For each sweep m,
the lidar cloud Pm is matched with the existing map cloud Qm−1. Then,
the two point clouds are merged to form a new map cloud Qm.

in Pm−1 which form an edge line segment. For each point

in Hm, we find the three closest planar points which form a

local planar patch. This process employs two 3D KD-trees,

one storing edge points and the other storing planar points

in Pm−1. With correspondences of the edge points and the

planar points found, an equation is derived to describe the

distance between a point and its correspondence,

f(SX
m

i ,T
′

i) = di, (6)

where S
X
m

i is the coordinates of point i, i ∈ Em ∪ Hm,

in {Sm}, and di is the distance to its correspondence.

Combining (5) and (6), we obtain a function of T
′. The

process of solving for T
′ is stacking the function of each

edge point and planar point and then minimizing the overall

distances. The nonlinear optimization uses the Levenberg-

Marquardt method adapted to a robust fitting framework.

With T
′ computed, we remove the distortion in Pm.

Finally, the sweep to map registration step matches and

registers the distortion-free lidar clouds on the currently built

map. Define Qm as the map cloud at the end of sweep m.

As illustrated in Fig. 6, this step matches Pm with Qm−1

and merges the two point clouds to build a new map cloud

Qm. The same types of edge points and planar points are

extracted from Pm. Considering the density nature of the

map cloud, correspondences of the feature points are deter-

mined by examining distributions of local point clusters in

Qm−1, through computation of eigenvalues and eigenvectors.

Specifically, one large and two small eigenvalues indicate an

edge line segment, and two large and one small eigenvalues

indicate a local planar patch. The scan matching involves an

iterative closest point method [22], similar to the sweep to

sweep refinement step without the motion model.

After registration of Pm on the map, a transform is also

published regarding sensor poses on the map, in the world

coordinate system {W}. Since these transforms are only

computed once per sweep, we combine them with the high

frequency frame to frame motion transforms from the visual

odometry. As illustrated in Fig. 7, the result is high frequency

integrated pose outputs at the image frame rate.

Fig. 7. Illustration of transform integration. The blue segment represents
transforms published by the lidar odometry at a low frequency, regarding
sensor poses in the world coordinate system {W}. The orange segment
represents transforms published by the visual odometry at a high frequency
containing frame to frame motion. The two transforms are integrated to
generate high frequency sensor pose outputs at the image frame rate.
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VII. EXPERIMENTS

The study of this paper is validated on two sensor systems,

one using a custom-built camera and lidar sensor as shown

in Fig. 8, and the other using configuration of the KITTI

benchmark datasets [1]. Through the paper, we have used

data collected from the custom-built sensor to illustrate the

method. The camera is a uEye monochrome camera config-

ured at 60Hz frame rate. The 3D lidar is based on a Hokuyo

UTM-30LX laser scanner. The laser scanner has 180◦ field

of view and 0.25◦ resolution with 40 lines/sec scanning rate.

A motor actuates the laser scanner for rotational motion to

realize 3D scan. The motor is controlled to rotate at 180◦/s
angular speed between −90◦ and 90◦ with the horizontal

orientation of the laser scanner as zero. An encoder measures

the motor rotation angle with 0.25◦ resolution.

The software program processing author-collected data

runs on a laptop computer with 2.5GHz quad cores in Linux.

The method consumes about two and a half cores: the visual

odometry takes two cores, and the lidar odometry takes half

of a core as it is only executed once per sweep. The method

tracks maximally 300 Harris corners using the Kanade Lucas

Tomasi (KLT) method [23]. To evenly distribute the visual

features, an image is separated into 5×6 identical subregions,

while each subregion provides up to 10 features.

When evaluating on the KITTI odometry benchmark [1],

the method uses data from a single camera and a Velodyne

lidar. It outperforms other methods irrespective of sensing

modality, including the lidar only method, LOAM [20]. This

is mostly because V-LOAM uses images to compute motion

prior for scan matching, while LOAM only processes laser

data. Our results for both methods are publicly available2.

A. Accuracy Tests

We first conduct accuracy tests using two camera setups,

one with a wide-angle lens (76◦ horizontal field of view) and

the other with a fisheye lens (185◦ horizontal field of view).

To acquire both images at the same time, another camera is

mounted underneath the original camera in Fig. 8, and set

at the same configuration except the resolution is slightly

different. The original camera is at 752 × 480 pixels while

the second camera is at 640×480 pixels. This is because the

fisheye lens provides pixel information in a circular region

(see examples in Fig. 9(a)) and further extending the camera

horizontal resolution only enlarges the black region.

2www.cvlibs.net/datasets/kitti/eval_odometry.php

Fig. 8. Custom-built camera and lidar sensor. The camera is a uEye
monochrome camera configured at 60Hz frame rate. The 3D lidar consists of
a Hokuyo UTM-30LX laser scanner driven by a motor and an encoder that
measures the rotation angle. The motor rotates back-and-forth at 180◦/s.

Fig. 9 and Fig. 10 show results of accuracy tests in an

indoor and an outdoor environments. In both tests, the sensor

is held by a person who walks at 0.7m/s. Fig. 9-10(a) present

sample images from the tests. In Fig. 9(a), the first row is

from the wide-angle camera, and the second row is corre-

sponding images from the fisheye camera. In Fig. 10(a), we

only show images from the wide-angle camera due to limited

space. Fig. 9-10(b) show results of motion estimation. We

compare four trajectories: two from the visual odometry with

the wide-angle camera and the fisheye camera, respectively,

and the other two refined by the lidar odometry. We see

the fisheye camera results in faster drift (green curves) than

the wide-angle camera (red curves) as a result of heavier

image distortion. However, the trajectories refined by the

lidar odometry (blue and black curves) have little difference,

indicating that the lidar odometry is able to correct the visual

odometry drift regardless of the drift amount. Fig. 9-10(c)

show maps built corresponding to the blue curves in Fig. 9-

10(b). The images in Fig. 9-10(a) labeled with numbers 1-4

are respectively taken at locations 1-4 in Fig. 9-10(c).

Additionally, we conduct one test including indoor and

outdoor environments. As shown in Fig. 11, the path starts

in front of a building, passes through the building and exits

to the outside, traverses two staircases and follows a small

(a)

(b)

(c)

Fig. 9. Result of Test 1: indoor accuracy. (a) Sample images from the test.
The top row is from the wide-angle camera and the bottom row is from the
fisheye camera. (b) The red and green trajectories are outputs from the visual
odometry (1st section in Fig. 2) with different camera setups, and the blue
and black trajectories are refined motion estimates by the lidar odometry
(2st section in Fig. 2). The black dot is the starting position. Although using
the fisheye camera leads to larger drift (green) than the wide-angle camera
(red), the refined trajectories by the lidar odometry (blue and black) have
little difference. (c) Map built corresponding to the blue curve in (b). The
images in (a) labeled with 1-4 are taken at locations 1-4 in (c).
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road to come back to the starting position after 538m of

travel. Due to space issue, we eliminate the trajectories and

only show the map built. The images in Fig. 11(a) are taken

at corresponding locations 1-6 in Fig. 11(b).

Table I compare motion estimation accuracy for the three

tests. The accuracy is calculated based on 3D coordinates.

For Test 1, the path contains two loops. We measure gaps on

the trajectories at loop closures to determine relative position

errors as fractions of the distance traveled along the loops.

For Test 2, the lidar perceives the same objects at the start

and the end of the path. We manually extract and correlate 15

points in lidar clouds to calculate the position error. For Test

3, the position error is measured between the starting and

the ending positions. From Table I, we conclude that even

though the visual odometry is less accurate with the fisheye

camera than the wide-angle camera, the lidar odometry is

able to boost the accuracy to the same level.

(a)

(b)

(c)

Fig. 10. Result of Test 2: outdoor accuracy. (a)-(c) are in the same
arrangement as Fig. 9. Similar to Test 1 (Fig. 9), using the fisheye camera
(green curve) results in larger visual odometry drift than the wide-angle
camera (red curve). However, the lidar odometry is able to correct the drift
and generate trajectories with little difference (blue and black curves). The
images in (a) labeled with 1-4 are taken at locations 1-4 in (c).

TABLE I

RELATIVE POSITION ERRORS IN ACCURACY TESTS

W: WIDE-ANGLE, F: FISHEYE, V: VISUAL ODOM (1ST SECTION IN

FIG. 2), VL: VISUAL ODOM + LIDAR ODOM (BOTH SECTIONS IN FIG. 2).

Relative Position Error

Test No. Dist. W-V F-V W-VL F-VL

Test 1 (Loop 1) 49m 1.1% 1.8% 0.31% 0.31%

Test 1 (Loop 2) 47m 1.0% 2.1% 0.37% 0.37%

Test 2 186m 1.3% 2.7% 0.63% 0.64%

Test 3 538m 1.4% 3.1% 0.71% 0.73%

B. Robustness Tests

We further conduct experiments to inspect robustness of

the method with respect to fast motion. We first choose a

staircase environment as in Fig. 12, which includes seven

(a)

(b) (c)

(d)

(e)

Fig. 12. Result of Test 4: robustness w.r.t. fast rotation. The test contains
two trials, one in slow motion and the other in fast motion, following the
same path. (a) shows estimated trajectories. The red and the green curves
are from the same trial in slow motion, while the blue curve is from the
other trial in fast motion. When using the wide-angle camera in fast motion,
the motion estimation fails due to visual features loose tracking during fast
turnings. The trajectory is removed. (b)-(c) are maps built corresponding to
the green and the blue curves, respectively. Careful comparison finds that
the point cloud in (c) is blurred as an effect of fast motion. (d)-(e) present
distributions of angular speed and linear speed for the two trials.
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(a) (b)

Fig. 11. Result of Test 3: indoor and outdoor accuracy. The path starts in front of a building, passes through the building and exits to the outside, traverses
two staircases and follows a small road to come back to the starting position. The images in (a) are taken at corresponding locations 1-6 in (b).

180◦ turns. Walking on the stairs introduces continuous

rotation to the sensor. Second, we choose a corridor envi-

ronment as in Fig. 13. Traveling along the corridor brings in

continuous translation. In each environment, a person holds

the sensor and follows the same path twice, one in slow

motion and the other in fast motion. In Fig. 12-13(a), we

show estimated trajectories. The red and the green curves

are from the slow motion trials, using the wide-angle camera

and the fisheye camera, respectively. The blue curves are

(a)

(b) (c)

(d)

(e)

Fig. 13. Result of Test 5: robustness w.r.t. fast translation. Same as Test
4 (Fig. 12), it contains two trials, one in slow motion and the other in fast
motion. The maps in (b) and (c) correspond to the green and the blue curves
in (a). One finds the walls in (c) are bended as a result of fast motion.

from the fast motion trials. In both tests, when using the

wide-angle camera in fast motion, we encounter issues that

visual features loose tracking during fast turnings, resulting

in failure of motion estimation. The trajectories are removed.

In Fig. 12-13(b), we present the maps corresponding to the

green curves, and in Fig. 12-13(c), we show the maps with

respect to the blue curves. When comparing carefully, one

finds that the point cloud in Fig. 12(c) is blurred and the

walls in Fig. 13(c) are bended due to fast motion.

The distributions of angular speed and linear speed are

shown in Fig. 12-13(d) and Fig. 12-13(e), respectively.

The angular speed is calculated using spatial rotation, and

the linear speed is based on 3D translation. We can see

significant difference in speed between the slow and the fast

trials. In Fig. 12(d), the angular speed covers up to 170◦/s
for the fast trial, and in Fig. 13(e), the average linear speed is

around 2.6m/s. Table II compares relative position errors. For

Test 4, the ground truth is manually calculated assuming the

walls on different floors are exactly flat and aligned. We are

able to measure how much the walls are bended and therefore

determine position error at the end of the trajectory. For Test

5, the error is calculated using the gap at loop closure. From

these results, we draw the conclusion that using the fisheye

camera looses slight accuracy compared to the wide-angle

camera, but gains more robustness in rapid motion.

Finally, we experiment on robustness of the method with

respect to dramatic lighting changes. As shown in Fig. 14(a),

the light is turned off four times. At locations 1-2, the

sensor navigates inside a room, and at locations 3-4, the

sensor moves along a corridor. When the light goes off,

the visual odometry stops working and constant velocity

prediction is used instead. The drift is corrected by the lidar

odometry once per sweep. Fig. 14(b) presents the map built.

Fig. 14(c)-(d) show the amount of corrections applied by the

lidar odometry. The four peaks represent large corrections

corresponding to the red segments in Fig. 14(a), caused by

the fact that constant velocity prediction drifts faster than the

visual odometry. The result indicates that the method is able

TABLE II

RELATIVE POSITION ERRORS IN FAST MOTION TESTS

W: WIDE-ANGLE, FI: FISHEYE, S: SLOW, FA: FAST.

Relative Position Error

Test No. Dist. W-S Fi-S W-Fa Fi-Fa

Test 4 66m 0.67% 0.68% Failed 1.3%

Test 5 54m 0.27% 0.28% Failed 0.39%
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(a)

(b)

(c)

(d)

Fig. 14. Result of Test 6: lighting changes. During the test, light is turned
off four times as indicated by the red segments in (a), each lasting for 2s.
In undesirable lighting conditions, the visual odometry stops working and
constant velocity prediction is used instead. The drift is corrected by the
lidar odometry once per sweep. (b) presents the map built in top-down view.
(c)-(d) show the amount of rotation and translation corrections applied by
the lidar odometry. The corrections become much larger when light is off
due to the fact that constant velocity prediction drifts faster than the visual
odometry. The four peaks in (c)-(d) correspond to locations 1-4 in (a).

to handle temporary light outrage (however, for continuous

darkness, the proposed method is unsuitable and readers are

recommended to use our lidar only method, LOAM [20]).

VIII. CONCLUSION

We propose a real-time method for odometry and mapping

using a camera combined with a 3D lidar. This is through a

visual odometry method that estimates ego-motion at a high

frequency and a lidar odometry method that refines motion

estimates and corrects drift at a low frequency. Cooperation

of the two components allows accurate and robust motion

estimation to be realized, i.e. the visual odometry handles

rapid motion, and the lidar odometry warrants low-drift.

The method is tested indoors and outdoors using datasets

collected in our own experiments, with a wide-angle camera

and a fisheye camera. The method is further evaluated on

the KITTI odometry benchmark with an average of %0.75

relative position drift. Our experiment results also show

robustness of the method when the sensor moves at a high

speed and is subject to significant lighting changes.
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