Visual Models of Morphogenesis

Przemyslaw Prusinkiewicz Presented by MinHua Huang

Outline

Introduction
 Features of Models of Morphogenesis
 Space-Oriented Models
 Structure-Oriented Models
 Conclusion

Introduction

- From 1952 to 1994 over 40 decades, scientists have developed several visual models of morphogenesis using database amplification and emergence.
- Database Amplification:
 - is a process of creating complex images using small data sets
- Emergence:
 - is a process in which a collection of interacting units acquires qualitatively new properties that can't be reduced to a simple superposition of individual contribution.
- Morphogenesis:
 - The development of patterns and forms in the domain of living organisms.

Features of Models of Morphogenesis

The studying of morphogenesis has emphasized on two directions:

- Substances chemically reacting.
 - (Alan Turing, 1952)
 - Space-oriented
- Rate of growth in various direction.
 - (d'Arcy Thompson, 1952)
 Structure-oriented.

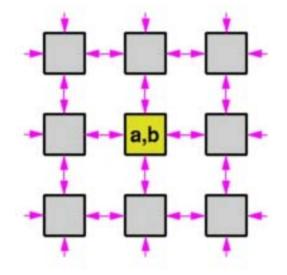
Features of Models of Morphogenesis (Cont.)

Comparison between these two models:

- The space-oriented models capture the flow of information in the medium but usually limited the capacity of describing expansion of the medium and of the structure embedded on it: Growth is limited to the boundary.
- The structure-oriented models can simulate the expansion of whole structure but they do not inherently capture the information flow through the medium.

Space-oriented models

Reaction-Diffusion

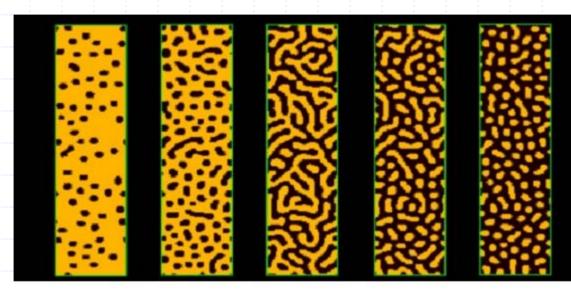

- The first model was proposed by Alan Turing in 1952, known as reaction-diffusion model.
- Concepts of the reaction-diffusion model: Interaction between two or more morphogens that diffuser in a medium and enter into chemical reactions with each other.

It can be represented by a system of partial differential equation.

Reaction-Diffusion (Cont.)

Each point can be characterized by two numbers a and b, which represents the concentrations of substances (morphogens)

$$\frac{\delta a}{\delta t} = f(a,b) + D_a \left(\frac{\delta^2 a}{\delta x^2} + \frac{\delta^2 a}{\delta y^2} \right)$$
$$\frac{\delta b}{\delta t} = g(a,b) + D_b \left(\frac{\delta^2 b}{\delta x^2} + \frac{\delta^2 b}{\delta y^2} \right)$$

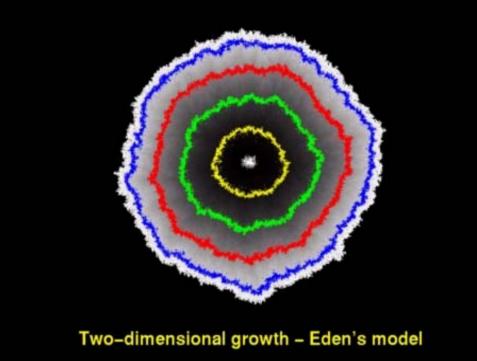

Reaction-diffusion model (Turing)

Laplacian of a (Δa)

Reaction-Diffusion(Cont.)

- In the equations, f and g are functions, D_a and D_b are coefficients.
- the reaction components are capture by function f and g. The diffusion components are represented by
- the remaining terms.
- These substances diffuser and reaction with each other over the time according to the partial differential equations.

Examples:


Reaction-diffusion pattern

reaction-diffusion2.mpeg

Space-Oriented Models Diffusion-Limited Accretive Growth

- It focus on the structure and its gradual expansion along the border.
- Eden's model:
 - proposed by Eden in 1960.
 - Reaction-diffusion takes places in a square grid.
 - A single initial particle is placed in the center of the grid.
 - The subsequent particles are attached one by one to randomly chosen points on the border of the structure formed in the previous steps.

Eden's model:

The colors indicate the state of the structure at different points in time. The structure developing according to Eden's model is roughly circular.

Diffusion-Limited Accretive Growth (Cont.)

Improvements:

- The growth rate depends on the local concentration of nutrients that diffuse from a surrounding exterior source and are consumed by the growing structure.
- Expanding to three dimensions.
- Example of growth of marine sessile organisms (proposed by Kaandorp) in three dimensions.

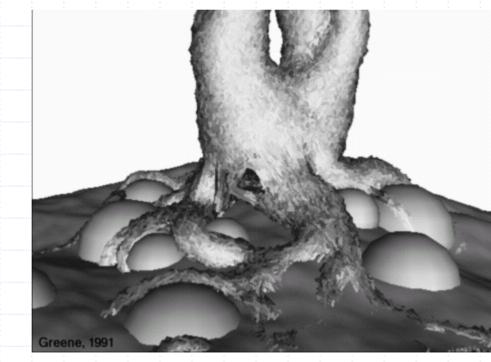
Space-oriented Models Diffusion-Limited Aggregation

- It was introduced by Witten and Sander in 1983
- It captures diffusion of nutrients by simulating random movement of particles in a grid.
- The growing structure originates in a single fixed cell.
- Free particles move in the grid with the displacement direction chosen at random on each simulation step.
- Once a moving particle touches the structure, it sticks to its rigidly.
- Example: <u>dla.avi</u>

Space-Oriented Models

Cellular Automata

- It was first introduced by Toffoli and Margolus in 1987. It can be considered a discrete-space counterpart of reaction-diffusion models.
- The space is presented by a uniform grid with each site or cell characterized by a state chosen form a finite set.
- Time advances in discrete steps.



- All cells change their states according to the same rule.
- The next state is a function of the previous state of a cell and its closed neighbors.
- Example: <u>maltese.avi</u>

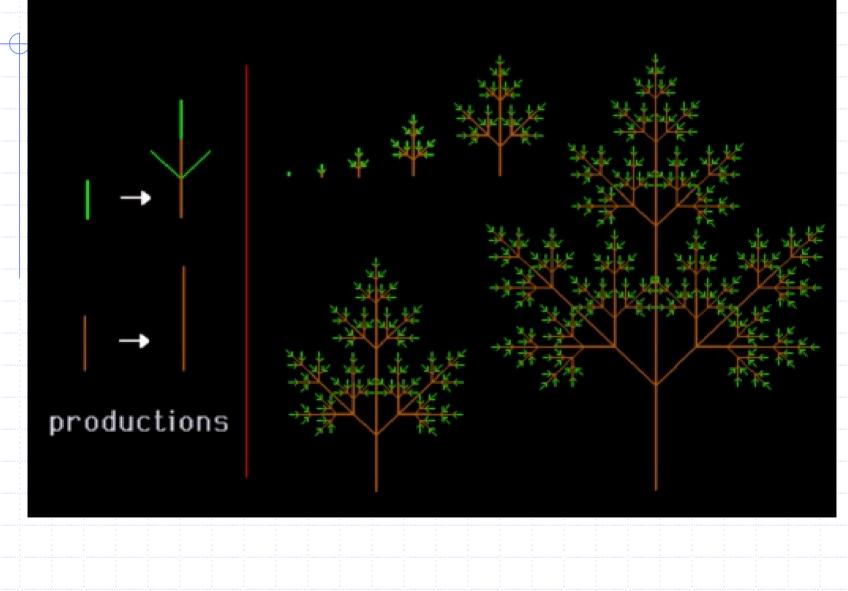
Space-Oriented Models Voxel Automata

♦ Example:

Three-dimensional extensions of cellular automata.
By Greene 1991

Structure-Oriented Models

L-Systems

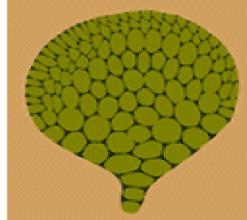


- The growth of a structure is controlled by environment. In contrast, it is determined largely by genetic factors
- All models represent accretive growth. In contrast, the development patterns of higher organisms are often much more complicated.
- Example:
- cpoundlf.avi

L-Systems (Cont.)

- L-system was proposed by Lindenmayer in 1968.
- In biological terms, an L-System uses a small set of rules to locally add details to a structure
- In computer science terms, an L-System is a contextfree, recursive, text substitution scheme, followed by geometric interpretation.
- A simple L-System starts with a seed, for example, the letter F, and has one rule to replace the existing seed. A simple replacement rule might be: F-F-FF+F-F.

Plant development



Structure-Oriented Models Map L-Systems

- It is an advanced L-System
- Graphs with cycles.
- Was proposed by Fracchia, Prusinkiewicz, and de Boer in 1990
- Example:

Thalli of microsorium linguaeforme

Structure-Oriented Models Mobile Cells in a Continuous Medium

- It was proposed by Fleischer and Barr in1993.
 Focus on the generation of connectivity patterns
 - during neural development.
- Discrete cells embedded in a continuous substrate.
- The action of cells are divided into continuous processes and discrete events.

Conclusion

- This paper presented a survey of selected models of morphogenesis that use computer graphics techniques to visualize the results of simulations.
- This models can be used for image synthesis purposes and provide a research tool for studying morphogenesis in nature.
- In the absence of formal measures of what makes tow patterns look alike, visual inspection is a valuable method for comparing the models with reality.

