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Visual object representation: An introduction 

SHAUN P. VECERA 
University of Iowa, Iowa City, Iowa 

What are the computational, behavioral, and neural mechanisms that give rise to object perception? 
In this review, I present a cognitive neuroscience overview of the literature on object representation. 
Marr's (1982) framework for studying complex tasks is used as a guide for the review. This framework 
involves analyzing a problem on three levels: (1) the computational theory, which asks what is com
puted and how; (2) the representation and algorithm, which focus on the representations and processes 
that underlie a computation; and (3) the hardware implementation, which deals with the implementa
tion of the representations and processes. Computational considerations of object recognition raise the 
importance of the object invariances, which allow viewers to perceive an object as remaining stable 
despite changes in the retinal image. I then use the invariances to guide my review of the representa
tions and processes involved in human object recognition, Marr's second level, and ofthe hardware im
plementation, Marr's third leveL Throughout the review, my focus is on integrating across disciplines 
and across the levels of Marr's framework 

Anyone who has considered how the visual system 

takes the retinal image and, somehow, represents and rec

ognizes objects appearing in this retinal array has con

templated the complexity of object representation. But it 

is trivial to say that object representation is a complex vi

sual task and to leave the analysis at that. The more impor

tant, and more interesting, task is to try to arrive at an 

understanding of the mechanisms that the visual system 

uses in order to represent objects. Although this task has 

been taken up by researchers in many different fields, 

this research has been occasionally disjointed and unsys

tematic because of the failure to relate discoveries across 

different disciplines. It has been only recently, with the 

emergence of cognitive neuroscience, that the problem of 

object representation has been addressed in a more system

atic way, using a variety of converging methodologies that 

link results across both disciplines and methodologies. 

The foundations of an interdisciplinary approach to 

object representation can be seen clearly in Marr's (1982) 

seminal book. In his first chapter, Marr discusses how 

understanding a complex task, such as object recogni

tion, requires an analysis at multiple levels. Marr's first 

level is that of the computational theory; this requires ask

ing about the goal of a particular computation and how 

this computation could be carried out. The second level 

of analysis, representation and algorithm, deals with the 

representations and processes that allow the computa

tional theory to be implemented and carried out. The third 

level is that of hardware implementation, which addresses 
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the physical implementation of the representations and 

processes. Each level can be loosely associated with a dif

ferent discipline (e.g., computational theory and computer 

science, representation and cognitive psychology, hardware 

implementation and the neurosciences), but, on Marr's ar

gument, an understanding of a problem at all levels, which 

would require cross-discipline interactions, would pro

vide the most complete understanding of that problem. 

This introduction serves to orient readers to relevant is

sues in object representation that will serve as an over

view of current cross-disciplinary research on the topic. 

This is by no means an exhaustive review; research on 

object representation and recognition is so broad that a 

comprehensive review would be unwieldy to write and 

to read. I have chosen to organize my review around how 

visual systems are able to represent and recognize objects 

despite the tremendous retinal variability across images 

of the same object-that is, how visual systems arrive at 

object representations that remain invariant across changes 

in the retinal image. Because of my focus on object in

variances, some studies on object representation are not 

relevant to the review and have been omitted (e.g., studies 

of visual mental imagery). The interested reader is referred 

to other reviews (e.g., see Edelman, 1997; Pinker, 1984; 

Plaut & Farah, 1990) to supplement the present review. 

In this introduction, I first will cover computational is

sues pertaining to object processing, as well as specific 

models of object representation. This section addresses 

Marr's (1982) computational theory level. The second sec

tion covers behavioral results from cognitive psychology 

and psychophysics, a discussion that corresponds to 

Marr's representation and algorithm level. The final two 

sections address Marr's hardware implementation by dis

cussing both neurophysiological studies from nonhuman 

primates and human neuropsychological and neuroimag

ing studies. Throughout, my emphasis is on an integration 

of the different levels of analysis and whether different 
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methodologies converge to common solutions of prob

lems in object representation. 

COMPUTATIONAL ISSUES AND MODELS 

Light reflecting off of objects in the environment casts 

retinal images that have tremendous variability: Objects 

can occupy a multitude of retinal locations, cast retinal im

ages of different sizes on the basis of their distance from 

the viewer, appear under different lighting conditions, 

and cast different retinal images on the basis of their orien

tation in the environment. Traditionally, computational 

approaches to vision have had the goal of reconstructing, 

representing, and describing the physical regularities pres

ent in the external world despite the variability in the reti

nal image. Computational accounts have also focused on 

how object representations can be stored in visual mem

ory, allowing for later recognition of familiar or previously 

seen objects. 

Object representations must ignore the variability in

herent in the retinal image to allow perceivers to gener

alize across retinal variability. For example, if object rep

resentations were unable to ignore retinal variability, every 

time an object appeared in a different location that object 

would be perceived differently. Thus, object representa

tions must remain invariant in the face oflow-Ievel, reti

nal changes. Specifically, optimal object representations 

should possess, at least, (1) translation invariance or spa

tial invariance, in which object representations are in

sensitive to the retinal position or spatial location that an 

object occupies; (2) size invariance, in which object rep

resentations are insensitive to the size of the retinal 

image, determined by the distance between the external 

object and the viewer; and (3) orientation independence, 

in which representations are insensitive to the orienta

tion of the object in the external world. 

The perceptual invariances are typically motivated by 

appealing to computational efficiency: Only one object 

representation needs to be stored in visual memory if that 

representation remains invariant with respect to position, 

size, and orientation changes. If an object representation 

does not have these invariances, multiple object represen

tations would need to be stored in visual memory, result

ing in a more computationally complex system. Although 

computational efficiency has been a major motivating 

factor for focusing on the perceptual invariances, trans

lation, size, and orientation invariance have been studied 

at both Marr's (1982) representational level and the hard

ware level. Because the perceptual invariances are criti

cal for efficient, robust object recognition, these factors 

will form a common thread that pervades this review and 

will cut across Marr's levels of analysis. 

Computational approaches to object representation 

must specify algorithms that allow object representations 

to possess translation, size, and orientation invariance, 

and several different classes of models have been devel

oped to explain object representation. I next turn to a dis

cussion of the major types of models that have been 

developed (for other reviews, see Edelman, 1997, and 

Pinker, 1984): template models, feature models, and vol

umetric models. 

Template Models 

Template models involve a direct match from the reti

nal image to an object representation. Each object repre

sentation stored in visual memory is an exact memory 

(or template) of the pattern of retinal activation. Thus, 

recognition amounts to comparing a given retinal pattern 

with all of the templates stored in memory and then se

lecting the best-fitting template. This best-fitting template 

would reflect the object that was present in the retinal 

array and would allow recognition of this object. Recog

nition systems that rely on template representations exist 

and are able to perform some tasks, such as the pattern 

recognition performed by supermarket checkout scan

ners, quite well (see Anderson, 1995, and Neisser, 1967, 

for examples). 

Despite the demonstrated usefulness of template-based 

vision systems in some domains, the problems with such 

systems are well known (see Neisser, 1967, for an early 

discussion) and limit their theoretical and practical use

fulness. For example, template models are extraordinarily 

sensitive to changes in the retinal array; this violates the 

invariances that object representations are thought to ex

hibit. Moving an object slightly will alter its retinal image, 

thereby preventing a match with the appropriate tem

plate; the same holds for objects that appear at different 

sizes or orientations. Furthermore, two different objects 

that are similar, the classic example being a P and an R, 

could possibly be indistinguishable in a template system; 

the R input, for example, could activate the template for 

the P, creating a situation in which the visual system 

wouldn't know whether an R or a P was present. 

In addition to these computational problems, template 

models also have problems accounting for neurophysio

logical results pertaining to object representation. As 

discussed in detail later, the receptive fields of neurons 

in the inferotemporal (IT) cortex tend to be very large 

and may provide a mechanism for translation (spatial) 

invariance in object representation (see, e.g., Gross & 

Mishkin, 1977) in which an object is represented irre

spective of what location it occupies. A rigid template 

representation would be unable to code an object irrespec

tive of retinal location (or code across other retinal vari

ability). Although template models are conceptually 

simple and computationally easy to construct (as is evi

denced by optical character recognition systems), they 

are too limited to explain general object representation. 

Feature Models 

Instead of matching directly from the retinal array to 

an object representation, as in template models, feature 

models involve the construction of an object representa

tion by coding an object's geometry via the outputs of 

feature detectors. Object representations are built from 

these lower level feature detectors and contain informa-



tion about the image features present and the relative po

sitioning of those features. In these models, feature de

tectors represent image edges (e.g., horizontal or verti

cal edges) or conjunctions of edges or features (e.g., T 

junctions and other vertices), and these feature detectors 

are replicated at each retinal location. For example, the 

letter H could be represented as two vertical line seg

ments and a horizontal line segment, with the horizontal 

segment bisecting the two vertical segments forming two 

T junctions in the image. 

Feature models have a long history in cognitive psy

chology, beginning with Selfridge and Neisser's (1960) 

Pandemonium model. Pandemonium involved a parallel 
analysis offeatures present in the visual field; there were, 

for example, detectors for vertical lines, crossbars, and 

so forth. On the basis of the input pattern, the feature de

tectors assigned a probability to the likelihood of certain 
features. These feature-based probabilities then could be 

used to assign a probability as to which object (e.g., a let

ter) was likely to be present in the input pattern. For ex

ample, the presence of two vertical lines and one hori

zontalline, with the appropriate interrelations, could allow 

the H object representation to be assigned a high proba

bility, because there is a large amount of featural evidence 

for the letter H. The characterization of this process is one 

of a feature demon shouting whenever its corresponding 

feature is detected, and the loudness with which the demon 

shouts corresponds to the amount of evidence (the prob
ability) for that feature in the input (see Selfridge & 

Neisser, 1960; see also Lindsay & Norman, 1977). 

Early feature-based models such as Pandemonium 

have given rise to recent neural network models that have 

also opted for feature-based approaches to object repre

sentation. One example of a recent connectionist feature
based model is Mozer's (1991) MORSEL network, which 

was designed to represent multiple objects-specifically, 

multiple words. MORSEL has several components, the 

most relevant being BURNET, which gets its name be

cause it Builds Location Invariant Representations. BUR

NET, an object representation system, creates invariant 

object representations by gradually collapsing across 
space from one layer of representation to the next. This 

approach to object representation involves a conver

gence of information as one progresses upward in the hi

erarchy, as is shown in Figure 1. For example, in Layer I 

of the network, there are individual image features (e.g., 
oriented edge segments) in particular spatial or retino

topic locations. As one progresses to Level 2 of the net

work, the receptive fields of units in this layer are larger, 

thus allowing these units to start to code for more com

plex features (e.g., T junctions or L junctions) with less 

of a reliance on where that feature is located. This spa

tial collapsing continues, so that by the time information 

reaches the highest levels in the network the "features" 

responded to by individual units are relatively complex 
and correspond to objects or components (parts) of ob

jects. BURNET also possesses the ability to learn these 

feature combinations, allowing the model to be sensitive 
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Figure 1. Example of the hierarchy in Mozer's (1991) BUR
NET, which represents objects by collapsing over spatial informa

tion as information progresses to higher levels of the hierarchy. 
See text for additional discussion. 

to the statistical regularities in the visual environment. 

Unlike Pandemonium, the object representations created 

by BURNET through experience are distributed repre

sentations in which multiple units in the network code 
an object. 

Other feature-based models have used more advanced 
computational techniques in order to refine the feature

based approach to object representation and to allow these 

systems to represent objects that are more complex than 
simple letters and words (for a review, see Edelman, 1997). 

To create object representations in which an object's fea

tures or parts are coded with respect to a reference point 

on the object itself (i.e., to code an object-centered rep

resentation), many feature models have relied on geomet

ric constraints. The most relied-on constraint has been the 

viewpoint consistency constraint (see, e.g., Lowe, 1987b), 
in which all the features of an object are interpreted as be

ing consistent with viewing that object from a single view

point. This constraint, although seemingly simple, is pow

erful, in that it allows object representations to remain 

invariant across different viewing conditions (e.g., size, 
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spatial position), provided that correspondence can be 

established between the features in the input image and the 
stored object representation. Furthermore, the power of 

this constraint allows some vision systems to establish ob

ject representations despite changes in the viewpoint or 
orientation of objects. For example, in Ullman's (1989, 

1996) alignment approach, having a stored set offeatures 

or points at known locations on an object allows the in

put image to be transformed, or aligned, so that the ob

ject in that image can be determined and represented. 

Although the viewpoint consistency constraint is pow

erful, there are limitations to feature-based models based 

on alignment approaches (see, e.g., Lowe, 1987a; Ullman, 

1989, 1996). For example, such systems do not work well 

for nonrigid objects, objects such as human or animal 

forms, whose internal geometry can change on the basis 

ofthe movement of a part, such as crossing a leg or mov

ing an arm across one's midline. A more serious problem 
for such approaches is knowing how to align the image 

features before object representation. Knowing the ob

ject that is present would allow the correct alignment to 

be performed, but object representation cannot occur prior 
to alignment. To overcome such difficulties, some feature

based systems have represented objects on the basis of a 

larger number of features, instead of relying on a small 

number of features, as is advocated by alignment ap

proaches. A larger number of features allows an object to 
be represented as a vector in a high-dimensional feature 

space. This approach has the advantage that, if some small 

number of features missing (because of occlusion or other 

image variability), the object representation will not suf

fer greatly; the vector determined by the features will still 
point in the same general direction in the feature space. 

Some of these systems learn the feature vectors, allowing 

the system to make use of the statistical regularities within 
object classes to establish object representations (see Mel, 

1996); adaptive systems (i.e., systems that learn object 

representations) have the added advantage of potentially 

suggesting learning mechanisms that biological vision 

systems may use in creating object representations. 
As with many things, however, more is not always bet

ter. Specifically, in the case of dimensionality in object 

representation, using high-dimensional feature spaces 

raises some computational problems. As Edelman (1997) 
has pointed out in his review of computational approaches 

to recognition, learning object representations via high

dimensional feature spaces is computationally difficult. 
Mathematical analyses of this issue indicate that, as the 

feature space increases in dimensionality, the number of 

learning examples required to create an object represen

tation increases exponentially. Thus, an implausible num

ber of learning trials might be required to learn object 

representations. Computationally, an optimal solution to 

the problems raised in feature models would be to rely on 

a larger number offeatures than do alignment models but 
to reduce the dimensionality of the feature space, so that 

large numbers of training examples would not be required 

to acquire object representations. That is, a balance needs 

to be struck between the alignment approaches and the 

high-dimensional feature space approaches. 

Edelman and his colleagues (e.g., Edelman, 1995; 

Edelman & Duvdevani-Bar, 1997; Edelman & Wein

shall, 1991; Poggio & Edelman, 1990) have developed 

computational approaches with which they try to find 

this balance by using dimensionality reduction in repre

senting objects. In this approach, a large number of 

features are sampled from the input image, resulting in 

a high-dimensional measurement space (Edelman & 

Duvdevani-Bar, 1997). The features could be, for exam

ple, the intensity at every pixel location in an image. The 

dimensionality of this high-dimensional feature space is 

then reduced by comparing the feature space representa
tion with a fixed number of reference shapes that are 

stored within the system. In short, the system represents 

objects on the basis of the similarity between the object 

in the image and a set of internally stored prototypes. 

There exist several prototypes of individual objects, each 

prototype storing a different view of the object; this 

amounts to a few views of each individual object being 

stored in visual memory. Note that these prototypes are 

not rigid templates, because they are not tied to specific 
retinal locations. Under this representational scheme, 

novel objects and novel views of known objects can be 

represented by interpolating among the stored proto

types and computing the similarity between a new object 

or view and the stored objects and views. This prototype 

scheme has the advantage that it not only allows the rec
ognition system to deal with novel objects and views but 

also readily permits categorization of objects (i.e., clas

sifying an object broadly as a car or as an airplane). Many 

recognition systems are designed to recognize specific 

instances of objects (e.g., Volkswagen or Boeing 72 7) and 
do not allow for easy categorization. 

Feature-based models represent a wide range of ap

proaches to object representation. As these models have 

developed, the notion of a feature has changed dramati
cally from the image edges and junctions in Selfridge 

and Neisser's (1960) model to the feature spaces, based 

on large samplings of image data, used in current systems. 

The importance of learning object representations has 
also emerged in feature models, with feature vectors 

(Mel, 1996) or object prototypes (see, e.g., Edelman & 

Duvdevani-Bar, 1997) being acquired through experi

ence with objects that appear at different orientations or 
in different views. The use oflearning algorithms may be 

important for understanding biological object representa

tion, which must acquire object representations through 
experIence. 

Volumetric Models 

One potential limitation of feature models is that the 
object representations in many of these systems do not 

explicitly code the parts of objects and the relations 

among the parts (see Pinker, 1984). For example, in ap

proaches that rely on vectors in high-dimensional feature 
spaces (e.g., Mel, 1996), the parts of an object contribute 



to the object representation (i.e., the vector), but the rep

resentation does not code for the relative positions of the 

parts of an object. Failure to explicitly code the relations 

among the parts could cause problems for recognizing 

objects that have similar part configurations (e.g., a cup, 

which has a handle on its side, and a pail, which has a 

handle on top). 
Volumetric models, in which the three-dimensional 

(3-D) structure of an object is explicitly represented, pro

vide an alternative to feature models and overcome the 

problem of part representation that feature-based models 

possess. Volumetric models rely upon structural descrip

tions, which are explicit descriptions of an object's struc

ture that specify the parts of an object and the relationship 

among these parts. (However, other computational ac

counts may also use structural descriptions.) For example, 

a structural description of a human might have the arms 
being coded to the left and right of the torso, the legs be

ing coded below and to the left and right of the torso, and 
the head being centered above the torso. A structural de

scription would not be verbal, as in the foregoing exam

ple, but would instead involve image parameters, such as 

the orientation of the part or a reference point on a part, 

that would specify the position between some part and 

either the object or a higher level part. 

Marr and Nishihara (1978) provided one of the earli

est and best-known volumetric models of object repre

sentation. Their approach involved creation of a structural 
description in which each part was coded relative to a 

reference point (or origin) that was centered on the object 

(i.e., the structural description was coded in an object

centered reference frame, a reference frame in which a 

point of reference lies on the object itself); the resulting 

object representation is referred to as a 3-D model. Marr 
and Nishihara's 3-D model was a volumetric representa

tion, in that the parts were represented as generalized 

cylinders, a volume that can be created by sweeping out 

a circle along an axis. Some object parts, such as a human 

torso, could be represented by a generalized cylinder that 

has some diameter and some length; for example, the 
cylinder used to represent a torso would have a larger di

ameter and would be longer than a cylinder that was used 

to represent another part of a human, such as the arm. 

The parts (i.e., the generalized cylinders) could be spec
ified precisely by parameters defining the diameter and 

length of the cylinder that represented the part. General
ized cylinders also permit the axis of elongation (i.e., the 

axis of the cylinder) of a part to be extracted, which al

lows the viewer to determine the overall orientation of that 

part. 
One important contribution of Marr and Nishihara's 

(1978) recognition scheme is that it was one of the ear

liest computational accounts of object representation 
that made explicit the mapping from low-level percep

tual representations to object-based representations. In 

the Marr and Nishihara approach, the 3-D model is an 

object representation. The inputs to the 3-D model come 
from the 2 !i2-D sketch, a viewer-centered perceptual rep-
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resentation that codes the visible surfaces of an object or 

scene. The 2Y2-D sketch does not possess any of the in

variances that object representations require to overcome 

variability in input images, such as spatial invariance or 

size invariance, which limits the usefulness of this rep

resentation for object recognition. To achieve the invari

ances needed for object recognition, the 3-D model was 

extracted from the 2 Y2-D sketch. Although Marr was 

never completely successful at bootstrapping the 3-D 

model from the 2Y2-D sketch, he did demonstrate some 

limited recognition, using silhouette shapes (Marr & 

Nishihara, 1978). The system would first decompose the 

image of an object into likely parts, using points of ex

treme curvature (i.e., points in which curvature changes 

greatly; also see Hoffman & Richards, 1984). The major 

axis of elongation for each part would then be computed, 

and this axis would be used as the axis of elongation of 

a generalized cylinder that would represent that part. The 

collection of generalized cylinders for each of the parts 
of an object forms the 3-D model. 

Although Marr (1982) provided many good argu

ments for the 3-D model, his approach to object repre

sentation has fallen out of favor because of a number of 

limitations, the most significant being the limitations of 

generalized cylinders as primitives for object represen

tations. Generalized cylinders are sufficient for repre

senting some objects, such as human and animal forms, 

but are insufficient at representing other types of objects, 
such as desks, trees, and telephones. As a response to the 

limitations of cylinders as part primitives, other compu

tational vision systems have developed volumetric prim

itives that extend beyond cylinders. Other volumetric 

primitives have been developed in order to overcome this 

limitation; for example, Pentland's (1986) superquadric 
volumes allow other volumetric shapes (e.g., cubes) to 

act as parts of objects. 

Perhaps one of the most influential volumetric mod

els, particularly in cognitive psychology, is Biederman's 

(1987; Hummel & Biederman, 1992) recognition-by

components (RBC) account of object recognition. Bieder

man's RBC model proposes volumetric primitives known 
as geons (for geometrical ions). Geons are volumes that 

can be modeled as generalized cones, which are volumes 

created by sweeping out a cross-section along some axis. 

Generalized cones are not as narrowly defined as gener

alized cylinders for two reasons: (1) The shape of the 
cross-section can vary (i.e., the cross-section does not need 

to be a circle, as in a generalized cylinder), and (2) the 

axis can curve, expand, or contract (i.e., the axis does not 

need to remain straight, as in a cylinder). Thus, geons have 
different shapes, allowing them to represent the parts of 

many different objects. Examples of geons and the cre

ation of geons are shown in Figure 2. 

Geons can be viewed as the primitives for object rep

resentations, much as phonemes are the primitives for 

speech. The advantage of having a well-defined set of 
primitives is that a relatively small number of primitives 

(i.e., geons) and a small number of relations among the 
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Figure 2. Examples of four geons (a cylinder, a brick, a tube, 
and a wedge) and how different objects can be created from a 

combination of different geons. 

primitives permit a large number of objects to be repre

sented. Biederman (1987) has calculated that, with only 

36 geons, almost 75,000 two-geon objects could be rep

resented (assuming different sizes and relationships be

tween the two geons),just as the (approximately) 43 pho

nemes in the English language allow for the creation of 

all possible words. 

Biederman (1987) defines geons on the basis of non

accidental properties (Lowe, 1985). Nonaccidental prop

erties are image properties, such as parallelism and points 

of cotermination, properties that are unlikely to arise in 

an image because of an accidental viewpoint. When pre

sent in an image, nonaccidental properties can be as

sumed to reflect accurately the external stimulus. Defin

ing geons with nonaccidental properties allows geons to 

be viewpoint invariant; that is, an individual geon will be 

recognizable across most views of that geon. (Of course, 

there are limitations to viewpoint invariance, such as 

foreshortening, in which a geon is viewed parallel to one 

of its major axes. For example, viewing a brick end on 

only projects a squarish retinal image and provides no in

formation about the volume of the brick.) 

Under RBC, object representations are created by 

geons, which represent individual parts of an object, and 

the relationships among these geons. Because the parts 

of an object (i.e., the geons) are invariant across view

points, spatial position, and retinal size, the object repre

sentations will also possess these invariances. Biederman 

also discusses how spatial and metric information (such 

as viewpoint. spatial position. and size) might be coded 

by a separate system that is not responsible for object rep

resentation (Biederman & Cooper. 1992); this separate 

system would allow metric information to be recovered 

when needed but would not hinder recognition by re

quiring a specific view of an object, a specific spatialloca

tion of the object, or a specific size of the object. 

Despite the advantages of volumetric models, most 

notably their ability to explicitly code the parts of an ob

ject, there are drawbacks to these vision systems. One 

significant drawback, discussed by several authors, is the 

computational expense of volumetric primitives (see Plaut 

& Farah, 1990; but see Brooks, 1981, for a working com

putational system that relies on volumetric primitives). 

Another drawback is the computational difficulty in ex

tracting volumetric primitives from raw image data (see 

Edelman, 1997); although representations of volumetric 

primitives can be extracted from labeled line drawings 

(see Hummel & Biederman, 1992), human and nonhuman 

primate I visual systems work from raw, retinal images, 

and any adequate computational model should permit 

recognition from such images. 

Summary 
There are several computational problems that must 

be addressed by any object recognition system, natural 

or artificial. These problems include the different invari

ances that appear to characterize primate object repre

sentation, as well as the problem of explicitly coding the 

parts of an object. Each of the computational approaches 

just reviewed addresses these computational problems in 

different ways, with some models having clear advantages 

over other models (e.g., the advantage of volumetric 

models over feature models for explicit coding of parts). 

No model is entirely perfect, and each model's strengths 

and weaknesses will need to be elucidated, not only with 

computational considerations, but also with considera

tions of behavioral data and neuroscientific data. 

Having addressed some of the major computational 

problems and models of object representation under 

Marr's (1982) computational level, I now turn to a con

sideration of the next level in Marr's framework, the algo

rithm level. The algorithm level addresses the represen

tations and processes that actually solve the computational 

problems. The area of research that focuses on object rep

resentations and the processes that operate on these rep

resentations is cognitive psychology. The next section 

focuses on behavioral results from both cognitive psychol

ogy and psychophysics that have illuminated our under

standing of object representation. 

BEHAVIORAL STUDIES: 
THE ALGORITHMIC LEVEL 

The computational problems concerning object repre

sentation are problems that face any system that must 

process objects. Furthermore. for any problem, such as 

spatial invariance, there are potentially several ways in 

which the problem could be solved. Of particular inter

est for cognitive neuroscientists is how biological vision 

systems. particularly the primate visual system, repre

sent objects. Most of the behavioral research on object 



representation has been conducted with humans and has 

used paradigms from cognitive psychology and psycho

physics. The theoretical issues addressed by individual 

studies vary greatly, and my goal in this section is not to 

survey the entire literature but rather to characterize the 

operation of human object representation. There are many 

other behavioral studies that have addressed important 

issues, such as whether object recognition requires sur
face representations (e.g., a 2Y2-D sketch) or edge rep

resentations (see Biederman & Ju, 1988), that I will not 

discuss. Instead, I will focus on three of the most highly 

investigated invariances: orientation invariance, size in

variance, and transformation invariance. 

The focus of most studies of object recognition is on 

how humans perform entry level recognition. Entry level 

recognition refers to categorization at the basic level (see 

Biederman, 1987), in which an object is identified as a 

bird or as a car, as opposed to recognition at the subor

dinate level, in which an object would be identified as a 
more specific instance of the object, such as a robin or 

as a Mercedes. Basic level recognition is emphasized in 

cognitive studies of human object recognition, because 

nonprototypical subordinates may be recognized differ

ently than basic level objects. For example, recognizing 

a penguin as such is faster than recognizing the penguin 

as a bird (Jolicoeur, Gluck, & Kosslyn, 1984). Studies of 

object recognition have thus tended to study the recog

nition of more prototypical objects or to consider atypical 
subordinates (e.g., penguins) as occurring at the basic 

level of categorization. The argument in the literature has 

been that basic level, or entry level, recognition is more 

characteristic of the everyday object recognition used by 

humans. 

Orientation Invariance? 

Perhaps most of the behavioral research on object 

recognition has centered on the issue of whether human 

vision is orientation dependent or orientation indepen

dent. The question is, when recognizing an object, is the 

object recognized across all orientations or views of the 

object? Object-centered theories (or orientation-invariant 
theories) answer yes to this question and state that an ob

ject representation contains the geometry of the object 

that allows the object to be recognized irrespective of the 

orientation of the object. Object-centered theories pre

dict that recognition will take the same amount of time 
to occur across different orientations, or views, of the ob

ject, with the constraint that the parts of the object must 

be visible (see, e.g., Biederman, 1987; Biederman & Ger

hardstein, 1993). Clearly, unique views of objects can be 

created, such as viewing an object parallel to the major 

axis, as when viewing a car directly from the front or di

rectly from behind. Under such views, many features and 

parts are obscured, which may impair the representation 

and recognition of the object. Thus, provided that the 
parts and the relationships among the parts are recover-
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able from the image, the specific viewpoint or orienta
tion should not influence recognition. 

By contrast with object-centered theories, viewer

centered theories (or orientation-dependent theories) 

state that object representations store specific views of 

an object, such as storing the frontal view of a face or the 

three-quarters view of a car. Because object representa

tions store specific views of objects, object recognition is 

dependent on the orientation of the stimulus (and the views 

of that object given a particular orientation). Objects that 

do not appear in an orientation stored in visual memory 

are recognized by transforming the image with a stored 

view (see Tarr, 1995), a transformation that might be anal

ogous to mental rotation. Thus, the viewer-centered account 

predicts longer recognition times as an object is oriented 

away from the view coded by an object representation 

stored in visual memory. 

Given the object-centered and the viewer-centered 

alternatives, one could argue for rejecting the viewer

centered theory on a priori grounds. Because an object 

can appear in an almost infinite number of views or ori

entations, for every individual object, an almost infinite 

number of view-specific object representations would 

need to be stored in visual memory (an argument often 

made by those in computational vision). However, this ar

gument assumes that the transformation between a given 
view and a stored view is either too slow or not robust 

enough to permit object recognition. Instead, one could 

assume that the transformation process does most of the 

work and that only a few views of every individual object 

are stored; images that contain objects in novel (non

stored) views could then be transformed to a known view 

for purposes of recognition. Although the transforma
tion would take some time, it could be rapid enough to 

permit flawless recognition. 

Which theory better explains human object recogni

tion? Early research on mental rotation (see Shepard & 

Cooper, 1982, for a review) seems to support the viewer

centered account: Numerous results indicated that the ori

entation of an object influenced the time to process that 

object. For example, in determining whether a letter ap
peared normal or as its mirror image, Shepard and Cooper 

found significant effects for the alignment of the letter in 

the frontal plane; ifthe letter appeared in its canonical, up

right orientation, the normal/mirror image judgment was 

made quickly, and as the orientation deviated from up
right, the judgments took longer. The increase in response 

times was a linear function of angular orientation. Similar 

results have been obtained for more complex objects that 

have been rotated in depth (Shepard & Metzler, 1971). 

Research that followed the mental rotation studies 

also suggested orientation dependence in human object 

recognition. For example, Bartram (1974) reported results 

that demonstrated an effect of orientation on object nam

ing. Bartram had subjects name photographs of objects. 
After an initial set of photographs, the photographs of 
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the objects were altered in various ways, the most rele

vant way being no change in the orientation of the object 

(identical pictures) versus a change in the orientation of 

the object in depth by 45° (rotated pictures). Bartram found 

that subjects named the identical pictures faster than 

they did the rotated pictures, a result inconsistent with 

orientation invariance in object representation. Instead, 

the increased time required to name an object in the ro

tated picture condition could be explained by hypothe

sizing an orientation-dependent object representation 

that was established on the basis ofthe initial presentation 

of the object. When the object appeared rotated in a later 

picture, a transformation was required to align the new 

image with the stored representation, leading to longer 

recognition times. 

Numerous other demonstrations of orientation depen

dence were reported after Bartram's studies. For exam
ple, Palmer, Rosch, and Chase (1981) reported that per

ceivers rate some views of objects as being better than 

other views. Thus, not all views of an object appear to be 

equivalent with one another, indicating that the view of 

an object influences perceptibility of that object, sup
porting the viewer-centered theory. Also, Rock and col

leagues (Rock & DiVita, 1987; Rock, DiVita, & Barbeito, 

1981) demonstrated that, after seeing a novel 3-D object 

(similar to a bent paper clip) in a specific orientation, 

subjects were extraordinarily poor at recognizing that 

same object when it appeared either following a rotation 
in depth (Rock et aI., 1981) or following a shift in location 

that resulted in a different retinal image from the original 

viewing (Rock & DiVita, 1987; also see Edelman & Biilt
hoff, 1992, for similar results using bent wire objects). 

Despite these demonstrations that appear to support 

viewer-centered, or orientation-dependent, accounts of 

human object representation, Biederman and his col

leagues (e.g., Biederman, 1987; Biederman & Gerhard
stein, 1993, 1995; Hummel & Biederman, 1992) have 

pointed out several difficulties with the foregoing results 

and have presented evidence favoring object-centered ob

ject representation (consistent with the RBC account). 

Biederman argued that mental rotation rates are too slow 
to explain the ease and robustness of recognition across 

different viewpoints. Bartram's (1974) results could be 

explained on the basis of an occlusion of some parts of 
an object (Biederman & Gerhardstein, 1993). If some of 

the rotated pictures resulted in occluded parts, recogni

tion would be slowed and would be dependent on the ori

entation of the object. Palmer et al.'s (1981) results, indi

cating that some views were more canonical than others, 
is also consistent with Biederman's RBC account, be

cause the views that subjects report as being the best 

views are likely to be special views that maximize the 

number of visible parts of an object. Under RBC, parts 

(represented by geons) provide the input to object repre

sentations, so having a large number of parts visible would 

maximize the match between the visible image and the 
object representation, thus allowing the canonical view 

to be reported as being a particularly good view of the 

object. Finally, Biederman and Gerhardstein (1993) have 

argued that the results reported by Rock and colleagues 
(Rock & DiVita, 1987; Rock et aI., 1981) are problematic 

because the objects used, the bent paper clips, lack a criti

cal property that RBC requires for object-centered recogni

tion: easily identifiable viewpoint-invariant parts. Rock's 

bent paper clips simply do not have salient parts that would 

permit recognition across different viewpoints. 

On the basis of these shortcomings in the previous re

search, Biederman and Gerhardstein (1993) demon

strated that recognition could be object centered and in

dependent of the orientation of the object. They created 

stimuli that satisfied three properties required by RBC: 

(1) easily identifiable viewpoint-invariant parts (the prop

erty violated by Rock's bent paper clips); (2) different 

geon structural descriptions, which are representations of 

the parts (geons) and the relationships among the parts, 

for each different object; and (3) identical geon structural 

descriptions across the different viewpoints of a single 
object. Biederman and Gerhardstein (1993) demonstrated 

that recognition of common, everyday objects (e.g., a 

flashlight) would be orientation invariant, because the 

three properties were met. Similarly, recognition of en

tirely novel stimuli was also orientation invariant, be

cause the novel objects were created to meet the three 

properties. In addition, when the same novel objects were 
oriented so that parts visible in an initial view of the ob

ject were now occluded, whereas other parts, previously 

occluded, were now visible, recognition was then depen

dent on the orientation of the stimulus. This emergence 

of orientation dependence, or viewer-centered represen
tation, resulted because the new view of the object vio

lated the third property: Because some parts were oc

cluded and other parts became visible, the geon structural 

description for the object was different across the two 

views, thereby leading to viewer-centered recognition. 

Although Biederman and Gerhardstein (1993) pre

sented some evidence favoring object-centered repre
sentation, data favoring orientation-dependent, viewer

centered representations continued to amass. Tarr and 

his colleagues (Tarr, 1995; Tarr & Biilthoff, 1995; Tarr & 

Pinker, 1989, 1990) have continued to argue for a viewer

centered account by demonstrating that recognition de

pends on the view of an object. For example, Tarr and 
Pinker (1989) used two-dimensional (2-D) stick figure 

stimuli, similar to those shown in Figure 3, that were 

similar to one another in that each object had a main ver-

Figure 3. Two-dimensional stick figure stimuli similar to those 

used by Tarr and colleagues (e.g., Tarr, 1995; Tarr & Pinker, 1989, 

1990) to study orientation invariance in human object recognition. 



tical body and arms (or bars) that extended off ofthe ver

tical body. The subjects were trained to discriminate nor

mal objects from the mirror images of the same objects, 

and, in the training phase, the subjects saw the objects in 

specific orientations in the frontal plane (e.g., objects 

could appear upright, rotated 45° clockwise, and rotated 

90° counterclockwise). After performing several blocks 

oftrials, the subjects received a surprise block in which 

the objects appeared in new orientations-orientations 

that differed from the orientations used in the previous 

blocks. The results from the surprise block demonstrated 

that when the objects appeared in a new orientation, the 

subjects appeared to align the object to the closest stan

dard orientation. For example, consider an object that 

had been presented and learned in a 90° counterclockwise 

orientation. If this object appeared rotated 135° counter

clockwise in the surprise block, the subjects would rotate 

the image to the standard view (90° counterclockwise) 

in order to perform the normal/mirror image judgment. 

The subjects appeared to learn specific views of the ob

jects, and, when a new view appeared, the subjects would 

transform (rotate) the image to bring it into alignment with 

a known view. On the basis of these results, Tarr argued 

for a viewer-centered account of object representation 

that specified multiple views plus transformations (Tarr, 

1995; Tarr & Pinker, 1989). In his later work, Tarr (1995) 

reported similar results, using 3-D objects that were rotated 

in depth, strengthening his argument for viewer-centered 

object representation. Other researchers (e.g., Edelman 

& Biilthoff, 1992) have reported similar results that favor 

viewer-centered representation. 

There are two important points that have been raised 

about Tarr's work. First, because the objects used in Tarr's 

(1995; Tarr & Pinker, 1989, 1990) studies were similar to 

one another, recognition might have required individua

tion at the subordinate level, not at the level of the basic 

category. Thus, the recognition processes in Tarr's stud

ies might have been different from those in other studies, 

such as Biederman's (e.g., Biederman & Gerhardstein, 

1993), that demonstrate object-centered representation. 

Second, because Tarr's objects were similar to one another, 

they violated several of the properties that Biederman and 

Gerhardstein (1993) proposed for orientation-invariant, 

object-centered representation. Specifically, Tarr's stick 

objects did not possess distinct geon structural descrip

tions; the objects used by Tarr used the same parts (brick 

geons) and had similar parts (e.g., vertical bodies and 

arms that extend off of the body). Under Biederman's 

(1987) RBC account, the geon structural descriptions of 

Tarr's objects would be highly similar, ifnot identical. 

This critique of both Tarr's work and the other studies 

demonstrating viewer-centered representation (e.g., Bar

tram, 1974; Edelman & Biilthoff, 1992; Rock & DiVita, 

1987; Rock et aI., 1981) makes several assumptions 

about object representation that may be dubious: The cri

tique assumes (1) that everyday recognition involves rec

ognition at the basic level (e.g., bird), not recognition at 
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the subordinate level (e.g., robin), and (2) that everyday 

objects can be differentiated from one another on the 

basis of part descriptions (or geon structural descriptions). 

Tarr and Biilthoff (1995) addressed these two critiques of 

the viewer-centered approach and the assumptions made 

by the object-centered approach. 

Tarr and Biilthoff (1995) first argued that the proper

ties required by Biederman and Gerhardstein's (1993) 

object-centered, viewpoint-invariant approach could only 

be met by a limited set of objects and viewing conditions, 

limiting the generality and ecological validity of object

centered approaches. Tarr and Biilthoff next pointed out 

that the viewer-centered account had been supported by 

a tremendous range of studies that used various stimuli 

and methodologies, which suggested that it was likely 

that the results favoring viewer-centered accounts were 

the result of idiosyncrasies of stimuli (e.g., certain views 

appearing more frequently than other views) or method

ological problems (e.g., using a task that taps nonrecog

nition systems that rely on viewpoint information). 

Finally, Tarr and Biilthoff argued that object-centered ac

counts that rely on part descriptions, such as RBC, have 

problems with basic-level recognition. One problem is 

that some different objects, such as a cow and a horse, will 

actually have part descriptions that are similar, which 

could result in the objects being assigned to the same 

category. A related problem is that some objects that be

long to the same category could actually have different 

part descriptions, which would prevent these objects from 

being assigned to a common category; for example, Fig

ure 3 in Tarr and Biilthoff depicts three wristwatches that 

should be assigned to the same category (watch), although 

these watches have very different part descriptions (or 

geon structural descriptions), which would make such 

categorization difficult. Tarr and Biilthoff's reply makes 

it clear that viewer-centered accounts have strong em

pirical support and that object-centered accounts that 

rely on part descriptions have their own difficulties and 

cannot account fully for all of the data. 

To date, the research on orientation invariance in human 

object representation provides some evidence for both 

object-centered, orientation-invariant representation and 

viewer-centered, orientation-variant representation. Al

though further research on this topic surely will be forth

coming, it is likely that a resolution of the two accounts 

will come from arguments concerning the ecological va

lidity and computational feasibility of the different ac

counts (Tarr & Biilthoff, 1995). Also, there may be mul

tiple object representation systems, some object centered 

and some viewer centered, that allow these two types of 

object representation to coexist in the primate visual sys

tem (see Ellis, Allport, Humphreys, & Collis, 1989; Farah, 

1991; Tarr & Biilthoff, 1995, for multiple object recog

nition systems). Knowing whether or not human object 

representation possesses orientation invariance will be 

important for understanding both human vision and the 

computational principles that underlie human vision. 
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Size Invariance 

Size invariance is the ability to recognize an object ir
respective of the retinal image size of that object. Recog
nition should occur just as efficiently when the object is 
close to the viewer (and casts a large retinal image) as when 
the object is far from the viewer (and casts a smaller reti
nal image). If human object representation did not pos
sess size invariance, different object representations 
would be required for every retinal size at which an ob
ject could appear. On a standard computational analysis, 

because objects can appear in an almost infinite number 
of retinal sizes, too many object representations would be 
required to permit robust recognition and to permit new 
object representations to be learned. However, although 
there are good computational and engineering reasons to 

favor size invariance in an object recognition system, it 
is unlikely that the primate visual system evolved in ac
cordance with the ideal computational or engineering 
principles. Thus, whether human object representation is 
size invariant remains an open issue, and several empir
ical studies have asked whether human shape perception 
is dependent on the size of the retinal image or indepen
dent of the size of the retinal image. 

Early studies on human size processing indicated that 
the size of the stimulus influences the time required to 
perform a shape-matching task. Bundesen and Larsen 
(1975; Larsen & Bundesen, 1978) presented subjects with 
a simple matching task in which two shapes were either 
the same or different; the subjects simply had to report 
whether the shapes matched or mismatched. The shapes 
were either the same size or different sizes; when the 
shapes were different sizes, the size difference between 
the two shapes was varied. For example, two shapes could 
differ in size by a 2: 1 ratio or by a 4: 1 ratio. The results 
indicated that the subjects were sensitive to size differ
ences. When the two shapes were different sizes, the sub
jects took longer to perform the matching task than when 
the shapes were the same size. Furthermore, matching time 
increased linearly as the size discrepancy between the 
two shapes increased. Thus, the results suggested that the 
subjects mentally scaled (expanded or contracted) one of 
the two shapes to match the size ofthe other shape, a men
tal scaling analogous to the mental rotation of misori
ented shapes (Shepard & Cooper, 1982). Similar results 
have been obtained for matching shapes in visual mem
ory tasks (Jolicoeur, 1987; Larsen & Bundesen, 1978). If 
the subjects see a shape followed by another shape some 
time later, matching reaction times are again linearly re
lated to the size discrepancy between the two shapes. These 
results suggest that human object representation varies 
with size and does not possess size invariance. 

In contrast with these size-scaling results, research by 
Biederman and colleagues (Biederman & Cooper, 1992) 
has demonstrated size invariance in human object recog
nition. Biederman and Cooper (1992) developed a simple 
naming task in which subjects named pictures of com
mon everyday objects, using the basic level name (e.g., 
bird). This task was adopted to overcome problems with 

matching tasks, such as the possibility that a matching 
task could be performed at an early level of representa
tion that was spatiotopically mapped and was not size in
variant. In Biederman and Cooper's (1992) task, the sub
jects first named objects in an initial block; in this block, 
half ofthe objects were large (approximately 6° of visual 
angle), and half were small (approximately 3.so of visual 
angle). In a second block, the subjects saw pictures of the 
same objects, but now the objects were either the same 

or a different size as in the first block. The critical com
parison was between a change in size from the first block 
to the second block and no change in size from the first 

block to the second block. The results showed no effect 
of size change: The subjects were just as fast to name the 
object when it appeared at a different size as when it ap
peared at the same size. Furthermore, control conditions 
demonstrated that these results were not due to priming 
a name representation. Biederman and Cooper's (1992) 
results are easily accommodated by an object recogni
tion system that is insensitive to changes in retinal size 
and forms object representations that are based on geo
metric properties of the object that are invariant across 
size transformations. 

Because Biederman and Cooper's (1992) results were 
obtained with a task that forces object recognition, it seems 
safe to conclude that recognition is size invariant. Sim
ple matching tasks, such as those used by Bundesen and 
Larsen (1975; Larsen & Bundesen, 1978), and old ver

sus new judgments (Jolicoeur, 1987) may not require ex
plicit recognition and may, therefore, rely on processing 
mechanisms that are sensitive to retinal size and occur 
before size-invariant recognition processes. One issue for 
further research, however, is whether familiarity plays a 
role in size invariance: Biederman and Cooper (1992), who 
found evidence for size invariance, used highly familiar 
objects as stimuli. Since subjects would have had the op
portunity to see such objects in many different sizes, the 
possibility remains that the visual system stores size
specific object representations (much as it might store 
viewpoint-specific representations). There is, however, 
neurophysiological evidence, reviewed later, against size
specific object representations. Thus, although there are 
some additional issues (e.g., the role offamiliarity) that 
need to be investigated, the literature seems to indicate 
that human object representation is size invariant when 
recognition tasks are used. 

Translation Invariance 

The final major computational challenge facing any 
object representation system is that of translation (or 
spatial) invariance, the ability to recognize an object ir
respective of the spatial location of the object. In a spa
tially invariant recognition system, recognition should 
occur just as efficiently when the object appears in a new 
spatial or retinal location as when the object appears in 
a spatial or retinal position in which it was previously ob
served. As with size invariance, if a recognition system 
was not translation invariant, a separate object represen-



tation would be required for every location that an object 

could occupy. For example, there would be several dog 

representations, one for each retinal location that an image 

of a dog could occupy. Because objects can appear in many 
retinal locations, translation invariance would make recog

nition easier by reducing the number of object represen

tations required for individual objects. Specifically, one 

object representation that coded an object irrespective of 
its retinal location would suffice for every recognizable 

object. 
As with orientation and size invariance, empirical stud

ies have examined whether human shape processing is 

sensitive to the location in which an object appears. Bie

derman and his colleagues have presented behavioral re

sults that support translation invariance in human vision. 

Biederman and Cooper (1991) again used a priming par

adigm in which subjects named visually presented ob

jects. The subjects first named objects in an initial block; 

in this block, half of the objects appeared in a spatial 10-

cation to the left of fixation, and half appeared in a lo

cation to the right offixation. In a second block, the sub

jects saw pictures of the same objects, but now the objects 

appeared either in the same location or in a different lo
cation than in the first block. For example, if a dog ap

peared to the left of fixation in the first block, it could ap

pear either to the left of fixation (identical position 

condition) or to the right of fixation (different position 

condition) in the second block. The critical comparison 

was between a change in spatial position from the first 

block to the second block and no change in position from 

the first block to the second block. The results showed no 

effect of spatial location: The subjects were just as fast 
to name the object when it appeared in a different loca

tion as when it appeared at the same location in the sec

ond block. Control conditions demonstrated that these 

results were not due to priming a nonvisual name repre

sentation; some objects across the two blocks had the same 

name (e.g., piano) but involved different objects (e.g., a 

grand piano in the first block and an upright piano in the 

second block). If the priming from the first block to the 
second block had been solely nonvisual, the subjects 

should have been faster to recognize and name the objects 

that had the same name but different images, as in the 

piano example. However, the subjects demonstrated no 
such priming, indicating that the priming effects from 

the first block to the second block were attributable to a 
visual object representation, not to a nonvisual name rep

resentation. 

Studies using attentional selection tasks also support 

spatial invariance in human object representation. Ve
cera and Farah (1994) used an object discrimination task 

(see Duncan, 1984) to determine whether visual attention 

could select from spatially invariant object representa
tions. The subjects saw displays containing two objects, 

a box and a line. Each object had two attributes that var

ied; the box was either short or tall and had a gap on the 

left or the right side, and the line was either dotted or 

dashed and was tilted either left or right. The subjects were 

VISUAL OBJECT REPRESENTATION 291 

asked to report two attributes from briefly presented dis

plays. The attributes could come from the same object 

(box height, box gap) or from different objects (e.g., box 

height, line tilt). Furthermore, the box and line appeared 

superimposed on one another (the together condition) or 

separated from one another (the separate condition). The 

subjects were always less accurate in reporting attributes 

from different objects than in reporting attributes from 

the same object. However, this object effect did not de

pend on the spatial position of the objects: The cost as

sociated with shifting attention from one object to the 

other was not increased by moving the objects apart from 

one another, a result consistent with attentional selection 

from an object representation that does not code the spa

tiallocations of the box and line. 

Despite the evidence favoring translation, or spatial, 

invariance in human object representation, a recent study 

potentially calls translation invariance into question. Dill 

and Fahle (1998) reported results demonstrating that 

human object representation may not possess translation 
invariance. In Dill and Fahle's experiments, the subjects 

were asked to indicate whether two sequentially presented 
objects were the same or different. The objects were 

novel dot clouds formed by placing 10 dots randomly in 

a square region. The two objects, which were temporally 

separated by a I-sec interstimulus interval, could appear 

in the same location or in different locations. The reaction 

times when the two objects were the same showed a strong 

effect of spatial location: The subjects were faster to re

port that the clouds were the same when the dot clouds 

appeared in the same location than when they appeared 
in different locations. Dill and Fahle also conducted con

trol experiments that ruled out the possibility that the 

costs associated with a shift in location were due to a shift 

in spatial attention from one location to another. Thus, 

matching two dot clouds is dependent on the location in 

which the stimulus appears, which implies that human 

object· representation may be dependent on the location 
of an object. 

The apparent discrepancy between Biederman and 

Cooper's (1991) results and Dill and Fahle's (1998) results 

certainly raises the need for further research on spatial 

invariance in human vision. There are several differences 

between the two studies, which makes a direct compari
son between them tenuous, at best. For example, the 

stimuli used were highly different; Biederman and Cooper 

(1991) used familiar everyday objects, whereas Dill and 

Fahle used novel dot clouds that were quite similar to one 

another. The experimental procedures also differed, with 

Biederman and Cooper (1991 ) employing a naming task 
and Dill and Fahle employing a same-different matching 

task. As Biederman and Cooper (1992) discussed, tasks 

that do not require naming, such as matching tasks, may 
rely on a noninvariant level of representation that occurs 

prior to object representations that possess invariances 

(including spatial invariance). Further, the dot clouds 

used by Dill and Fahle were all similar to one another. 

which may have required subjects to be more sensitive to 
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metric properties of the stimuli, such as the spatial rela

tionships among the individual dots in a single dot cloud. 

Reliance on metric properties could have led to the 

clouds being coded in a representation that did not pos

sess spatial invariance. As with size invariance, addi

tional research will be required on the topic of translation 

invariance. However, the best evidence from recognition 
tasks (Biederman & Cooper, 1991) indicates that human 

recognition may occur independently of where the ob

ject falls on the retina. 

Summary 
The behavioral evidence for different invariances in 

human vision may strike some as equivocal. For each of 

the invariances reviewed, behavioral evidence could be 

found both to support and to refute the invariance. Such 
contradictory results, if taken alone, would certainly 

paint a bleak picture for the study of human object rep

resentation. However, a more optimistic picture emerges 

by taking other approaches into account. For example, 
there are several good computational reasons, discussed 

previously, for each of the invariances. Neurophysiolog

ical and neuropsychological mechanisms may also pro

vide converging evidence for or against invariances stud

ied with behavioral methods at the algorithmic level of 

Marr (1982). The studies reviewed in the algorithmic 
level section are likely to show that human object repre

sentation is more complex than was previously imagined 

and that results from behavioral studies will depend on 

the tasks subjects perform as well as the stimuli pre

sented for recognition. 
To provide further insights on primate object repre

sentation, I now turn to a review ofthe level of implemen

tation, Marr's (1982) hardware level. I have broken the 

review of the biological implementation of object repre
sentation into two sections, the first focusing on lesion 

studies and neurophysiological results from nonhuman 
primates and the second focusing on neuropsychologi

cal studies from humans with brain damage and on re

cent neuroimaging studies. 

LESION AND 
NEUROPHYSIOLOGICAL STUDIES 

The two previous sections have outlined the computa
tional problems facing object representation systems and 

some of the properties of the human visual system. Each 

level in Marr's (1982) scheme provides useful con

straints for the other levels, although the levels are inde

pendent of one another. In this section and the next, I will 
review the hardware level, the implementation of object 

representation mechanisms in the primate visual cortex. 

Neurophysiology and neuropsychology can provide strong 

constraints for both the computational and the algorith

mic levels; for example, although the behavioral results 

may be contradictory, as they are with size invariance or 
spatial invariance, a consideration of the neural mecha-

Figure 4. A lateral view of a monkey's left hemisphere showing 
the "what" and "where" visual pathways of Ungerleider and 
Mishkin (1982) as well as the subdivisions of the inferior tempo
ral cortex. 

nisms underlying object processing may aid in resolving 

discrepant behavioral results. 

The neural mechanisms most relevant for object rep

resentation are those extrastriate visual areas that lie along 

the "what" visual pathway, the pathway that extends ven

trally from the occipital lobe to temporal lobe visual 
areas (Ungerleider & Mishkin, 1982), as is shown in Fig

ure 4. The pioneering work ofUngerleider and Mishkin 

demonstrated that the ventral visual pathway was re

quired for object-matching tasks. Monkeys with lesions 

to temporal lobe visual areas were impaired at matching 

the form of a shape across a time delay. The visual area 

in the temporal lobe that appears to code for object at
tributes and appears to represent objects is the IT cortex, 

which can be further subdivided. The subregions of the 

IT cortex that are relevant for object processing include 

TEO and TE; area TEO is the posterior region of the IT 

cortex, and area TE is the anterior region of the IT cor
tex (Iwai & Mishkin, 1969; Von Bonin & Bailey, 1950; 

see Logothetis & Sheinberg, 1996, and Tanaka, 1996, for 

reviews). Although the TE/TEO subdivision seems to be 

the convention followed most in dividing the IT cortex 
(see Tanaka, 1996), other subdivisions also exist, such 

as Felleman and Van Essen's (1991) division of the IT 

cortex into the posterior IT cortex (PIT), the central IT 

cortex (CIT), and the anterior IT cortex (AIT). 

The feedforward anatomical projections into the IT 
cortex come from cortical visual areas V2, V3, and V4. 

This pathway is predominantly serial, with the informa

tion first starting in VI, which projects to V2, which then 

projects to V3, then to V4, then to TEO, and finally to 

TE. Some of the inputs to the IT cortex are jumping in

puts that violate this serial pathway, such as direct pro

jections to TEO from V2 that bypass V3 and V4 (Naka

mura, Gattass, Desimone, & Ungerleider, 1993). This 
serial, feedforward pathway appears to be consistent with 

some computational accounts of object representation, 



such as Selfridge and Neisser's (1960) Pandemonium 

model. This serial pathway, and the similarity to some 
feature-based models, may tempt some to expect "grand

mother" cells (i.e., cells that respond selectively to one 

object, such as your grandmother's face) in the IT cortex; 

however, emerging evidence suggests that individual 

neurons in the IT cortex form part of a distributed repre

sentation of an object in which a group of neurons rep
resents a single object (more akin to the distributed rep

resentations formed in Mozer's, 1991, BURNET model, 

discussed previously). Also, the processing between the 
IT cortex and other extra striate visual areas (e.g., V4) 

appears to be bidirectional, with the IT cortex and its 

subregions sending anatomical feedback projections to 

earlier visual areas (see, e.g., Rockland, Saleem, & Ta

naka, 1994). 

Lesion Studies 

What are the consequences oflesions along the "what" 

visual pathway in nonhuman primates? The earliest le

sions specifically placed in the IT cortex (and sparing me

dial temporal regions) resulted in reports of visual defi

cits (see Dean, 1976, for an early review and Plaut & Farah, 

1990, for a more recent review). For example, Mishkin 

and his colleagues (Mishkin, 1954, 1966; Mishkin & Pri

bram, 1954) reported that visual discrimination perfor

mance, in which monkeys or baboons were required to 

discriminate two shapes, was impaired by lesions to ven
tral temporal lobe areas. The hippocampus, which often 

was lesioned when performing lesions to the ventral 

temporal lobe, did not appear to result in visual discrim

ination impairments; lesions to the hippocampus alone 

left discrimination relatively intact or resulted in mild dis

crimination impairments (Mishkin, 1954). The impair

ments observed following lesions to the ventral temporal 
lobe exist for both postlesion retention of the discrimi

nation (see, e.g., Mishkin, 1954) and postlesion acquisi

tion ofa visual discrimination (see, e.g., Pribram, 1954). 

The discrimination deficits observed in early lesion 

studies of the IT and temporal cortices point to a role of 

these visual areas in object representation (also see Unger
leider & Mishkin, 1982). In order to discriminate two 

stimulus objects, presumably these objects would need 

to be represented for purposes of perception and compar

ison. Subsequent research focused on the visual infor

mation to which the IT cortex is sensitive. These studies 

have asked whether monkeys with IT lesions possess the 
invariances discussed previously-namely, spatial (trans

lational) invariance, size invariance, and orientation in

variance. Other invariances also have been investigated 

in IT-lesioned monkeys, such as illumination constancy 

(see Weiskrantz & Saunders, 1984), but these invariances 

will not be discussed further. The standard procedure in 

these studies has been to require monkeys to discriminate 

stimuli on some dimension, such as size, and then deter
mine the effect of IT lesions on this discrimination. 

Orientation invariance was studied in monkeys with 

IT lesions by Gross (1978; Holmes & Gross, 1984). Gross 
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(1978) reported that IT-lesioned monkeys appeared to be 

intact in performing discriminations involving rotation 

of 90° or 180°. For example, IT-lesioned monkeys could 

discriminate an A tilted 90° to the left from an A tilted 

90° to the right (a 180° difference between the two stim

uli) just as well as normal (unlesioned) monkeys. The 

same result held for stimuli that differed in orientation by 

90°: Lesioned monkeys could discriminate an upright 2 

from a 2 that had been rotated 90° to the right just as well 

as normal monkeys. This intact orientation discrimina

tion performance appears puzzling, considering that the 
same IT-lesioned monkeys were impaired relative to nor

mals in discriminating different patterns (e.g., discrimi

nating a * from an 0), a discrimination that normal mon
keys find easy to perform (see also Holmes & Gross, 

1984, for similar results). 

Gross' (1978) results appear to indicate that the IT cor

tex is not responsible for orientation constancy, because 

lesions to this visual area do not impair the ability to dis

criminate a shape from a rotated version of itself. The 
consequences of these results could be that object repre

sentation systems do not possess orientation invariance, 

as suggested by viewer-centered accounts of object rep
resentation. However, the results on orientation processing 

in the IT cortex are unlikely to distinguish object-centered 

and viewer-centered accounts of object representation, 

for the following three reasons. 

The first reason that Gross' (1978) studies may not dis

tinguish accounts of object representation is that there 
are difficulties with some aspects of these data, such as the 

stimulus changes associated with changing the orientations 
of objects. Large rotations-rotations of 90° or 180°

change the appearance of shapes more than do smaller 

rotations-rotations of 30°. For example, a 5 has a char

acteristic loop near the bottom of the image. If this shape 

is rotated 30°, that loop still remains near the bottom of 

the image; however, if this shape is rotated 90°, the loop 

now appears to the left or right, and if the 5 is rotated 180°, 
the loop is now on top ofthe image. Such image cues could 

be used to perform some discriminations (e.g., 90° or 180° 

discriminations) but would prove less useful for other 

discriminations (e.g., 30° discriminations). Thus, the IT 

cortex could code orientation-invariant object represen

tations, and IT-lesioned monkeys could appear unimpaired 
because of secondary strategies (e.g., matching on image 

differences based on large rotations). 

A second concern of Gross' (1978) data is that, although 

the IT-lesioned monkeys could discriminate some types 

of orientations, these monkeys did tend to perform slightly 

worse than normal controls (although the differences were 

often not statistically significant). An examination of Fig
ure 5 in Gross (1978) reveals that, in 9 out of the 10 

rotated-pattern problems, the IT-lesioned group made 
more errors than the normal control group, although 

none of these differences reached statistical significance 

at the .05 level. Instead of assuming that the lesioned mon

keys were normal, because of nonsignificant results, there 

is an alternative view: If IT-lesioned monkeys were no 
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different from normals, then, by chance, the lesion group 

should have shown poorer performance than the control 
group only on half (50%, or 5 out of 10) of the rotated

pattern problems, not on 90% (9 out of 10) of the prob

lems. Thus, there is some evidence for a systematic def
icit in the lesioned monkeys, although this deficit may be 

small and difficult to detect statistically. The differences 
between the lesioned monkeys and the control monkeys, 

although not statistically significant, may reflect a real 

difference that is difficult to detect either because oflow 

statistical power or because the deficit is made artificially 

small because of strategies that the lesioned monkeys may 

have used, as discussed previously. 
A third difficulty with using Gross and colleagues' data 

to constrain theories of object representation is based on 

procedural differences between monkey and human stud

ies. The procedures used in studying IT-lesioned mon

keys have required monkeys to "say" (respond) that two 

identical patterns that differ in orientation are different, 

whereas the human behavioral studies have required sub
jects to say that two identical patterns that differ in ori

entation are the same. A critical question that remains to 

be studied in IT-lesioned monkeys is whether the mon

keys could determine that a 2 and a 2 rotated 90° to the 

right were the same shape, a procedure closer to that used 

to study object processing in humans. (Note, however, that 
this procedure would still not distinguish object-centered 

and viewer-centered accounts of representation, because 

both of these accounts would hypothesize damage to ob

ject matching following IT lesions.) Given these concerns, 

other data are required to elucidate the role of area IT in 

orientation constancy (or orientation invariance). Such 
data, in the form of single-unit recordings from the IT 

cortex, will be considered in the following section on 

neurophysiological studies. 

Fortunately, the role of area IT in other invariances is 

less complicated than its role in orientation invariance. 

Turning to size constancy, several studies have pointed to 
a clear role of temporal lobe visual areas in allowing ob

jects to be represented irrespective of their retinal size. 

The earliest study on the role of the IT cortex in size con
stancy was by Humphrey and Weiskrantz (1969), who 

trained rhesus monkeys to choose the larger of two disks 
that were presented at different distances. To correctly per

form this task, the monkeys needed to possess size con

stancy (or size invariance) in which the size of the disk 

was determined irrespective of the distance from the mon
key. Size constancy is necessary in this situation because 

a small disk could appear to be quite close to the monkey, 

casting a large retinal image, whereas a large disk could 

cast the same retinal image as the small disk. Following 

training, the monkeys received either parietal lesions or 

IT lesions. The IT-lesioned monkeys were unable to re

learn the task to criterion, although the parietal-lesioned 

monkeys did relearn the discrimination. Further analyses 

of the IT-lesioned group revealed that, when IT-lesioned 
monkeys made errors, they seemed to choose from one 

of two erroneous strategies: (I) only judging on the basis 

of retinal size or (2) only judging on the basis of distance. 
These monkeys could not combine the two pieces of vi

sual information required for size constancy, the retinal 

size of an object and the distance of the object from the 

viewer. An inability to integrate retinal size and distance 

would prevent these monkeys from seeing an object as 

remaining constant (i.e., remaining the same object) across 

different viewing distances. Similar results have been re

ported by Ungerleider, Ganz, and Pribram (1977) and by 

Weiskrantz and Saunders (1984). 

Finally, spatial invariance, or retinal translation, ap

pears to be impaired in monkeys with IT lesions. Gross 

and colleagues (Gross & Mishkin, 1977; Seacord, Gross, 

& Mishkin, 1979) studied interocular transfer (transfer 

between the two eyes) as a special case of spatial invari

ance. Monkeys first were given one of three possible lesions 

(or no lesion) and then learned a visual discrimination in 

one eye. Following the acquisition ofthe discrimination, 

transfer of the discrimination to the other eye was tested. 
There were two main results from these studies. First, mon

keys who had been given concurrent IT lesions and optic 

chiasm sectioning and monkeys given only IT lesions 

learned the initial discrimination very slowly, as compared 

with the normal (unlesioned) monkeys and the monkeys 

with only optic chiasm sections. This result confirms the 

role ofthe IT cortex in pattern discrimination and percep
tion. Second, and more important, the monkeys who had 

received combined IT lesions and optic chiasm sections 
were unable to transfer the discrimination from the ini

tial eye to the other eye, as compared with monkeys with 

only IT lesions. This second result indicates that, when vi

sual stimuli are restricted to a single hemisphere (follow

ing the sectioning of the optic chiasm), the IT cortex is 

necessary for interocular transfer, because lesions to the 
IT cortex disrupt the ability to determine the equivalence 

of shapes appearing between the left and the right visual 

fields. This result demonstrates the importance of the IT 

cortex in cross-hemispheric transfer ofvisual information, 

which would be necessary in establishing object represen

tations that remained stable as an object crossed the ver
tical meridian from the left visual field into the right vi

sual field (or vice versa). Seacord et al. noted that IT 

mechanisms may allow for spatial invariance within a vi

sual field. 

In sum, lesion studies conducted with animals point to 

the central role of the IT cortex and its subregions in rep
resenting objects irrespective of sensory-based changes, 

such as changes in size or spatial position. These results 

are in accordance with some behavioral results in humans 

that suggest that human object representation has both 
size (Biederman & Cooper, 1992) and spatial (Bieder

man & Cooper, 1991) invariance. Although the existing 

data indicate that the IT cortex may not playa role in ori
entation constancy (see, e.g., Gross, 1978), several caveats 

concerning these data arose, indicating further work 

would be necessary on the IT cortex and the role of ori

entation in object representation. One difficulty with le

sion studies of object representation is that they provide 



little, if any, information concerning the neural represen

tations of the IT cortex. To better understand what indi

vidual or groups of IT neurons process, we need to exam

ine single-unit recordings from this region of extra striate 

cortex. 

Neurophysiological Studies 
To what visual inputs would an object recognition sys

tem, such as that in the IT cortex, respond? This question 

has provided the motivation for most neurophysiological 

single-cell recordings from the IT cortex. The computa

tional, behavioral, and lesion work reviewed so far indi

cates that primate object recognition appears to have cer

tain characteristics, such as the ability to code an object's 

structure across stimulus-level changes. The goal ofneu

rophysiological studies of object representation is to pro

vide a hardware implementation that elucidates the 

neural representation of objects, so that we can better de

fine terms like code an object s structure and so that we 

can understand the neural mechanisms that provide the 

invariances. 

The earliest single-cell recordings from the IT cortex 

were performed by Gross and colleagues (see Gross, Ben

der, & Rocha-Miranda, 1969; Gross, Rocha-Miranda, & 

Bender, 1972), who reported that neurons in this area 

only responded to visual stimuli and had large receptive 

fields that typically included the fovea. Complex shape 

stimuli, such as hands, appeared to drive these neurons 

best. Later studies reported that the median receptive field 

size was approximately 25° of visual angle (Desimone & 

Gross, 1979; see Gross, 1992, for a review) and that most 

receptive fields partially extend across the vertical merid

ian. Stimulus selectivity seems to be constant throughout 

these large receptive fields, although foveally presented 

stimuli elicit a larger neural response than do more pe

ripheral stimulus presentations. 

Almost as soon as shape-specific neurons were iden

tified in the IT cortex, the hypothesis was entertained that 

these neurons played a role in the perceptual invariances 

(see, e.g., Gross & Mishkin, 1977), particularly inas

much as lesions of this visual area impaired the invari

ances. Schwartz and colleagues (Schwartz, Desimone, 

Albright, & Gross, 1983) directly tested IT cells for size, 

contrast, and location (spatial) invariance. The stimuli 

used were fourier descriptors (FDs), similar to those 

shown in Figure 5; FDs permit a parametric variation 'of 

Cycles/Perimeter: 2 4 
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shapes through changing the frequency, amplitude, and 

phase in a fourier expansion of a shape. This procedure 

for generating stimuli allows researchers to have control 

over the generation of shapes and the relation of one 

stimulus shape to another. Using FD stimuli, the tuning 

curve of individual IT neurons was computed, which 

provided the shape(s) to which individual neurons max

imally responded. Once the optimal stimulus for an IT 

neuron was determined, the stimulus could be altered to 

determine whether the neural response either varied with 

the stimulus alterations or remained constant across 

stimulus alterations. 

Schwartz et al.'s (1983) results indicated that the stim

ulus specificity observed in individual IT cells was 

changed little, if at all, by changing the size, contrast, or 

location of the preferred stimulus. For example, when 

the preferred stimulus was changed in size from 13°2 (a 

relatively small stimulus) of visual angle to 28°2 or 50°2 

of visual angle (relatively larger stimuli), the neuron main

tained its preference for the shape. This stimulus selec

tivity remained despite the dramatic difference in the ret

inal images formed by the shapes of different sizes. 

Thus, individual IT neurons appear able to possess size 

invariance by coding for an object's shape irrespective of 

the retinal size of that shape. Similar results were ob

tained for contrast changes; when the contrast of a shape 

was reversed (i.e., when the shape was changed from 

black on a white background to white on a black back

ground), individual IT neurons retained their stimulus 

specificity and responded maximally to the preferred 

shape despite the changes in contrast. Finally, IT neurons 

also showed spatial invariance in that they did not change 

their stimulus preference when the shape was presented 

in a different spatial location. A neuron's preferred shape 

remained stable as the shape was moved 5° of visual 

angle into either the upper or the lower visual field and 

as the shape moved 5° of visual angle into either the con

tralateral or the ipsilateral visual field. IT neurons thus 

demonstrate the ability to represent a shape's structure 

or geometry irrespective of where the shape appears 

within the visual field. (Similar results have been reported 

for single-unit studies in which faces were used as stim

uli; see Rolls & Baylis, 1986.) 

Although Schwartz et al.'s (1983) data speak to many 

of the invariances discussed in this review, Schwartz and 

colleagues did not address the question of whether IT 
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Figure S. Examples of Fourier Descriptor stimuli used by Schwartz, Desimone, Albright, and Gross 

(\983) to study perceptual invariance in inferotemporal cortex neurons. 
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neurons possess orientation invariance. That is, when the 

orientation of a shape changes, would the IT neuron con

tinue to show stimulus specificity (consistent with ori

entation invariance), or would the neuron cease to fire 

because of the orientation change (consistent with ori

entation variance, or viewer-centered representation)? 

Inspection of the FDs in Figure 5 demonstrates that a 

majority ofthese stimuli would be insufficient for study
ing orientation invariance, because changes in orienta

tion would result in little, if any, change in the retinal 

image (the exception would be the FDs defined by fre

quencies oftwo or four, which could change their retinal 

images dramatically if rotated 90° for the frequency of 

two or 45° for the frequency offour). 

However, several studies of orientation constancy in 

IT neurons have been reported recently by Logothetis and 
colleagues (see Logothetis & Pauls, 1995; Logothetis, 

Pauls, Biilthoff, & Poggio, 1994; Logothetis, Pauls, & 

Poggio, 1995; Logothetis & Sheinberg, 1996). Logothetis 

and colleagues trained monkeys to recognize various 

novel objects at a large number of orientations, so that the 
monkeys' behavioral performance was independent of 

the specific orientation (or view) ofthe object. Following 

this training (which is quite extensive and requires the 

monkeys to perform at 95% recognition rates or higher), 

individual neurons in the IT cortex were recorded. Dur

ing this recording session, monkeys were first shown a 

target object in a learning phase; the target object was one 
of the previously learned objects presented at some ori

entation. Next, the monkeys were shown a series of up to 

10 objects in a test phase; the objects had to be categorized 

as either a target (i.e., matching the previously observed 
target) or a distractor (i.e., being an object that had not 

been previously learned). The targets in the test phase 

were presented at various orientations relative to the tar

get shown in the initial learning phase. Using this proce

dure, Logothetis and colleagues could determine whether 

individual IT neurons would respond to a target object 
independent of the object's orientation (or the view ofthat 

object) or whether IT neurons would code for a particu

lar object in a particular orientation (i.e., a specific view 
of the object). 

Several theoretically important results arose from Lo
gothetis et al.'s studies. First, Logothetis et al. (1995) re

ported that individual cells in the IT cortex responded 

selectively to the objects that had been learned. This re

sult is important, because the objects were initially novel 
to the monkeys and did not correspond to any object that 

the monkeys would have been familiar with prior to 

training (e.g., bent paper clip objects, similar to those used 

by Edelman & Biilthoff, 1992), indicating that IT neu

rons can change with experience and with the recogni

tion requirements that face the animal (see also Miya
shita, 1993). Second, although a monkey's behavioral 

recognition was orientation independent, individual cells 
in the IT cortex changed their responses with changes in 

object orientation. That is, the neurons in the IT cortex 
appeared not to possess orientation invariance. Instead, 

individual IT neurons appeared to code specific views of 

objects; for example, one neuron might code the left pro

file of an object (i.e., a view of the object rotated 90° 

from the frontal view), whereas another neuron might code 

for the right profile of the same object. (Similar results 

have been obtained for single-unit studies investigating 

face recognition; see Perrett et aI., 1985.) Third, there was 

a small number of neurons that appeared to code objects 

irrespective of orientation, consistent with an object

centered, orientation-independent representation. How

ever, there were too few of these neurons in Logothetis 

et al.'s (1995) sample to understand their potential role in 

object representation. 

The majority of Logo thetis et al.'s single-unit responses 

are consistent with viewer-centered accounts of object 

representation that have arisen from cognitive psycho
logical studies with human subjects (see, e.g., Edelman 

& Biilthoff, 1992; Tarr, 1995; Tarr & Biilthoff, 1995) in 

which orientation invariance is based on multiple viewer

centered representations. The individual IT neurons may 

form the neural basis ofthe individual viewer-centered rep

resentations. An object-based, orientation-independent 

representation may emerge from several of these viewer

centered neurons being simultaneously active in a dis
tributed representation (or population code). If this con

clusion is supported through further work, it is important 

to note that individual IT neurons would not form an 

object-centered representation but rather that an object

centered representation would emerge from multiple 

viewer-centered representations (e.g., see Tarr, 1995). 
The distinction between the object-centered and multiple 

viewer-centered representations is subtle, but the distinc

tion is important for theories of object representation and 

for understanding the neural implementation of object 

representations. The behavioral consequences of these two 

types of representation may be the same at Marr's (1982) 
algorithmic level, but the hardware implementation would 

differ. 

In addition to understanding the perceptual invariances 

by looking at IT neurons, single-unit recordings from 

this visual area can potentially inform theories of object 
representation by suggesting what features these neurons 

represent. Recall that computational accounts of object 

representation have hypothesized different representa

tion schemes, such as object representations based on 

image features such as line segments (i.e., feature-based 

models) or object representations based on ~olumetric 
primitives. Do IT neurons represent objects using fea

tures or primitives that can be mapped onto any of the 

computational accounts discussed earlier (e.g., volumet

ric primitives)? As with any active research area, the crit

ical experiments either have not been performed or would 

be technically difficult to perform to link IT neurons to 

computational accounts of object representation. How-



ever, there has been active study on the representational 

scheme that might be used by IT neurons, and the findings 

ofthese studies may guide the development of biologically 

plausible computational object representation systems. 

The recent work of Tanaka and his colleagues (Koba

take & Tanaka, 1994; Tanaka, Saito, Fukada, & Moriya, 

1991; Wang, Tanaka, & Tanifuji, 1996; see Tanaka, 1992, 

1996, 1997, for reviews) has greatly illuminated the rep

resentations that the IT cortex creates to represent and dis

tinguish objects. Tanaka and colleagues have performed 

extensive single-cell recordings from both the posterior 

and the anterior IT cortex while using a reductive tech

nique to determine the stimulus selectivity of the cell. This 

reductive technique involved finding a visual object to 

which the neuron responded vigorously. When such an 

object was found, the image was simplified as the cell's 

responses were recorded. For example, if the cell initially 

responded to an apple with a stem, the neuron would be 

tested with round shape, with red patches that had differ
ent shapes, with different shapes that had stems protrud

ing from them, and so forth. Tanaka and colleagues would 

continue to reduce the stimulus until the stimulus could 

not be simplified further without abolishing responses 

from the cell. The simplest stimulus that sufficiently ac

tivated a cell was referred to as the critical feature (see 

Tanaka, 1992, for a review of this procedure). 

The critical stimulus features to which IT neurons were 

sensitive depended on the anatomical location of the neu

ron. Neurons in the posterior region of the IT cortex (PIT 

or TEO) were more likely to be classified as primary cells 

that had critical features corresponding to relatively sim

ple visual input. The primary cells tended to respond to 

oriented bars, colors, or oriented color patches. Of the 

cells recorded in PIT, 72% were classified as having pri

mary critical features (Tanaka et aI., 1991). By contrast 

with PIT, neurons in the anterior IT cortex (AIT or TE) 

were less likely to be classified as primary cells (only 12% 

received this classification). Instead, AIT neurons were 
more likely to be classified as elaborate cells, cells having 

critical features that required a specific shape or a com

bination of a specific shape and either color or texture. 

Also, elaborate cells could not be described as respond

ing to some simple feature, such as an oriented bar. In the 
sample of AIT neurons studied by Tanaka et aI., 45% were 

classified as elaborate; only 9% of the PIT neurons were 

classified as elaborate cells. 
Tanaka et al.'s (1991) results suggest that there may 

exist a complexity continuum in the IT cortex, with more 

posterior regions coding for simpler features than do 

more anterior regions. The IT cortex is also organized in 
a vertical manner, in that neurons that code similar fea

tures are more likely to be contained within the same 

cortical column and neurons that code different features 
are likely to be contained in different columns (Fujita, 

Tanaka, Ito, & Cheng, 1992; Wang et aI., 1996). One im

portant point, however, is that the complex features re

sponded to by AIT neurons were not specific enough to 
classify or recognize a single object (i.e., they were not 
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"grandmother" cells). Thus, unlike face-specific cells 

found in some regions of the IT cortex, it is likely that 

object representation that occurs in AIT (and possibly 

PIT) relies on a distributed representation involving si

multaneous activation of features across different corti

cal columns. Further studies of IT neurons will need to 

be performed to understand better the anatomical mech

anisms that allow distributed object representations in 

the IT cortex. Other neuroanatomical studies of the visual 

cortex have revealed long-distance axonal connections 

that may link different cortical columns (see Rockland 

& Lund, 1982, for an early description of the relevant 

anatomy), and these connections could link the different 

feature columns in the IT cortex reported by Tanaka and 

colleagues. 

What implications does Tanaka's work have for com

putational and behavioral studies of object representa

tion? The most direct implications are for computational 

models and the representations assumed by individual 
models. For example, Tanaka's single-unit recording data 

may seem problematic for systems that use volumetric 

primitives for object representation. The reductive tech

nique used to identifY critical features typically begins with 
the presentation of3-0 objects; then, 2-D images are used 

to further reduce the critical feature. The important find

ing is that 2-D features (e.g., disks, wedges) may be the 

critical features ofthese neurons, which could be a prob

lematic finding for volumetric representations that require 

3-D features such as cylinders or bricks. However, theo

rists endorsing volumetric features could argue that some 

2-D features would activate neurons that were ideally 

tuned to volumetric primitives (generalized cylinders or 
geons). Specific single-unit recordings may be required to 

test between volumetric primitives and other primitives, 

such as elaborate features that could be consistent with 

feature-based models. 

Summary 
The visual areas in the IT cortex clearly playa signif

icant role in object representation. Of course, this does 
not exclude the importance of other visual areas, as other 

areas will be required to provide the IT cortex with ade

quate visual input. Also, there may be redundant coding 

of object features or object representations in other brain 

regions (neurons in the frontal lobe that allow objects to 

be held in working or reference memory could provide a 

redundant coding of objects; see, e.g., Rao, Rainer, & 

Miller, 1997). The IT cortex appears to code for stimuli 

despite changes in size or retinal position, but the most 

elegant data to date indicate that these neurons may not 

represent an object independent of its orientation (see 

Logothetis & Sheinberg, 1996). Instead, IT neurons may 

code for particular views of objects, thus contributing to 
viewer-centered object representations. Also, neurons in 

the IT cortex, particularly AIT, respond to complex features 
and may contribute to a distributed object representation. 

One issue that remains is the precise role ofIT neurons 

in object representation. Tanaka has demonstrated that IT 
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neurons may respond to certain features of objects. How

ever, because the features of everyday objects are so com

plex, it may prove impossible to discern the unique fea

ture coded by an individual IT neuron, because not all 

feature combinations can be tested in a recording session 
(Young, 1995). (Faces are an exception, however, because 

they share common parts and features, potentially mak

ing it easier to understand face representations in the IT 
cortex; also see Young, 1995.) A more useful approach 

seems to be to integrate single-unit recordings with com

putational accounts that use distributed representations. 

Such an integration places less emphasis on the specific 

feature coded by an IT neuron and stresses the participa

tion of a single neuron in a distributed representation of 

an object. 

The large receptive fields ofIT neurons have been her

alded as a mechanism for ignoring scale or position dif

ferences and providing the perceptual invariances. In ef

fect, individual IT neurons "see" large portions of the 

visual field and respond to their critical feature anywhere 
within their large view of the visual field. The difficulty 

with this intuitive argument is that large receptive fields 

may have several computational properties beyond pro

viding perceptual invariances. An excellent example 

comes from Hinton, McClelland, and Rumelhart (1986), 

who note that large receptive fields, paradoxically, allow 

for better stimulus localization than do smaller receptive 
fields. This computational property of large receptive 

fields seems at odds with lesion studies of the IT cortex 

in which monkeys with IT lesions continue to localize 

objects accurately (Ungerleider & Mishkin, 1982). Fur

thermore, many computational models rely on large re

ceptive fields for invariant object representation (see, 

e.g., Mozer, 1991). The differences between localization 
and invariant perception may not only lie with the size of 

the receptive field but also with inputs and critical features 

of the neuron or unit that has the large receptive field. 

Lesion studies and single-cell recordings have provided 
many important data concerning the neural basis of ob

ject representation, and these data can be integrated with 

computational approaches to representation. However, 

the lesion data, and especially the single-cell data, do not 

always make clear predictions concerning behavioral per
formance in humans, such as performance in the studies 

reviewed in the previous section. Furthermore, there exist 

problems for comparing human object recognition with 
nonhuman primate recognition. First, the presence oflan

guage systems in the human brain may alter the object 

representations themselves: The object representations re

quired to name an object (as humans do) may be different 

from those representations needed to act on an object with

out naming it (as monkeys do). Second, the neuroanatomy 

of the ventral processing pathway obviously differs be

tween humans and nonhuman primates because of dif

ferences in brain size. The regions in the macaque brain 
that participate in object representation may receive 

slightly different inputs than do the homologous regions 

in humans. Third, the experimental object recognition 

tasks performed by humans are often substantially dif

ferent than those tasks used to study recognition in mon

keys. Monkeys typically need extensive training to per

form recognition tasks. This training may alter object 

representations or may involve the development of strat

egies to perform the task, strategies that would not be 

needed in everyday object recognition. 

These concerns are not fatal, and they are not intended 

to belittle the importance oflesion and recording studies. 

What these concerns suggest is that it will be important 

to have converging research results from human subject 

populations. This evidence has typically come in the form 

of neuropsychological and neuroimaging studies, to which 

I now turn. 

NEUROPSYCHOLOGICAL AND 

NEUROIMAGING STUDIES 

As with lesion and single-cell recording studies, neuro

psychological deficits and changes in regional cerebral 
blood flow can provide implementation constraints on 

both computational and behavioral approaches to object 
representation. Animal studies and human studies are 

also complementary. For example, although recording 

data may be useful in influencing the representations used 

by computational models, the same data may not be as 

readily useful for behavioral studies, indicating the need 

for neuropsychological and neuroimaging research. 
Conversely, neuropsychological and neuroimaging data 

may be more useful in interpreting behavioral studies 

and not as useful as single-cell recording data for com

putational approaches, necessitating single-unit record

ing data and the results from lesion studies. Thus, any 

cognitive neuroscience approach to object representation 

will need to consider relevant results from all of these 
methods to provide a more accurate picture of the hard

ware implementation level in object representation. 
In human neuropsychology and neuroimaging studies, 

the neural mechanisms that have been found to be most 

relevant for object representation are, as in macaques, 

again the extrastriate visual areas that lie along the "what" 
visual pathway. There are, however, anatomical differ

ences between the human "what" pathway and the corre

sponding pathway in monkeys. For example, human 

neuropsychology and neuroimaging studies show that 

the critical areas for object representation may be more 
posterior than the critical areas in monkeys. This differ

ence was supported by recent comparisons between the 

human and the macaque visual cortex, using cortical flat 

maps in which the cortical surface is flattened for neuro

anatomical visualization. Recent comparisons between 

the human and the monkey visual cortex, using cortical 

flat maps, have revealed differences in size and specific 

placement of visual areas (Van Essen & Drury, 1997). 

Study of the neural mechanisms of object representation 
will, therefore, require integration across such anatomical 

differences. The visual areas of relevance in the human 

visual cortex include the regions around the occipito-



temporal boundary, which, when damaged, appear to 

cause deficits in object recognition (see Farah, 1990, for 

a review). Other areas involved in human object pro

cessing include the fusiform gyrus, which has shown in

creases in regional cerebral blood flow (rCBF) during 

some object-processing tasks (see Haxby et aI., 1994; Kan

wisher, Woods, Iacoboni, & Mazziotta, 1997; McCarthy, 

Puce, Gore, & Allison, 1997). 

Neuropsychology of Object Recognition 
Damage to occipitotemporal visual areas often results 

in the syndrome of visual agnosia, an inability to recog

nize familiar, everyday objects. Neuropsychological stud

ies of the agnosias have uncovered several different sub
types ofthis syndrome (see Farah, 1990, and Humphreys 

& Riddoch, 1987, for reviews), indicating that several cor

tical visual areas may be important in representing and 

recognizing objects. The earliest subdivision ofthe agno

sias came from Lissauer (1890/1988), who described two 

forms of agnosia: apperceptive agnosia and associative 

agnosia. Apperceptive agnosia is an inability to recognize 

objects because of damage to early visual cortices (occip

itallobe visual areas), which presumably results in prob
lems with elementary perceptual processes. Patients with 

apperceptive agnosia often cannot copy pictures ofvisu
ally presented objects, indicating problematic perceptual 

representations. Associative agnosia, by contrast, is an 

inability to recognize objects because of damage to later 

visual cortices (occipitotemporal regions, possibly corre

sponding to the IT cortex). Because ofthe apparent dam

age to temporal lobe visual areas, the cases of associative 

agnosia are more relevant to the present discussion than 

are the cases of apperceptive visual agnosia. 

Patients with associative agnosia often have relatively 
intact lower level perceptual processes, such as visual acu

ity and spatial frequency perception (but see Bay, 1953; 

Bender & Feldman, 1972, for contrasting views). Asso

ciative agnosics appear to have intact picture copying, at

testing to their intact perceptual processes, although these 

same patients are typically unable to name the object that 

they have copied. In addition, knowledge about objects 
also appears to be intact in associative agnosics; for ex

ample, these patients can often recognize objects when 

presented in other modalities, such as touch (see Farah, 

1990, for a review). 

Despite their apparently intact perceptual processes 

and knowledge of objects, associative agnosics show pro
found object recognition impairments as measured by 

naming visually presented objects. For example, Farah, 

Hammond, Levine, & Calvanio's (1988) patient L.H. was 

able to recognize only 73% of the 260 simple line draw

ings that he was shown; Wapner, Judd, and Gardner's 

(1978) patient was substantially more impaired, recog

nizing less than 25% of the objects with which he was 

tested. Associative agnosics also appear to use some shape 

information in attempting to infer what an object is. For 
example, Rubens and Benson's (1971) patient "often mis

read K as Rand L as T" (p. 309), and Ratcliff and New-
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comb's (1982) patient made visual mistakes in attempting 

to recognize objects, such as calling an anchor an um
brella, presumably because of the width of the anchor at 

the bottom. 

If one assumes intact perceptual representations in as
sociative agnosia, the recognition impairments observed 

in these patients might not involve visual object represen

tation but semantic or linguistic processing. That is, these 

patients may have "a normal percept stripped of its mean

ing," as Teuber (1968) described the syndrome. However, 

many recent analyses of associative agnosia have chal

lenged the assumption of normal low-level perception in 

these patients. It has become increasingly clear that these 
patients have subtle problems in perceptual processes. 

These perceptual problems constrain theories of associa

tive agnosia and the functioning of temporal lobe visual 

areas in humans. Associative agnosia may indeed involve 

problems in visual object representation, and some of 

these object representation problems may involve early 

perceptual processes that are required for normal object 

representation. 

The perceptual disturbances observed in associative 
agnosia are numerous and subtle. Although these pa

tients can copy visually presented stimuli accurately, the 

procedure by which they copy appears to be abnormal. 

The copying is slow and slavish (see Farah, 1990). As

sociative agnosics might draw only one or two lines at a 

time or might lose their place during copying, resulting 

in repeated copying of parts of the stimulus (see Wapner 

et aI., 1978, for an example). These patients are also quite 

sensitive to the perceptual quality of visual objects, hav

ing difficulties when pictures of objects are impoverished. 
The effects of visual quality can often be observed in com

paring recognition between line drawings and photo

graphs; line drawings are more impoverished than photo

graphs because of the lack of surface detail, shadows, 

and so forth, and often associative agnosics have greater 

difficulties recognizing objects depicted in line drawings 

than those depicted in photographs. Additionally, some 

associative agnosics also fail to appreciate the differences 
between possible and impossible figures (Ratcliff & New

combe, 1982), indicating that the patient's representation 

of overall structure, or structural description, of the shape 

may be abnormal or unanalyzed. All of these results in

dicate that low-level perceptual processes may not be as 

intact as some have thought. 

If one assumes that object representation processes 
have been damaged in these patients, how do these pa

tients perform when the same object varies in size, posi

tion, or orientation? That is, do associative agnosics show 

impairments in the visual constancies, similar to mon

keys with IT lesions? Unfortunately there has not been a 

substantial amount of research on this question, so direct 

comparison between human neuropsychology and lesion 

studies in monkeys is difficult. In the cases where the 
question has been addressed, the results appear equivocal. 

On the one hand, some associative agnosics do appear to 

be unable to represent objects across retinal variability, 
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indicating a failure of the object invariances. For exam

ple, Ratcliff and Newcombe (1982) demonstrated that an 
associative agnosic could not match two different views 

of the same object. If Ratcliff and Newcomb's patient had 

lost orientation-invariant object representations or had 

lost the ability to extract an object's critical features from 

a display, matching across viewpoints would be impaired. 

This was exactly what the patient demonstrated. On the 

other hand, however, other agnosic patients do not seem 

to be as dramatically impaired, if at all impaired, on match

ing objects across orientations (although these patients 

may not be best classified as associative agnosics but as 

integrative agnosics; see Humphreys & Riddoch, 1984, 

patient H.J.A., for an example). 

Although the variability in neuropsychological results 

may appear to raise more problems than solutions for ob

ject representation, one of the major contributions of 

neuropsychology has been to emphasize the complex na

ture of object representation. The representation systems 
discussed previously in this paper (e.g., feature models 

and volumetric models) have tended to involve a single 

recognition mechanism-namely, recognition by de

composing an object into its parts and first recognizing 

the parts before recognizing the entire object (this is par

ticularly characteristic ofMarr's, 1982, and Biederman's, 
1987, accounts). Neuropsychological approaches to ob

ject representation suggest that there may be multiple 

representation systems. 
One ofthe earliest observations that hinted at multiple 

recognition systems came from studies of patients with 

damage to the right parietal lobe (Humphreys & Riddoch, 

1984; Warrington, 1985). Patients with this damage have 
difficulties in matching objects in which one of the ob

jects has been misoriented to foreshorten the major axis 

of the object (e.g., to view a blender from directly above, 

parallel to the major axis of the object; Humphreys & 

Riddoch, 1984). These patients also have difficulties 
matching objects when the lighting direction differs in 

the stimuli (e.g., the same object lit from above in one 

photograph and lit from the side in another photograph; 

see Warrington, 1985). On the basis of these observa
tions, Humphreys and Riddoch (1984) suggested that 

there may be two routes for arriving at object constancy. 

One route involves computing a structural description 

relative to a frame of reference, and the other route in

volves processing distinctive local features of objects. 
Recent reports appear to support these two routes by 

demonstrating that orientation information (and possi

bly frame of reference information) is computed sepa

rately from object information and vice versa (Turnbull, 

1997): Some patients can recognize objects but do not 

know the correct orientation of a visual object, whereas 

other patients cannot recognize objects but do know the 
correct orientation of a visual object (Turnbull, 1997). 

A recent meta-analysis by Farah (1990, 1991) of the 

cases of associative agnosia also indicates that there may 

be multiple object recognition systems in the human 

brain. Farah examined the types of objects that different 

associative agnosics could and could not recognize. For 

her analysis, Farah grouped objects into three broad 

classes: words, common objects, and faces. Impairments 

in recognizing one of these classes of objects often leaves 

recognition of other types of objects unimpaired. For ex

ample, associative agnosics who cannot recognize com

mon objects often have little difficulty reading words or 
recognizing faces. Furthermore, patients who cannot rec

ognize (i.e., read) words, a syndrome called alexia, often 

show no signs of object recognition impairments. Simi

lar results are found for face recognition. Patients who 

cannot recognize faces, a syndrome referred to as prosop

agnosia, often can recognize other common objects. Those 
prosopagnosics who show some object recognition impair

ments for nonface stimuli (e.g., animal faces or buildings) 

typically are preserved in recognizing other common ob

jects. These dissociations among recognition impairments 

for different stimuli suggest that there may be multiple 

recognition systems in the human brain, a stark contrast 

to computational approaches that tend to endorse a sin

gle recognition mechanism (see, e.g., Biederman, 1987; 

Marr, 1982). But how many recognition systems? 

The patterns of dissociations discussed in the previ

ous paragraph may indicate that there are three separate 
recognition systems that can be isolated from one an

other: a recognition system for words, a second system 

for common objects, and a third system for faces. Not all 

of these dissociations are observed in patients, however, 

indicating that humans may not possess three independent 

recognition systems. On the basis of her analysis of case 
studies, Farah (1990, 1991) concluded that the dissocia

tions observed are more easily explained by postulating 

two object recognition systems. Farah's two-system ac

count is depicted in Figure 6. One recognition system is 

hypothesized to involve part decomposition, in which 

objects are recognized by first breaking the object into 
its parts (part decomposition), followed by recognition 

of the parts, and finally by recognition of the object (sim

ilar to Marr's, 1982, account). Recognition by this system 

involves representing multiple parts. The other recogni
tion system is hypothesized to involve no part decompo

sition and instead involves representing complex wholes. 

Recognition by this system is not mediated by prior rec

ognition ofthe parts; that is, one does not need to recog

nize the parts prior to recognizing the whole object. 
Under Farah's (1990, 1991) scheme, word recognition 

is thought to involve representing multiple parts (i.e., the 

letters), and face recognition is thought to involve recog

nition of the complex whole. Recognition of other com

mon objects, objects that are neither words nor faces, re

lies on some mix of these two systems. Some objects, 

such as animal faces, may be recognized through strong 

involvement of the complex whole system and less involve

ment by the part decomposition system. Other objects 
may rely on the part decomposition system more than on 

the complex whole system. This analysis explains why 
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Part Decomposition 

Part Decomposition 

Figure 6. (A) A depiction of Farah's (1991) two-process account of object representation. Recognition of printed 

words taps most heavily the part decomposition system and face recognition taps most heavily the nondecompo

sition system. Other objects, such as buildings, cars, or animal faces, would tap the two processes by different 
amounts. Note that the locations of the common objects in this figure are hypothetical and for illustration only. 

(8) Hypothesized damage that would occur in alexia, in which visual word recognition is impaired; note that 

recognition of some other objects (cars in this depiction) also would be impaired. (C) Hypothesized damage that 
would occur in prosopagnosia, in which face recognition is impaired. Recognition of some other objects (animal 

faces in this depiction) might also be impaired in prosopagnosia. 
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some dissociations in recognition do not seem to appear 

frequently, if at all, such as impairments in recognizing 

both faces and words with intact recognition of common 

objects. 
The possibility that multiple object recognition sys

tems exist contrasts with what early visual theorists, such 

as Marr (1982), hypothesized; most theorists in compu

tational vision (see Edelman, 1997, for a review) have 

tended to emphasize one recognition system that relies 

on part decomposition (see Farah, 1991). Indeed, part de

composition is viewed as being so important for recog

nition that computational vision systems that do not 

explicitly represent parts have been discussed as being 
flawed (Edelman, 1997). One challenge that will remain 

for multiple-systems approaches based on neuropsychol

ogy, such as Farah's (1990, 1991), will be to integrate the 

multiple recognition systems with both computational 
and behavioral data. For example, are Farah's two recogni

tion processes each capable of computing the invariances, 

and are the invariances computed in the same manner by 
both pathways? To be consistent with behavioral and an

imal studies, both pathways would need to possess size 

and spatial invariance. Also, the debate over whether ob

ject representations contain orientation invariance may 

find a resolution in such a framework. One could hy

pothesize (1) that the part decomposition system may be 

orientation independent, assuming that the critical de
composed parts are visible from most orientations of the 

object (see, e.g., Biederman & Gerhardstein, 1993), and 

(2) that the complex whole system does not exhibit ori

entation independence, on the basis of results that dem

onstrate that face recognition is sensitive to orientation 
(see, e.g., Yin, 1969). Tarr and Biilthoff(1995) have pro

posed a multiple-process model similar to this analysis. 
Future work will need to integrate the multiple-process 

models that have been proposed from neuropsychology 

(Farah, 1990, 1991) and cognitive psychology (Tarr & 

Biilthoff, 1995). 
Despite the advantage that neuropsychological studies 

have in suggesting multiple object recognition processes 

in the extrastriate visual cortex, research with patient pop

ulations has potential shortcomings. First, lesions that 

result from strokes do not obey neuroanatomical bound
aries and are likely to damage multiple visual areas. Sec

ond, patients who exhibit any of the visual agnosias are 

very rare, which makes progress in neuropsychology slow. 

Third, patients are not often tested on the same recogni
tion tasks, compounding the difficulties of comparing 

different patients who may have the same recognition 

impairments. 

These possible shortcomings of neuropsychological 

research highlight the importance of converging meth

ods for the study of object recognition in the human vi

sual system. Recent advances in neuroimaging method
ologies, including PET and functional MRI (fMRI), have 

provided another technique that has the potential to sup

plement the research with neuropsychological patients. 

For example, neuroimaging methods permit researchers 

to study groups of subjects and to restrict regions of in

terest to specific neuroanatomical areas. Although neuro

imaging studies are not without their own flaws or short

comings, imaging studies recently have contributed to 

our understanding of the neural mechanisms of human 

object recognition. 

Neuroimaging Studies of Object Recognition 

With the advent of PET and fMRI neuroimaging tech

niques, many recent attempts have been made to map 

both the structure and function of the human visual cor

tex on the basis of regional changes in cerebral blood 

flow (see DeYoe et aI., 1996; Sereno et aI., 1995). Early 

mapping studies demonstrated those cortical visual areas 

that are retinotopically mapped, such as VI and V2, as 

well as visual regions that are less retinotopically mapped, 

if at all, such as area MT. Most relevant for the present re

view are those studies that have examined regional cere

bral blood flow (rCBF) changes associated with object 

processing. 
Although early studies of rCBF changes during cog

nitive activity revealed rCBF that could be associated with 
object recognition (see, e.g., Roland & Friberg, 1985), it 

was only the use of more sophisticated methods that al

lowed blood flow changes to be isolated to specific corti

cal visual areas. Some of the first PET studies of cogni

tive processes focused on reading visually presented words 

(e.g., Petersen, Fox, Posner, Mintun, & Raichle, 1988; 
Petersen, Fox, Snyder, & Raichle, 1990; see Posner & Pe

tersen, 1990, for a review). These studies provided some 

evidence for the role of extrastriate areas in recognizing 

words, which, more generally, are a specific class of highly 

familiar objects. Petersen and colleagues (1990) asked 

subjects to passively view words (e.g., RAZOR), nonword 

consonant strings (e.g., RGZMP), or false font strings 

(e.g., t~tIOv'). Reasoning that all ofthe low-level visual 

processes involved in shape processing would be similar 
among words, consonant strings, and false fonts, Peter

sen et ai. (1990) used a subtractive technique to isolate 

the blood flow that was specific to the recognition of vi

sually presented words. Passive viewing of words acti
vated a region in the left ventral occipital lobe, a region 

termed the visual word form area by Petersen and col

leagues (see, also, Posner & Petersen, 1990). This visual 

word form area presumably corresponds to those extra

striate visual regions involved in word recognition, be

cause this area shows increased blood flow to words but 
not to non word consonant strings or false font strings 

(also see Puce, Allison, Asgari, Gore, & McCarthy, 1996, 

for a study contrasting word recognition with both face 

recognition and texture processing). 

These early PET studies of reading provided impor

tant results concerning the representation of specific ob

jects in the extrastriate visual cortex. However, word rec

ognition poses several problems for understanding object 

recognition in general. First, words, unlike most com
mon everyday objects, are inherently 2-D, which limits the 

generalizability of the early PET studies. Second, words 



are part of a larger language system and can be analyzed 

at different levels, such as the phonology (i.e., sound) of a 

word or the semantics (i.e., meaning) of a word. Third, 

words are also highly familiar, and such high degrees of 

familiarity may allow word recognition processes to be

come specialized and separate from general object 

recognition. 

To overcome these limitations of word recognition stud

ies, other investigators have studied recognition of com

mon objects. Sergent and colleagues (Sergent, Ohta, & 

MacDonald, 1992) investigated both face and object 

recognition during PET scanning procedures. In Sergent 

et al.'s study, the subjects viewed line drawings of com

mon objects, half of which depicted living objects (e.g., 

a horse) and half of which depicted nonliving objects (e.g., 

a desk); the subjects made living/nonliving judgments 

following each stimulus presentation. As a control task, 

Sergent et al. presented the subjects with sine wave grat

ings that varied in both spatial frequency and in orienta

tion; the subjects were asked to determine the orientation 

(horizontal vs. vertical) of each grating stimulus. Blood 

flow changes to the grating task were subtracted from 

blood flow changes in the object judgment task. 
Sergent et al. (1992) reported that the object minus 

grating subtraction revealed increases in blood flow in 
the left hemisphere. The statistically most reliable blood 

flow increases occurred in the lateral occipitotemporal 

areas (Broadmann's areas 19 and 20), in the left fusiform 

gyrus (area 37), and in the middle temporal gyrus (area 

21), although this last area of activation was also found 

in face-processing tasks. Although the fusiform gyrus was 

also activated in face-processing tasks, this activation 
was bilateral; in the object decision task, the fusiform ac

tivation was restricted to the left hemisphere. Sergent 
et al. interpreted these results as demonstrating the im

portance of the left posterior hemisphere, particularly the 

lateral occipitotemporal areas, for the recognition of com

mon objects. 

More recently, Malach et al. (1995) used fMRI to iden

tify a region in the lateral-posterior occipital lobe, termed 
the lateral occipital (LO) complex, that responded selec

tively to objects when compared with texture images. In 

their studies, the objects and the textures were matched 

on low-level image measures (Fourier power spectrum), 

although another set of texture images was not matched 

with the objects on low-level image measures. Malach 
et al. demonstrated that the LO complex was activated by 

object images but not by texture images. Furthermore, 

the LO complex did not appear to distinguish different 

classes of objects, such as common objects, faces, or scul

ptures. Malach and colleagues also conducted several 

control conditions to exclude possible artifacts that could 

have selectively activated the LO complex. In one study, 

the subjects were asked to make active scanning eye 
movements in one block but to hold fixation constant in 

another block. No differences in LO activation were found 

between the scanning and fixation blocks, suggesting 

that it was unlikely that the LO activation had been caused 
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by scanning differences between object images and tex

ture images. Malach and colleagues also demonstrated 

that activation of the LO complex was independent of 

low-level image activation, by (l) filtering object images, 

(2) adding visual noise to the object images, and (3) chang

ing the size of object images. None of these manipula

tions eliminated the activation of the LO complex, pro

vided that the object was still perceptible. That is, as long 

as the object was visible, albeit degraded, the LO com

plex showed activation. Malach et al. interpreted these 

results as demonstrating the importance of the LO com

plex in object detection. Furthermore, this region does not 

seem to playa role in the semantic analysis of objects, 

because the LO complex shows activation for unfamiliar, 

abstract objects such as sculptures; the LO complex also 

shows no activation differences between common ob
jects and faces. 

The studies by Sergent et al. (1992) and Malach et al. 

(1995) provided some of the important first steps in us

ing neuroimaging to study object recognition, by using 

appropriate control conditions and subtractions. How

ever, although both studies attempted to rule out low

level stimulus differences (e.g., image intensity, spatial 

frequency) between object and nonobject stimuli, there 

may be other differences in these stimuli that could pose 
problems in interpreting these data as showing the corti

cal bases of object representation in the human visual 

cortex. For example, object stimuli are more structured 

than either sine wave gratings or texture images and may, 

therefore, capture attention more strongly than do grat

ing stimuli. The object stimuli were, on average, more fa

miliar to the subjects than the control stimuli (gratings or 

textures), which may make the object stimuli easier to 

process, allow them to capture attention, or make them 
more memorable. 

More recent neuroimaging studies have attempted to 

create improved control stimuli for studying changes in 

rCBF associated with object processing. Schacter et al. 

(1995) presented subjects with images of possible and 

impossible objects (impossible objects were ones that 

could not exist in the 3-D world; they were structurally 

incoherent). As a baseline task, the subjects first saw the 

objects in a block of trials and had to respond with a key
press whenever an object disappeared from the screen. 

The subjects then studied 20 possible objects and 20 im

possible objects; following this study phase, the subjects 

performed a possible/impossible judgment that required 

them to report whether the object was structurally co

herent (i.e., had a real-world interpretation) or was struc
turally incoherent (i.e., did not have a real-world inter

pretation). The stimuli used in the possible/impossible 

judgment block were either old objects that had been ob

served in the study phase or new objects that had not 

been observed previously. Schacter et al. subtracted the 

blood flow changes in the baseline task from the blood 

flow changes in the possiblelimpossible task. Importantly, 
the same objects were presented in the baseline task, elim

inating the problems associated with comparing different 
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stimuli (e.g., comparing gratings to objects). Schacter 

and colleagues reported increased blood flow to possible 

objects in the inferior temporal gyrus and fusiform gyrus. 

This activation was bilateral for old objects (i.e., objects 

observed in the study phase) and in the right hemisphere 

for new objects. These results seem compatible with the 

results of both Sergent et a!. (1992) and Malach et a!. 

(1995) in pointing to occipitotemporal areas, including the 
fusiform gyrus, as being involved in object representa

tion. Schacter et al.'s results also indicate that there may 

be different rCBF changes associated with novel and fa

miliar objects, with familiar objects being represented 

bilaterally in the extra striate visual cortex. Other recent 

studies have also had subjects perform different tasks in 

order to localize blood flow changes associated with ob

ject recognition (see Kohler, Kapur, Moscovitch, Wino

cur, & Houle, 1995, who report changes in rCBF in the 
ventral posterior visual cortices bilaterally during an ob

ject identity-matching task). 
Beyond manipulating the different tasks that subjects 

perform in neuroimaging studies (e.g., passive fixation 

vs. object recognition), Kanwisher and her colleagues 

have taken a different approach by manipulating the 
stimuli that subjects view (Kanwisher, Chun, McDer

mott, & Ledden, 1996; Kanwisher et a!., 1997), an ap

proach similar to that used by Malach et a!. (1995). Kan

wisher et a!. (1997), for example, scanned subjects as 

they viewed pictures of familiar objects, pictures of novel 
objects, and scrambled stimuli, which were matched with 

the familiar objects on total luminance and number of 

pixels. Kanwisher and colleagues reasoned that these 

three stimulus types would receive different processing: 

(1) All three stimuli would engage feature extraction pro

cesses; (2) novel object and familiar object stimuli would 
also engage shape description processes that represented 

the objects' shape or structure; and (3) familiar objects 

would engage memory-matching processes. Subjects 

showed rCBF increases in the bilateral inferior occipito

temporal visual cortex when viewing both novel and fa

miliar object stimuli but not when viewing scrambled 
stimuli. On the basis of these results, Kanwisher et a!. 

(1997) concluded that this region ofthe occipitotemporal 

cortex is responsible for representing or describing an 
object's shape in a bottom-up manner (i.e., in a manner 

not related to the familiarity of the object). One puzzling 

aspect of these data, however, is that no memory-matching 

region was observed. That is, Kanwisher et a!. (1997) did 

not find a region that responded differentially to famil

iar objects and novel objects. Although the failure to find 
a memory-matching region could have many causes (e.g., 

no explicit recognition task was used), one possibility is 

that shape description areas are also involved in memory 

for shapes. Thus, a single neural locus would be involved 

in storing familiar objects, and novel objects could be 

represented by partial matches to the stored, familiar ob

jects. Such a proposal would be consistent with neural 
network models of object representation (see McClel

land & Rumelhart, 1981, for a model that demonstrates 

partial matches for novel objects), and some neuroimag

ing evidence supports this: Novel objects often exhibit 

larger blood flow increases, as compared with familiar ob

jects (see, e.g., Squire et a!., 1992). This result can be ex

plained by allowing novel objects to be partially matched to 

a number of stored familiar objects, allowing novel ob

jects to partially activate a relatively large number of stored 

familiar object representations. 

Although the majority of neuroimaging studies have 

focused on identifying those cortical regions associated 

with object representation, Kosslyn and colleagues have 

taken a different approach by studying different aspects 

of object processing. For example, as discussed previ

ously in the Behavioral Results section, recognition may 

be influenced by the specific view of the object, accord

ing to viewer-centered theories of object representation. 

To study the role of orientation in object representation, 

Kosslyn et a!. (1994) had subjects verify whether a spo

ken word matched a visually presented object while un

dergoing PET scans. The objects could appear either in 
a canonical orientation (e.g., a knife viewed from the side) 

or in a noncanonical orientation (e.g., a knife viewed from 

behind looking down the blade). Noncanonical objects 

resulted in larger blood flow changes in several regions, 

including bilaterally in the dorsolateral prefrontal cortex 

and bilaterally in the parietal cortex. The temporal lobe 

regions also demonstrated increased blood flow to the 

noncanonical views, as compared with the canonical views. 
Kosslyn et a!. argue that the prefrontal regions are nec

essary to guide object recognition in a top-down manner 

when objects appear in noncanonical orientations. Koss

lyn and colleagues conjecture that top-down guidance is 

required when viewing objects in noncanonical orienta

tions because the bottom-up stimulus information is in
sufficient to permit flawless recognition; as a result, the 

bottom-up information can only be used to generate hy

potheses about the object, and these hypotheses must be 

confirmed or refuted on the basis of higher level evalua

tion by frontal lobe mechanisms. Further specification of 

Kosslyn et al.'s framework will be required to determine 
whether the higher level evaluative processes involve trans

forming the image, as in viewer-centered theories (e.g., 

Tarr, 1995), or whether these evaluative processes involve 

extraction of parts that have been obscured by the non
canonical viewpoint, as might be suggested by some object

centered theories (e.g., Biederman, 1987). 

Neuroimaging methods have added to our understand

ing of the role of the human extrastriate cortex in object 

representation. Although some might argue that neuro

imaging studies only confirm what earlier neuropsycho
logical studies revealed, some neuroimaging studies 

make novel contributions, such as the finding that dif

ferent cortical areas can be activated with identical stim
uli, depending on the task performed (see, e.g., Haxby 

et a!., 1994). However, neuroimaging studies need to 

overcome two current shortcomings in order to integrate 

imaging results with the results from other methodolo

gies. The first shortcoming is the role of human object 



recognition areas (e.g., area LO and the fusiform gyrus) 

in computing the object invariances. Would human ob

ject recognition regions remain activated in the face of 

image-based changes (e.g., changes in size or retinal 10-
cation)? The results from such studies could be difficult 

to interpret because of the stimulus differences required. 

However, such studies could specify further the compu

tational processes that exist in human object recognition 

regions. The second shortcoming is the relationship be

tween the regions activated in the human extrastriate cor

tex and the visual areas in the macaque temporal lobe. 

Understanding the homologies between areas in the human 

visual cortex and those in the macaque visual cortex 

could allow one to make predictions about the functional 

role of a region in the human extrastriate cortex on the 

basis of single-unit recordings or lesion studies. 

Summary 
Neuropsychology and neuroimaging have provided a 

wealth of information concerning human object recog

nition. These methods have indicated that multiple sys

tems are probably involved in object representation and 

that other, nonvisual cortical areas may contribute to 

recognition. Despite the contributions of these method

ologies, there are important reasons to constrain theories 

of object recognition with the methods discussed earlier 
in this review. For example, these methods do not pro

vide information about the neural representations of ob

jects; furthermore, the arch skeptic could argue that the 

anatomical localization offered by these methods is woe

fully inadequate when compared with anatomical studies 

with nonhuman primates. However, human neuropsychol

ogy and neuroimaging studies can provide an under

standing of how object representations can be explicitly 

named or an understanding of the multiple object recog
nition systems that humans might possess. 

The neuroimaging studies reviewed represent one of 
the most active areas in the cognitive neuroscience of ob

ject representation. As neuroimaging methods continue 

to develop, there will need to be additional emphasis on 

several problems that appear in this field. For example, the 

recent meta-analysis of object recognition imaging stud
ies by Aguirre and Farah (1998) that appears in this vol

ume suggests that not all neuroimaging studies converge. 

Instead, very different focal activations are produced, 

even when the same stimuli (e.g., words) are used in the 

experiments. Whether this lack of convergence is due to 

variability in brains or to variability in object recogni

tion processes cannot be determined at present. Also, as 
Kanwisher et al. (1996) point out, many neuroimaging 

studies have confounds because the experimenters have 

manipulated both the stimuli used and the tasks performed 

by subjects (see Sergent et aI., 1992, for an example). 
Clearly, either stimuli or tasks should be manipulated, or 

it may be even better to manipulate both task and stim

uli in order to investigate interaction effects between 

stimuli and tasks. For example, novel objects and famil

iar objects may not produce different patterns of activa-
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tion unless some type of recognition task is used. Both 

neuropsychology and neuroimaging methodologies have 

contributed to our understanding of primate object repre

sentation. The challenge for theorists using these meth

ods will be to integrate their results with the computa

tional and algorithmic levels of Marr's (1982) approach. 

Until such an integration occurs, progress in the field will 

be only piecemeal. 

SUMMARY AND CONCLUSIONS 

In this review, I have attempted to summarize some of 

the recent results from the object recognition literature. 
I have restricted my discussion to how different method

ologies converge (or do not converge) on the role of the 

invariances in object representation. The invariances 

provide a nice thread that can be woven throughout the 

different disciplines that have investigated object repre

sentation. Specifically, there are excellent computational 
arguments for favoring object representation systems 

that compute size, spatial, and orientation invariances; 

such systems do not require an object representation to 
be stored for every possible size, spatial position, or ori

entation in which an object can appear. There is also 

strong evidence from psychophysical studies that indi

cates that the human recognition system computes these 

invariances (although the evidence is often mixed, as is 

especially the case for orientation invariance). Finally, 

neurophysiological, neuropsychological, and neuroimag

ing studies have also provided some evidence that sug

gests that the invariances can be computed by biological 

hardware, such as neurons in the inferior temporal lobe 
visual areas. 

Although the invariances provide a coherent theme for 

a review of studies across disciplines, the invariances 

themselves do not provide a theory of the IT cortex, a the

ory of object recognition, or a computational mechanism 

by which object representation could occur. The invari

ances only provide a way of describing the outputs of the 

neural and computational mechanisms underlying object 

representation (see Plaut & Farah, 1990). The challenge 

across all disciplines involved in the study of object rep

resentation will be to explain how the invariances can arise 
from the IT cortex and what this neural region represents 

or computes. There have been several hypotheses concern

ing the role of the IT cortex in object representation, and 

these have been reviewed recently by Plaut and Farah. 

One hypothesis about the neural mechanisms of object 

representation suggests that the relevant brain regions 

may be involved in storing simplified versions of the com
plex visual input or categorizing the visual input (see, 

e.g., Dean, 1982). For example, instead of storing the spe

cific shape of a complex object such as a canary, the neural 
mechanisms of object representation may store a less pre

cise or impoverished copy of this shape, but this impov

erished representation would have many similarities with 
other stored instances of the category bird. This catego

rization process might result in object invariances be-
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cause a large number of bird exemplars have been stored, 

allowing for the formation of a prototypical bird repre

sentation to emerge from the stored exemplars. This pro

totypical bird representation would contain the general 

properties of birds (e.g., bipedal, feathers, wings, etc.) 

that would allow this representation to be activated across 

a wide variety of retinal input (see Ratcliff & New

combe, 1982). Another hypothesis that has been put for

ward is that the neural regions underlying object repre

sentation store a distributed-trace memory of objects (see, 

e.g., Gaffan, Harrison, & Gaffan, 1986a, 1986b). This 

distributed-trace memory involves representing a single 

object across a large number of neurons, each neuron cod

ing for a different aspect of the object. For example, a ca

nary may be represented in part by a neuron that codes 

for wing-shape attributes; this neuron could also be in

volved in representing other objects that have wings, such 

as cardinals or robins. 

Hypotheses of the neural substrate of object represen

tation, such as categorization or distributed-trace mem
ory, are important because they tend to describe the pro

cesses underlying object representation, rather than 
merely describing what effects the object representation 

demonstrates (as with the invariances). However, the 

challenge to theorists focusing on object representation, 

as illustrated in this review, will be to integrate results 

across a large number of disciplines. Computational ac

counts will be important for specifying the function of 
the object representation system, but neurophysiology 

and other studies of the hardware level will place impor

tant constraints on computational accounts. Further

more, many of the hypotheses put forth are unlikely to be 

mutually exclusive. For example, a categorization ac

count may form prototypes via distributed-trace memo
ries, an effect observed in artificial neural network models 

(see, e.g., McClelland & Rumelhart, 1985). Object repre

sentation mechanisms are likely to be performing many 

computations, so any theory that specifies a small num

ber of operations, such as categorization or prototype for

mation, will probably fall short in providing an under

standing of object processing in the brain. Like other 

reviewers, I have not endorsed a specific theory of object 

representation but have instead tried to point out some of 
the key results that will need to be accounted for by any 

theory of object representation. 
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NOTE 

1. For the remainder of the paper I will use primate visual system to 

refer to both humans and nonhuman primates. When referring to either 

humans or nonhuman primates, I will specify which group I intend to 

discuss. 
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