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Abstract
The understanding of human-object interactions is fundamental in First PersonVision (FPV).Visual tracking algorithmswhich
follow the objects manipulated by the camera wearer can provide useful information to effectively model such interactions. In
the last years, the computer vision community has significantly improved the performance of tracking algorithms for a large
variety of target objects and scenarios. Despite a few previous attempts to exploit trackers in the FPV domain, a methodical
analysis of the performance of state-of-the-art trackers is still missing. This research gap raises the question of whether current
solutions can be used “off-the-shelf” or more domain-specific investigations should be carried out. This paper aims to provide
answers to such questions. We present the first systematic investigation of single object tracking in FPV. Our study extensively
analyses the performance of 42 algorithms including generic object trackers and baseline FPV-specific trackers. The analysis
is carried out by focusing on different aspects of the FPV setting, introducing new performance measures, and in relation to
FPV-specific tasks. The study is made possible through the introduction of TREK-150, a novel benchmark dataset composed
of 150 densely annotated video sequences. Our results show that object tracking in FPV poses new challenges to current visual
trackers. We highlight the factors causing such behavior and point out possible research directions. Despite their difficulties,
we prove that trackers bring benefits to FPV downstream tasks requiring short-term object tracking. We expect that generic
object tracking will gain popularity in FPV as new and FPV-specific methodologies are investigated.

Keywords First person vision · Egocentric vision · Visual object tracking · Single object tracking

1 Introduction

First Person Vision (FPV) refers to the study and devel-
opment of computer vision techniques considering images
and videos acquired from a camera mounted on the head
of a person—which is referred to as the camera wearer. This
setting allows machines to perceive the surrounding environ-
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ment from a point of view that is themost similar to the one of
human beings. In the FPVdomain, understanding the interac-
tions between a camera wearer and the surrounding objects is
a fundamental problem (Bertasius et al., 2017a, 2017b; Cao
et al., 2020; Cai et al., 2016;Damen et al., 2018;Damen et al.,
2016; Furnari & Farinella 2020; Grauman 2022; Liu et al.,
2020; Ragusa et al., 2020; Wang et al., 2020). To model such
interactions, the continuous knowledge of where an object
of interest is located inside the video frame is advantageous.
Indeed, keeping track of object locations over time allows to
understandwhich objects aremoving, which of them are pas-
sively captured while not interacted, and how the user relates
to the scene.

The benefits of tracking in FPV have been explored by a
few previous works in the literature.

For example, visual trackers have been exploited in
solutions to comprehend social interactions through faces
(Aghaei et al., 2016a, 2016b; Grauman et al., 2022), to
improve the performance of hand detection for rehabilita-
tion purposes (Visee et al., 2020), to capture hand move-
ments for action recognition (Kapidis et al., 2019), and to
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forecast human-object interactions through the analysis of
hand trajectories (Liu et al., 2020). Such applications have
been made possible trough the development of customized
tracking approaches to track specific target categories like
people (Alletto et al., 2015; Nigam & Rameshan, 2017),
people faces (Aghaei et al., 2016a; Grauman et al., 2022),
or hands (Kapidis et al., 2019; Han et al., 2020; Liu et al.,
2020;Mueller et al., 2017; Sun et al., 2010;Visee et al., 2020)
from a first person perspective.

Despite the aforementioned attempts to leverage track-
ing in egocentric vision pipelines, the standard approach
to generic-object continuous localisation in FPV tasks still
relies on detection models that evaluate video frames inde-
pendently (Damen et al., 2018, 2021; Furnari & Farinella,
2020; Ma et al., 2016; Rodin et al., 2021; Sener et al., 2020;
Wang et al., 2020; Wu et al., 2019). This paradigm has the
drawback of ignoring all the temporal information coming
from the object appearance and motion contained in con-
secutive video frames. Also, it generally requires a higher
computational cost due to the need to repeat the detection
process in every frame. In contrast, visual object tracking
aims to exploit past information about the target to infer its
position and shape in the next frames of a video (Maggio &
Cavallaro, 2011; Smeulders et al., 2014). This process can
improve the efficiency of algorithmic pipelines because of
the reduced computational resources needed, butmost impor-
tantly because it allows to maintain the spatial and temporal
reference to specific object instances.

Visually tracking a generic object in an automatic way
introduces several different challenges that include occlu-
sions, pose or scale changes, appearance variations, and fast
motion. The computer vision community has made signif-
icant progress in the development of algorithms capable of
tracking arbitrary objects in unconstrained scenarios affected
by those issues. The advancements have been possible thanks
to the development of new and effective tracking principles
(Bolme et al., 2010; Bertinetto et al., 2016b; Bhat et al., 2019;
Dai et al., 2020; Danelljan et al., 2017a; Henriques et al.,
2015; Guo et al., 2021; Zhang et al., 2020; Yan et al., 2021),
and to the careful design of benchmark datasets (Fan et al.,
2019; Galoogahi et al., 2017; Huang et al., 2019; Li et al.,
2016; Mueller et al., 2016;Wu et al., 2015) and competitions
(Kristan et al., 2017, 2019, 2020, 2021) that well repre-
sent the aforementioned challenging situations. However, all
these research endeavours have taken into accountmainly the
classic third person scenario in which the target objects are
passively observed from an external point of view and where
they do not interact with the camera wearer. It is a matter of
fact that the nature of images and videos acquired from the
first person viewpoint is inherently different from the type
of image captured from video cameras set as on an external
point of view. As we will show in this paper, the particular
characteristics of FPV, such as the interaction between the
camera wearer and the objects as well as the proximity of
the scene and the camera’s point of view, cause the afore-
mentioned challenges to occur with a different nature and

Fig. 1 In this paper, we study the problem of visual object tracking in
the context of FPV. To achieve such a goal, we introduce a new bench-
mark dataset named TREK-150, of which some qualitative examples
of sequences are represented in this Figure. In each frame, the white
rectangle represents the ground-truth bounding box of the target object.
The orange and yellow boxes localize left and right hands respectively
(plain lines indicate the interaction between the hand and the target).

Each number in the top left corner reports the frame index. For each
sequence, the action performed by the camera wearer is also reported
(verb in orange, noun in blue). As can be noted, objects undergo sig-
nificant appearance and state changes due to the manipulation by the
camera wearer, which makes the proposed setting challenging for cur-
rent trackers.
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distribution, resulting in the persistent occlusion, significant
scale and state changes of objects, as well as an increased
presence of motion blur and fast motion (see Fig. 1).

While the use cases of object tracking in egocentric vision
are manifold and the benefit of tracking generic objects is
clear as previously discussed, it is evident that visual object
tracking is still not a dominant technology in FPV. Only very
recent FPV pipelines are starting to employ generic object
trackers (Grauman et al., 2022; Rai et al., 2021), but a solu-
tion specifically designed to track generic objects in first
person videos is still missing. We think this lack of interest
towards visual object tracking inFPV ismainly due to the lim-
ited amount of knowledge present in the literature about the
capabilities of current visual object trackers in FPV videos.
Indeed, this gap in the research opens many questions about
the impact of the first person viewpoint on visual trackers:
can the trackers available nowadays be used “off-the-shelf”?
How does FPV impact current methodologies? Which track-
ing approaches work better in FPV scenarios? What factors
influence the most the tracking performance? What is the
contribution of trackers in FPV? We believe that the partic-
ular setting offered by FPV deserves a dedicated analysis
that is still missing in the literature, and we argue that fur-
ther research on this problem cannot be pursued without a
thorough study on the impact of FPV on tracking.

In this paper, we aim to extensively analyze the prob-
lem of visual object tracking in the FPV domain in order
to answer the aforementioned questions. Given the lack of
suitable benchmarks, we follow the standard practice of the
visual tracking community that suggests to build a curated
dataset for evaluation (Galoogahi et al., 2017; Kristan et al.,
2019; Liang et al., 2015; Li et al., 2016; Lukezic et al., 2019;
Mueller et al., 2016; Wu et al., 2015). Hence, we propose
a novel visual tracking benchmark, TREK-150 (TRacking-
Epic-Kitchens-150), which is obtained from the large and
challenging FPV dataset EPIC-KITCHENS (EK) (Damen et
al., 2018, 2021). TREK-150 provides 150 video sequences
which we densely annotated with the bounding boxes of a
single target object the camera wearer interacts with. The
dense localization of the person’s hands and the interaction
state between those and the target are also provided. Addi-
tionally, each sequence has been labeled with attributes that
identify the visual changes the object is undergoing, the class
of the target object, as well as the action he/she is perform-
ing. By exploiting the dataset, we present an extensive and
in-depth study of the accuracy and speed performance of 38
established generic object trackers and of 4 newly introduced
baseline FPV trackers. We leverage standard evaluation pro-
tocols and metrics and propose new ones. This is done in
order to evaluate the capabilities of the trackers in relation to
specific FPV scenarios. Furthermore, we assess the trackers’
performance by evaluating their impact on the FPV-specific
downstream task of human-object interaction detection.

In sum, the main contribution of this manuscript is the
first systematic analysis of visual object tracking in FPV. In
addition to that, our study brings additional innovations:

(i) The description and release of the new TREK-150
dataset, which offers new challenges and complemen-
tary features with respect to existing visual tracking
benchmarks;

(ii) A newmeasure to assess the tracker’s ability tomaintain
temporal reference to targets;

(iii) A protocol to evaluate the performance of trackers with
respect to a downstream task;

(iv) Four FPV baseline trackers, two based on FPV object
detectors and twocombining suchdetectorswith a state-
of-the-art generic object tracker.

Our results show that FPV offers new and challenging
tracking scenarios for the most recent and accurate track-
ers (Dai et al., 2020; Danelljan et al., 2019, 2017a; Song et
al., 2018; Wang et al., 2021) and even for FPV trackers. We
study the factors causing such performance and highlight
possible future research directions. Despite the difficulties
introduced by FPV, we prove that trackers bring benefits to
FPV downstream tasks requiring short-term object tracking
such as hand-object interaction. Given our results and con-
sidering the potential impact in FPV, we expect that generic
object tracking will gain popularity in this domain as new
and FPV-specific methodologies are investigated.1

2 RelatedWork

2.1 Visual Tracking in FPV

There have been some attempts to tackle visual tracking in
FPV. Alletto et al. (2015) improved the TLD tracker (Kalal et
al., 2012) with a 3D odometry-based module to track people.
For a similar task, Nigam and Rameshan (2017) proposed
EgoTracker, a combination of the Struck (Hare et al., 2016)
and MEEM (Zhang et al., 2014) trackers with a person re-
identificationmodule. Face trackingwas tackled byAghaei et
al. (2016a) through a multi-object tracking approach termed
extended-bag-of-tracklets. Hand tracking was studied in sev-
eral works (Han et al., 2020; Kapidis et al., 2019; Mueller et
al., 2017;Visee et al., 2020; Sun et al., 2010). Sun et al. (2010)
developed a particle filter framework for hand pose tracking.
Mueller et al. (2017) instead proposed a solution based on an
RGB camera and a depth sensor, while Kapidis et al. (2019)
and Visee et al. (2020) combined the YOLO (Redmon et
al., 2016) detector trained for hand detection with a visual

1 Annotations, trackers’ results, and code are available at https://
machinelearning.uniud.it/datasets/trek150/.
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tracker. The former work used the multi-object tracker Deep-
SORT (Wojke et al., 2018), whereas the latter employed the
KCF (Henriques et al., 2015) single object tracker. Han et al.
(2020) exploited a detection-by-tracking approach on video
frames acquired with 4 fisheye cameras.

All the aforementioned solutions focused on tracking spe-
cific targets (i.e., people, faces, or hands), and thus they are
likely to fail in generalizing to arbitrary target objects. More-
over, they have been validated on custom designed datasets,
which limits the reproducibility of the works and the abil-
ity to compare them to other solutions. In contrast, we focus
on the evaluation of algorithms for the generic object track-
ing task. We design our evaluation to be reproducible and
extendable by releasing TREK-150, a set of 150 videos of
different objects, which we believe will be useful to study
object tracking in FPV. To the best of our knowledge, ours
is the first attempt to evaluate systematically and in-depth
generic object tracking in FPV.

2.2 Visual Tracking for Generic Settings

In recent years, there has been an increased interest in
developing accurate and robust tracking algorithms for
generic objects and domains. Preliminary trackers were
based on mean shift algorithms (Comaniciu et al., 2000),
key-point (Maresca & Petrosino, 2013), part-based methods
(Čehovin et al., 2013; Nam et al., 2014), or SVM (Hare et
al., 2016) and incremental (Ross et al., 2008) learning. Later,
solutions based on correlationfilters gainedpopularity thanks
to their processing speed (Bolme et al., 2010; Bertinetto et al.,
2016a; Danelljan et al., 2017b; Henriques et al., 2015; Kiani
Galoogahi et al., 2017). More recently, algorithms based on
deep learning have been proposed to extract efficient image
and object features. This kind of representation has been used
in deep regression networks (Dunnhofer et al., 2021; Held
et al., 2016), online tracking-by-detection methods (Nam &
Han, 2016; Song et al., 2018), approaches based on reinforce-
ment learning (Dunnhofer et al., 2019; Yun et al., 2017), deep
discriminative correlation filters (Bhat et al., 2019, 2020;
Danelljan et al., 2017a, 2019, 2020; Lukežič et al., 2020),
trackers based on siamese networks (Bertinetto et al., 2016b;
Guo et al., 2021; Li et al., 2019; Wang et al., 2019; Zhang
et al., 2020), and more recently in trackers built up on trans-
former architectures (Chen et al., 2021; Wang et al., 2021;
Yan et al., 2021). All these methods have been designed for
tracking arbitrary target objects in unconstrained domains.
However, no solution has been studied and validated on a
number of diverse FPVsequences aswepropose in this paper.

2.3 FPV Datasets and Tasks

Different datasets are currently available in the FPV com-
munity for the study of particular tasks. The CMU dataset

(De la Torre et al., 2009) was introduced for studying the
recognition of the actions performed by the camera wearer.
Videos belonging to this dataset are annotated with labels
expressing only the actions performed (up to 31) by the per-
son, and they comprise around 200K frames. The EGTEA
Gaze+ dataset (Li et al., 2018) extended the FPV scenar-
ios represented in the previous dataset by providing 2.4M
frames. Similarly as (De la Torre et al., 2009), only labels for
the actions performed by the camera wearer have been asso-
ciated to the videos. In addition to the action labels, the ADL
dataset (Pirsiavash & Ramanan, 2012) introduced around
137Kannotations in the formof bounding boxes for the local-
ization of the objects involved in the actions. Other than for
the action recognition task, the MECCANO dataset (Ragusa
et al., 2020) was aimed to study active object detection and
recognition as well as hand-object interaction. The dataset is
designed to represent an industrial-like scenario and provides
299K frames, 64K bounding-boxes, 60 action labels, and 20
object categories. The EPIC-KITCHENS dataset (Damen et
al., 2018, 2021) is currently one of the largest and most rep-
resentative datasets available for vision-based tasks based on
an egocentric point of view. It is composed of 20M frames
and provides annotations for action recognition, action antic-
ipation, and object detection.

Despite the extensive amount of labels for different FPV
tasks, all the aforementioned datasets (Damen et al., 2018,
2021; Pirsiavash & Ramanan, 2012; Ragusa et al., 2020) do
not offer annotations to study object tracking. This is because
the available bounding boxes for the localization of objects
are not relative to the specific instances of the objects but only
to their categories. Such kind of annotations does not allow to
distinguish different objects of the same category when these
appear together in the images. Furthermore, such datasets
provide only sparse annotations (typically at 1/2 FPS) and
they do not provide tracking-specific annotations (Müller et
al., 2018; Kristan et al., 2017; Wu et al., 2015). Hence, they
cannot be used for an accurate and in-depth evaluation of
trackers in FPV. To the best of our knowledge, our proposed
TREK-150 dataset is the first tool that provides the chance of
studying in-depth the visual object tracking task in the con-
text of first-person viewpoint egocentric videos. In addition,
with the release of dense annotations for the position of the
camera wearer’s hands, for the state of interaction between
hands and the target object, and for the action performed
by the camera wearer, TREK-150 is suitable to analyze the
visual tracking task in relation to all those FPV-specific tasks
that require continuous and dense object localization (e.g.
human-object interaction).

2.4 Visual Tracking Benchmarks

Disparate bounding-box level benchmarks are available
today to evaluate the performance of single-object visual
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tracking algorithms.TheObjectTrackingBenchmarks (OTB)
OTB-50 (Wu et al., 2013) and OTB-100 (Wu et al., 2015) are
two of the most popular benchmarks in the visual tracking
community. They provide 51 and 100 sequences respectively,
including generic target objects like vehicles, people, faces,
toys, characters, etc. TheTemple-Color 128 (TC-128) dataset
(Liang et al., 2015) comprises 128 videos that were acquired
for the evaluation of color-enhanced trackers. The UAV123
dataset (Mueller et al., 2016) was constructed to benchmark
the tracking progress on videos captured by unmanned aerial
vehicles (UAVs) cameras. The 123 videos included in this
benchmark represent 9 different classes of target. The NUS-
PROdataset (Li et al., 2016) contains 365 sequences and aims
to benchmark human and rigid object tracking with targets
belonging to one of 8 categories. The Need for Speed (NfS)
dataset (Galoogahi et al., 2017) provides 100 sequences with
a frame rate of 240 FPS. The aim of the authors was to
benchmark the effects of frame rate variations on the track-
ing performance. The VOT2019 benchmark (Kristan et al.,
2019) was the last iteration of the annual Visual Object
Tracking challenge that required bounding-boxes as target
object representation. This dataset contains 60 highly chal-
lenging videos, with generic target objects belonging to 30
different categories. The Color and Depth Tracking Bench-
mark (CDTB) dataset (Lukezic et al., 2019) offers 80 RGB
sequences paired with a depth channel. This benchmark aims
to explore the use of depth information to improve tracking.
The Transparent Object Tracking Benchmark (TOTB) (Fan
et al., 2021) provides 225 videos of transparent target objects,
and has been introduced to study the robustness of trackers
to the particular appearance of such kind of objects.

Following the increased development of deep learning-
based trackers, large-scale generic-domain tracking datasets
have been recently released (Müller et al., 2018; Huang et
al., 2019; Fan et al., 2021). These include more than a thou-
sand videos normally split into training and test subsets. The
evaluation protocol associated with these sets requires the
evaluation of the trackers after they have been trained on the
provided training set.

Even though all the presented benchmarks offer various
tracking scenarios, and some of them may include videos
acquired from a first person point of view, no one was specif-
ically designed for tracking in FPV. Moreover, since in this
paper we aim to benchmark the performance of visual object
trackers regardless of their approach, we follow the practice
of previous works (Fan et al., 2021; Galoogahi et al., 2017;
Kristan et al., 2019; Li et al., 2016; Liang et al., 2015; Lukezic
et al., 2019;Mueller et al., 2016;Wu et al., 2015) and set up a
well representative and described dataset for evaluation. We
believe that TREK-150 is useful for the tracking community
because it offers different tracking situations and new tar-
get object categories that are not present in other tracking
benchmarks.

3 The TREK-150 Benchmark

In this section, we describe TREK-150, the novel dataset pro-
posed for the study of the visual object tracking task in FPV.
TREK-150 is composed of 150 video sequences. In each
sequence, a single target object is labeled with a bounding
boxwhich encloses the appearanceof the object in each frame
in which the object is visible (as a whole or in part). Every
sequence is additionally labeledwith attributes describing the
visual variability of the target and the scene in the sequence.
To study the performance of trackers in the setting of human-
object interaction, we provide bounding box localization of
hands and labels for their state of interaction with the target
object. Moreover, two additional verb and noun attributes are
provided to indicate the action performed by the person and
the class of the target, respectively. Some qualitative exam-
ples of the video sequences with the relative annotations are
shown in Fig. 1. Table 1 reports key statistics of our dataset
in comparison with existing tracker evaluation benchmarks.
It is worth noticing that the proposed dataset is competitive
in terms of size with respect to the evaluation benchmarks
available in the visual (single) object tracking community.

We remark that TREK-150 has been designed for the eval-
uation of visual tracking algorithms in FPV regardless of
their methodology. Indeed, in this paper, we do not aim to
provide a large-scale dataset for the development of deep
learning-based trackers. Instead, our goal is to assess the
impact of the first-person viewpoint on current trackers. To
achieve this goal we follow the standard practice in the visual
object tracking community (Fan et al., 2021;Galoogahi et al.,
2017; Kristan et al., 2019; Liang et al., 2015; Li et al., 2016;
Lukezic et al., 2019; Mueller et al., 2016; Wu et al., 2015)
that suggests to set up a small but well described dataset to
benchmark the tracking progress.

3.1 Data Collection

3.1.1 Video Collection

The videos contained in TREK-150 have been sampled from
EK (Damen et al., 2018, 2021), which is a public, large-
scale, and diverse dataset of egocentric videos focused on
human-object interactions in kitchens. This is currently one
of the largest datasets for understanding human-object inter-
actions in FPV. Thanks to its dimension, EK provides a
significant amount of diverse interaction situations between
various people and several different types of objects. Hence,
it allows us to select suitable disparate tracking sequences
that reflect the common scenarios tackled in FPV tasks. EK
offers videos annotated with the actions performed by the
camera wearer in the form of temporal bounds and verb-
noun labels. The subset of EK known as EK-55 (Damen et
al., 2018) also contains sparse bounding box references of
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manipulated objects annotated at 2 frames per second in a
temporal window around each action. We exploited such a
feature to obtain a suitable pool of video sequences inter-
esting for object tracking. Particularly, we cross-referenced
the original verb-noun temporal annotations of EK-55 to the
sparse bounding box labels. This allowed to select sequences
in which the camera wearer manipulates an object during an
action. Each sequence is composed of the video frames con-
tained within the temporal bounds of the action, extracted
at the original 60 FPS frame rate and at the original full
HD frame size (Damen et al., 2018, 2021). From the initial
pool, we selected 150 video sequenceswhichwere character-
ized by attributes such as scale changes, partial/full occlusion
and fast motion, which are commonly considered in standard
tracking benchmarks (Fan et al., 2019; Kristan et al., 2019;
Mueller et al., 2016; Müller et al., 2018; Wu et al., 2015).
The top part of Table 2 reports the 13 attributes considered
for the selection.

3.2 Data Labeling

3.2.1 Single Object Tracking

In this study, we restricted our analysis to the tracking of a
single target object per video. This has been done because
in the FPV scenario a person interacts through his/her hands
with one object at a time in general (Damen et al., 2018,
2021). If a person interacts with two objects at the same
time those can be still tracked by two single object trackers.
Moreover, focusing on a single object allows us to analyze
better all the challenging and relevant factors that character-
ize the tracking problem in FPV. We believe that future work
could investigate the employment of multiple object tracking
(MOT) (Dendorfer et al., 2021; Luiten et al., 2021) solutions
for a general understanding of the position and movement of
all objects visible in the scene. We think the in-depth study
presented in this paper will give useful insights for the devel-
opment of such methods.

3.2.2 Frame-Level Annotations

After selection, the 150 sequences were associated to only
3000 bounding boxes, due to the sparse nature of the object
annotations in EK-55. Since it has been shown that visual
tracking benchmarks require dense and accurate box anno-
tations (Fan et al., 2019; Kristan et al., 2019; Mueller et al.,
2016; Valmadre et al., 2018), we re-annotated the bounding
boxes of the target objects on the 150 sequences selected.
Batches of sequences were delivered to annotators (21 sub-
jects) who were instructed to perform the labeling. Such
initial annotations were then carefully checked and refined
by a PhD student, and finally revised by an early-stage
researcher and by two professors. This process produced

Table 2 Selected sequence attributes

Attribute Meaning

SC Scale change the ratio of the bounding-box area of the
first and the current frame is outside the range [0.5, 2]

ARC Aspect ratio change the ratio of the bounding-box aspect
ratio of the first and the current frame is outside the
range [0.5, 2]

IV Illumination variation the area of the target
bounding-box is subject to light variation

SOB Similar objects there are objects in the video of the same
object category or with similar appearance to the target

RIG Rigid object the target is a rigid object

DEF Deformable object the target is a deformable object

ROT Rotation the target rotates in the video

POC Partial occlusion the target is partially occluded in the
video

FOC Full occlusion the target is fully occluded in the video

OUT Out of view the target completely leaves the video frame

MB Motion blur the target region is blurred due to target or
camera motion

FM Fast motion the target bounding-box has a motion
change larger than its size

LR Low resolution the area of the target bounding-box is
less than 1000 pixels in at least one frame

HR High resolution the area of the target bounding-box is
larger than 250,000 pixels in at least one frame

HM Head motion the person moves their head significantly
thus causing camera motion

1H 1 Hand interaction the person interacts with the target
object with one hand for consecutive video frames

2H 2 Hands interaction the person interacts with the target
object with both hands for consecutive video frames

The first block of rows describes attributes commonly used by the visual
tracking community. The last four rows describe additional attributes
introduced in this paper to characterize FPV tracking sequences

97,296 frames labeled with bounding boxes related to the
position and visual presence of objects the camera wearer is
interacting with. Following the initial annotations of EK-55,
we employed axis-aligned bounding boxes to localize the tar-
get objects. This design choice is supported by the fact that
such a representation is largely used in many FPV pipelines
(Furnari & Farinella, 2020; Furnari et al., 2017; Furnari &
Farinella, 2019; Damen et al., 2018; Kapidis et al., 2019;
Shan et al., 2020; Visee et al., 2020). Therefore, computing
tracking metrics based on such representations allows us to
correlate the resultswith those of object localizationpipelines
in FPV tasks, ultimately better highlighting the impact of
trackers in such contexts. Also, the usage of more sophisti-
cated target representation would have restricted our analysis
since themajority of state-of-the-art trackers output just axis-
aligned bounding boxes (Bertinetto et al. 2016a, b; Bhat et
al., 2019; 2020; Bolme et al., 2010; Chen et al., 2020; Dai
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Fig. 2 aDistribution of the sequenceswithin TREK-150with respect to
the attributes used to categorize the visual variability happening on the
target object and scene. b Comparison of the distributions of common
sequence attributes across different benchmarks

et al., 2020; Danelljan et al. Danelljan et al. 2017a, b, 2019,
2020; Fu et al. 2021; Guo et al., 2021; Held et al., 2016;
Henriques et al., 2015; Huang et al., 2020; Kiani Galoogahi
et al., 2017; Li et al., 2018, 2019; Nam & Han, 2016; Park
& Berg, 2018; Song et al., 2018; Wang et al., 2018, 2021;
Xu et al., 2020; Yan et al., 2019, 2021; Zhang & Peng,
2019; Zhang et al., 2020), and their recent progress on vari-
ous benchmarks using such representation (Wu et al., 2015;
Mueller et al., 2016; Galoogahi et al., 2017; Lukezic et al.,
2019; Fan et al., 2021; Müller et al., 2018; Fan et al., 2019;
Huang et al., 2019) proves that it provides sufficient infor-
mation for tracker initialization and consistent and reliable
performance evaluation. Moreover, we point out that many
of the objects commonly appearing in FPV scenarios are dif-
ficult to annotate consistently with more sophisticated target
representations.footref We remark that the proposed bound-
ing boxes have been carefully and tightly drawn around the
visible parts of the objects. Figure 13 of the supplemen-
tary document shows some examples of the quality of the

Fig. 3 Distributions of a action verb labels and b target object cate-
gories

bounding-box annotations of TREK-150 in contrast to the
ones available in the popular OTB-100 tracking benchmark.

In addition to the bounding boxes for the object to be
tracked, TREK-150 provides per-frame annotations of the
location of the left and right hand of the camera wearer and
of the state of interaction happening between each hand and
the target object. Interaction annotations consist of labels
expressing which hand of the camera wearer is currently in
contact with the target object (e.g., we used the labels LHI,
RHI, BHI to express whether the person is interacting with
the target by her/his left or right hand or with both hands).We
considered an interaction happening even in the presence of
an object acting as amedium between the hand and the target.
E.g., we considered the camera wearer to interact with a dish
even if a sponge is in between her/his hand and the dish. The
fourth row of Fig. 1 shows a visual example of these situa-
tions. These kinds of annotations have been obtained by the
manual refinement (performed by the four aforementioned
subjects) of the output given by the FPV hand-object inter-
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action detector Hands-in-Contact (HiC) (Shan et al., 2020).
In total, 166,883 hand bounding boxes (82,678 for the left
hand, 84,205 for the right hand) and 77,993 interaction state
labels (24,466 for interactionwith left hand, 16,171with right
hand, 37,356 with both hands) are present in TREK-150.

3.2.3 Sequence-Level Annotations

The sequences have been also labeled considering 17
attributes which define the motion and visual appearance
changes the target object or the scene is subject to. These are
used to analyze the performance of the trackers under differ-
ent aspects that may influence their execution. The attributes
employed in this study include 13 attributes used in standard
tracking benchmarks (Fan et al., 2019; Müller et al., 2018;
Wu et al., 2015), plus 4 additional new ones (High Resolu-
tion, HeadMotion, 1-Hand Interaction, 2-Hands Interaction)
which have been introduced in this paper to character-
ize sequences from FPV-specific point of views. The 17
attributes are defined in Table 2. Fig. 2a reports the distri-
butions of the sequences with respect to the 17 attributes,
while Fig. 2b compares the distributions of themost common
attributes in the field in TREK-150 and in other well-known
tracking benchmarks. Our dataset provides a larger number
of sequences affected by partial occlusions (POC), changes
in scale (SC) and/or aspect ratio (ARC), motion blur (MB),
and illumination variation (IV). These peculiarities are due
to the particular first person viewpoint and to the human-
object interactions which affect the camera motion and the
appearance of objects. Based on the verb-noun labels of
EK, sequences were also associated to 20 verb labels (e.g.,
“wash”—see Fig. 1) and 34 noun labels indicating the cat-
egory of the target object (e.g., “box”). Fig. 3a–b report the
distributions of the videos with respect to verb and target
object labels. As can be noted, our benchmark reflects the
long-tail distribution of labels in EK (Damen et al., 2018).

4 Trackers

4.1 Generic Object Trackers

Among the examined trackers, 38 have been selected to rep-
resent different popular approaches to generic-object visual
tracking. Specifically, in the analysis we have included short-
term trackers (Lukezic et al., 2020) based on both correlation-
filters with hand-crafted features (MOSSE (Bolme et al.,
2010), DSST (Danelljan et al., 2017b), KCF (Henriques et
al., 2015), Staple (Bertinetto et al., 2016a), BACF (Kiani
Galoogahi et al., 2017), DCFNet (Wang et al., 2017), STRCF
(Li et al., 2018), MCCTH (Wang et al., 2018)) and deep fea-
tures (ECO (Danelljan et al., 2017a), ATOM (Danelljan et
al., 2019), DiMP (Bhat et al., 2019), PrDiMP (Danelljan

et al., 2020), KYS (Bhat et al., 2020), KeepTrack (Mayer
et al., 2021)). We also considered deep siamese networks
(SiamFC (Bertinetto et al., 2016b), GOTURN (Held et al.,
2016), DSLT (Lu et al., 2018), SiamRPN++ (Li et al., 2019),
SiamDW (Zhang & Peng, 2019), UpdateNet (Zhang et al.,
2019), SiamFC++ (Xu et al., 2020), SiamBAN (Chen et al.,
2020), Ocean (Zhang et al., 2020), SiamGAT (Guo et al.,
2021), STMTrack (Fu et al., 2021)), tracking-by-detection
methods (MDNet (Nam & Han, 2016), VITAL (Song et
al., 2018)), as well as trackers based on target segmenta-
tion representations (SiamMask (Wang et al., 2019), D3S
(Lukežič et al., 2020)), meta-learning (MetaCrest (Park &
Berg, 2018)), fusion of trackers (TRASFUST (Dunnhofer et
al., 2020)), neural architecture search (LightTrack (Yan et
al., 2021)), and transformers (TrDiMP (Wang et al., 2021),
TransT (Chen et al., 2021), STARK (Yan et al., 2021)).
The long-term (Lukezic et al., 2020) trackers SPLT (Yan
et al., 2019), GlobalTrack (Huang et al., 2020), and LTMU
(Dai et al., 2020) have been also taken into account in the
study. These kinds of trackers are designed to address longer
target occlusion and out of view periods by exploiting an
object re-detection module. All of the selected trackers are
state-of-the-art approaches published between the years 2010
and 2021. Table 3 reports detailed information about the
38 considered generic-object trackers regarding the: venue
and year of publication; type of image representation used;
type of targetmatching strategy; employment of targetmodel
updates; and category of tracker according to the classifica-
tion of (Lukezic et al., 2020). For each tracker, we used the
code publicly available and adopted default parameters in
order to have a fair comparison between the different tracking
methodologies (i.e., to avoid comparisons between track-
ers specifically optimized for TREK-150 and non-optimized
trackers). The original hyper-parameter values lead to the
best and most likely generalizable instances of all the track-
ers. The code was run on a machine with an Intel Xeon
E5-2690 v4 @ 2.60GHz CPU, 320 GB of RAM, and an
NVIDIA TITAN V GPU.

4.2 FPV Trackers

Since there are no public implementations of the FPV track-
ers described in Sect. 2.1, we introduce 4 new FPV-specific
tracking baselines.

4.2.1 TbyD-F/H

The first two FPV baselines build up on FPV-specific object
detectors (Damen et al., 2018; Shan et al., 2020). Consid-
ering that they are popular approach for object localization
in FPV and off-the-shelf FPV-trained instances are publicly
available, we tested whether they can be used as naïve track-
ing baselines. To this end, we define a simple processing
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Fig. 4 Scheme of execution of the proposed FPV baseline trackers LTMU-F and LTMU-H based on LTMU (Dai et al., 2020)

procedure which we found to work surprisingly well. At the
first frame of a tracking sequence, the initial bounding box is
memorized as current information about the target’s object’s
position. Then, at every other frame, an FPV object detector
is run to provide the boxes of all object instances present in
the frame. As output for the current frame, the bounding-box
having larger intersection-over-union (IoU) with the previ-
ously memorized box is given. If the detector does not output
detections for a particular frameor none of its predicted boxes
has IoU greater than 0, then the previously memorized box is
given as output for the current frame. As object detectors, we
used the EK-55 trained Faster-R-CNN (Damen et al., 2018;
Ren et al., 2015) and the Faster-R-CNN-based hand-object
interaction detector HiC (Shan et al., 2020). The tracking
baseline built upon the first detector is referred to as TbyD-F,
while the one built on the second as TbyD-H.

4.2.2 LTMU-F/H

We developed 2 other FPV-specific trackers in addition to the
aforementioned ones. In this case, we wanted to combine the
capabilites of generic object trackers with the FPV-specific
object localization abilities of detectors (Damen et al., 2018;
Shan et al., 2020). Particularly, the baselines combine the
LTMU tracker (Dai et al., 2020) with FPV-specific object
detectors. The first solution, referred to as LTMU-F, employs
the Faster-R-CNN object detector trained on EK-55 (Damen
et al., 2018), while the second, denoted as LTMU-H, uses
the hand-object detector HiC (Shan et al., 2020). These two
trackers exploit the respective detectors as re-detection mod-
ules according to the LTMU scheme (Dai et al., 2020). For
a better understanding, we briefly recap the processing pro-
cedure of the LTMU tracker (Dai et al., 2020). After being
initialized with the target in the first frame of a sequence, at
every other frame LTMU first executes a short-term tracker
that tracks the target in a local area of the frame based on
the target’s last position. The patch extracted from the box
prediction of the tracker is evaluated by an online-learned
verification module based on MDNet (Nam & Han, 2016),
which outputs a probability estimate of the target being con-
tained in the patch. Such an estimate in companion with the
tracker’s predicted traget presence are used to decide if the
short-term tracker is tracking the target or not. If it is, its
predicted box is given as output for the current frame. In the
other case, a re-detection module is executed to look for the

target in thewhole frame. The re-detector returns some candi-
date locations which may contain the target and each of these
is checked by the verification module. The candidate patch
with the highest confidence is given as output and used as a
new target location to re-initialize the short-term tracker. The
verifier’s output as well as the tracker’s confidence are used
to decide when to update the parameters of the first. Based
on experiments, we used STARK (Yan et al., 2021) as short-
term tracker and the aforementioned FPV-based detectors as
re-detection modules. For LTMU-F, such a module has been
set to retain the first 10 among the many detections given as
output, considering a ranking based on the scores attributed
by the detector to each detection. If no detection is given for
a frame, the last available position of the target is considered
as a candidate location. For LTMU-H, we used the object
localizations of the hand-object interaction detections given
by the FPV version of HiC (Shan et al., 2020) as target can-
didate locations. HiC is implemented as an improved Faster
R-CNN which is set to provide, at the same time, the local-
ization of hands and interacted objects, as well as their state
of interaction. As for LTMU-F, if no detection is given for a
frame, the last available position of the target is considered as
a candidate location. For both detection methods, the orig-
inal pre-trained models provided by the authors have been
used. The described setups, the common scheme of which is
presented in Fig. 4, give birth to two new FPV trackers that
implement conceptually different strategies for FPV-based
object localization and tracking. Indeed, the first solution
aims to just look for objects in the scene, while the second
one reasons in terms of the interaction happening between
the camera wearer and the objects.

The choice of using LTMU (Dai et al., 2020) as a baseline
methodology stems from its highly modular scheme which
makes it the most easily configurable tracker with state-of-
the-art performance available today. We took advantage of
the commodity of a such framework to insert theFPV-specific
modules described before.

5 Evaluation Settings

5.1 Evaluation Protocols

The protocols used to execute the trackers are described in
the following.
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5.1.1 One-Pass Evaluation

Weemployed theone-pass evaluation (OPE)protocol detailed
in (Wu et al., 2015) which implements the most realistic way
to run a tracker in practice. The protocol consists of twomain
stages: (i) initializing a tracker with the ground-truth bound-
ing box of the target in the first frame; (ii) letting the tracker
run on every subsequent frame until the end of the sequence
and record predictions to be considered for the evaluation.
To obtain performance scores for each sequence, predictions
and ground-truth bounding boxes are compared according to
some distance measure only in frames where ground-truths
are present (ground-truth bounding boxes are not given for
frames in which the target is fully occluded or out of the field
of view). The overall scores are obtained by averaging the
scores achieved for every sequence.

The tracker initialization with the ground-truth is per-
formed to evaluate the trackers in the best possible conditions,
i.e. when accurate information about the target is given. In
practical applications, such auser-defined information is gen-
erally unavailable.Weexpect this scenario to occur especially
in FPV applications where object localization is obtained via
detectors (Damen et al., 2018; Shan et al., 2020). Detectors
predict bounding boxes with spatial noise (in the position
and/or in the scale), and the initialization of trackers with
such a noisy information could influence the tracking per-
formance. Hence, to understand the impact of the initial box
given by an object detector, we consider a version of the OPE
protocol, referred to as OPE-D, where each tracker is initial-
ized in the first frame in which the detector’s prediction has
IoU≥ 0.5 with the ground-truth box. From such a frame (that
could be delayed in time with respect to the beginning of the
sequence), each tracker is also run with the ground-truth box.
The change in the metric values obtained after running the
two modalities are used to quantify the impact of the initial-
ization box.

5.1.2 Multi-Start Evaluation

To obtain a more robust evaluation (Kristan et al., 2016),
especially for the analysis over sequence attributes and action
verbs, we employed the recent protocol proposed in (Kristan
et al., 2020), which defines different points of initialization
along a video. In more detail, for each sequence, different
initialization points—called anchors—separated by 2s are
defined. Anchors are always set in the first and last frames
of a sequence. Some of the inner anchors are shifted for-
ward by a few frames in order to avoid frames in which the
target is not visible. A tracker is run on each of the sub-
sequences yielded by the anchor either forward or backward
in time depending on the longest sub-sequence the anchor
generates. The tracker is initialized with the ground-truth
annotation in the first frame of the sub-sequence and let run

until its end. Then, as for theOPE, predicted and ground-truth
boxes are compared to obtain performance scores for each
sub-sequence. Scores for a single sequence are computed by
averaging the scores of each sub-sequence weighted by their
length in number of frames. Similarly, the overall scores for
the whole dataset are obtained by averaging each sequence’s
score weighted by its number of frames. We refer to this pro-
tocol as multi-start evaluation (MSE). It allows a tracker to
better cover all the situations happening in the sequences,
ultimately leading to more robust evaluation scores.

5.1.3 Hand-Object Interaction Evaluation

We also evaluated trackers in relation to a video-based hand-
object interaction (HOI) detection solution. This is done in
order to assess their direct impact on a downstream FPV-
specific task. The aim of this problem is to determine when
andwhere in the frames the camerawearer is interacting (e.g.,
by touching/manipulating) with an object with his/her hands.
Considering the requirement of generic object localization
(Shan et al., 2020), we think a video-based configuration of
such a problem to be a suitable task to exploit visual object
trackers. To achieve the goal, we built a solution composed
of a HiC instance (Shan et al., 2020) to detect the hands and
their state of interaction with an object and a visual tracker to
maintain the reference to it. The HiC detector is run at every
frame until it finds a valid HOI detection. Such an event
is said to occur when the bounding box predictions for the
hands have an IoU ≥ 0.5 with the hand ground-truth boxes,
the predicted interaction state is “in contact”, and the object
bounding box has an IoU ≥ 0.5 with the ground-truth box
(Shan et al., 2020). Then, the predicted object-related box is
used to initialize the tracker, and for the subsequent frames,
it is run to provide the localization of that object (that is the
one involved in the interaction). A graphical representation
of the execution of the described pipeline is given in Fig. 5.
Taking inspiration from the metric used by Shan et al. (2020)
to evaluate HiC on static images, we quantify the perfor-
mance of the proposed pipeline by the normalized count of
frames inwhich the givenHOI detectionmatches the ground-
truth annotation available. Such matching is said to happen
when the bounding box predictions for the hands have an
IoU ≥ 0.5 with the hand ground-truth boxes, the predicted
interaction state is “in contact”, and the object bounding box
has an IoU ≥ 0.5 with the ground-truth box (Shan et al.,
2020). For our experiments, we restricted the analysis of the
solution on the sub-sequences contained in TREK-150 in
which an HOI is present. These are determined by consid-
ering the sub-sequences of consecutive frames having the
same interaction label (i.e., LHI, RHI, BHI). To obtain an
overall performance score, which we refer to as Recall, we
average the sub-sequence scores after having them weighted
by the sub-sequence lengths in number of frames, in a similar
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Fig. 5 Schematic visualization of the protocol designed to execute
trackers in the context of a hand-object interaction (HOI) detection
task. The HOI labels provided for TREK-150 are used to consider sub-
sequences of frames in which the camera wearer is interacting with the
target object. In this picture, the labels BHI are employed to indicate
that an interaction by both hands is happening in the frame range [74,
120]. On such sub-sequences, a systematic pipeline for HOI detection

and tracking is run. The HOI detector HiC (Shan et al., 2020) is first
executed in every frame to obtain a valid HOI (in this example the first
valid detection is obtained at frame 75). Once such an event is deter-
mined, the tracker is initialized with the bounding box given by HiC for
the object involved in the interaction. The tracker is then run on all the
subsequent frames to provide the reference to such an object

fashion as we did to compute score in the MSE. To evalu-
ate the impact of visual trackers on this task, we switch the
pipeline’s tracker with each of the ones studied in this work.
This experimental procedure gives us an estimate of the accu-
racy of the HOI detection system under configurations with
different trackers. More interestingly, the proposed evalua-
tion protocol allows also to build a ranking of the trackers
based on the results of a downstream application. To the best
of our knowledge, this setup brings a new way to assess the
performance of visual object trackers.

5.1.4 Real-Time Evaluation

Since many FPV tasks such as object interaction (Damen et
al., 2016) and early action recognition (Furnari & Farinella,
2019), or action anticipation (Damen et al., 2018), require
real-time computation, we evaluate trackers in such a setting
by following the instructions given in (Kristan et al., 2017;
Li et al., 2020). Explanations and results are given in the
supplementary document.

5.2 PerformanceMeasures

Toquantify the performance of the trackers,we used different
measures that compare trackers’ predicted bounding boxes
with the temporally aligned ground-truth boxes. To evaluate
the overall localization accuracy of the trackers, we employ
the success plot (Wu et al., 2015), which shows the percent-
age of predicted boxes whose IoU with the ground-truth is
larger than a threshold varied from 0 to 1 (Fig. 6a). We also
use the normalized precision plot (Müller et al., 2018), that
reports, for a variety of thresholds, the percentage of boxes
whose center points are within a given normalized distance

from the ground-truth (Fig. 6b). As summary measures, we
report the success score (SS) (Wu et al., 2015) and normal-
ized precision scores (NPS) (Müller et al., 2018), which are
computed as the Area Under the Curve (AUC) of the success
plot and normalized precision plot respectively.

Along with these standard metrics, we employ a novel
plot which we refer to as generalized success robustness plot
(Fig. 6c). For this, we take inspiration from the robustness
metric proposed in Kristan et al. (2020) which measures the
normalized extent of a tracking sequence before a failure.
We believe this aspect to be especially important in FPV as a
superior ability of a tracker to maintain longer references to
targets can lead to the better modeling of actions and inter-
actions. The original metric proposed in Kristan et al. (2020)
uses a fixed threshold of 0.1 on the bounding box overlap to
detect a collapse of the tracker. Such a value was determined
mainly to reduce the chance of cheating in the VOT2020
competition and it is not necessarily the case that such a
value could work well for different tracking applications. To
generalize the metric, we take inspiration from the success
and normalized precision plots and propose to use differ-
ent box overlap thresholds ranging in [0, 0.5] to determine
the collapse. We consider 0.5 as the maximum threshold as
higher overlaps are usually associated to positive predictions
in many computer vision tasks. Overall, our proposed plot
allows to assess the length of tracking sequences in a more
generalway that is better alignedwith the requirements of dif-
ferent application scenarios including FPV ones. Similarly to
Wu et al. (2015); Müller et al. (2018), we use the AUC of the
generalized success robustness plot to obtain an aggregate
score which we refer to as generalized success robustness
(GSR).
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Fig. 6 Performance of 20 of the 42 selected trackers on the proposed
TREK-150 benchmark under the OPE protocol. In brackets, next to the
trackers’ names, we report the SS, NPS, and GSR values

Fig. 7 SS, NPS, and GSR performance of 20 of the 42 benchmarked
generic object trackers on the proposedTREK-150 benchmark achieved
under the MSE protocol. The trackers are ordered by the average value
of their SS, NPS, GSR scores

6 Results

In this section, we discuss the outcomes of our proposed
study. For a better readability, in Figures and Tables we pro-
vide results for 20 of the 42 studied trackers. The results for
all the trackers are given in the Figures and Tables of the
supplementary document.

6.1 Performance of Generic Object Trackers

Figures 6 and 16 report the performance of the generic
object trackers on TREK-150 using the OPE protocol, while
Figs. 7 and 17 present the results achieved with the MSE
protocol. Figure8 presents examples that qualitatively show
the performance of some of the trackers. Considering the
results on a tracking approach basis, we have that trackers
based on deep learning (e.g. STARK, TransT, KeepTrack,
LTMU, TrDiMP, ATOM,VITAL, ECO, Ocean) perform bet-
ter than those based on hand-crafted features (e.g. BACF,
MCCTH, DSST, KCF). Among the first class of track-
ers, the ones leveraging online adaptation mechanisms (e.g.
STARK, STMTrack, KeepTrack, LTMU, TrDiMP, ATOM,
VITAL, ECO, KYS, DiMP) are more accurate than the ones
based on single-shot instances (e.g. SiamGAT, Ocean, D3S,
SiamBAN, SiamRPN++) Trackers based on the transformer
architecture (Vaswani et al., 2017) (e.g. STARK, TransT,
TrDiMP) hold the highest positions in the rankings of all the
plots, suggesting that the representation learning and match-
ing approach exploited by such trackers is suitable for better
target-background discrimination in the FPV setting. Indeed,
the transformer-based matching operation between template
and searching areas like the one implemented by STARK and
TransT leads to a higher bounding box overlap on average
(SS performance of Fig. 6a) and to a better centered bounding
box (NPS performance of Fig. 6b).

Generally, the generalized success robustness plot in
Fig. 6c and the GSR results of Fig. 7 report different rank-
ings of the trackers, showing that more spatially accurate
trackers are not always able to maintain their accuracy for
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longer periods of time. Trackers that aim to build robust target
models via online methods (e.g. STMTrack, ECO, TrDiMP,
VITAL, MDNet, ATOM) result in better solutions for keep-
ing longer temporal reference to objects. Particularly, the
results achieved by STMTrack tell that a strategy based on
memory networks building a highly dynamic representation
of the template during tracking is beneficial to maintain a
longer reference to the target.

By comparing the performance of the selected trackers
with the results they achieve on standard benchmarks such
as OTB-100 (Wu et al., 2015), as reported in Fig. 18 of the
supplementary document, it can be noticed that the overall
performance of all the trackers is decreased across all mea-
sures when considering the FPV scenario. Considering the
extended usage of data driven approaches (e.g. deep learning)
in visual tracking nowadays, we assessed the impact of lever-
aging large-scale FPV object localization data for training.
In-depth discussion and results are provided in Section 11.3
of the supplementary document. In short, some methodolo-
gies such as deep discriminative trackers (Bhat et al., 2019)
benefit from FPV-specific data, but the overall tracking per-
formance still does not reach the quality that is observed in
more common trackingbenchmarks (Wuet al., 2015;Mueller
et al., 2016;Galoogahi et al., 2017;Kristan et al., 2019).Other
methodologies such as siamese network-based trackers (Li et
al., 2019) and transformer-based trackers (Yan et al., 2021)
are not able to exploit the context of FPV from still FPV
images. This weakness could be improved by yet-to-come
large-scale FPV tracking datasets. Overall, these outcomes
demonstrate that, for the current availability of tracking data
as well as the visual tracking knowledge in exploiting such,
the FPV setting poses new challenges to present trackers. It is
worth mentioning that our achieved conclusions are consis-
tent with the demonstrated performance drop of other object
localizationmodels (e.g. object detection) exploited between
classical domains (Everingham et al., 2015; Lin et al., 2014)
and FPV domains (Damen et al., 2018).

6.2 Performance of the FPV-Specific Trackers

The results achieved by the proposed TbyD-F and TbyD-
H FPV-based tracking-by-detection baselines are compared
with the generic object trackers in Figs. 6, 16 and 7, 17.
As can be noticed, the baselines have competitive results
with the best trackers in the SS and NPS metrics, but they
struggle in the GSR. This means that they are not able
to maintain reference to the objects even though the other
scores suggest they provide spatially accurate localizations.
By comparing TbyD-F with TbyD-H, we observe that the
second is better in an OPE-like execution scenario, while the
first achieves higher scores in the MSE experiments. Table
4 reports the performance of such two trackers with other
strategies (details are given in Section 9.1 of the supplemen-

tary document) that implement target association on top of
object detection (Bewley et al., 2016; Dave et al., 2020). A
simple application of SORT (Bewley et al., 2016) does not
work as well as demonstrated in other domains (Dave et al.,
2020), and applying such method in combination with the
strategy described in Sect. 4.2.1 brings little benefit.

Figures6, 16 and 7, 17 also show the performances of the
other FPV baselines LTMU-F and LTMU-H in comparison
with the different trackers. In both the OPE and MSE exper-
iments, the proposed trackers achieve the top spots in the SS
and NPS rankings, while they lose some performance in the
GSR score. Table 5 shows the performance gain in applying
the LTMU-F/H scheme over different generic object trackers
(Dai et al., 2020; Fu et al., 2021; Yan et al., 2021). Overall,
both LTMU-F andLTMU-H increase the SS andNPSmetrics
of the underlying tracker, with the second presenting a gen-
erally larger improvement. In the versions with STARK and
STMTrack, the GSR scores are decreased. However, looking
at the DiMP-MU version (as used in Dai et al. (2020)) we see
that the performance is improved by a good margin in all the
metrics, including the GSR. Considering that such an under-
lying tracker uses a MetaUpdater (Dai et al., 2020) to better
assess the consistency of the tracker in triggering re-detection
and model update, we hypothesize that such a module could
bring benefit to the other versions if properly customized
to. Fig. 20 of the supplementary document presents some
qualitative examples of the performance of the LTMU-F/H
trackers in contrast to the baseline one. Overall, the message
to take from these outcomes is that adapting a state-of-the-art
method with FPV-specific components allows to increase the
tracking performance. Combining hand and object tracking,
as the baseline LTMU-H naïvely does, results a promising
direction.We hence expect significant performance improve-
ments to be achievable by a tracker accurately designed to
exploit FPV-specific cues such as the characteristics of the
interaction between the target and the camera wearer.

6.3 Initialization by an Object Detector

Figures9, 19 report the SS, NPS, GSR performance change
when the EK-55 Faster-R-CNN (Damen et al., 2018) or the
HiC (Shan et al., 2020) detection bounding box is used to
initialize the trackers. In general, such a process causes a
drop in the tracking performance. This can be explained by
the noise in the position and scale of the initial target state
that consequently affects the constructions of the models that
are used for tracking during the video (Wu et al., 2015). By
computing the average delta across the trackers for each of
the metrics, we obtain that Faster-R-CNN causes SS, NPS,
GSR drops of −5.3%, −5.1%, −3.1%. HiC leads to slightly
larger drops of −5.9%, −5.7%, −4.4%. It is worth mention-
ing that Faster-R-CNN provided 149 valid detections out of
150 with an average delay of 14 frames from the start of the
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Fig. 8 Qualitative results of some of the generic object trackers benchmarked on the proposed TREK-150 dataset

Table 4 OPE and MSE
performance of the baseline
FPV-based
tracking-by-detection methods
TbyD-H and TbyD-F under
different configurations

Tracker Version OPE MSE

SS NPS GSR SS NPS GSR

TbyD-F SORT 0.313 0.310 0.311 0.347 0.350 0.338

IoU w prev box 0.390 0.420 0.176 0.473 0.516 0.241

IoU w prev box + SORT 0.390 0.425 0.192 0.476 0.521 0.264

TbyD-H SORT 0.237 0.213 0.222 0.264 0.252 0.241

IoU w prev box 0.433 0.455 0.132 0.465 0.500 0.135

IoU w prev box + SORT 0.432 0.457 0.137 0.465 0.502 0.142

Table 5 Performance of the
proposed baseline FPV-trackers
LTMU-H and LTMU-F applied
over different trackers and under
the OPE and MSE protocols
used for the evaluation on
TREK-150

Tracker Version OPE MSE

SS NPS GSR SS NPS GSR

DiMP-MU Baseline 0.411 0.432 0.320 0.445 0.469 0.342

LTMU-F 0.456 0.477 0.372 0.485 0.508 0.375

LTMU-H 0.461 0.486 0.376 0.495 0.517 0.380

STMTrack Baseline 0.464 0.472 0.451 0.468 0.476 0.439

LTMU-F 0.461 0.471 0.408 0.471 0.481 0.411

LTMU-H 0.487 0.499 0.438 0.498 0.509 0.429

STARK Baseline 0.492 0.504 0.395 0.530 0.546 0.413

LTMU-F 0.498 0.513 0.334 0.538 0.556 0.382

LTMU-H 0.505 0.520 0.370 0.543 0.561 0.382

sequence, while HiC gave 146 valid detections with a delay
of 28 frames.Hence,HiC is aweaker object detector.Overall,
we consider the average performance drop quite limited, thus
making the trackers usable even in cases of noisy initializa-
tion. TbyD-F/H are among the trackers losing less accuracy,
but despite this their performance does not surpass track-
ers more susceptible to noise, such as LTMU-F/H, STARK,
TransT. Indeed, when initialized by Faster-R-CNN, TbyD-

H achieves SS 0.440, while LTMU-H, STARK, and TransT,
achieve SS 0.478, 0.470, 0.466, respectively.

6.4 Attribute Analysis

Figure10 reports the SS, NPS, and GSR scores, computed
with the MSE protocol, of the 20 representative trackers
with respect to the attributes introduced in Table 2. We do
not report results for the POC attribute as it is present in
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Fig. 9 Results of the OPE-D experiment in which the bounding box
for initialization is given either by the EK-55 trained Faster-R-CNN
(Damen et al., 2018) or the HiC detector (Shan et al., 2020). The per-
formance change (in percentage) for 20 of the selected trackers with
respect with the ground-truth initialization is reported for the SS, NPS,
and GSR metrics. The trackers are ordered by the average performance
change

every sequence, as shown in Fig. 2a. It stands out clearly that
full occlusion (FOC), out of view (OUT) and the small size
of targets (LR) are the most difficult situations for all the
trackers. The fast motion of targets (FM) and the presence
of similar objects (SOB) are also critical factors that cause
drops in performance. Rotations (ROT) and the illumination
variation (IV) are better addressed by the trackers. The algo-
rithms also do not demonstrate significant behavior changes
between the tracking of rigid or deformable objects. With
respect to the new 4 sequence attributes related to FPV, the
results report that tracking objects held with two hands (2H)
is more difficult than tracking objects held with a single
hand (1H). This is because the manipulation of the target
by two hands generates situations in which the occlusions
are more extended over the object’s appearance. Trackers are
instead quite robust to the head motion (HM), which influ-
ences the camera movements, and seem to cope well with
objects appearing in larger sizes (HR).

Fig. 10 SS, NPS, and GSR performance achieved under the MSE
protocol of 20 the 42 selected trackers with respect to the sequence
attributes available in TREK-150. (The results for the POC attribute are
not reported because this attribute is present in every sequence). The
red plain line highlights the average tracker performance

In terms of algorithmic principles, we have that STARK
has better SS results over the second-best generic object
tracker, TransT, across all the conditions described by the
attributes except for the case of deformable objects (DEF)
and the presence of similar objects (SOB). In the latter situa-
tions, the performance of the two trackers is around the same.
For the NPS, STARK results better than TransT in general,
even though the gap between them is reduced. TransT out-
puts better centered bounding boxes in the DEF and SOB
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Fig. 11 SS, NPS, and GSR performance achieved under the MSE pro-
tocol of 20 of the 42 selected trackers with respect to the action verbs
performed by the camera wearer and available in TREK-150. The red
plain line highlights the average performance

conditions. Considering the GSR measure, we observe that
STMTrack results in the best methodology across most of
the attributes. The improvement over the other solutions is
particularly significant in the presence of the challenging
conditions of small objects (LR), target out-of-view (OUT),
and full occlusion (FOC). STMTrack exhibits also a much
better score with objects appearing in large size (HR). The
ECO tracker instead provides longer references to targets in
the case of head motion (HM), motion blur (MB), and fast
motion (FM). With respect to the introduced FPV trackers,

Fig. 12 SS, NPS, and GSR performance achieved under the MSE pro-
tocol of 20 the 42 selected trackers with respect to the target noun
categories available in TREK-150. The red plain line highlights the
average tracker performance

we have that the performance of STARK is improved by
LTMU-H and LTMU-F overall. The TbyD-H tracker has a
particularly higher SS and NPS performance in out of view
conditions (OUT), suggesting a capability in finding again
the targets after the re-apperance in the scene. These out-
comes tell that the introduced FPV-specific components are
particularly helpful in the circumstances that affect the track-
ers the most.
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6.5 Action Analysis

The plot in Fig. 11 reports the MSE protocol results of SS,
NPS, and GSR with respect to the action verb labels associ-
ated to the actions performed by the camera wearer in each
video sequence. We think that the results presented in the
following can give cues about the exploitation of trackers
for action recognition tasks. In general, we observe that the
actions mainly causing a spatial displacement of the target
(e.g. “move”, “store”, “check”) have less impact on the per-
formance of the trackers. Instead, actions that change the
state, shape, or aspect ratio of the target object (e.g. “remove”,
“squeeze”, “cut”, “attach”) generate harder tracking scenar-
ios. Also the sequences characterized by the “wash” action
verb lead trackers to poor performance. Indeed, such an
action makes the object harder to track because of the many
occlusions caused by the persistent and severe manipula-
tion washing involves. It can be noted from the plots that no
tracker prevails overall, but LTMU-F/H, STARK, andTransT
occupy the top stops especially in the plots relative to SS and
NPS. In general, the performance of the trackers varies much
across the different actions showing that various approaches
are suitable to track under the different conditions generated.

The plots in Fig. 12 presents the performance scores of
the trackers with respect to the target noun labels, i.e. the
categories of target object. Rigid, regular-sized objects such
as “pan”, “kettle”, “bowl”, “plate”, and “bottle” are among
the ones associated with higher average SS greater or around
0.5, but some of them (e.g. “plate” and “bottle”) lead to lower
GSR scores meaning that trackers provide a spatially accu-
rate but short temporal reference to such kind of objects. In
contrast, other rigid objects such as “knife”, “spoon”, “fork”
and “can” are more difficult to track from the point of view
of all the considered measures (the scores are around 0.3 or
lower). This is probably due to the particularly thin shape of
these objects and the light reflectance they are easily subject
to. Deformable objects such as “sponge”, “onion”, “cloth”
and “rubbish” are in general also difficult to track.

6.6 Hand-Object Interaction Evaluation

Tables 6 and 7 present the results of the evaluation of the
HOI task described in Sect. 5.1.3 in relation to the considered
trackers. Despite we are showing that FPV introduces chal-
lenges for current trackers, with this experiment we want to
assess whether they can be still exploited in the FPV domain
to obtain information about the objects’ locations and move-
ments in the scene (Furnari et al., 2017; Furnari & Farinella,
2020; Sener et al., 2020; Shan et al., 2020;Wang et al., 2020).
The results given in the first column of the table report the
Recall of the proposed video-based HOI detection pipeline
in which each tracker is included. The values in the brackets
of the second column report the SS, NPS, and GSR results

achieved by the tracker run in an OPE-like fashion on the
same sub-sequences on which the pipeline is executed. It
can be noticed how the performance difference between the
trackers is reduced with respect to what showed in Figs. 6
and 16. This demonstrates that when deployed for HOI, the
different tracking methodologies lead to an overall similar
pipeline. Particularly, it results that STARK is a better suited
methodology for tracking objects starting from an initializa-
tion given by an object detection algorithm in this context.
By comparing the Recall with the tracker performance scores
(SS, NPS, GSR), it can be noted that there is a correlation
between the first and the SS, since the ranking of the trackers
according to the first measure is very similar to the one of
the second measure.

InTable 8 of the supplementary document, the results of an
oracle-based solution that gives the optimal bounding box for
the interacted object at the first frame of HOI are presented.
The first thing that stands out is the performance gap with
respect to what reported in Tables 6 and 7. This is due to
the performance of HiC which struggles to find a valid HOI
detection in the proposed video-based pipeline. This issue
delays the initialization of the tracker making the overall
pipeline not detecting and localizing theHOI inmany frames.
These outcomes show that, if initializedwith a proper bound-
ing box for the object involved in the interaction, the trackers
are able to maintain the spatial and temporal reference to
such an object for all the interaction period with promising
accuracy. Indeed, the Recall values achieved by the proposed
HOI system with LTMU-H reaches 0.754. It is also worth
observing that the SS, NPS, GSR scores achieved in this
experiment reflect the performance achieved by the trackers
with the OPE protocol on the full sequences of TREK-150,
as reported in Figs. 6 and 16. These results demonstrate that
the evaluation of the trackers’ performance on the original
sequences of TREK-150 can lead to conclusions about the
behavior of the trackers in particular FPV application scenar-
ios. Furthermore, the reader might wonder why there is such
a large absolute difference in the values of the SS, NPS, and
GSR present in Table 8 and those in the brackets of Fig. 16.
This can be explained by the fact that in the considered HOI
evaluation the lengths of the video sequences are very short
(the average length is of 81 frames). In contrast, the average
lengthof the full video sequences present inTREK-150 is 649
frames, which is much higher than the previously discussed
number. Such a shorter duration of the videos simplifies the
job of the trackers since the variations of the target object
and the scene are less significant in these conditions rather
than in longer sequences. A justification to this explanation is
also given by the GSR results of Figs. 6 and 16. For example,
on such measure, STARK achieves 0.395 which means that
such an algorithm tracks successfully until the 39.5% of a
sequence length. In number of frames, such a fraction is 256
on average. This value is much higher than the length of the
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Table 6 Results of the experiment in which 20 of the considered track-
ers are evaluated by the Recall of an FPV HOI detection pipeline where
trackers are used as localization method for the object involved in the
interaction

Tracker Recall (SS, NPS, GSR)

STARK 0.248 (0.211, 0.221, 0.222)

LTMU-H 0.246 (0.210, 0.222, 0.217)

LTMU-F 0.245 (0.210, 0.221, 0.216)

TbyD-H 0.238 (0.205, 0.223, 0.163)

LightTrack 0.233 (0.197, 0.212, 0.228)

KeepTrack 0.232 (0.201, 0.214, 0.212)

SiamRPN++ 0.227 (0.191, 0.206, 0.209)

TbyD-F 0.220 (0.184, 0.202, 0.179)

STMTrack 0.216 (0.196, 0.202, 0.219)

D3S 0.211 (0.187, 0.199, 0.208)

ECO 0.211 (0.181, 0.196, 0.217)

DiMP 0.210 (0.186, 0.198, 0.211)

ATOM 0.207 (0.186, 0.198, 0.213)

VITAL 0.198 (0.178, 0.192, 0.213)

SiamFC 0.195 (0.171, 0.180, 0.195)

GlobalTrack 0.195 (0.170, 0.180, 0.144)

BACF 0.188 (0.170, 0.189, 0.206)

Staple 0.182 (0.164, 0.179, 0.204)

MOSSE 0.158 (0.151, 0.154, 0.188)

GOTURN 0.139 (0.138, 0.147, 0.162)

The first column presents the results of the proposed system in which
each tracker is initialized with the bounding box given by HiC in its
first valid HOI detection. The last column reports the SS, NPS, and
GSR results achieved by each tracker with the OPE protocol on the
sub-sequences yielded by the HOI labels. Best results, per measure, are
highlighted in Bold, second-best in Bolditalic, third-best in Italic

sub-sequences and explains why the performance of STARK
is so successful in the context of this FPV application. Fur-
thermore, in the oracle-based HOI experiment we observe
that the ranking of the trackers slightly changes. Trackers that
reached lower spots in this experimental setting (e.g. TbyD-
H, LTMU, Ocean, D3S), in the HiC-based pipeline compete
in making the HOI system more accurate (i.e. they increase
the Recall). Considering that in the latter situation the ini-
tialization box is not as accurate as the ground-truth, such an
outcome additionally confirms that the different trackers are
subject in a different manner to the initialization noise.

6.7 Contribution of Trackers to FPV Tasks

To understand if the employment of trackers brings advan-
tages with respect to the more standard object localization
solutions used in FPV (Damen et al., 2018; Shan et al., 2020),
we compared the Recall results of the trackers presented in
Table 6 with the Recall results of the original hand-object

interaction detector HiC (Shan et al., 2020) which processes
the frames independently. This solution achieves a Recall
of 0.113 which results very low when compared to the
0.248, 0.246, and 0.245 achieved by the pipelines exploit-
ing STARK, LTMU-H, TransT, respectively.

In addition, we compared the performance the EK-55-
trained Faster R-CNN (Damen et al., 2018) and HiC (Shan
et al., 2020) when used as pure object detectors (not exploit-
ing temporal information for tracking as in the TbyD-F/H
baselines). In this case, for Faster-R-CNN, at every frame,
we consider as output the bounding box having the highest
score associated to the category of the target object in the
video, while for HiC we just take the object bounding box
having the largest score (HiC provides class-agnostic object
detections). On the sequences of TREK-150 the first solu-
tion achieves an OPE-based SS, NPS, and GSR of 0.323,
0.369, 0.044 respectively, and runs at 1 FPS, while the sec-
ond reaches SS 0.411, NPS 0.438, GSR 0.007, at 8 FPS.
Comparing these results with those of the TbyD-F/H base-
lines, we see the advantage of performing tracking, since all
the metric scores are improved. Moreover, if we compare
the detectors’ results with the ones presented in the overall
study, we clearly notice that trackers, even when initialized
by a detection module, can deliver faster, more accurate, and
much temporally longer object localization than detectors.

Overall, these outcomes demonstrate that visual object
trackers can bring benefits to FPV application pipelines. In
addition to the ability of maintaining reference to specific
object instances, the advantages of tracking are achieved in
terms of better object localization and efficiency. We hence
expect that trackers will likely gain more importance in FPV
as new methodologies explicitly considering the first person
point of view are investigated.

7 Conclusions

In this paper, we proposed the first systematic evaluation of
visual object tracking in first person vision (FPV). The anal-
ysis has been conducted with standard and novel measures
on the newly introduced TREK-150 benchmark, which con-
tains 150 video sequences extracted from the EK (Damen et
al., 2018, 2021) FPV dataset. TREK-150 has been densely
annotated with 97K bounding-boxes, 17 sequence attributes,
20 action verb attributes, and 34 target object attributes,
as well as with 167K spatial annotations for the camera
wearer’s hands and 78K states of interaction with the tar-
get object. The performance of 38 state-of-the-art generic
object visual trackers and four baseline FPV trackers was
analysed extensively on the proposed dataset. The inves-
tigation has conducted to the following conclusions. The
performance of all the benchmarked trackers is decreased
whencomparedwith the respective accuracyonother popular
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visual object tracking benchmarks. This is explained by the
different nature of images and the particular characteristics
introduced by FPV which offer new and challenging condi-
tions for the current knowledge in the visual tracking domain
and the lack of tracking-specific FPV data. The analysis
revealed that deep learning-based trackers employing online
adaptation techniques achieve better performance than the
trackers based on siamese neural networks or on handcrafted
features. Among the different methodologies based on this
approach, the transformer-basedworked the best and hence is
a promising future direction. This exploration could involve
the curation of large-scale diverse tracking-specific data.
The introduction of FPV-specific object localization mod-
ules, such as HOI models, in a tracking pipeline increased
its performance, demonstrating that particular cues about
the domain influence the tracking accuracy. These results
highlighted the potential direction of joint hand-object track-
ing, and we expect successful methodologies to take into
account also cues about the camera wearer’s surroundings.
The performance of the trackers was then studied in relation
to specific attributes characterising the visual appearance of
the target and the scene. It turned out that the most chal-
lenging factors for trackers are the target’s out of view, its
full occlusions, its low resolution, as well the presence of
similar objects or of fast motion in the scene. Trackers were
also analyzed based on the action performed by the camera
wearer as well as the object category the target belongs to.
It resulted that actions causing the change of state, shape, or
aspect ratio of the target affected the trackers more than the
actions causing only spatial changes. We think that track-
ers incorporating semantic information about the person’s
action could be an interesting direction of investigation. We
observed that rigid thin-shaped objects are among the hard-
est ones to track. Finally, we evaluated the trackers in the
context of the FPV-specific application of video-based hand-
object interaction detection. We included each tracker in a
pipeline to tackle such a problem, and evaluated the perfor-
mance of the system to quantify the tracker’s contribution.
We observed that the trackers demonstrate a behavior that is
consistent with their overall performance on the sequences of
TREK-150. Even thoughFPV introduced challenging factors
for trackers, the results in such a specific task demonstrated
that current trackers can be used successfully if the video
sequences in which tracking is required are not too long. We
also demonstrated that trackers bring advantages in terms of
object referral and localization, and efficiency, over object
detection. We think that an effective and efficient integration
of tracking methodologies with those of FPV downstream
applications is a relevant problem to study. In conclusion,
we believe that there is potential in improving FPV pipelines
by employing visual trackers as well as there is room for the

improvement of the performance of visual object trackers in
this new domain.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-022-01694-
6.

Funding Open access funding provided by Universitá degli Studi di
Udine within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Aghaei, M., Dimiccoli, M., & Radeva, P. (2016). With whom do i
interact?. In ICPR: Detecting Social Interactions in Egocentric
Photo-Streams.

Aghaei, M., Dimiccoli, M., & Radeva, P. (2016). Multi-face tracking by
extended bag-of-tracklets in egocentric photo-streams. Computer
Vision and Image Understanding, 149, 146–156.

Alletto, S., Serra, G., & Cucchiara, R. (2015). Egocentric object track-
ing: An odometry-based solution. In ICIAP.

Bertasius, G., Park, H. S., Yu, S. X., & Shi, J. (2017a). First-person
action-object detection with egonet. In Robotics: Science and Sys-
tems.

Bertasius, G., Soo Park, H., Yu, S. X., & Shi, J. (2017). Unsupervised
learning of important objects from first-person videos. In ICCV.

Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P. H. (2016).
Staple: Complementary learners for real-time tracking. In CVPR.

Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., & Torr, P. H.
(2016). Fully-convolutional siamese networks for object tracking.
ECCVW.

Bewley, A., Ge, Z., Ott, L., Ramos, F.,& Upcroft, B. (2016). Simple
online and realtime tracking. In ICIP.

Bhat, G., Danelljan,M., VanGool, L., &Timofte, R. (2020). Know your
surroundings: Exploiting scene information for object tracking. In
ECCV.

Bhat, G., Danelljan, M., Van Gool, L., Timofte, R. (2019). Learning
discriminative model prediction for tracking. In ICCV.

Bolme, D. S., Beveridge, J. R., Draper, B. A., & Lui, Y. M. (2010).
Visual object tracking using adaptive correlation filters. In CVPR.

Cai, M., Kitani, K. M., & Sato, Y. (2016). Understanding hand-object
manipulation with grasp types and object attributes. In Robotics:
Science and Systems.

Cao, Z., Radosavovic, I., Kanazawa, A., Malik, J. (2020). Reconstruct-
ing hand-object interactions in the wild. arXiv .
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