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L earning figures prominently in the study of visual systems from the viewpoints of

visual neuroscience and computer vision. Whereas visual neuroscience concen-

trates on mechanisms that let the cortex adapt its circuitry and learn a new task, computer

vision aims at devising effectively trainable systems. Vision systems that learn and adapt 

are one of the most important trends in computer
vision research. They might offer the only solution
to developing robust, reusable vision systems.

Supervised learning
Over the last four years, our team at MIT devel-

oped a supervised-learning approach to address
vision perception in machines. The research is rooted
in the mathematical foundations of learning and par-
alleled by neuroscience studies. For instance, radial
basis function networks, which originated from the
mathematics of learning theory, suggested a view-
based model for biological object recognition.1 Psy-
chophysical data2 and physiological experiments in
cortex3 found evidence for view-tuned neurons that
the model had predicted.

In our work, we distinguish between two main
object recognition tasks: categorization and identi-
fication. We use the term categorization for between-
class object classification (such as classification
between faces and other objects) and identification
for within-class object classification (such as recog-
nizing someone’s face among other faces).

Our approach considers recognition a supervised-
learning problem. We label a set of training images
and use the labels for training the classifier. In cate-
gorization, the label specifies the class of the object
in the image; in identification, it specifies the indi-
vidual object. We train the learning module with a
set of input-output examples, which are image pairs
and their associated labels. The learning task’s dif-
ficulty depends on the training set’s size and com-
position and on how much the training examples

cover the variability required for generalization. For
instance, the learning module couldn’t identify a face
from any viewpoint if trained with only a single view
of that face. Conversely, the same module, if trained
with a large set of examples covering the relevant
variability, might perform the task.

Although we trained our component-based sys-
tems on various object classes, this article focuses
on human faces. Face recognition has a wide variety
of real-world applications, ranging from human-
machine interfaces to surveillance systems.

Background: Statistical-learning
theory

In supervised learning, a machine chooses a func-
tion that best describes the relation between the
inputs and the outputs. SLT4 asks how well the cho-
sen function generalizes on previously unseen inputs.

Regularization theory framework
Following work done elsewhere,5 we approach

SLT using regularization theory.6 We are interested
in learning schemes that lead to solutions of the form

(1)

where xi, i = 1, …, l are the input examples, K is a
certain symmetric positive-definite function named
kernel, and αi is a set of parameters to be determined
from the examples. Solution f is an example of a reg-
ularized solution and is found as the minimizer of
functionals of the type:
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V is a loss function, which measures the
predicted output f(xi)’s goodness with respect
to the given output yi. is a smoothness,
or regularizing, term, which is the norm in
the reproducing kernel Hilbert space that is
defined by kernel K. λ is a positive parame-
ter controlling the relative weight between
the data and the regularizing term. The choice
of the loss function determines different
learning techniques, each leading to a dif-
ferent learning algorithm for computing the
coefficients αi in Equation 1.

Support vector machines
You obtain SVM classification7 by using

the following loss function V:

V (y, f (x)) = (1 − y f (x))+, (3)

where (t)+= t if t > 0 and is zero otherwise.
You can find the coefficients αi in Equa-

tion 1 by solving a quadratic programming
problem with linear constraints. With SVMs,
remarkably, the loss function leads to sparse
solutions. Typically, only a small fraction of
the coefficients αi in Equation 1 are nonzero.
The data points xi associated with the non-
zero αi are called support vectors. If you dis-
carded all data points that aren’t support vec-
tors from the training set, you’d find the same
solution.

An SVM has an interesting geometrical
property: The separating surface has maxi-
mum distance to the closest points in the
training data (see Figures 1a and 1b).

An almost unbiased upper bound L on the
expected error of an SVM trained on l data
points drawn according to a probability p(x, y)
is given by4

(4)

where E[·] denotes the expectation over the
probability p(x,y), ml the number of support
vectors, rl the radius of the smallest sphere
containing the support vectors, and Ml the
margin of the SVM trained on l data points.

Object categorization
Detecting objects in images is a major task

in visual-scene analysis. A common way to
do this is to shift a search window over an

input image and categorize the object in the
window with a classifier. The main problem
with categorization is the large range of pos-
sible variations within an object class. The
classifier must generalize not only across dif-
ferent viewing and illumination conditions,
but also across a class’s different exemplars.
To simplify categorization, most vision sys-
tems use sets of binary classifiers (one for
each object category). In our approach, we
only consider the binary categorization task
where the classifier must separate one class
of objects from all other objects.

Component-based approach
Often, people approach object categoriza-

tion by representing all the search window’s
contents by one feature vector that is fed to a
single classifier. This global approach worked
well for detecting objects under fixed view-
ing conditions.8,9 However, problems occur
when the objects’ viewpoint and pose vary,

especially when the training set doesn’t cover
all viewing variations in the test set. Figure 2
illustrates this for a face detection system that
is trained on frontal, upright faces and tested
on rotated faces. A single face template can
represent the result of training a linear classi-
fier on frontal faces. Even for small rotations,
the template clearly deviates from the rotated
faces. To overcome this problem, we devel-
oped a component-based approach10 that
breaks the object into a set of components that
are interconnected by a flexible geometrical
model. Although their relative positions
change, each component varies less under
pose changes than the pattern belonging to
the whole object. Figure 3 illustrates the com-
ponent-based idea.

From this, we derive two main issues: how
to include information about the geometri-
cal relation between components in the clas-
sification process and how to choose a set of
relevant components.
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Figure 2. Matching with a single template: (a) the schematic global template of a
frontal face; slight face rotations (b) in the image plane and (c) in depth lead to 
considerable discrepancies between template and face.
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Figure 1. (a) The yellow area shows all possible hyperplanes that separate the two
classes (represented by + and *). (b) The optimal hyperplane maximizes the distance to
the closest points. These points (1, 2, and 3) are support vectors. The distance M
between the hyperplane and the SVs is called the margin.



Geometrical classifier
We developed a two-level classification

system for face detection that implies geo-
metrical relations between components (see
Figure 4). On the first level, component clas-
sifiers independently detect face compo-
nents. On the second level, the combination
classifier checks if the components’geomet-
rical configuration corresponds with the
learned geometrical model of a face.

Learning components
A component-based approach must also

know how to choose the set of discrimina-
tory object parts. For faces, an obvious
choice would be the eyes, nose, and mouth.
For other classes, it might be harder to define
a set of intuitively meaningful components.

Instead of manually choosing the compo-
nents, it would make more sense to choose
automatically based on their discriminative
power and robustness against pose and illu-
mination changes. We developed a method
that automatically determines rectangular
components from a set of face images. The
algorithm started with a small, rectangular
component located around a preselected
point on the face (center of the left eye, for
example). The algorithm extracted the com-
ponent from all face images to build a train-
ing set of positive examples. We also gener-
ated a training set of nonface patterns that
had the same rectangular shape as the face
component. After training an SVM on the
component data, we determined the SVM’s
performance based on a rough estimate of

the upper bound L in Equation 4 given by

. (5)

l is the number of training patterns, R the
diameter of the smallest sphere containing
the data points in the training set (not just the
support vectors as in the earlier equation),
and M the classifier’s margin. After deter-
mining , we enlarged the component by
expanding the rectangle into one of the four
directions. Again, we generated training data,
trained an SVM, and determined . We did
this for expansions in all four directions and
kept the expansion that decreased the
most. We continued this process until the
expansions in all four directions led to an
increase of . Figure 5 shows the results of
component growing for 14 components.

We compared the component-based sys-
tem to a global classifier trained on the whole
face pattern. The training and test data
included faces rotated between about –45°

and 45° in depth. Figure 6 shows the classi-
fication performance of a linear SVM global
classifier and the component-based system.
Figure 7 shows some detection results the
component-based system generated.

Object identification
Object identification distinguishes between

exemplars of the same class. This is difficult
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Figure 3. Matching with a set of component templates: (a) the schematic component
templates for a frontal face; shifting the component templates can compensate for
slight face rotations (b) in the image plane and (c) in depth.
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Figure 4. System overview of the component-based detection system.



because objects belonging to the same class
might differ only in details.

Component-based face 
identification

Face identification is a classic computer
vision problem. Various approaches include
eigenfaces, linear discriminant analysis, elas-
tic graph matching, and SVMs. Following up
on the idea of component-based face detec-
tion, we built a face identification system11

that is more robust against pose changes than
common systems using global approaches.
We extracted facial components from the
face image using the component-based
detector described earlier. We normalized the
components in size, combined them into a
single feature vector, and fed them to the
identification classifiers. As in the global
approach, we ended up with one feature vec-
tor as input to the identification classifier.
However, each feature was attached to a
facial location (for example, the left corner
of the mouth) rather than to a fixed x-y loca-
tion in the image.

We performed experiments on a database
of five subjects and compared the compo-
nent-based system with a global system. Fig-
ure 8 shows the receiver operating charac-
teristic curves for the two systems. Each
point on the curve corresponds to a different
rejection threshold of the classifier. At the
end point of an ROC curve, the rejection rate
is zero.

In another article,10 we suggested using
computer graphics techniques in face

detection. We generated thousands of syn-
thetic face images from 3D head models to
train a face detection system. Rendering 3D
models instead of manually extracting face
images from real pictures saved much time.
Furthermore, we could modify the render-
ing parameters (viewpoint and illumination,
for example) arbitrarily. In more recent work,
we used 3D morphable models12 to fit a 3D
face model to only two face images of a per-
son. Based on the 3D models, we trained a
pose- and illumination-invariant face identi-
fication system.13

Our approach might also help address the
old problem of scene interpretation. Train-
ing classifiers to detect specific object classes
in the image leads to the idea that you could
use a sufficiently complete dictionary of such
classifiers for scene interpretation. Because

the locations of individual objects in a scene
are correlated (for example, telephones are
usually located on desks, paintings on the
wall), the problem arises of how to exploit
these spatial relations to perform scene inter-
pretation. This resembles the previously dis-
cussed problem of including information
about the spatial relation between compo-
nents into object categorization.
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Figure 5. The 14 learned components for a frontal and a half-profile view of a face.
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Figure 6. Receiver operating characteristic curves for a linear whole face classifier 
and a component classifier consisting of 14 linear component classifiers and a linear
combination classifier. The graph gives the false-positives (FPs) relative to the number
of nonface images. The test set consists of 1,834 faces and 24,464 nonfaces.
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Figure 8. Receiver operating characteristic curves for the component-based and global
face identification systems. Both systems used linear SVMs as classifiers, one for each
person in the database. We trained the systems on five people (8,593 images, frontal
and rotated) and tested on the same five people (974 different images, frontal and
rotated).
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Figure 7. Faces detected by the 14-component system.


