
Proceedings of the 1993 Winter

G. W. Evans, M. Mollaghasemi,

Simulation Conference

E. C. Russell, W.E. Biles (eds.)

VISUAL MODELING OF DEVS-BASED MULTIFORMALISM SYSTEMS

BASED ON HIGRAPHS

Herbert Praehofer

Dietmar Pree

Systems Theory and Information Engineering

Johannes Kepler University

A-4040 Linz, Austria

ABSTRACT

This paper presents a graphical modeling method

and tool for DEVS model and DEVS-based combined

discrete/continuous model specification. In DEVS-

based modeling, atomic model behavior specification

is organized around different phases which define a

partition of the state space of the model. The phase

transitions depict the qualitative state changes and

naturally lend themselves to be represented by a state

transition diagram. Our representation of these phase

transitions is based on the higraph extension to con-
ventional graph representations. In higraphs, the

area of the diagram is used to represent set enclo-

sure and exclusion and the Cartesian product which
leads to remarkable reduction in the diagram’s com-

plexity. An interactive modeling tool based on the
graphicaI representation developed is presented.

1 INTRODUCTION

Graphical representations have advantageously been

employed to ease discrete event simulation model-

ing, model documentation, and model communicat-

ion. Dependent on the particular simulation world

view in hand, different forms of representations have

emerged. Event graphs (Schruben 1983) have been

developed to model event-oriented modeIs as graphs

showing the events and event dependencies. Act zv-

zty cycle diagrams (Poole and Szymankiewicy 1977)

are capable representing activity-scanning models by

showing the cycles of activities the various entities in

the model traverse. Block diagrams (Schriber 1977)

or process networks (Pritslier 1977) have made the
programming of process-interaction models popular.

These diagrams are flowcharts which show the move-

ments of the entities, usually the jobs, through the

various operations of the system. Cota and Sar-

gent introduced a new version of the process world

view (Cots and Sargent 1992) and control flow graphs

(Cots and Sargent 1989) as a means for its graphi-

cal representation. Although introduced as a con-
ceptional tool for developing parallel simulation algo-
rithms, they are a useful representation of simulation

models. A control flow graph model is represented

by an directed graph where the nodes depict various

states of the model and the edges the event transi-

tions.

The DEVS formallsm (Zeigler 1976,1984,1990) be-

ing the system theoretic formalism for modular, hi-

erarchical discrete event modeling and simulation

has been extended by Praehofer (Praehofer 1991a,

1991b, Pichler and Schwaertzel 1992) tc) facilitate

combined discrete/continuous multiformalism mod-
eling and simulation. The DE VandDESS ,formalism,

coming into being by a combination of the DEVS and
the dtfferentzal equatton specified system formalism

(DESS), allows the construction of atomic and hierar-

chically coupled combined models. In the DEVS for-

malism and its DEVandDESS multiformallism exten-

sion, atomic model specification is organized around

various phases which denote global system states. Ac-

tually, the different phases of a model represent a par-

titioning of the state space of the system into mutual

exclusive blocks where the different blocks identify

qualitatively differing system behaviors. In combined

modeling, the phases can be used to associate differ-

ent derivatives with different phases and the phase

transitions mean a change from one derivative to an-

other. Oeren (1991) termed such an modeling ap-

proach mult imodeling. Fishwick (1991) and Fishwick

and Zeigler (1992) developed a methodology for qual-

itative model engineering based on the multimodeling

approach.

While coupled DEVS and DEVandDESS models
lend themselves to be graphically represented as block

diagrams, a graphical representation of DEVS-based

atomic models is still missing. The state space phase

partitioning and the dynamic behavior specification

organized around phases can serve as a basis for a

595

596 Praehofer and Pree

graphical representation. The phases and phase tran-

sitions are naturally represented by a state transi-

tion diagram similar to those of finite state automa-
tons and the control flow graphs of Cota and Sar-

gent. In the directed graph, the nodes depict the

phases and the edges the event transitions. However,

in contrast to finite state automaton diagrams, with

the transition edges we have to associate the com-

plex state event specifications of the events repre-

sented by the edges. There is general consensus that

state diagram representations of complex systems get

unwieldy through the unmanageable, exponentially

growing multitude of states with a multitude of link-

ing edges, all of which have to be arranged in a flat

unstratified fashion, resulting in an unstructured, and

chaotic state diagram. The higmphs extension (Harel

1987, 1988) of the conventional graph representations

offers a solution to this problem. In higraphs, the

area of the diagram is exploited to represent set en-

closure, exclusion and intersection and the Cartesian

product. The higraph representation nicely fits to our
state space phase partitioning.

In this paper we develop a graphical representation

for DEVS and DEVandDESS atomic models based

on state space phase partitioning and higraph-based

state transition graphs. This graphical form of rep-

resentation provides a foundation for an interactive

modeling tool implemented in Common Lisp / CLOS

(Steele 1990) employing the Common Lisp Interface

Manager (CLIM) toolkit (Lucid 92). The interac-

tive modeling tool will serve as a user interface mod-

ule of the STIMS modeling and simulation environ-

ment (Praehofer, Auernig, Reisinger 1993). STIMS

is a new powerful, object-oriented modeling and sim-

ulation environment currently in development and is

based on the DEVS and DEVandDESS system spec-

ification formalisms.

The outline of the paper is as follows: In sec-

tion 2 we give a short review of the DEVS and DE-

VandDESS modeling concepts, discuss the role of

phase partitioning in DEVS-based modeling, and in-

troduce models owning several dimensions. In sec-

tion 3 we discuss graphical representations of DEVS-

based models and show how higraphs are used ad-
vantageously to achieve compact representations. In

section 4 we present our CLIM realized modeling tool.

2 DEVS-BASED MULTIFORMALISM

MODELLING

2.1 DEVS-Based Modeling Reviewed

Zeigler (Zeigler 1976, 1984, 1990) developed the dis-

crete eueni speczfied system (DEVS) formalism as a

mathematical basis for discrete event modeling. This

formalism provides a formal representation of discrete

event dynamic systems capable of mathematical ma-
nipulation and independent of any computer realiza-

tion, just as differential equation specified systems

serve this role for continuous systems.

In the DEVS formalism, one has to specify basic

atomac models and, by connecting together these ba-

sic models in a modular, hierarchical manner, one has

to specify complex coupled models. A DEVS-based
atomic model is a modular unit. It comprises input

and output interfaces in the form of input and out-

put ports through which all the interactions with the

environment occur. The interior of the model is repre-

sented by state variables. The dynamic state behav-

ior and its outside manifestation is defined employ-

ing two types of events. Input events lead to external

event transitions, i.e., upon occurrence of an input

event, the model transits to a state determined by the

external transition function. The other type of events
are ttme schedu[ed, internal events. For each state the

tame advance function defines the time interval to the

next internal event. When this time has elapsed, an

internal event occurs. The system produces an out-

put event and transits to a next state determined by

the internal transition funcizon. Specification of com-

plex coupled models is done by connecting the output

and input ports (modular coupling). Coupled models

also have their own input and output ports and they

can be used as components in bigger coupled models

(hierarchical modeling). From their input and out-

put interface, coupled models are not distinguishable
from atomic components and, therefore, are reusable

as building blocks in the same way as atomic models

are.

Based on DEVS, Praehofer (1991a, 1991b) devel-

oped system specification formalisms and simulation

concepts for combined discrete/continuous multifor-

malims modeling. He introduced the DE VandDESS

formaltsm as a combination of the DEVS and differ-

ential equataon spectfied system formalism (DESS) as

a basic system theoretic formalism for combined dis-

crete continuous modeling. A DEVandDESS atomic

model has an input and output interface split up
into discrete and continuous input and output ports
through which all the interactions with the environ-

ment occur. It has a continuous as well as a dis-

crete state set, both split up into state variables.

The derivative function and the continuous output

function inherited from the differential equation part

are used to specify the continuous behavior. Dis-

crete event behavior is inherited from the DEVS part.

However, the DEVandDESS knows a further type of

event, viz. state events. State events are internal

Visual Modeling of DEVS-Based A4ultformalism Systems Based on Higraphs 597

events caused by the continuous changes of the con-

tinuous inputs and continuous states and are mod-

eled in the state event transition function. Condi-

tions on continuous inputs and continuous states in

the state event transition function may become true

when continuous states and inputs change continu-

ously. Whenever such a condition becomes true, a

state event occurs. Similarly to time events, the
system puts out the discrete output determined by

the discrete output function and transits to a new

state determined by the state event transition func-

tion. Strong influences exist between the discrete and

continuous parts. On one hand side, the continuous
behavior may depend on the current discrete state.

On the other hand side, the changes in the continuous

states and inputs trigger state events. The events can

change the discrete as well as the continuous states

leading to discontinuous jumps in the continuous tra-

jectories.

The DEVandDESS coupled model formalism facil-

itates modular, hierarchical coupling of components

which can be either of the discrete, continuous, or

combined type. Analogous to DEVS, coupling of the
components of different types is done simply by con-

necting their output and input ports. Couplings from

discrete outputs to continuous inputs are allowed. In

such a coupling, the event outputs are interpreted as

piecewise constant, i.e., an event output determines a

constant output value until the next event. However,

a coupling from a continuous port to a discrete port

is not allowed since the continuous trajectory would

imply an infinite number of external state transitions.

2.2 State Space Phase Partitioning in DEVS-

Based Modeling

Conventional discrete event modeling approaches and

simulation languages emphasize the concept of event,

activity or process and de-emphasize the concept of

state. The DEVS formalism, however, originating

from the systems theory background, emphasize the

notion of state. In the DEVS formalism an atomic

model dynamic behavior specification is organized

around the phase variable which denotes some sort

of global state the system stays in. Depending on the

current phase of the system, it will react differently to

external inputs and occurrence of internal events. In

appendix A we show a model of a preemptive server
which is structured along different phases. The model

is either idle, or busy with a low priority job (busyLP),

or busy with a high priority job (busyHP), or it may

service a high priority job but a low priority job may

be preempted. Depending on the current phase, the

reaction to external inputs and internal events differs.

Figure 1: State Partitioning of Automated ‘Transmis-

sion Vehicle

In DEVS modeling, the phase actually defines a
partition of the state space of the model, i.e., the

different phases indicate different, mutual exclusive

blocks of the state space. So, in the preemptive

server model, the phase idle represents that subset of

the state space containing that single discrete state,

where both queues, the queues with low priority jobs

and high priority jobs, are empty. The phase busyLP

now represents that possible infinite subset where no

high priority job is in the system but there is at least

one low priority job. Similarly, the phases preempted

and busyHP define the subsets of states wlhere there

are high priority jobs and a low priority has been and

has not been preempted.

In combined DEVandDESS modeling these issues

are getting even clearer. Here the phase variables of-

ten are used to define the partition of the continuous

state space or they are used to define the systems

current discrete input value. In any case the phase

transitions are done by discrete event transitions and

signify a qualitative change in the dynamic behavior

of a multtmodel. The transitions are either external
when the phases depend on the input, time sched-

uled when they depend on particular times, or state

event when they depend on particular values of the

the continuous state space. Let us clarify these is-

sues by considering two similar simple models, viz.

a vehicle with a stick operated transmission system

and a vehicle with a rudimentary automatic. transmis-

sion system which changes gears at particular speeds

only. The phases of the system obviously are given

by the different gears which determine different sys-

tem behaviors. In the model of the hand-operated

system, the gears are determined from outside. Thus

the phase transitions are determined by the external

transition function. In the model of the automatic
system, however, the gear changes occur when the

speed reaches certain thresholds. The phase transi-
tions are modeled by state events in the state event

transition function. The different gears are directly

associated to certain subsets of the continuous speed

variable as depicted in figure 1.

598 Praehofer and Pree

is-hot
is-cold

stop-filling

fill-it <&> empty-it

heat-it

/

~ – stop-heating

\
cool-it

Figure 2: Boiling Water Pot System

2.3 More-dimensional State Spaces in

DEVS-Based Modeling

So far DEVS modeling has concentrated on systems
with one-dimensional state space only, i.e., systems

which only have one phase variable and the parti-

tioning is one-dimensional. However, in continuous

and combined modeling, systems with one dimen-

sion are the exception. Most systems show several,

if not a number of independent dimensions. More-

dimensional combined models usually also have inde-

pendent phase partitions for the different dimensions.

This motivated to introduce a new formalism which

is a specialization of the usual DEVandDESS formal-

ism. We call it n-dimensional DE VandDESS and it

is characterized by owing several dimension and for

each dimension dim there is one

●

●

●

continuous state variable dim,

one phase variable dim-phase, and

one sigma variable dam-szgma to define the time

to the next time event relative to that dimension.

Figure 2 shows a two-dimensional system of a pot

which can be heated and cooled, filled and emptied

(see Praehofer, Bichler and Zeigler (1993) for a more

detailed description of the system and for event-based

control of the system). The two dimensions are the

temp and the level dimension representing the liq-

uid level and the liquid temperature, respectively.

The system has two discrete command inputs - the

heat-corn and the jill-com input - with three different

commands for each, viz. heat-d, cool-it, stop-heating

TiTFTi!iiiir
Figure 3: Two-Dimensional State Space Partitioning

of Pot System

and jili-at,empt y-zt, st op-filiing, respect ively. The

system’s discrete outputs are given by four simple

threshold sensors, viz. is-cold, is-hot, is-empty, and

w-full. The values for output sensors are on and OH

and they react at particular threshold values of the
two continuous state variables level and temp. Each

state dimension is partitioned into three mutual ex-

clusive blocks according to the threshold sensor out-

put values. Figure 3 shows the state partitioning.

There are 3 times 3 mutual exclusive blocks which

have different sensor output values and which are de-

noted by the phases cold, t- betw, hot and emtpy, 1-

bet w, full, respectively. Although the continuous sys-

tem variables influence each other, the state events

modeling the phase transitions are independent in the

two dimensions.

Although most important for combined modeling,

n-dimensional models can also advantageously be em-

ployed in pure discrete DEVS modeling. Different di-

mensions in DEVS models should be employed if sev-
eral independently executing processes can be iden-
tified in one atomic model. For example, in a multi-

server system modeled as one atomic model compo-

nent, the different servers are independent execut-

ing components only interfering through the common

waiting queue. Each server has its own phase and

sigma variable. The sigma variable for one server

defines the time to next end-of-service event for the

particular server. The time to the next internal event

of the whole multiserver model, i.e., the value of the

time advance function, is given by the minimum of

Visual Modeling

the sigma values over all servers.

3 HIGRAPH-BASED

of DEVS-Based Multi formalism Systems Based on Higraphs 599

TRANSITION DIAGRAMS

3.1 DEVS-Diagrams

Graphical representations are advantageously em-

ployed to ease simulation modeling and model docu-

mentation. As conventional simulation modeling em-

phasizes the concept of event, activity, or process,

their graphical representation also are based on the

notion of the event, activity, or process. Our ap-

proach naturally lends itself to be represented as a

finite state diagram, i.e., a directed graph where the

nodes represent the different phases of the model and

the edges represent the event transitions. We call this

representation DE VS- dtagrams. However, in contrast

to the usual finite state transition diagram of finite

state machine automaton, for DE VS-diagrams com-

plex procedures are associated with the event edges,.

Only the phase changes are represented by the edges.

In background with each transition edge there is a

complex state transition affecting the arbitrary com-

plex state space and depending on an arbitrary com-

plex condition.

To represent purely discrete DEVS models, the

nodes denoting the different phases of the model are

linked by two types of transition edges representing

the internal and external event transitions, respec-

tively. With each internal transition edge we asso-

ciate the following code:

a condition which is tested before the event is

selected,

a priority value to arbitrate in case of several

executable internal transitions,

next state values for a number of state variables,

and

output values for different output ports.

With each external transition edge we associate the

following code:

●

●

●

●

an input port,

a condition which is tested before the event is

selected,

a priority value to arbitrate in case of several

executable external transitions, and

next state values for a number of state variables.

.e:”.e”,, !,

:: ::......... :......!
“ e~v m . empty HFQ

------* inwnd ewalt — external event

LFQ . low priority queue HFQ high priority qw=

inn . m~t of low ~,cz,ty ,ob W input of h@ picfity job

Figure 4: DEVS-Diagram for Preemptive Server

Model

With a DEVS-diagranl specified model then we

associate the following dynamic behavior: A time

scheduled internal event is executed when the time

advance value has elapsed. The conditions c)f the in-

ternal event edges starting at the current phase node

are tested. The transition edge whose condition eval-

uates to true and with the highest priority value is

executed, i.e., the next phase is entered as given by

the edge, the next state values are assigned to the

state variables, and the output events are generated.

Upon the occurrence of an input event, the external

transition edges are tested. The transition edge with

the appropriate input port and the condition evaluat-

ing to true is selected and executed. Figure 4 shows

the DEVS state transition diagram of our preemptive
server model.

To model DEVaudDESS systems, we employ one

more event edge type, viz. edges for state event tran-

sitions. Similar to time scheduled transitions, with

the state event transition edges we associate the fol-

lowing code:

●

●

●

●

a state event condition testing one continuous

state variable being greater or smaller a particu-

lar threshold,

a further arbitrary condition which is tested be-

fore the event is selected,

a priority value to arbitrate in case c~f several

executable internal or state event transitions,

next state values for a number of state variables,

and

output values for different output ports.

600 Praehofer and Pree

hal- kal- ht-

“!~:’g-?’’’?z?
:E’’;g;’g

isy “ “ym

- u+dd is-tot
.—. —.—. —.—. — .

mJy, :mbp:: W&, ~
is<dd . m-hot

.—. —.— .—. —.—

Figure 5: DEVS-Diagram of the Pot System

The state event is to occur, when the continuous

value reaches the particular threshold. The condi-

tions pretested andiftrue thetransition is executed.

In case of multiple executing transition edges, the pri-

ority value arbitrates.

Also, the continuous behavior of the continuous

part of the formalism is modeled within the diagram.

With the different phases, we specify the differential
equations for the continuous state variables and the

output values for the continuous output ports.

There is general consensus that the state dia-

gram representation of complex systems get unwieldy

through the unmanageable, exponentially growing

multitude of states with a multitude of linking edges,

all of which have to be arranged in a flat unstrati-

fied fashion, resulting in an unstructured, and chaotic

state diagram (Harel 1987). Figure 5 shows a state

transition diagram of the pot model represented in

figure 2 with the state phase partitioning given in
figure 3. One sees that already for this quite sim-
ple example, the diagram gets quite complex. All

the possible combinations of the two phase variables

have to be represented explicitly with all the possible

transitions between each other. This leads to a lot of
redundancy in event transition specification. In our

example the state event transitions for the temper-

ature and the level dimension are independent from

each other and therefore could be specified indepen-
dently. The input events, however, do not depend
on the phases at all and only effect the derivative

functions. But in the flat diagram all the transitions

from every node have to be specified explicitly. The

derivatives for the temperature and the level are all

the same expect the phase hot. But to allow changing

derivatives for different phases, we have to give the

derivative to each phase node explicitly. To solve this

problem, Harel (1987, 1988) introduced higraphs and

higraph-based state transition diagrams.

3.2 Higraphs and Higraph-Based

Diagrams

DEVS-

Higraphs (Harel 1988) are a general extension of con-

ventional graph representations by introducing means

for representation of (1) set enclosure, exclusion and

intersection and (2) the Cartesian product. This haa

been accomplished by exploiting the area of the dia-

gram similar to the well-known concept of Venn dia-

grams. Higraphs have a lot of potential applications

and have advantageously been employed for the siate-

chart visual formalism for specification of complex re-

active systems (Harel 1987) which is the basis for the

Statemate design environment (Harel et al 1990). Our

application to the specification of DEVS-diagrams is

similar to statecharts, however, differs from it in the
way transitions are specified and in further details.

In higraph-based representations, atomic-blobs in

the form of rectangular shapes are used to repre-

sent basic mutual exclusive sets. In our applica-

tion, atomic-blobs are used to represent the basic

phases which are the blocks, i.e., mutual exclusive

subsets, of the state set partitioning. They corre-

spond to the nodes in our DEVS-diagram approach

above. Atomic-blobs now can be clustered to com-

pound blobs. A cluster-blob, called or-blob in the se-

quel, merely is the union of the atomic-blobs it en-

closes within its contour. This enclosure is a union

operation and not a membership operation. With

that, arbitrary combinations of atomic-blobs can be

built. An or-blob forms a more abstract concept

and can be used to represent equivalence relations

of atomic-blobs in respect to a particular edge. An

edge originating from an or-blob means that this edge
applies equivalently for all the atomic-blobs enclosed

in the or-blob. Figure 6 shows a higraph-based ver-

sion of the DEVS diagram of the preemptive server

model. As can be seen, an input event at port inLP

has the same behavior for phases busyLP, busyHP

and preempted. Therefore, the respective external

event edge originates from an or-blob enclosing ex-

actly these three phases which means that the tran-

sition applies if the system is in the busyLP, busyHP

or preempted phase. An input event at port tnHP

will show the same reaction in the busyHP and pre-

empted phase but a different in the busyLP phase.

An or-blob with phases busyHP and preempted is the

origin of the respective external event edge. Similarly,

equivalent internal transitions are observed in phases

Visual Modeling of DEVS-Based Multiformalism Systems Based on Higraphs 601

r 1
inl.p

+
mHP w%’ m & mpylfPQ&

pm’ m

inw

------..+ mtmnd mcnf — exfmnd event
LFQ . . low priority q..u. HPQ hughpricmty queue

W... input of low priaity Job IMP input of h@ PIOriIY job

Figure 6: Higraph-Based DEVS-Diagram of Preemp-

tive Server Model

rha -am

level-phase
I

temp-phsse

I
1

full I hot
I
I
I
I f(j#Jk- Ull if-a’

-Ml: - -bet
I
I

I-betw
1
1 t-betw

1
I
1

-is-’ I ~k-d

I ‘k~mpiy I ! isjcoJd

Figure 7: Higraph-Based DEVS-Diagram

Model

busyLP, busy HP, and preempted when both

of Pot

queues

are empty and in phases busyHP and preempted when

the high priority queue gets empty.

To represent the Cartesian product, the states-

pace with several dimensions is combined in one big

blob — called and-blob — which is then divided into

several or-blobs separated by dashed lines. The or-

blobs making up the and-blob represent the differ-

ent dimensions of the Cartesian product. The and-

blob now is not longer made up by the union of the
atomic-blobs it contains but is made up by the prod-

uct of the atomic-blobs of each dimension. That is,

the atomic-blobs for each dimension exist in parallel.

Figure 7 shows the higraph-based DEVS-diagram of
the pot model. The phases of the two dimensions

are represented by two orthogonal or-blobs denoted

by the phase variables temp-phase and level-phase.

The product of the 3 atomic-blobs for each dimen-

sion make up the 3 times 3 is 9 possible phase con-

figurations seen in the original diagram ojf of figure

5. The state event transitions for these two dimen-
sions can be represented independently. The external

input events do not effect the phase transitions and

therefore can be specified at the outmost blob. The
derivatives for the continuous states applying for all

phases expect the hot phase, should be specified for

the outmost blob. Special derivatives then can be

specified for the hot phase which, in our semantic of

DEVS-diagrams, overwrites the general specification.

All in all, this results in a remarkable reduction of

the diagrams complexity. Also it should be recog-

nized that the blob diagram is a very good and com-

pact representation of the possible partitioning of the

state space of the system with the atomic-blobs being

the most granular units.

4 A CLIM IMPLEMENTED “VISUAL

MODELLING TOOL

The user interface toolkit Common Lisp Interface

Manager (CLIM) (Lucid 1992) is employed to real-

ize an interactive modeling interface for the STIMS
modeling and simulation environment. A block dia-
gram editor is implemented for coupled model spec-

ification. Coupled models are specified b!y drawing

the component and coupling structure of a coupled

model. For atomic model interactive specification,

a user interface module is realized which is based on

the graphical higraph-based DEVS-diagram represen-

tation presented above.

CLIM is a portable, powerful, high level user inter-

face management system toolkit intended for Com-

mon Lisp / CLOS software developers. [t acts as

an abstract, high-level generic layer that provides a
consistent interface across a large set of hosts and al-
lows achieving the look and feel of the target host

system without implementing it directly and without

using the low-level implementation language of the

host system.

CLIM is based on the object oriented concepts

provided by CLOS. But in contrast to conventional

object-oriented systems, CLIhl also brings object ori-

ented programming to the surface, to the user in-

terface itself. A CLIM program is organized around
three object types, viz. the applzcatzon objects which

are the internal objects building up the application,

the dwplay ob]ects which serve as graphical, on-screen

representations of the application objects, and the

presentattoas which establish the link between appli-

602 Praehofer and Pree

AI.mic Bl.h Oriil .b #ndBIA Cl”,l” SldeEvti

lnWEVUN llm.Evenl E411Evati RESIZE! Adam
D,- R@lr9$b[Ill a*w D.1 EM [Xl

m I“..-,.
A

L.

23

. ..m.

t,..,

1- U
dernal Trsnsitiin: n
!p.t port: h

Fi,gure 8: Token-Ring Protocol Model Specification
using the DEVS-Diagram Specification Tool

cation and display objects. By that, CLIM provides

a novel way to connect input and output to the se-

mantics of an application.

In CLIM the application’s user interface, i.e., the

component that interacts directly with the user, is

called the application frame. It usually is partitioned

into several functional divisions, called panes, like
drawing areas, menu-bars, or text editor windows.

An application frame can have several layouts, i.e.,

arrangements of panes, which may be changed by the

application. Figure 8 shows the application frame for

the DEVS-diagram model specification tool. The first

pane is employed to show and define the input, out-

put, parameter, and state variables. Then, the sec-

ond pane is used to interactively develop the DEVS-

diagram of the model. In the last pane the state

transition specification of event edge selected in the

DEVS-diagram is presented in a formatted manner.
The various fields giving conditions, next state and
output values of the event specification can be edited
using a simple, built in text editor. This combined

graphical and textual specifications can be translated

into a running atomic model ready to be simulated
within the STIMS environment.

Special emphasis haa been put on the program

for the graphical, interactive development of DEVS-

diagrams. The placing of the atomic-blobs and and-

blobs is done by the user with the mouse. Or-blobs
can be placed by the user if top down development of

blob structures is desired. But, or-blobs also can be

placed and layouted automatically when bottom-up

modeling is required. The atomic-blobs which should

be clustered have to be selected, a contour which en-

closes all these atomic-blobs but excludes all the other

atomic-blobs is created automatically. To specify the

edges, one has to give the starting point and the end

point of the edge which haa to be on a blob contour.

The edge itself is laid automatically using a heuristic

approach so that overlapping of edges is avoided.

5 SUMMARY AND OUTLOOK

We presented the DEVS-diagram method and tool

for graphical representation of DEVS-ba.sed models

which is based on state space phase partitioning and

the higraph extension of conventional graph repre-

sentations. As haa been shown, DEVS-based models

advantageously are depicted using a state transition

diagram. Also, it has been shown that the higraph-

based version of the DEVS-diagram representation

leads to a remarkable reduction of the diagrams com-
plexity. An CLIM implemented interactive tool for
interactive DEVS-based atomic model specification

has been presented. However, this first implementa-

tion is still a prototype needing further maturation.

An extension of our method and tool planned for the

future is to introduce inheritance of model behavior

of DEVS-diagram specified models.

ACKNOWLEDGMENTS

This work has been supported by the Austrian Min-
istry of Sciences and Research under contract “ Sim-

ulation of Intelligent Systems”.

APPENDIX A: Preemptive Server Model

input ports: inLP (input of low priority jobs)

inHP (input of high priority jobs)

output ports: out

state variables: phase (phase of the system)

LPQ (low priority queue)

HPQ (high priority queue)

phase input event at port inLP

Idle Job mto LPQ, hold-m busyLP serv-time

busyLP job mto LPQ, continue

busyHP job mto LPQ, continue

preempt Job Into LPQ, continue

phase input event at port inHP

idle Job into HPQ; hold-m busyHP serv-time

busyLP Job mto HPQ, hold-in preempted serv-time

busyHP job Into HPQ, continue

preempt job mto HPQ; continue

Visual Modeling of DEVS-Based Multijormalism Systems Based on Higraphs 603

phase time scheduled event

Idle

busyLP put out first of LPQ

If LPQ empty then passlvate-m Idle

)f 1 LPQ empty then hold-in busyLP serv-time

busyHP put out first of HPQ

lf T HPQ empty then hold-in busyHP serv-time

eslelf T LPQ empty then hoid-in busy LP serv-t!me

eslelf LPQ empty then pass!vate-in idle

preempt put out first of HPQ

If T HPQ empty then hold-in preempted serv-time

elself T LPQ empty then re-schedule Job m busyLP

elseif empty then passlvate-in Idle

REFERENCES

Cota, B. A. and R. G. Sargent. 1989. Auto-

matic Lookahead Computation for Conservative

Distributed Simulation. Techn. Report No. 8916,

Simulation Research Group, Syracuse University,

Syracuse, New York.

Cota, B. A. and R. G. Sargent. 1992. A modification

of the process interaction world view. ACM Trans.

on Modehng and Cornpuer Stmulat~on 2:109–129.
Fishwick, P. A. 1991. Heterogeneous decomposition

and inter-level coupling for combined modeling. In

Proceedings of the 1991 Wznter Stmulatton Colzfer-

ence, 1120–1128, Phoenix, AZ.

Fishwick, P. A. and B. P. Zeigler. 1992. A multi-

mode] methodology for qualitative model engineer-

ing. ACM Trans. on Modellng and Con~puer Stm -

ulutton 2:52–81.

Harel, D. 1987. Statecharts: A visual formalism for

complex systems. Science of Compuier Program-

mmg 8:231–274.

Harel, D. 1988. On visual formalisms. Comm. of the

AChf 31:514-530.

Harel, D. et al. 1990. STATEhIATE: A working en-

vironment for the development of complex reactive

systems. IEEE Trans. on Software Eng. 16:403–

414.

Lucid. 1992. Common Lwp Interface Manager.

Technical Manual, Lucid Inc.

Oeren, T. I. 1991. Dynamic templates and se-

mantic rules for simulation advisors and certifiers.

in: Knowledge Based Simulation: Methodology and

Appi~catzon, ed. P. A. Fishwic!i and S. A. Modjeski,

53-76. New York: Springer.

Pichler, F. and H. Schwaertzel (eds.). 1992. CAST

Methods in klodellzng. Berlin: Springer.

Poole, T. G. and J. Z. Szymankiewicz. 1977. Ustng

Simulation to Solve Problems. hlaidenhead: klc-
GrawHill.

Praehofer, H. 1991a. System Theoretic Foundations

for Combined Discrete- Continuous Sysi!em Sim-

ulation. PhD thesis, Johannes Kepler University,
Linz, Austria.

Praehofer, H. 1991 b. System theoretic formalisms

for combined discrete-continuous system simula-

tion. Int. J. of General Systems 19:219-240.

Praehofer, H., F. Auernig and G. Reisinger. 1993. An

environment for DEVS-based multiforma,lism sim-

ulation in Common Lisp / CLOS . Discrete Event

Dynamic Systems: Theory and Applications (to

appear).

Praehofer, H., P. Bichler and B. Zeigler. 1!393. Syn-
thesis of endomorphic models for event-based intel-
ligent control. Proc. of the dth Conference on AI,

Simulation and Planntng tn High Autonomy Sys-

tems, Tucson, AZ, IEEE/CS Press (to appear).

Pritslier, A. A. B. 1977. Modeling and Ana[?ysis Ustng

Q-GERT Networks. New York: John Wiley.

Schriber, T. J. 1977. Stmulatton Uszng GPSS. New

York: John Wiley.

Schruben, L. 1983, Simulation modeling with event

graphs. Comm. of the ACM 26:957–963.

Steele, G. 1990. Common Ltsp: The Language.

Burlington: Digital Press.

Zeigler, B. P. 1976. Theory of Modellzng and Szmula-

tzon. New York: John Wiley.

Zeigler, B. P. 1984. Multzfacetted Modelling and Dis-

crete Event Simulation. New York: Academic

Press.

Zeigler, B. P. 1990. Object Or-tented Simulation wath

h!odular Hterarch acal Models. New York: Aca-

demic Press.

AUTHOR BIOGRAPHIES

HERBERT PRAEHOFER is a faculty member of

the Department of Systems Theory and Information

Engineering at the Johannes Kepler University of

Linz. He got his hl.S. and Ph.D. degrees in computer
science from the University of Linz in 1986 and 1991,

respectively. His research interests inclucle discrete

event and combuined simulation methodology, sys-

tem design, object-oriented techniques, model-baaed

reasoning, and knowledge-based techniques.

DIETMAR PREE is a graduate student in com-

puter science at the Johannes Kepler University of

Linz. Currently he is working towards his h! .S. de-

gree. His research interests include object-oriented
programming, interactive user interfaces, real-time

system design, and visual specification techniques.

