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Abstract – This paper explores the possibilities to use robust object
tracking algorithms based on visual model features as generator
of visual references for UAV control. A Scale Invariant Feature
Transform (SIFT) algorithm is used for detecting the salient points
at every processed image, then a projective transformation for
evaluating the visual references is obtained using a version of
the RANSAC algorithm, in which a series of matched key-points
pairs that fulfill the transformation equations are selected, rejecting
otherwise the corrupted data. The system has been tested using
diverse image sequences showing its capability to track objects
significantly changed in scale, position, rotation, generating at the
same time velocity references to the UAV flight controller. The
robustness our approach has also been validated using images taken
from real flights showing noise and lighting distortions. The results
presented are promising in order to be used as reference generator
for the control system.

Keywords – Unmanned Aerial Vehicle, feature tracking, au-
tonomous helicopter, SIFT, RANSAC.

I. INTRODUCTION

Our work is focused on the integration of different visual

feature detection and tracking algorithms in UAVs. The ultimate

goal is to extend the UAVs capabilities through the use of visual

sensors with the aim to be used in tasks like object recognition

and tracking, visual inspection and visual navigation. The

techniques proposed are intended to control in real-time the

UAV displacement based on image velocity references. Using

previous works developed by the authors as foundation. We

extend these approaches based on appearance with techniques

based in visual models. These techniques are evaluated in

quality, efficiency and the capacity to be implemented in real

time for control process.

We implement visual control techniques in UAVs using the

first generation testbed developed at Universidad Politécnica de

Madrid, COLIBRI I [1]. This platform has a control architecture

that permits the integration of many different visual algorithms

in the control process. The vision-based system acts as an overall

controller sending navigation commands to a low level flight

controller which is responsible for autonomous control of the

helicopter.

The paper is organized as follows, in the next section we

briefly discusses the related work. Section III describes the

platform COLIBRI I, used as the main testbed platform. In

section IV we show the approach used to control the helicopter

based on visual references using a salient point tracker. Section

V shows the experimental results. Finally conclusions and future

work are drawn in section VI.

II. RELATED WORK

Autonomous aerial vehicles have been an active area of

research for several years. Autonomous helicopters have been

used as testbeds to investigate problems ranging from control,

navigation, path planning to object detection and tracking, visual

navigation, etc. Several teams from MIT, Stanford, Berkeley

and USC have had an ongoing AFV project for the past decade.

The reader is referred to [2] for a good overview of the various

types of vehicles and algorithms used for their control. Recent

work has included autonomous landing [3], [4] and aggressive

maneuvering [5]

Many techniques for detection or tracking of interests objects

in the scene are based on model features or descriptors. In the

literature there are many feature detectors based on salient point,

shape, Differential Invariants, SIFT, etc. The suitability of a

feature detector is closely related with the application or task

intended to perform. In the work of Mikolajczyk and Schmid [6],

they made a comparison of many different descriptors, based in a

matching and recognition context and under a variety of viewing

conditions, finding that better performance and robustness for

affine transformations, scale changes, image rotation, blurring

and illumination changes are present in the SIFT descriptors [7].

Some applications of matching using SIFT were proposed by

Se and Lowe [8], and have been tested in ground robots with very

good results for navigation, 3D reconstruction and SLAM. SIFT

also has been used in UAVs to find landmarks based on infrared

images. The aim of this SLAM works is to implement landmark
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Fig. 1. UPM-COLIBRI I. HELICOPTER PLATFORM USED AS MAIN

RESEARCH PLATFORM

recognition to be used for UAV navigation [9]. A similar work

was done by Adrien [10] for M.A.V. in which a combination of

Harris [11] corner detector and SIFT for 2D localization is used.

In all these approaches the visual system is used for landmarks

detection and map building, but it is not directly integrated as a

reference for the flight control.

III. THE AUTONOMOUS HELICOPTER TESTBED, COLIBRI I

The COLIBRI I [12] testbed (figure 1), is based on a gas

powered industrial twin helicopter with a two stroke engine 52

cc and 8 hp. The platform is fitted with a xscale-based flight

computer augmented with sensors (GPS, IMU, Magnetometer,

etc fused with a Kalman filter for state estimation). For vision

processing it has a VIA mini-ITX 1.25 GHz onboard computer

with 512 Mb Ram, wireless interface and a videre STH stereo

head for acquiring the images. Both Computers run Linux OS.

The ground station is a laptop used to send high-level control

commands to the helicopter. It is also used for visualization

of image data and communication with the onboard image

processing algorithm. Communication with the ground station

is via 802.11g wireless Ethernet protocol.

The system runs in an client-server architecture using

TCP/UDP messages. This architecture allows embedded

application to run onboard the autonomous helicopter while

interact with external processess through a high level switching

layer. The visual control system and additional external

processes are integrated with the flight control through this

layer using TCP/UDP messages. This layer is based on a

communication API where all the messages and data types are

defined. The helicopter low-level controller is based on simple

PID control loops and ensures the stability of the helicopter.

This controller has been validated empirically. The higher

level controller uses various sensing modalities such as GPS

and/or vision to perform tasks such as navigation, landing, visual

tracking, etc.

IV. SALIENT POINTS TRACKING

SIFT (Scale Invariant Feature Transform) developed by

Lowe [7] is used to detect stable features in an object

template. The template is initially selected by the user in

the video sequence. The object is matched along the video

sequence comparing the model template and the image SIFT

descriptor using the nearest neighbor method. Given the high

dimensionality of our descriptor (128), its matching performance

is improved using the Kd-tree search algorithm with the Best Bin

First search modification proposed by Lowe. Once the matching

is performed, a perspective transformation is calculated using

the matched Keypoints, then the RANSAC algorithm [13]

is applied to obtain the best possible transformation taking

into consideration bad correspondences. This transformation

includes the parameters for translation, rotation and scaling of

the interest object, and is defined in equations (1),(2).
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where:

(x,y,1)T : Homographic coordinates of the Keypoint (x,y)T at

the model image.

(xp, yp, λ): Homographic coordinates of the Keypoint

(x+, y+)T , in the current image, corresponding to the matched

Keypoint of (x,y)T in the model image.

From this we can find that:
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Solving equations (2) and (3):

x+ =
ax + by + c

gx + hy + 1
y+ =

dx + ey + f

gx + hy + 1
(4)

According with equation (4), to obtain the Matrix H, we need

to calculate eight parameters. Considering that every pair of

matched keypoints give us two equations, we need a minimum

of four pairs of correctly matched keypoints to solve the system.

Equation (5) shows the equation systems to be calculated. The

solution is obtained using Singular Value Decomposition.
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As mentioned before, not all pair of matched keypoints

corresponds correctly. For this reason a method to discard the

corrupted data before solve equation (5) is used. The RANSAC

algorithm is evaluated for this purpose. Its aim is to obtain the

pairs of Keypoints that have the best projection (defined as inliers

points). It achieves its goal by iteratively selecting a random

subset of the original data points by testing it to obtain the model

and evaluating the model consensus, which is the total number of

original data points that best fit the model. This procedure is then

repeated a fixed number of times, each time producing either a

model which is rejected because too few points are classified as

inliers, or a refined model. If the total trials are reached, a good

solution for (5) can not be obtained.

Once the detection is performed in the current frame and the

transformation has been resolved, the velocity reference can be

generated using the center of gravity of the tracked object. The

center of gravity is used often when is desired to visually align

the vehicle with the object. Following the integration scheme is

described.

A. Integration of Image-Based References in the Flight Control

The output of the detection and tracking algorithm can be

integrated in the flight controller using velocity references.

The algorithm should be able to generate suitable image-based

velocity references that will be integrated with the controller

through a high level layer that switch and routes messages

between processes. Different processes (e.g. flight control,

vision algorithm, ground based commands, etc) can interact

simultaneously using this layer and relying on protocols like

TCP and UDP

Three velocity commands are currently available to control

the displacement of an aerial platform, vx, vy, vz for longitudi-

nal, lateral and vertical displacements, respectively. A complete

formal description of the velocity commands and camera

configurations is made in Mejias et. al [14]. A comprehensive

description of the vision-control integration using the high level

layer is made in [15], for related work using this approach please

refere to derived publications.

To derive suitable references from image measurement we

assume a fixed kinematic relationship between the camera and

the helicopter. In this way, and without loss of generality the

camera velocity and orientation can be approximated to the

helicopter velocity and orientation in bodyframe.

When the vision algorithm perform object tracking, the

velocity of the object in the image plane can be obtained and

is denoted by (ẋp, ẏp). If we refer to classical image-based

visual servoing (IBVS) techniques [16], the linear and angular

velocities of the camera are related with the tracked object by:

[

ẋp

ẏp

]

= L

[

Vc

ωc

]

= [LvLω]

[

Vc

ωc

]

(6)

where L is the interaction matrix which has two component

for linear and angular velocity. The above model take into

consideration the linear and angular velocities and is applicable

in most cases where is desired to control 6 d.o.f. This

model present non-linearities in the interaction matrix and

depends on the unknown feature depth, that cannot be measured

directly using monocular images. This represent a classical

problem in IBVS the estimation or approximation of the Image

Jacobian [17][18]. Therefore, in practice is useful to linearize

this model and use an approximation of this matrix L+. We have

used previously an approximation of this matrix to control the

lateral, vertical and longitudinal displacement of an autonomous

helicopter using visual references [14]. Once the object

translation and rotation have been resolved in equation 5, this

result can be used to control the helicopter solving equation 6.

B. Implementation

This algorithm has been implemented in C language

programming and combined with the Open Source Computer

Vision libraries (OpenCV). Our approach is aided by the SIFT

implementation developed by Hess [19]. Our algorithm is able

to process online input sequences from either USB or firewire

sources, or process offline images sequence from hard disk.

The process is initiated by selecting in the first image an

interest area or zone around the object that is intended to track.

This represent the template in which the SIFT Keypoints is

performed obtaining the set of ”keypoints”. This set of points are

stored for successive matching along the video sequence. Along

with the first frame a second frame is acquired with a similar

area but twice bigger. This second area is centered taking into

consideration the projected center from the first frame. This area

will be the local processing area in order to improve the speed of

the algorithm.

For each new image, a new set of SIFT parameters are

calculated and matched with the initial template. The matching

process is followed by the RANSAC algorithm to fit the data to

a perspective projection model. The RANSAC algorithm gives

us two kind of answers:

• A Projective Matrix cannot be obtained: In this case, the

search area is incremented, and a new image is processed.

This is repeated until an object that corresponds with the

original frame is found.

• If the matrix is found: It calculates the original frame

contour projection in the current image and shows it. The

search area is also centered to the current position of the

projected center of the object and the algorithm close the

loop.

Figure 2 shows a pseudocode of this algorithm.

V. ALGORITHM VALIDATION

In this section we present several experimental trials with

the aim to validate our approach. First, the algorithm is tested

with some sequences, in which movements to planar objects



Fig. 2. ALGORITHM PSEUDOCODE

TABLE I.

TEST RESULTS

seq window window average average correct average
width height SIFT matched projection frame

keypoints (%) rate (s)

1 324 450 83.46 17.76 70 0.63

2 510 382 331.28 70.66 82.5 1.07

3 596 480 617.09 67 72.3 1.93

4 418 192 184.11 9.61 60.1 0.95

5 270 186 389.49 14.71 55.4 1.88

6 328 250 432.01 32.26 78.5 1.66

are applied including translation, scale and rotation in three

axes with a constant illumination. The images acquired at 30

fps in full color have a resolution of 640x480 pixels and every

sequence has 1000 frames.

Figure 3 shows the objects used in the tests sequences.

The algorithm was tested with the sequences evaluating the

robustness and efficiency in terms of the number of correctly

matched Keypoints, projected frames and average time spent in

the process. Table I shows the summarized results.

From table I is clear that the size of the search window has a

big influence in the speed of the algorithm but it does not always

Fig. 3. TEMPLATES IMAGES AND OBJECTS USED DURING THE EXPERIMENTS

yield to a better result, because big areas have a lot of Keypoints

and sometimes they cause that the matching process obtain a big

number of bad matched keypoints (outliers). Also, the RANSAC

algorithm spends more time to reach the projection or the

maximum number of trials caused by more comparison between

Keypoints and model under Consensus evaluation at every cycle.

A good performance is obtained when the number of matched

keypoints is low, showing that the RANSAC algorithm has more

time variability to spend more part of the time employed by the

algorithm to obtain the solution. The implemented algorithm

works well when the object has large variations in form and

intensity, but has some reduction in performance when the

object does not have a differentiated structure or when it has a

planar texture like the case of the voltmeter or the chessboard

(Figure 3(4), 3(5)). The experimental trial performed shows that

the algorithm can match and obtain an adjusted projection when

the object has changes in scale by a factor of 2X and rotation up

to 45 degrees in all axes. Figure 4 shows some examples of these

conditions. In theses images the original frame is in the upper

left of the image (without change the scale) and the matched

Keypoints between original frame and the current image are

connected by the different color lines. The obtained projection

of the original frame is shown as the white box and the black box

is the area processed in current scene (window processed).

A final sequence of images taken during a real flight test of

the COLIBRI I UAV is used to test the tracking of a defined

window in a building. These images are in gray scale at 640x480

and contain a large influence of vibrations, noise and motion



Fig. 4. EXPERIMENTS SHOWING CHANGES IN SCALE AND ROTATION OF

OBJECTS

Fig. 5. IMAGE SEQUENCE FROM REAL FLIGHT TRIAL WITH A SELECTED

WINDOW TO TRACK

generated by the helicopter. Also, these images contain natural

changes on illumination, and a significant quantity of rotational

and translational movements. This sequence was used without a

previous process or property enhancement as shows in figure 5.

Figure 6, shows the building windows tracked at frames 15,

45 and 70. The search window has 236x224 pixels. The mean

SIFT keypoints detected by frame is 535.15 and the number

of matched points is 11.90. The average time spend is 0.92

seconds with 59% of frames detected correctly. The noise and

vibration in the sequence generated by the Helicopter and the

changes in illumination influence the capability of the algorithm

to find the object in some frames. In addition, the selected scene

has a recurrent structure that is not a good to reach adequate

matched keypoints and perspective transformation. However

Fig. 6. MATCHED OBJECTS DURING EXPERIMENTS IN FRAMES 15, 45 AND

70

these preliminary results are promising, showing the capability

of this algorithm to track objects in real flight image sequences.

Finally, a special attention needs to be taken on the

computational time spent by the algorithm. This computational

time is variable, and depends directly of the size of the

window area processed, the number of Keypoints obtained,

and the facility in which a transformation is found by the

RANSAC Algorithm. In the worst case, the algorithm spends

approximately two second to obtain the model or to reach the

maximum number of trials. In these way improvements to this

part of the algorithm has to be done before use it to real time

detection.



VI. CONCLUSION AND FUTURE WORK

In this paper an implementation for object tracking based

on model features has been presented. The tests using real

images from an onboard UAV camera show that the algorithm

works efficiently for tracking a selected object within long a

video sequence. A model of the desired object to be tracked

is obtained from a set of images and used to detect it using

a comparison method based on salient Keypoints. The initial

selection of the template to be tracked is essential to guarantee

a good performance of the algorithm. The algorithm performs

better when tracking objects presenting a large variation in

texture and intensity than objects presenting homogenous and

recurrent shapes, due to a more stable and descriptive feature

calculation. The implemented algorithm can match an object

corrupted with noise and vibration caused by the helicopter

movement. Also the images can be used to track the object

rotated up to 45 degrees, shifted and scaled up to 2X, and

partially changed in illumination. Further efforts need to be done

in reducing the dimensionality of the descriptors and improving

the computational time spent comparing the descriptors, taking

care that the new descriptor (with low dimension) continues

representing correctly the Keypoints.

In this way new modifications of SIFT, like PCA-SIFT[20]

and GLOTH[6], and similar descriptors as SURF[21] are

currently under analysis. The algorithm also can be optimized

by making changes in the Keypoitns comparison method, for

another that reduces the probability of incorrect correspondences

in the matching process or approaches that do not depend of the

trial method. The RANSAC function proposed to fit the data

to a specific model returns good results, eliminating the wrong

matched points in the matrix computation. Since the function

needs a variable number of trials and comparisons to reach the

consensus, the time spent to get the transformation is too variable

and it needs to be bounded for real time applications.

Additional improvements are being carried out by using a

state estimator like Kalman Filter to center the search windows,

reducing the area and therefore the number of descriptors that

have to be compared. Also it will reduce the probability of

incorrect matched points and therefore the number of trials to

reach the consensus in RANSAC function.
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thesis, Escuela Técnica Superior de Ingenieros Industriales. Universidad
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