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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rn Significant progress has been made in understanding vision 
by combining computational and neuroscientific constraints. 
However, for the most part these integrative approaches have 
been limited to low-level visual processing. Recent advances in 
our understanding of high-level vision in the two separate 
disciplines warrant an attempt to relate and integrate these 

results to extend our understanding of vision through object 
representation and recognition. This paper is an attempt to 
contribute to this goal, by using a computational framework 
arising out of computer vision research to organize and inter- 
pret human and primate neurophysiology and neuropsychol- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ogy. rn 

INTRODUCTION 

Vision can be characterized as the process of deriving 
the identities and spatial dispositions of objects in the 
surrounding environment from the information con- 
tained implicitly in retinal images. David Marr (1982) 
emphasized that understanding a complex information- 
processing task such as vision requires developing ex- 
planations at three levels of analysis: (1) computational 
theory: the purpose of the computation and its justifica- 
tion for the task; (2) representation and algorithm: the 
way that input and output are coded and the algorithm 
for transforming one into the other; and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 )  hardware 
implementation: the way that the representations and 
algorithm are physically realized. Each of the many dis- 
ciplines engaged in vision research can be characterized 
in terms of the primary levels of analysis in which its 
explanations are couched. Computer science focuses on 
the first and second levels. Its goals are to characterize 
the nature of the information that is available to visual 
processes and the constraints on these processes that 
arise from the environment and the demands of vision, 
as well as to develop representations and algorithms that 
efficiently carry out these computations. Neuroscience 
works primarily, but not exclusively, at the third level, 
studying how neural structures physically implement the 
processing of visual information. 

The fruitfulness of sharing constraints and ideas across 
levels of analysis has been most convincingly demon- 
strated in the study of low-level vision. Substantial in- 
sights about the processes that extract color, edge, 
motion, and spatial frequency information from retinal 
images have come from combining computational and 
neurophysiological constraints. For example, a solution 
to the computational requirements that one encounters 
in preparing an image for subsequent edge-detecting 
operations in early vision-the necessity for smoothing 
the image and finding intensity gradients at different 
scales-was suggested by physiological studies of retinal 
ganglion cells (Marr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hildreth, 1980). Reciprocally, the 
interpretation of the function of these cells in terms of a 
precise computational theory of edge detection has gen- 
erated further implications for their physiology, which 
have in turn guided physiological research (Poggio, 1983; 
Richter & Ullman, 1986). 

When we turn to higher levels of visual processing, 
such as those concerned with object recognition, we see 
much less interplay between the different levels of anal- 
ysis. In large part this is a result of the state of knowledge 
about object recognition within each level of analysis. In 
computer science, there is a sharp contrast between the 
fairly general and powerful methods for low-level image 
processing and the generally more limited, special-pur- 
pose systems that have been developed for object rec- 
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ognition (e.g., Ballard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Brown, 1982; Horn, 1986). In 
neuroscience, single unit recordings and lesion studies 
have yielded a detailed, coherent account of many zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas- 

pects of visual processing from the retina through striate 
cortex (e.g., Lennie, 1980; Livingstone & Hubel, 1984; 
Lund, 1988) and for many of the prestriate cortical areas 
(e.g., Maunsell & Newsome, 1987; Zeki, 1978; Van Essen, 
1985). Yet our knowledge of the neural mechanisms that 
underlie object recognition is in a relatively piecemeal 
state. 

Given that our understanding of object recognition 
lags behind our understanding of low-level vision in each 
of these separate disciplines, it is not surprising that 
interdisciplinary approaches would be delayed. Never- 
theless, we believe that enough is currently known about 
object recognition within each discipline to warrant an 
attempt at interdisciplinary synthesis. Current computa- 
tional theories of object recognition can provide a much- 
needed theoretical framework for interpreting the find- 
ings of visual neurophysiology, and, reciprocally, the em- 
pirical results of neurophysiology can provide important 
constraints on computational theories of vision. 

In the next section we present a computational frame- 
work for the design of object representations. Following 
that, we review the major results from the neurophysi- 
ology of object recognition, including lesion studies in 
humans and monkeys and single cell recording studies. 
Finally, we consider interpretations of the physiological 
data in terms of computational issues in object represen- 
tation and the implications that these data have for the 
computations being carried out by the visual system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
COMPUTATIONAL ISSUES IN OBJECT 
REPRESENTATION 

The way in which information is represented can greatly 
affect how easy it is to do different things with it. For 
example, multiplication is straightforward when num- 
bers are represented in the Arabic base 10 numeral 
system, whereas it is quite awkward when they are rep- 
resented in the Roman numeral system. For a given 
computation, a good representation produces descrip- 
tions that make important information easy to access 
while making irrelevant or confounding information dif- 
ficult or impossible to access. The computational criteria 
for the design of an adequate visual object representation 
must come out of an understanding of what types of 
information need to be made explicit, and what types 
can be made implicit or even discarded, for the purposes 
of object recognition. 

Criteria for Object Representation 

Computer vision researchers (Hoffman & Richards, 1985; 
Marr & Nishihara, 1978) have developed a number of 
important criteria for object representations: scope, 
uniqueness, stability, sensitivity, and accessibility. These 

criteria form the basis of a framework for evaluating 
proposals of object representations for both machine and 
human vision. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Scope and Uniqueness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An object representation must be capable of producing 
an adequate description for each recognizable object. 
For some applications this may be a restricted class of 
objects (e.g., polyhedra), but humans can recognize a 
vast range of different types of objects and so the object 
representation they employ must have extremely general 
scope. Not all representations can describe a sufficiently 
broad range of objects. For example, a representation 
that employs only planar surfaces would be inadequate 
to describe objects such as a ball or a tree. Although 
some representations have sufficient scope in theory 
(e.g., piecewise planar approximations of curved sur- 
faces), in practice the resulting descriptions fail along 
other criteria. 

Given adequate scope it is important that each object 
have a unique, canonical description within the repre- 
sentation. Two different objects that are given the same 
description cannot be distinguished. In addition, if the 
same object can be given different descriptions on dif- 
ferent occasions, the system will be faced with the pos- 
sibly difficult problem of determining at some point in 
the recognition process whether two descriptions specify 
the same object. Thus approaches that use multiple rep- 
resentations to extend their scope must solve the addi- 
tional problem of determining which represention to 
use in a given situation so as to ensure the generation 
of a unique description. 

Stability and Sensitivity 

The similarity between objects should be reflected in the 
similarity of their descriptions to ensure robustness in 
the presence of noise, stability over changes in viewing 
conditions, and natural generalization to novel objects. 
The stability of the representation guarantees that the 
system will be relatively immune to the effects of irrel- 
evant variations in the input. 

However, even small differences between objects must 
be representable if they are significant to the goals of 
the system. Thus stability cannot be bought at the price 
of dkcurding the more detailed information about an 
object. Rather, the stable information that captures the 
more general properties of an object must be decoupled 
from information that is sensitive to the finer distinctions 
between objects. 

Accessibility 

It must be possible to derive the description of an object 
from information that is available to the recognition pro- 
cess. The limited amount of information present in an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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image restricts the types of descriptions that can, in prin- 
ciple, be computed from it. Although it might be possible 
to extend the class of descriptions that is computable in 
principle by using top-down knowledge about previously 
recognized objects, this may make the recognition pro- 
cess computationally intractable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA representation that 
adequately meets all of the previous criteria, but requires 
information that is unavailable or requires an unreason- 
able amount of computation, is useless. 

A Design Space for Object Representations 

The above criteria specify the desired properties of an 
object representation. It should be clear that adhering to 
these criteria is a matter of degree and that designing a 
representation involves making inherent trade-offs be- 
tween them. Increasing the range of types of objects that 
can be represented (scope) tends to make it more dif- 
ficult to ensure that each individual object has a single 
description (uniqueness). Making a representation more 
sensitive to important details also tends to make it sen- 
sitive to irrelevant ones (i.e., less stable). And in general, 
improving the scope, uniqueness, stability, and sensitivity 
of a representation places increasing computational de- 
mands on the system, thereby sacrificing accessibility. 
Because of these trade-offs, there is no single “best” 
object representation for all recognition tasks, but rather 
a space of representations that each has particular 
strengths and limitations. 

In characterizing the space of possible object repre- 
sentations, cognitive psychology texts (e.g., Lindsay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Norman, 1977; Reed, 1982) typically describe three 
classes of object representation: templates, features, and 
structural descriptions. Unfortunately, the discussion 
tends to dismiss the first two alternatives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas insufficiently 
general, while remaining vague about the third. Pinker 
(1985) provides an excellent analysis of the strengths 
and limitations of object representations based on tem- 
plates and features (as well as a variation of the template 
approach based on Fourier analysis) and lays out a set 
of open issues in the design of an adequate representa- 
tion based on structural descriptions. In particular, many 
of the important differences between current theories of 
object representation can be captured by their positions 
on three fundamental and roughly independent issues: 
(1) the nature of the shape primitives used to describe 
the parts of the object, (2) the spatial reference frame 
with respect to which the object and its parts are de- 
scribed, and (3) the organization imposed on the com- 
ponents of the object description. In fact, the simple 
representation schemes mentioned above can be thought 
of as degenerate cases along some of these dimensions. 
Template models use a retinotopic reference frame but 
do not divide the object up into primitives, while feature- 
based models use well-defined primitives but do not 
explicitly represent spatial relationships relative to a ref- 
erence frame. 

In the rest of this section, we use the computational 
criteria presented earlier to characterize the design space 
for object representations induced by these three issues. 
The discussion is not intended to be a comprehensive 
review of object representation in computer vision; 
rather, it attempts to illustrate the implications and trade- 
offs involved in the various alternatives that have been 
proposed to address each of these issues. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Shape Primitives 

Much of the power of a representation based on part 
decomposition derives from decoupling the description 
of the shapes of parts of an object from the description 
of how those parts are related spatially. Typically, the 
shape of each part is described in terms of a parameter- 
ized class of shape primitives. The scope of a represen- 
tation depends in large part on the extent to which these 
primitives are capable of adequately expressing the 
shape of the parts of objects. In addition, the primitives 
must be derivable from the image (accessibility) and 
allow an object to be recognized under different viewing 
conditions (stability). 

There are three basic types of shape primitives used 
by computer vision systems: contour-based, surface- 
based, and volumetric. Contour-based primitives include 
(1) wire-frame models, which represent the significant 
edges of an object (e.g., Roberts, 1965), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  skeleton 
models, which represent the the axes of the major parts 
of an object (e.g., Blum, 1973), (3) junction models, 
which represent the arrangement of vertices of a poly- 
hedral object (e.g., Waltz, 1975), and ( 4 )  curvature ex- 
trema models, which represent the alternation of 
curvature extrema along significant contours of an object 
(e.g., Richards & Hoffman, 1985). One of the virtues of 
contour-based primitives is that they are significantly 
more accessible than higher order primitives such as 
surfaces or volumes. For this reason, the majority of 
existing recognition systems rely heavily on contour- 
based representations (Ikeuchi, 1987; Lowe, 1987; Hut- 
tenlocher, 1988) Unfortunately these representations 
tend to have limited scope. For instance, Richards and 
Hoffman’s “codons” (see Fig. 1) are perhaps the most 
general existing contour-based primitives, but they are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

O+ 0- 1+ 1- 2 I m  
Figure 1. Richards and Hoffman’s (1985) primitive codon types, 
used to describe the occluding contours of an object. Zeroes of cur- 
vature are indicated by dots, minima by slashes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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adequate only for objects that can be distinguished solely 
on the basis of their silhouette. 

In contrast, surface-based and volumetric primitives 
can describe the shape of an object with arbitrary pre- 
cision. The choice between them is a trade-off between 
stability and accessibility. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA typical surface-based repre- 
sentation consists of local descriptions of the surface 
properties for small patches of all of the visible portions 
of an object (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ) .  Representations using volumet- 
ric primitives assign three-dimensional descriptions, par- 
ameterized for size, shape, and orientation, to each of 
the major parts of an object. These parts are typically 
individuated on the basis of elongation or curvature ex- 
trema. Examples of volumetric primitives include poly- 
hedra (e.g., Waltz, 1975), spheres (e.g., Badler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Bajcsy, 
1978), generalized cylinders (e.g., Nevatia & Binford, 
1977), and superquadrics (e.g., Pentland, 1986) (see Fig. 
3). Since local surface properties are more directly com- 
putable from images than are three-dimensional spatial 
properties, surface-based primitives place less of a bur- 
den on lower level visual processes than do volumetric 
primitives. On the other hand, the spatial information 
that volumetric primitives make explicit is much more 
useful for object recognition than simple surface prop- 
erties, as it will be more stable under changes in view- 
point. However, deriving volumetric primitives is 
computationally intensive and relatively few existing 
computer vision systems employ them (eg., Brooks, 
1981). 
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Figure 2. An example of a surface-based representation: the 2%-D 
sketch of Marr and Nishihara (1978). 

2. 3. 

4. 5 .  6. 

7. 8. 9. 

Figure 3. Examples of superquadric volumetric shape primitives 
(From Bajcsy & Solina, 1987). 

Reference Frame 

Regardless of what class of shape primitives is used to 
describe the parts of objects, the spatial characteristics of 
these primitives cannot be specified in absolute terms 
but only with respect to some coordinate system or frame 
of reference. Hence the choice of spatial reference frame 
is a fundamental aspect of any theory of object represen- 
tation. 

The initial description of a visual stimulus is repre- 
sented relative to a frame of reference that is tied to a 
particular viewpoint; that is to say, it is viewer-centered. 
When the viewpoint changes, either due to an eye move- 
ment or change in head and body position, the contents 
of the representation change. If each object model is also 
represented in a viewer-centered reference frame, the 
matching process will be relatively straightforward. Un- 
fortunately, movement of either the object or the view- 
point brings about a change in the derived description 
so that it will no longer match the same object model, 
causing the representation to have poor stability. 

To achieve stability over changes in the position, ori- 
entation, and size of the object with respect to the viewer, 
a representation should separate the spatial information 
that is intrinsic to the object (i.e., its shape) from the 
aspects of the derived description that are idiosyncratic 
to the current viewpoint. One way to do this is to de- 
scribe each object model relative to a reference frame 
that is centered and aligned with itself (i.e., an object- 
centered reference frame, see Fig. 4 )  rather than to one 
that can change relative to the object. Recognizing an 
object involves redescribing the viewer-centered input 
description relative to the appropriate object-centered 
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Figure 4. An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAillustration of the use of object-centered frames in shape description. (From Hinton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Parsons, 1988). 

reference frame before matching it against object mod- 
els. Object-centered representations are much more sta- 
ble than viewer-centered ones because changes in the 
relation between the object-centered frame and the 
viewer-centered frame compensate for changes in the 
relation between the object and the viewer. However, 
this increased stability comes at the cost of reduced 
accessibility. The correct object-centered reference frame 
must be determined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwithout knowing the identity of the 
object. A major current area of research in computer 
vision is the efficient derivation of object-centered ref- 
erence frames using viewer-centered properties such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

elongation and symmetry (Kanade, 1987; Marr, 1977). 
It is important to point out that a reference frame need 

not be entirely viewer-centered or object-centered. A full 
three-dimensional reference frame is specified by seven 
independent parameters: three for its position in three- 
dimensional space, three for its orientation along three 
orthogonal axes, and one for scale. Some of these de- 
grees of freedom may be specified relative to the viewer 
while others are specified relative to the object. For 
example, objects can be represented by a collection of 
“characteristic views” (Koenderink & van Doorn, 1979) 
or “aspect groups” (Ikeuchi, 1987) in which topologically 
equivalent views of an object (i.e., those with the same 
set of visible surfaces) are grouped together and given 
the same representation (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5).  Because topology 
changes only with rotation in depth, such a representa- 
tion can be thought of as involving the assignment of a 
reference frame that is object-centered in position, scale, 
and image-plane orientation, but viewer-centered in the 
two depth orientations. Adopting this type of represen- 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. The “visual potential” of a tetrahedron, showing the rela- 
tionships between its various characteristic views. (From Koenderink 
& van Doorn, 1979). 

tation has certain computational implications. If a large 
number of views are stored, the computation involved 
in the matching process increases proportionally. If only 
a few are stored, then the derived description of the 
object viewed from some other viewpoint will fail to 
match any of the stored view and hence go unrecognized. 
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Thus this type of representation trades off accessibility 
against scope and stability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Organization 

Given choices for the shape primitives and reference 
frame used by a representation, the decision on how 
shape information is to be organized by the represen- 
tation is still open. The simplest choice is to impose no 
organization on the information. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn example of such a 
representation is spatial occupancy grids, in which the 
shape of an object is explicitly represented by a large, 
undifferentiated collection of volume elements, or “vox- 
els” (Ballard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Brown, 1982). Unfortunately, any impre- 
cision in the lower level processes that derive the voxels 
will produce significant changes in the resulting object 
descriptions, making these representations unstable. 

Another representation with minimal organization is 
the use of a separate set of viewpoint-specific templates 
(e.g., Tarr & Pinker, 1989) for each familiar object. The 
templates corresponding to a particular object must be 
grouped together to enable the matched object to be 
identified, but no organization is imposed within the 
group. 

An alternative way for a representation to organize 
information is to group information into separate mod- 
ules, and to explicitly relate these modules to each other 
(see Fig. 6). Given that objects have visual detail at every 
spatial scale, and that the parts of objects can often be 
viewed as objects themselves, the most natural way to 
organize the modules is hierarchically (e.g., Marr & Ni- 
shihara, 1978; Palmer, 1977). The most effective hierar- 

chical decomposition of an object is in terms of the 
identities of parts of the object and their spatial relations. 
The representation of each part consists of (1) its relation 
to the whole object and to the other parts, and (2) its 
own hierarchical decomposition, consisting of subparts 
and their spatial relations. Because objects tend to be 
larger than their parts, the hierarchy allows information 
at different spatial scales to be related in a structured 
fashion. This results in a more stable and sensitive rep- 
resentation because, by grouping together primitives of 
approximately equal stability (i,e., similar size), the sta- 
bility of modules using relatively large primitives does 
not destroy the sensitivity of those using smaller primi- 
tives. Hierarchical object descriptions also allow visual 
processes, such as attention, to naturally vary the spatial 
scale at which they are directed. However, hierarchical 
descriptions are more difficult to derive from an image 
than descriptions based on representations using less 
structured organizations. In general, greater amounts of 
organization allow for greater representational stability, 
but at the cost of accessibility. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Implementational Issues 

Thus far, we have shown how computational criteria 
based on the purposes of object recognition (at Marr’s 
computational level) can constrain the design of an ad- 
equate object representation (at the representation and 
algorithm level) in terms of what shape primitives, ref- 
erence frame, and organization it uses. Computational 
vision systems can also be distinguished on the basis of 
how these representations and their associated algo- 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. An illustration of hierarchically organized object models. (From Marr & Nishihara, 1978). 
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rithms are physically implemented in hardware. Al- 
though Marr emphasized that the same algorithm can be 
implemented in quite different technologies, he ac- 
knowledged that, among computationally equivalent al- 
gorithms, some may be better suited for a particular 
physical substrate than others. 

Approaches to computer vision differ in the type 
of computational architecture used to implement their 
representations and algorithms. One class of systems is 
typified by conventional “symbol manipulation” architec- 
tures, in which computation involves the composition of 
symbol structures by a central interpreter following a 
stored sequence of program instructions (Newell, 1980; 
Pylyshyn, 1984). Recently, an alternative computational 
architecture, known variously as “connectionist models,” 
“neural networks,” or “parallel distributed processing,” 
has received considerable attention in cognitive science 
in general, and computational vision in particular. Com- 
putation in these systems takes the form of cooperative 
and competitive interactions among a very large number 
of simple, neuron-like computing units (Feldman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Bal- 
lard, 1982; Hinton & Anderson, 1981; McClelland, Ru- 
melhart, & PDP Research Group, 1986; Rumelhart, 
McClelland, & PDP Research Group, 1986). Typically, 
each unit has associated with it a positive real-valued zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
stute that loosely corresponds to neural firing frequency. 
Positive or negative real-valued weights on connections 
between units (corresponding to synapses) determine 
how the state of each unit influences the states of other 
units. If the units represent hypotheses about aspects of 
potential interpretations of the input, the weights on 
connections between units can encode constraints be- 
tween these different hypotheses. In this way, the ana- 
logue of a “program”-the knowledge about how to 
process a given input-is not isolated within a central 
interpreter but rather is encoded throughout the net- 
work in the entire set of connection weights. This lack 
of a separation of program and data is a fundamental 
difference between connectionist and symbolic architec- 
tures (Derthick & Plaut, 1986). 

In general terms, computation in connectionist net- 
works occurs in the following way. Initially, input to the 
system sets the states of some of the units. Then as each 
unit locally updates its state based on the states of the 
units with which it is connected, the network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a whole 
gradually settles into a stable configuration of unit states 
that represents the interpretation that maximally satisfies 
the constraints represented by the connection weights 
given the constraints imposed by the input (Ballard, Hin- 
ton, & Sejnowski, 1983; Hinton & Sejnowski, 1983; Hop- 
field, 1982). Although these networks are poor 
approximations of actual neurobiology, they may capture 
many of the important computational properties of bi- 
ological neural networks (Churchland & Sejnowslu, 
1988). 

In this type of computational system, alternative inter- 
pretations (e.g., different object identities) are repre- 

sented as alternative patterns of activity over the same 
set of units. That is, each object activates a number of 
different units, and each unit participates in representing 
a number of different objects. This style of “distributed 
representation” has a number of interesting and useful 
general properties (Hinton, McClelland, & Rumelhart, 
1986). Since there are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2“ possible activity patterns over 
n units, many more objects can be represented than if 
each object were represented by a single unit (or sepa- 
rate group of units). Also, similar objects have similar 
(highly overlapping) representations, so they can have 
similar effects on other parts of the system in a straight- 
forward way. Furthermore, an unfamiliar object will be 
represented (i.e., will activate a set of units) in a way that 
is most consistent with the similarity of its visual appear- 
ance to the appearances of known objects. Hence the 
network generalizes naturally to novel input and can 
learn to recognize a new object simply by adjusting the 
weights among units representing similar objects so that 
the pattern of activity representing the new object be- 
comes stable. Finally, distributed representations are 
quite resistant to the effects of noise or damage (Wood, 
1978; Hinton & Sejnowski, 1986; Hinton & Shallice, 1990; 
Patterson, Seidenberg, & McClelland, 1990). 

Although the implementational characteristics of con- 
nectionist networks map naturally onto some aspects of 
human object recognition, it is important to realize that 
these advantages in no way eliminate the need to un- 
derstand and solve the difficult problems at the algo- 
rithmic and computational levels. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
summary 

To summarize this section, theories of object recognition 
vary according to their choice of shape primitives, spatial 
reference frame, and the organization imposed on part 
representations. These choices can be thought of as de- 
fining a space of the possible object representations un- 
derlying visual object recognition. Each position in this 
space involves trade-offs between satisfying the various 
computational criteria for an adequate object represen- 
tation that were discussed in the previous section. In 
general, as representations improve their scope, stability, 
and sensitivity they sacrifice accessibility, placing greater 
and greater computational demands on the recognition 
system. The existence of these trade-offs makes it difficult 
to choose one type of model as the “correct” model 
based on computational considerations alone. In addi- 
tion, computational systems differ in the type of com- 
putational architecture they use to implement their 
representations and algorithms. In the next section we 
review a set of neurophysiological data that may provide 
empirical evidence of the design decisions and imple- 
mentation chosen by the primate visual system. At the 
same time, the space of alternative models described 
above will provide a framework for interpreting these 
data. 
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NEUROPHYSIOLOGY OF OBJECT 
RECOGNITION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
There are three main sources of evidence about the 
neural bases of object recognition: clinical studies of 
brain-damaged humans, lesion studies of animals, and 
single-cell recording studies of animals. In this section 
of the paper we will survey the major results obtained 
with each of these methods. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Clinical Evidence fiom Brain-Damaged 

Damage to the posterior regions of the human brain can 
result in impairments in visual object recognition. Truly 
selective deficits in object recognition are known as vis- 
ual associative agnosias. Patients with associative agnosia 
are unable to recognize visually presented stimuli de- 
spite apparently preserved visual perception and general 
knowledge of the objects (see Farah, 1990, for a review). 
For example, they cannot recognize an object by seeing 
it, but can recognize it readily by touching it or hearing 
its sound. Furthermore, they can draw an excellent copy 
of it when it is placed in front of them, which seems to 
imply that their perception of it is not at fault (see Fig. 
7). Associative agnosia is often contrasted with appercep- 
tive agnosia, in which object recognition fails because 
lower level visual perception is grossly impaired. These 
patients cannot reliably discriminate a straight line from 
a curve, or an “X” from an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“0.” Whatever inferences can 
be made from such patients about the nature of vision, 
they will concern relatively early visual processes and 
not those concerned specifically with object recognition. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Examples of the copying abilities of (a) apperceptive ag- 
nosics (from Benson & Greenberg, 1969), and (b) associative agnos- 
ics (from Farah, Hammond, Levine, & Calvanio, 1988). None of the 
pictures was correctly identified. 

Hence for our purposes we will focus on the character- 
istics of associative agnosia. 

Lissauer (1890, translated in Shallice &Jackson, 1988) 
originally defined associative agnosia as the inability to 
access semantic knowledge of objects from truly intact 
visual representations. Although it is possible that some 
patients described as associative agnosics do have com- 
pletely intact perception (see Shallice, 1988, for a dis- 
cussion of this possibility), in most cases in which the 
patient’s visual capabilities have been systematically stud- 
ied there is evidence that a subtle visual impairment is 
responsible for their agnosia. For example, when asso- 
ciative agnosics draw, they do so extremely slowly and 
laboriously, rendering the copy a line at a time (Hum- 
phreys & Riddoch, 1987). Ratcliff and Newcombe (1982) 
found that their patient M.S. was unable to relate different 
views of the same object to one another (see Fig. 8). 
They also noted that M.S. was unable to discriminate 
between “possible” and “impossible” figures (Gregory, 
1970). This task has nothing to do with recognizing pre- 
viously familiar objects, but merely requires the con- 
struction of a visual representation of the structure of a 
whole object. However, the construction of this visual 
representation is undoubtedly a prerequisite for recog- 
nition. They therefore argue that in their case, at least, 
associative agnosia results from an inability to construct 
a coherent structural description of visual stimuli. 

Riddoch and Humphreys (1987) reached a similar con- 
clusion with their patient H.J.A. In one study, they pre- 
sented him with an “object decision task,” in which 
drawings had to be classified as real objects or as made- 
up objects created by grafting together parts of real ob- 
jects. H.J.k was impaired at this task, but he was para- 
doxically better at performing it when the drawings were 
filled in and presented as silhouettes. Riddoch and Hum- 
phreys interpret this as evidence that his problem is an 
inability to integrate separate visual features together into 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. An example of an object photographed from a usual view 
(top) and an unusual view (bottom). (From Warrington, 1982). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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a visual representation of the whole. The greater number 
of details in the drawings, compared to the silhouettes, 
made this a harder task for him. Humphreys and Riddoch 
(1987) also showed that H.J.A. is impaired in visual search 
experiments. In experimental contexts in which normal 
subjects can benefit from the good configuration of the 
stimulus array, H.J.A. shows the same slow, serial search 
as when the stimulus locations are random. 

Levine and Calvanio (1989) report the results of a 
series of standardized, factor-analyzed visuallspatial tests 
with an agnosic patient, L.H. They found that he was 
impaired mainly on the tests that emphasize the “visual 
closure” factor. These tests require synthesizing frag- 
mented or partially occluded stimuli into a “whole” (see 
Fig. 9). In contrast, L.H. performed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbetter than normals 
on tasks that emphasize the “flexibility of closure” factor, 
in which subjects must find shapes hidden within larger 
patterns. Normal subjects find this task difficult because 
the hidden shape often does not correspond to a “good” 
or natural part of the larger whole. These results are 
consistent with the idea that L.H., like M.S. and H.J.A., 
does not automatically see objects as coherent wholes. 
In sum, the available data from three studies of the visual 
capabilities of associative agnosics all point to an impair- 
ment in their ability to see the overall structure of an 
object, and the relation of its parts to its overall structure. 

Prosopagnosics have a relatively circumscribed rec- 
ognition impairment that mainly affects the recognition 
of faces. They may be able to read, recognize most com- 
mon objects, photographs, and drawings, but be so pro- 
foundly impaired at face recognition that they cannot 
recognize their own family by sight, or even themselves 
in a mirror. Like associative agnosics, prosopagnosics 
have traditionally been described as having normal vi- 
sion, but evidence is now accumulating to the contrary. 
For example, some prosopagnosics perform within nor- 
mal limits on the Benton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Van Allen test of facial dis- 
crimination, in which unfamiliar faces must be matched 
across changes in perspective and lighting (Benton & 
Van Allen, 1972). However, when the time required to 
perform the test, and the manner of performing the test, 

are taken into account, the “normalcy” of these patients 
appears questionable. Typically, they resort to slow, serial 
checking of the faces, verifying one feature at a time 
(Ellis & Young, 1987). Again, this is broadly consistent 
with an impairment in seeing how the individual parts 
of an object relate to the whole. 

Although the neuropsychological studies summarized 
above suggest that an impairment in object representa- 
tion underlies associative agnosia, their usefulness is lim- 
ited in a number of ways. First, with few exceptions, 
research with these cases has been largely descriptive. 
Although all of the studies seem to indicate a difficulty 
in representing the overall shape of a complex object, 
they do not allow precise inferences regarding the nature 
of the underlying functional impairment. Second, the 
appropriate cases are quite rare, and the exact locations 
of their brain damage is variable and often unknown. 
Although bilateral inferior temporal-occipital damage is 
common (Alexander & Albert, 1983), some authors have 
described agnosia-like syndromes following unilateral 
temporal-occipital lesions and lesions affecting predom- 
inantly parietal areas (Warrington, 1982). Experimental 
work with animals, summarized in the following section, , 
allows greater control over lesion localization and has 
generally included more systematic investigations of the 
functional nature of the deficit. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lesion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStudies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAnimals 

The earliest experimental work on the neurophysiology 
of object recognition in animals involved the bilateral 
surgical ablation of different parts of the occipital and 
temporal lobes of monkeys. Kluver and Bucy (1937, 
1939) discovered that the complete removal of both tem- 
poral lobes causes a rather complex disruption of mon- 
keys’ social, sexual, and eating behavior, known as the 
“Kulver-Bucy syndrome,” of which a failure to recognize 
visual stimuli is one aspect. In the decades that followed, 
researchers attempted to fractionate this syndrome and 
to narrow down the particular areas of the temporal lobe 
involved in visual abilities (Blum, Chow, & Pribram, 1950; 

Figure 9. Examples of stimuli 
in a recognition task that 
stresses the “visual closure” 
factor. (a) is a flag; (b) is a 
hammer head. (From Elkstrom, 
French, & Harman, 1976). 
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Chow, 1951, 1952). It was eventually determined that 
lesions confined to the neocortex of the inferior tem- 
poral gyrus (inferoternporal cortex, or IT see Fig. lo), 
corresponding roughly to area TE of von Bonin and 
Bailey (1947), are sufficient to produce visual deficits 
(Mishlun, 1954, 1966; Mishkin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Pribram, 1954). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA great 
deal of subsequent research has been aimed at precisely 

b 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. The location of cortical visual areas in the macaque, in- 
cluding posterior and anterior inferotemporal areas (PIT and AIT), 
viewed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) laterally, (b) medially, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c) with the superior temporal 
sulcus opened. (From Maunsell & Newsome, 1987.) 

characterizing nature of the visual impairment produced 
by IT lesions in monkeys. Most of these investigations 
did not test visual object recognition per se (as is done 
with human visual agnosics), but rather tested the ability 
of IT-lesioned monkeys to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlearn to discriminate among 
visual stimuli (see Levine, 1982, for a detailed compari- 
son of the two testing conditions). To explicitly relate 
these results to object recognition it will help to review 
the type of task typically used in lesion studies. 

In visual discrimination experiments, the monkey is 
rewarded for responding differentially (e.g., by button 
press) to a particular visual pattern, which is presented 
with one or a number of distracting stimuli that are often 
visually similar to the rewarded pattern. In one type of 
visual discrimination task, the “simultaneous forced- 
choice task,” the rewarded pattern and distractors are 
presented concurrently. In another common version, the 
“delayed match-to-sample task,” the rewarded pattern is 
presented and then removed, and then it is presented 
again along with distracting stimuli. In this way which 
pattern is rewarded can be varied from trial to trial. In a 
lesion experiment, the experimental, normal, and oper- 
ated control groups may be compared in terms of the 
number and type of errors made, the number of trials 
required to learn the discrimination to some perfor- 
mance criterion, or the extent to which the animals in 
the group were able to perform the task at all. 

In experiments involving bilateral lesions of IT in 
monkeys, the most striking result is a severe impairment 
in learning visual discriminations in tasks such as those 
described above. These monkeys require many more 
learning trials to reach criterion than normal or operated 
control monkeys (e.g. Blum et al., 1950; Mishkin, 1966; 
Pribram, 1954). Although the visual discrimination deficit 
is generally demonstrated in the context of tasks that 
require new learning, IT-lesioned monkeys also show a 
severe loss in retention of a discrimination learned pre- 
operatively (e.g., Dean & Weiskrantz, 1977; Gross, 1978; 
Pribram, 1954), an impairment more closely analogous 
to human visual object agnosia. 

Monkeys with IT lesions do not simply learn a normal 
discrimination more slowly; they appear to use stimulus 
features abnormally. Butter, Mishkin, and Rosvold (1965; 
Butter, 1968) found that after IT-lesioned monkeys had 
learned to discriminate a grating of a particular orienta- 
tion and color from other patterns they were more likely 
than normals to inappropriately respond to stimuli of a 
similar orientation or color as the original rewarded 
stimulus. Analogous results obtain for the generalization 
of discriminations involving angles (Blake, Jarvis, & Mish- 
kin, 1977). Iwai (1985) presented a series of experiments 
demonstrating that IT-lesioned monkeys learn visual dis- 
criminations by relying on idiosyncratic lower level as- 
pects of the stimuli. For example, in discriminating 
between a triangle and a circle, IT-lesioned monkeys 
learned to respond to the fact that the bottom line of the 
triangle was parallel to the bottom edge of the back- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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ground plaque; when this relationship was eliminated 
(by rotating the plaque relative to the triangle but leaving 
the patterns unchanged) IT-lesioned monkeys, but not 
normals, lost the discrimination. Gaffan, Harrison, and 
Gaffan (1986a) found that following IT lesions, the per- 
formance of monkeys trained on a serial reversal learn- 
ing task (in which the reward association of two stimuli 
are varied) recovers to preoperative levels, in contrast to 
those trained on a more conventional discrimination 
learning task (involving a new pair of stimuli for each 
problem). They suggest that IT lesions reduce the nuni- 
ber of attributes that are used to describe stimuli, so that 
tasks involving only a few stimuli are relatively unim- 
paired. 

Lower level sensory deficits such as field defects, acuity 
losses, or raised visual thresholds have not been found 
following IT lesions (Cowey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Weiskrantz, 1967; Mishkin 
& Weiskrantz, 1959; Weiskrantz & Cowey, 1963). Fur- 
thermore, animals with such defects (generally as a result 
of striate lesions) are less impaired than IT-lesioned 
monkeys on many visual discrimination tasks (Butter et 
al., 1965; Wilson & Mishkin, 1959). Hence the role of IT 
in visual discrimination learning does not directly involve 
these low-level image properties. It has also been shown 
that the deficit is exclusively visual: olfactory discrimi- 
nation (Brown, 1963), tactile discrimination (Wilson, 
1957), and auditory discrimination (Weiskrantz & Mish- 
kin, 1958) remain unimpaired. In contrast, lesions of 
higher cortical areas that receive input from IT (e.g., the 
temporal pole and superior temporal sulcus) either pro- 
duce no visual discrimination deficit, or produce deficits 
in multiple modalities rather than in vision alone 
(Brown, 1963; Mishkin, 1972). This implies that IT is 
concerned exclusively with the processing of visual stim- 
uli, and that it is the final processing station in the brain 
for visual stimuli within the visual system proper. 

IT receives most of its input from a particular part of 
prestriate cortex, roughly corresponding to area TEO of 
von Bonin and Bailey (Kuypers, Szwarcbart, Mishkin, & 
Rosvold, 1965). This area has been called “foveal pres- 
triate” cortex (Cowey & Gross, 1970) because of its dis- 
proportionate representation of foveal visual stimuli. 
Predictably, lesions of foveal prestriate cortex also impair 
performance on visual discrimination learning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtasks 
(Cowey & Gross, 1970; Heywood & Cowey, 1987; Iwai & 
Mishkin, 1968, 1969). However, the character of these 
visual discrimination deficits is quite different from those 
caused by IT lesions. In general, monkeys with foveal 
prestriate lesions are more severely impaired than those 
m-ith IT lesions. They fail on all but the simplest discrim- 
inations (Iwai & Mishkin, 1968), and have worse post- 
operative retention of a learned discrimination than do 
IT-lesioned monkeys (Cowey & Gross, 1970; Iwai & Mish- 
lun, 1969). However, while foveal prestriate lesioned 
monkeys are worse at learning to make difficult discrim- 
inations, IT-lesioned monkeys are worse at “concurrent 

discrimination” learning, in which a number of simple 
discriminations, which the monkey would have no trou- 
ble learning separately, are interleaved and must be 
learned in parallel (Cowey & Gross, 1970; Iwai & Mish- 
kin, 1968; Mishkin, 1972). In general, monkeys with IT 
lesions are more distracted by intervening tasks (Dean 
& Cowey, 1977; Gross, Cowey, & Manning, 1971; Iversen, 
1970) while those with foveal prestriate lesions are more 
distracted by the removal of redundancy (Wilson & Kauf- 
man, 1969) or addition of irrelevant features to a stimulus 
(Dean & Cowey, 1977; Gross et al., 1971; Iwai & Mishkin, 
1969). Levine (1982) and Heywood and Cowey (1987) 
suggest that the pattern of deficits following foveal pre- 
striate lesions in monkeys is analogous to apperceptive 
agnosia in humans. 

Initial attempts at interpreting these results character- 
ized the different functions of foveal prestriate cortex 
and IT, respectively, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas “discrimination vs. visual mem- 
ory” (Iwai & Mishkin, 1968; Mishkin, 1972), “identifica- 
tion vs. encoding” (Wilson, Kaufman, Zieler, & Leib, 
1972), and “perceptual vs. associative” (Cowey & Gross, 
1970; Gross, 1973). Although these simple dichotomies 
served to organize thinking and guide further research, 
additional experimentation made it clear that they were 
inadequate explanations. For example, the hypothesis 
that IT subserves visual memory was challenged by a 
series of delayed match-to-sample tasks in which the time 
between the initial presentation of the rewarded stimulus 
and its later presentation among distractors was varied 
(Dean, 1974). The demand on visual memory increased 
with longer delays, and normal monkeys committed pro- 
gressively more errors. Yet monkeys with IT lesions who, 
after extensive training, learned the task at zero delay 
were no more severely affected by increasing delays than 
normal monkeys. This suggests that the function of IT is 
not visual memory per se (Gaffan et al., 1986a). 

Most recent lesion studies have focused on attempting 
to determine the types of information that are and are 
not represented in IT by varying the relationship be- 
tween the rewarded stimulus and distracting stimuli in 
visual discrimination tasks. To the extent that stimuli that 
differ along a particular visual dimension are less dis- 
criminable to monkeys with IT lesions, this visual di- 
mension is presumably represented in IT. Conversely, to 
the extent that stimuli are equally discriminable to mon- 
keys with and without IT lesions, the dimension of dif- 
ference is arguably not represented in IT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Position 

The retinulposition of a stimulus appears to be irrelevant 
to IT representations (Gross & Mishkin, 1977; Seacord, 
Gross, & Mishkin, 1979). Monkeys with bilateral, but not 
unilateral, IT lesions show impaired interhemispheric 
transfer of a learned visual discrimination (i.e., impaired 
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generalization across the two hemifields). This implies 
that IT is necessary for stimulus equivalence between the 
two visual hemifields and, presumably also, for equiva- 
lence between retinal positions within a hemifield. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Size 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsize of stimuli is another property that appears to 
be represented abnormally in IT-lesioned monkeys. 
Humphrey and Weiskrantz (1969) trained monkeys to 
discriminate two disks at varying distances on the basis 
of their physical size. After IT lesions the monkeys were 
unable to relearn the task and instead responded on the 
basis of either retinal size or distance. Ungerleider, Ganz, 
and Pribram (1969) later replicated and extended these 
findings on IT lesions and size constancy. Weiskrantz and 
Saunders (1984) found that after training normal and IT- 
lesioned monkeys to discriminate a three-dimensional 
object paired with a large number of distractors, the 
lesioned monkeys were impaired relative to normals in 
discriminations involving larger and smaller versions of 
the rewarded object. These results imply that whereas IT 
is not required for the representation of retinal size or 
distance, it is required for size constancy. In contrast, 
Holmes and Gross (1984b) found that IT-lesioned mon- 
keys showed normal generalization to scaled versions of 
a stimulus (a block uppercase letter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“J‘’) that had to be 
discriminated from a single fixed distractor (a block 
Greek letter “IT”). However, these results can be ex- 
plained if we assume, as suggested by the work described 
above, that the IT-lesioned monkeys were simply relying 
on lower level cues, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the curved segment of the 
J , that would be present in scaled versions of the letter 
and are sufficient to distinguish them from the particular 
distractor used. Under this interpretation these results 
do not conflict the claim that retinal size information is 
not represented in IT. 

“ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Orientation 

Interpreting the results on the representation of stimulus 
orientation is far less straightforward than for the previ- 
ous visual dimensions because changing the orientation 
of a stimulus also tends to change which features of the 
stimulus are visible or salient. Given the evidence that 
IT-lesioned monkeys tend to rely more on idiosyncratic 
stimulus features than do normals, discrimination deficits 
in these experiments may reflect a difference in sensitiv- 
ity to the appearance of stimulus features rather than to 
orientation per se. To tease apart these effects, it is im- 
portant to distinguish image plane (i.e., frontoparallel) 
Orientation from orientation in depth. 

Changes in image plane orientation do not affect the 
visibility of stimulus features but can change their sali- 
ence, since monkeys tend to pay more attention to the 
part of the discriminanda closest to the response site 

(Meyer, Treichler, & Meyer, 1965). In contrast with the 
conventional finding that IT lesions impair discrimina- 
tion between different stimuli (so-called “different pat- 
tern” discriminations), Gross (1978) found that monkeys 
with IT lesions are relatively unimpaired at discriminat- 
ing between simple two-dimensional patterns, such as 
digits, that differed only by a rotation of 90 or 180” 
(“rotated-pattern’’ discriminations). Holmes and Gross 
(1984a) replicated these results, but did find that IT- 
lesioned monkeys were worse than normals at discrim- 
inating patterns differing only by rotations of 30 or 45” 
(see Fig. 11). Holmes and Gross also obtained essentially 
similar results for three-dimensional objects, such as 
small colored toys, rotated only in the image plane. Thus 
monkeys with IT lesions are worse than normals at dis- 
criminations involving small, but not large, differences 
in image plane orientation 

’ “ O r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0  - i k  d b  
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Figure 11. Orientation discrimination performance of monkeys with 
bilateral IT lesions (T) relative to unoperated controls (U) and those 
with bilateral lesions of lateral striate cortex (S). (From Holmes & 
Gross, 1984a.) 
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Interpreting these results requires separating two 
effects. First, normal monkeys find rotated-pattern dis- 
criminations more difficult than different-pattern 
discriminations, presumably because they tend to ignore 
differences in orientation in comparing shapes. Second, 
the performance of IT-lesioned monkeys at rotated-pat- 
tern discriminations improves as the rotation angle is 
increased (i.e., as the patterns become more discrimin- 
able based on low-level features). For rotated-pattern 
discriminations involving large rotations, IT-lesioned 
monkeys are at their best and hence are unimpaired zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
relative to the “impaired” normals. At smaller rotations, 
IT-lesioned monkeys have increasing difficulty relying 
on lower level feature differences, and so their relative 
deficit returns. Under this interpretation, normal mon- 
keys have difficultly responding on the basis of image 
plane orientation differences, and hence this visual di- 
mension does not appear to be represented in IT. 

Orientation in depth might be expected to be treated 
differently by the visual system from orientation in the 
image plane, as depth rotations generally change the 
appearance of a stimulus in more complex ways, reveal- 
ing previously hidden surfaces and occluding previously 
visible ones. Indeed, Weiskrantz and Saunders (1984) 
found that monkeys with IT lesions showed reduced 
transfer from a learned discrimination to one involving 
a 90” rotation in depth. A possibly conflicting result 
comes from the work of Holmes and Gross (1984b), who 
failed to find a generalization deficit in IT-lesioned mon- 
keys for 60” depth rotations. However, the block letters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘y’ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘‘T” used in the Holmes and Gross study would 
retain their discriminability based on lower level cues 
under 60” depth rotations. Thus, a preliminary conclu- 
sion from the available data would be that IT is required 
for the representation of equivalence over depth rota- 
tions. 

Depth 

The perception of depth per se seems to depend to some 
degree on IT. Cowey and Porter (1979) demonstrated 
that IT lesions impair the ability of monkeys to discrim- 
inate depth in red-green anaglyph random-dot stereo- 
grams when the binocular correspondence is reduced. 
Holmes and Gross (1984b) found that after learning a 
discrimination involving three-dimensional stimuli, IT- 
lesioned monkeys generalize more poorly than normals 
to discriminations involving a two-dimensional (2D) ver- 
sion of the original rewarded object. This result could 
be interpreted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas implying that IT is involved in perceiv- 
ing stimuli as three-dimensional (3D) objects rather than 
as 2D images, if one assumes that the similarity between 
the 3D and 2D versions of the stimulus will be greatest 
when they are viewed as representing 3D objects. The 
fact that discriminations between line orientation in the 
image plane do not appear to involve IT (Gross, 1978) 

is consistent with the hypothesis that IT plays a special 
role in representing depth. 

Illumination 

The shadows that an object casts across itself as a function 
of the location of the source of i~umination can change 
the appearance of an object. Whereas normal monkeys 
do not show any difficulty generalizing across different 
conditions of illumination, Weiskrantz and Saunders 
(1984) found that IT-lesioned monkeys were impaired at 
this generalization (see Fig. 12). 

Enantiomorpby 

A surprising result concerns the preserved ability of IT- 
lesioned monkeys to make enantiomorply (mirror-im- 
age) judgments. Among the results of Cowey and Gross 
(1970) and Gross (1973) are examples of pairs of stimuli 
that normal monkeys find extremely difficult to discrim- 
inate, yet on which monkeys with IT lesions are no 
worse. Each of these stimulus pairs consisted of lateral 
mirror images. Further experimentation (Gaffan et al., 
1986a; Gross, 1978; Gross, Lewis, & Plaisier, 1975) con- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 12. Effects of illumination change on stimuli in a six-alterna- 
tive forced-choice task used by Weiskrantz and Saunders (1984). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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firmed that monkeys with IT lesions are as good as 
normals at discriminating stimuli that differ only in hand- 
edness. (see Fig. 11). These results make sense if the 
handedness of an object is not explicitly represented in 
IT; normals find these discriminations unusually difficult 
because both patterns have the same description in IT, 
while lesioned monkeys rely on lower level descriptions 
in which the enantiomorphs are often quite different. 

The studies reviewed above show that IT is necessary 
for representing shape independent of its retinal size, 
location, handedness, three-dimensionality, and, for the 
most part, orientation. This characterization of the prop- 
erties of representations in IT helps to explain the earlier 
findings that seemed to implicate it in visual learning 
and memory. Because the shape representations in IT 
are more highly abstracted from the stimulus array than 
earlier representations in striate and prestriate cortex, 
they provide a more “concise” representation of stimulus 
shape (i.e., leaving out irrelevant information about po- 
sition, size, etc.). The more concise a representation one 
has available, the greater the mnemonic capacity for re- 
taining information (Miller, 1956). 

Although lesion studies in animals provide informatim 
about the nature of the stimulus representations in IT, 
this information depends on fairly indirect inferences 
from animals’ behavior in complex tasks. Furthermore, 
it has already been noted that lesioned animals may 
develop idiosyncratic strategies for performing these 
tasks. An advantage of single-unit recordings is that one 
can directly observe the response of the visual system to 
a variety of stimuli, independent of postvisual cognitive 
processing required for performing behavioral tasks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Single-Cell Recording 

Early investigations of the electrophysiology of IT re- 
corded from single cells in anesthetized monkeys during 
the presentation of simple visual stimuli, such as colored 
oriented bars (Gross et al., 1967, 1969, 1972). The ma- 
jority of neurons in this area are visually sensitive, with 
large receptive fields (about 26“ in diameter on average), 
extending into both visual hemifields, and always includ- 
ing the fovea. However, these cells do not seem to be 
sensitive to the association of the stimulus with reward 
(Rolls, Judge, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sanghera, 1977; Sato, Kawamura, & Iwai, 
1980). In contrast with earlier visual areas, IT shows no 
visuotopic organization (Desimone & Gross, 1979), al- 
though cells with similar response properties tend to 
cluster (Fuster & Jervey, 1982). The responses of IT cells 
are enhanced during discrimination tasks as compared 
with conditions in which the monkey need attend only 
to the stimuli (Richmond & Sato, 1987), and become 
larger and more selective as the difficulty of the discrim- 
ination increases (Spitzer, Desimone, & Moran, 1988). 

Researchers have had great difficulty determining the 

optimal stimulus for many IT cells. Although many cells 
respond well to virtually any stimulus, other cells are 
selective along a particular visual dimension and rela- 
tively insensitive along others. Some cells have been 
found that appear to respond quite selectively for a par- 
ticular complex stimulus, such as forceps, a brush, a 
monkey hand, or a face. Further research has revealed 
that the superior temporal sulcus (STS) contains a rela- 
tively high proportion of cells selective for faces (Baylis, 
Rolls, & Leonard, 1985; Bruce, Desimone, & Gross, 1981; 
Desimone, Albright, Gross, & Bruce, 1984; Perrett, Rolls, 
& Caan, 1979, 1982: Perrett, Smith, Potter, Mistlin, Head, 
Milner, & Jeeves, 1985; Rolls, 1984; Rolls & Baylis, 1986; 
Rolls et al., 1977; Yamane, Kaji, & Kawano, 1988) (see 
Fig. 13). Of the cells in the temporal cortex that respond 
selectively to complex stimuli, the strongest and most 
selective responses are to faces (Baylis et al., 1985). 

To understand how visual information is represented 
in IT, much recent work has focused on precisely char- 
acterizing the way in which the response properties of 
visually responsive IT cells in awake, behaving monkeys 
are (or are not) affected by changes in the stimulus along 
visual dimensions such as shape, texture, color, size, and 
orientation. The stimuli used in these studies included 
simple bars of varying lengths and widths, two-dimen- 
sional shapes and patterns, and complex three-dimen- 
sional objects. Consistent with the lesion studies, the 
general conclusion that has emerged is that IT cells are 
sensitive to aspects of the stimulus that reflect stable 
physical properties of the object while remaining insen- 
sitive to aspects that are specific to the particular viewing 
conditions. Many IT cells respond selectively along the 
dimensions of shape, color, and texture (Desimone et 
al., 1984, 1985; Richmond, Optican, Podell, & Spitzer, 
1987; Schwartz, Desimone, Albright, & Gross, 1983) 
while they are relatively unaffected by changes in contrast 
(Rolls & Baylis, 1986; Sat0 et al., 1980), retinal position 
(Desimone et al., 1984, 1985; Miyashita & Chang, 1988; 
Schwartz et al., 1983), retinal size (Desimone et al., 1984; 
1985; Iwai, 1985; Miyashita & Chang, 1988; Perrett et al., 
1982, 1985; Rolls & Baylis, 1986; Sat0 et al., 1980; 
Schwartz et al., 1983), and image plane orientation (De- 
simone et al., 1984; Iwai, 1985; Miyashita & Chang, 1988; 
Perrett et al., 1985). It should be pointed out that indi- 
vidual cells do not show perfect invariance in their re- 
sponses over changes along these stimulus dimensions; 
it is only the population of responses that collectively 
contains sufficient information to factor out the effect of 
these variables (Baylis et al., 1985). 

Some IT cells do appear selective to the orientation of 
an object in depth (as opposed to image-plane orienta- 
tion). Rolls et al. (1977) found cells whose activity varied 
for different views of an object, while Desimone et al. 
(1984) and Perrett et al. (1985) found face-selective cells 
in STS that preferred frontal over profile views, while 
others had the opposite selectivity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An interesting set of results concerns the responses of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResponses of a face-selective cell in IT to various stimuli. (A) (1) A naturally colored monkey face, (2) the same face with 
scrambled components, (3) a second monkey face, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 4 )  the second face with snout removed, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  eyes removed, (6) uncolored, (7) a human face, 
and (8) a hand. (B) A monkey face in different degrees of rotation in depth. (From Desimone et al., 1984). 

IT cells to the components of response-eliciting patterns. 
Sat0 et al. (1980) found that a cell responsive to a plus 
sign was unresponsive (and not just half as responsive) 
to either its vertical or horizontal component when pre- 
sented in isolation. Iwai (1985) replicated these results 
for IT cells, and then divided foveal prestriate cells into 
two groups based on how their responses relate to the 
Components of the pattern to which they maximally re- 
sponded. Unlike more anterior cells, the first group was 
unresponsive to rotations and scalings of the pattern, as 
well as being unresponsive to its components. The re- 
sponses of the second group appeared to be selective 
for a particular component of the pattern, rather than to 
the pattern per se, so that a rotated or scaled version of 
another pattern containing that component would pro- 
duce as vigorous a response. Desimone et al. (1984) 
found face-selective cells that were unresponsive to iso- 
lated facial components and were unresponsive to faces 
in which the components are scrambled, demonstrating 
that the response of these cells depended on the spatial 
relations between facial components. Yamane et al. 

(1988) parametrically varied the structure of face stimuli 
and found that face-selective cells responded to combi- 
nations of distances among different facial features, 

A common assumption is that the representation of 
faces is typical of object representation in general (e.g., 
Desimone et al., 1984). However, there are at least two 
reasons to suspect that the mechanisms of face recogni- 
tion may differ from general object recognition. The 
special significance of faces as visual stimuli, and the 
anatomical segregation of face-selective cells both sug- 
gest that our visual systems may have developed spe- 
cialized kinds of representation for faces. Thus caution 
is warranted in generalizing from properties of face- 
selective cells to characteristics of object representation 
in general. 

S U V  

The three sources of evidence just reviewed all implicate 
IT in the highest levels of visual object representation. 
Results from studies of brain-damaged humans suggest zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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that the ventral regions of the temporal lobe are impor- 
tant for perceiving the shape of objects in their entirety, 
as opposed to one small portion at a time, and that 
without this ability people cannot recognize objects. Re- 
search with animals has confirmed the role of IT in 
higher vision with more precise experimental lesions. In 
addition, this research has characterized more precisely 
the kinds of visual information represented by IT. Mon- 
keys with lesions in this area are unable to respond to a 
particular object as being the same after it has undergone 
a change in location, size, contrast, lighting, or orienta- 
tion. This implies that the abiliv to represent the shape 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan object, independent of lower level image proper- 
ties, depends upon IT. Finally, recordings from single 
neurons in this area provide an even finer grained char- 
acterization of the kinds of information coded in IT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs 
one would expect, given the results of IT ablations in 
animals, many neurons in this area respond selectively 
to a particular shape, roughly independent of its retinal 
location, size, contrast, and picture plane orientation. In 
contrast to the responses of neurons in earlier visual 
areas, some neurons in IT respond selectively to whole, 
complex objects such as faces and hands. The depen- 
dence of the responses of these cells on the overall 
spatial structure of objects is consistent with the behavior 
of human associative agnosic patients, who appear un- 
able to perceive whole complex objects, and with reports 
that some of these patients have disproportionate diffi- 
culty recognizing faces. 

In the next section we will review and evaluate several 
proposals that have been put forth to explain the data 
just discussed. We will then consider the relation be- 
tween these data and the computational issues in object 
recognition previously discussed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
THEORIES OF INFEROTEMPORAL 
FUNCTION 

Perceptual Constancy 

Several proposals have been offered for the role of IT 
in object recognition. Perhaps the most widely accepted 
of these is that IT provides perceptual constang, that is, 
the ability to see that two inputs with different retinal 
positions, orientations, and sizes arise from the same 
physical object (Desimone et al., 1985; Gross, 1978; Gross zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Mishkin, 1977; Holmes & Gross, 1984a,b; Iwai, 1985; 
Laursen, 1982; Seacord et al., 1979). On this view, the 
discrimination deficit following IT lesions is due to the 
fact that successive presentations of the target stimulus 
have slightly different retinal projections, and the mon- 
key lacks the mechanism that normally indicates that 
these stimuli represent the same object. Thus the monkey 
is faced with learning a large number of separate dis- 
criminations between each apparently different target 
object and the distractors. 

Although this interpretation is certainly consistent with 
many of the results from lesion studies and single-cell 
recordings, is is little more than a redescription of these 
results in terms of the well-established psychological 
term “constancy.” It fails to extend our understanding or 
generate more precise predictions. In particular, it tells 
nothing of how IT subserves the class of abilities referred 
to as perceptual constancy. 

Categorization 

Dean (1982) suggested that what is stored in visual mem- 
ory is a simplified, impoverished description of the rich 
perceptual input. Dean referred to the process of deriv- 
ing this briefer, more symbolic description of lower level 
visual information as categorization, and hypothesized 
it as the role of IT in high-level vision. This explanation 
is consistent with the claim that IT subserves perceptual 
constancy because ignoring changes in viewpoint may 
be part of the process of deriving the simplified descrip- 
tion. IT lesions eliminate preoperatively learned discrim- 
inations by destroying the description of the target that 
was associated with reward. The postoperative learning 
deficit arises because, without the normal mechanism for 
describing the stimuli, the monkey must rely on lower 
level, less succinct descriptions. 

Unfortunately, the notion of “categorization” is also 
insufficiently precise to generate interesting experimen- 
tal predictions. In fact, the notion is so imprecise that 
both of two diametrically opposed versions of the hy- 
pothesis are consistent with existing results. Assuming 
that the categorization of monkeys with IT lesions is 
impaired rather than eliminated, their overgeneralization 
to similar stimuli (Butter et al., 1965) suggests that their 
categorization is abnormally imprecise. On the other 
hand, the fact that these monkeys show reduced transfer 
to transformed versions of the discrimination target 
(Weiskrantz & Saunders, 1984) suggests that the descrip- 
tions they are using are overlyprecise, in that they take 
into account information that depends on viewpoint. The 
explanatory usefulness of the notion of “categorization” 
is questionable given that it must be used in such differ- 
ent and conflicting, ways to account for the data. Fur- 
thermore, the exact nature of the “symbolic” description 
and its derivation remains unspecified. 

Distributed-Trace Memory 

Gaffan et al. (1986a,b) proposed that IT functions as a 
“distributed-trace’’ memory (Anderson, 1973; Hinton & 
Anderson, 1981), in which stimuli are represented as a 
long list of values of visual attributes. Typically, each 
possible attribute value is represented by a separate neu- 
ron-like processing unit, so that the representation of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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stimulus consists of a pattern of activity over these units 
(see the discussion of distributed representations). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs- 
sociating a stimulus with reward during discrimination 
learning amounts to associating each active attribute unit 
with the reward, which can be accomplished by increas- 
ing the weights on connections between active units. The 
number of associations that can be stored without inter- 
ference in such a system increases with the extent to 
which the stimuli are dissimilar, and the number of at- 
tributes available to describe stimuli. Gaffan and his col- 
leagues explain the discrimination deficit following IT 
lesions as being the result of a decrease in the number 
of attributes input to the distributed-trace memory sys- 
tem. 

This proposal is consistent with existing data on defi- 
cits following IT lesion, and is appealing in that it is more 
neurally explicit than other explanations. Also, the pro- 
posed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfunctional deficit (fewer descriptive attributes) 
corresponds directly with the known anatomical deficit 
(cortical lesion) under the plausible assumption that 
neurons represent attribute values. This natural corre- 
spondence is a consequence of using a neural-like com- 
putational architecture rather than one based on 
conventional symbol-manipulation. However, in the 
framework previously presented, this interpretation of 
IT function is explicit about the implementation of IT 
representations, without being very explicit about the 
representations themselves. Detailed predictions are dif- 
ficult to derive without a more precise specification of 
the nature of the attributes actually used to describe 
objects. 

Object-Centered Prototypes 

Ratcliff and Newcombe (1982) made a more specific 
proposal about the form of the descriptions underlying 
object recognition, thereby providing an elaboration of, 
rather than an alternative to, Dean’s categorization hy- 
pothesis. They suggested that agnosic patients have lost 
the ability to construct object representations akin to 
Marr and Nishihara’s (1978) object-centered 3D models. 
Weiskrantz and Saunders (1984) made a similar proposal, 
suggesting that IT is the locus for storing an object- 
centered “prototype” of a visual object in a form that is 
accessed by visual information from translated, rotated, 
or scaled versions of the object. More posterior cortical 
regions, including foveal prestriate cortex, are hypothe- 
sized to represent visual information in a viewer-cen- 
tered format, and their anterior projections are involved 
in addressing the object-centered prototype based on 
this viewer-centered information. In visual discrimina- 
tion tasks, IT lesions force the monkey to rely on viewer- 
centered information, which provides a description with 
which to associate reward that is less complete and pre- 
cise than the object-centered descriptions that normal 
monkeys use. 

The hypothesis that IT contains object-centered pro- 
totypes that are addressed by viewer-centered descrip- 
tions in foveal prestriate cortex is the most complete, 
predictive existing explanation of the role of IT in object 
recognition. It goes beyond previous explanations by 
attempting to specify the types of representations in- 
volved in recognition, and the nature of the processes 
that operate over these representations. Yet it is incom- 
plete in that it fails to specify properties of the prototypes 
themselves, beyond claiming that they are object-cen- 
tered. Also, as was previously pointed out, the extent to 
which a reference frame is object-centered can be more 
a matter of degree than of kind, so the claim that object 
representations are object-centered is underspecified. 

A Computational Interpretation of 
Inferotemporal Function 

In this section we attempt to characterize object repre- 
sentations more precisely by interpreting the experi- 
mental results on representations in IT in terms of the 
computational issues previously discussed. Since any 
representation can mimic any other by employing addi- 
tional processes (assuming no information loss), the na- 
ture of a representation can never be uniquely 
determined independent of the broader processing con- 
text (Anderson, 1978). Accordingly, our conclusions are 
limited to the form: the available physiological data are 
more consistent with particular types of representations, 
interpreted in the most straightforward way (i.e., without 
postulating compensatory mechanisms). Thus, as much 
as we would like to be able to specify the nature of these 
representations definitively, the conclusions that can be 
drawn from the available evidence must be viewed as 
tentative. Yet even tentative relationships between theory 
and data can usefully guide further investigation and 
constrain existing models. 

Shape Primitives 

The main difference between contour-based primitives 
on the one hand, and surface-based or volumetric prim- 
itives on the other, is that the former are less stable than 
the latter. Thus deriving a contour-based object repre- 
sentation that is stable in the face of confounding image 
variation (e.g., changes in viewpoint or lighting) requires 
additional and/or more complicated mechanisms to com- 
pensate for the relative instability of the primitives. 
Hence, the available neurophysiological data would be 
more difficult to account for in terms of a completely 
contour-based representation, as compared with either 
a surface-based or volumetric representation. Yet in con- 
sidering the data it is important to keep in mind that 
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none of these alternatives can be strictly ruled out on 
the basis of existing evidence. 

Brain-damaged agnosic patients appear to have diffi- 

verging evidence that IT cortex normally represents 
shape in terms of either surface or volumetric primitives. 

culty seeing stimuli in terms of surfaces and volumes. 
This is suggested by their poor performance on matching zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tasks in which objects must be matched across changes 
in perspective, for example the version of Warrington’s 
unusual views task that was given to Ratcliff and New- 
combe’s (1982) subject M.S., and the Benton and Van 
Allen face matching task. Producing identical represen- 
tations of an object across changes in perspective would 
be easier using surfaces or volumes than using two- 
dimentional contours. Similarly, the changes in illumi- 
nation across the faces to be matched in one section of 
the Benton and Van Allen face matching task would also 
result in more drastic changes in a contour-based rep- 
resentation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the shadows are more likely to be mis- 
interpreted as relevant contours than as surfaces or 
volumes. The poor performance of agnosic patients on 
these tasks suggests that they are overly distracted by the 
additional contours because they can no longer generate 
more stable surface and/or volumetric representations. 
Ratcliff and Newcombe’s demonstration that M.S. cannot 
discriminate possible from impossible figures is also rel- 
evant to the issue of primitives. Although there are com- 
putational systems that can distinguish between these 
types of figure on the basis of contour information such 
as junctions (Waltz, 1975), the definitions of what consti- 
tute illegal adjacent junction combinations implicitly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas- 
sume a surface or volumetric interpretation. That M.S. 
could not make this type of discrimination is consistent 
with his inability to derive such an interpretation. Finally, 
to the extent that copying strategies reveal properties of 
the underlying visual representation, the slavish, line by 
line copying strategies of these patients also suggest that 
they are relying more on local contour in their copying 
than would a normal person. 

IT-lesioned monkeys show a similar reliance on local 
contour information, and an inability to see the equiva- 
lence of three-dimensional stimuli that have undergone 
changes in lighting or perspective (Weiskrantz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Saun- 
ders, 1984). Again, this suggests that they are relying on 
representations that are neither surface-based nor volu- 
metric, and that the normal function of IT must therefore 
include the representation of shape using either surface 
or volumetric primitives (or both). More direct evidence 
that surface representations are computed in IT comes 
from the experiment of Cowey and Porter (1979, which 
showed that IT-lesioned monkeys were impaired at per- 
ceiving surfaces in depth in random dot stereograms, 
which do not have contours. 

Recordings of single IT neurons generally reveal 
greater responses to three-dimensional objects than to 
drawings (Desimone et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal., 1984). Assuming that line 
drawings capture the essential contours of the object they 
are depicting, this result can be taken as further con- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Refweme Frame 

Previous discussions of frame of reference in visual neu- 
rophysiology have distinguished between the general 
concepts of viewer-centered and object-centered frames 
(Perrett et al., 1985; Ratcliff & Newcombe, 1982; Weis- 
krantz & Saunders, 1984). However, depending on the 
data being considered, different conclusions seem to be 
implied. The invariance of single unit responses to ob- 
jects over transformations of location, size, and image 
plane orientation suggests that temporal cortex houses 
object-centered representations of shape. In contrast, the 
sensitivity of face cells to depth orientation implies a 
viewer-centered frame. One way to reconcile these dif- 
ferent findings and interpretations is to suppose that both 
types of representation are used in temporal cortex (cf. 
Weiskrantz & Saunders, 1984). However, it is also pos- 
sible that temporal object representations are object- 
centered wth respect to certain of their degrees of free- 
dom, and viewer-centered with respect to others (see 
previous for a discussion of degrees of freedom in ref- 
erence frames). This latter interpretation is more consis- 
tent with the finding that a given cell may have 
orientation-invariant responses for image-plane rota- 
tions, but not for rotations in depth. The available data 
suggest that while position, scale, and image-plane ori- 
entation are object-centered, orientation in depth seems 
at least partially viewer-centered. This pattern of results 
is generally consistent with an object representation 
based on “characteristic-views” (Ikeuchi, 1987; Koender- 
ink & van Doorn, 1979). In addition, the reference frame 
does not appear to make the handedness of an object 
explicit. 

In support of these conclusions, human agnosics have 
difficulty seeing the equivalence of objects across 
changes in depth orientation. In the Benton and Van 
Allen face-matching task, agnosics have more difficulty 
than normals matching across changes in perspective 
than when matching identical views. Also, Ratcliff and 
Newcombe’s (1982) agnosic patient M.S. is unable to 
relate usual and unusual views of objects. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a result of 
having lost their object-centered representations, these 
patients have difficulty seeing the equivalence of objects 
across depth rotations. 

IT-lesioned monkeys also do poorly at seeing the 
equivalence of three-dimensional shapes when viewed 
from different perspectives, implying that IT normally 
represents objects in such a way that different views of 
an object map onto the same (object-centered) repre- 
sentation. These monkeys have difficultly generalizing a 
learned discrimination to versions of the target object 
rotated in depth (Weiskrantz & Saunders, 1984). They 
also show less “constancy interference” than normals in 
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discrimination tasks: IT-lesioned monkeys are less both- 
ered when the discriminanda differ only in orientation 
(when constancy interferes with discrimination). In ad- 
dition, whereas normal monkeys find image-plane ro- 
tated-pattern discriminations more difficult than 
different-pattern discriminations, this difference is much 
smaller for monkeys with IT lesions, implying that IT 
represents the rotated versions of a pattern zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas equivalent. 
In a similar way, patterns that differ only in handedness 
are more difficult for normals to discriminate (Gross et 
al., 1975), suggesting that enantiomorphs are given 
equivalent descriptions in IT. 

The response properties of cells in IT are relatively 
unaffected by changes in the retinal position, size, and 
image-plane orientation of stimuli. However, face-selec- 
tive cells in IT (and STS) have been found that are 
selective for particular orientations in depth (Desimone 
et al., 1984; Perrett et al., 1985). Note that these results 
appear to conflict with those of Weiskrantz and Saunders 
(1984) described above, showing that IT is important for 
generalizing across depth rotations of ordinary objects. 
However, it is important to keep in mind that the partic- 
ular frequency, featural configuration, and relevance of 
facial stimuli for monkeys (and humans) may have re- 
sulted in the development of more special-purpose rep- 
resentations for these stimuli whose properties may not 
apply to the representation used for general objects. In 
summary, these results suggest the use of a reference 
frame that is object-centered along all dimensions except 
(at least for faces) orientations in depth. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Organization 

Compared with the previous two issues, the neurophy- 
siological data have little to say about the nature of the 
organization of object representations in IT, although 
they are consistent with much computational and psy- 
chological work (Biederman, 1987; Hoffman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Richards, 
1985; Marr & Nishihara, 1978; Palmer, 1977; Pomerantz, 
Sager, & Stoever, 1977) that suggests that objects are 
decomposed into parts and their spatial relationships. 

Human agnosics do poorly on tasks that require the 
explicit representation of parts and their relations to one 
another. They have difficult distinguishing possible from 
impossible objects (Ratcliff & Newcombe, 1982), a task 
that involves verifying the global consistency of locally 
consistent parts. Agnosic L.H. was better than normals at 
seeing “bad’ parts in embedded figures (Levine & Cal- 
vanio, 1989), presumably because he was less susceptible 
to interference from decompositions into “good” parts. 

Iwai (1985) found IT cells that were selective for par- 
ticular components of a simple pattern. Desimone et al. 
(1984) found face-selective cells whose responses were 
eliminated by spatially rearranging the components of a 
face, and that were unresponsive to individual compo- 

nents. Again, caution is warranted in generalizing the 
results on the representation of faces to the representa- 
tion of objects in general. Although determining the c l m  
of an object is sufficient for most object recognition tasks, 
face recognition usually involved identifying an individ- 
ual, which may require a more precise metrical repre- 
sentation of the spatial relationships of parts (Bruce, 
1988). Therefore the available data do not indicate the 
extent to which the spatial organization of parts of objects 
other than faces is explicitly represented. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Implementational Issues 

The finding that certain cells respond selectively to par- 
ticular stimuli might at first seem to imply local repre- 
sentations of the “grandmother cell” variety, as opposed 
to distributed representations. However, given the fre- 
quency with which a randomly selected cell responds to 
one of the stimuli selected by the experimenter in single- 
unit recording studies, it seems clear that a large popu- 
lation of cells is to some degree responsive during the , 
recognition of any stimulus. Furthermore, even highly 
selective cells, such as those that respond differentially 
to different faces, will respond to a range of stimuli. On 
the basis of these observations, it seems likely that tem- 
poral neurons represent objects in a distributed manner, 
with different portions of the population being active to 
different degrees depending on the stimulus. (Direct 
evidence for such a system of representation has been 
found in the motor system by Georgopoulos, Schwartz, 
and Kettner, (1986) using multiple simultaneous single 
unit recordings.) Another aspect of the single-unit data 
that is consistent with the notion of distributed, rather 
than local, representation concerns the degree of con- 
stancy over transformations in stimulus position, size, 
and image-plane orientation of single cells. Although 
single cells do show shape selectivity over a wide range 
of locations, for example, they respond most strongly 
within a certain subset of those locations (e.g., see De- 
simone et al., 1984). Thus the responses of individual 
cells are not as invariant as the behavior of the animal. 
The degree of shape constancy displayed behaviorally is 
presumably the result of a population of such neurons, 
with overlapping receptive fields, responding together. 

Another clue to the implementation of object recog- 
nition comes from the study of human agnosia. Tradi- 
tionally, associative agnosia was interpreted as a loss of 
stored visual memories, with intact perception. This con- 
ception of agnosia is consistent with a symbolic architec- 
ture, in which a representation derived from the stimulus 
during perception is matched against a separate stored 
representation. In contrast, in a connectionist architec- 
ture, the ability to derive the final perceptual represen- 
tation depends on the “memories” that are encoded in 
the connection strengths. In such an architecture, it 
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would be impossible to have damaged memory with 
intact perception. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs noted earlier, in cases of associative 
agnosia in which perception has been tested carefully, it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
has been found to be impaired. The lack of dissociability 
between perception and memory for objects in agnosia 
is therefore consistent with a connectionist implemen- 
tation of object recognition. 

CONCLUSION 

A large body of neurophysiological data shows that in- 
ferior temporal cortex plays a critical role in the repre- 
sentation and recognition of visual objects. Cells in IT 
respond selectively to physical properties of distal objects 
rather than the more variable properties of the proximal 
image, and damage to this area in humans zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well as in 
monkeys produces systematic deficits in visual recogni- 
tion and discrimination of objects and disproportionate 
reliance on proximal cues in visual tasks. Despite the 
wealth of data implicating IT in object representation, 
theories about the function of IT have been slow to 
emerge and have not played a dominant role in directing 
on-going research. What is needed are theories of IT 
function that are sufficiently precise to account for exist- 
ing data and to generate specific, testable predictions. 

Computational research on object recognition is con- 
cerned with analyzing the problems faced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAany visual 
recognition system, and in determining how these prob- 
lems can be solved given the available information. Fur- 
thermore, computational vision researchers have 
developed a set of explicit distinctions necessary for 
precise theorizing about object representation. Thus the 
ideas of computational vision are both relevant to the 
neurophysiology of object recognition and potentially 
useful for casting theories of IT function in more precise, 
testable ways. In this paper we have described a com- 
putational framework in which specific questions can be 
posed about the nature of object representation, and we 
have interpreted the existing neurophysiological data on 
object representation in terms of their implications for 
answering these questions. 

We have not proposed an alternative theory of IT func- 
tion. Rather, we have pointed out some important theo- 
retical distinctions about the computational problem of 
object recognition that should promote the development 
of more precise theories of IT function. Casting existing 
neurophysiological data in terms of computational dis- 
tinctions serves both to suggest particularly informative 
experimental issues (e.g., whether shape primitives are 
surface or volume-based, and the extent to which object 
representations involve fully or only partially object-cen- 
tered representations) and to generate more applicable 
empirical constraints on computational models of object 
recognition (e.g., that contour-based primitives appear 
insufficient). This kind of interdisciplinary interaction has 
proven valuable in the study of low-level vision-we 

believe it also can be of value in the study of high-level 
vision. 
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