
Visual Object Tracking using Adaptive Correlation Filters

David S. Bolme J. Ross Beveridge Bruce A. Draper Yui Man Lui

Computer Science Department

Colorado State University

Fort Collins, CO 80521, USA

bolme@cs.colostate.edu

Abstract

Although not commonly used, correlation filters can track

complex objects through rotations, occlusions and other

distractions at over 20 times the rate of current state-of-

the-art techniques. The oldest and simplest correlation

filters use simple templates and generally fail when ap-

plied to tracking. More modern approaches such as ASEF

and UMACE perform better, but their training needs are

poorly suited to tracking. Visual tracking requires robust

filters to be trained from a single frame and dynamically

adapted as the appearance of the target object changes.

This paper presents a new type of correlation filter, a

Minimum Output Sum of Squared Error (MOSSE) filter,

which produces stable correlation filters when initialized

using a single frame. A tracker based upon MOSSE fil-

ters is robust to variations in lighting, scale, pose, and

non-rigid deformations while operating at 669 frames per

second. Occlusion is detected based upon the peak-to-

sidelobe ratio, which enables the tracker to pause and re-

sume where it left off when the object reappears.

Note: This paper contains additional figures and con-

tent that was excluded from CVPR 2010 to meet length

requirements.

1 Introduction

Visual tracking has many practical applications in video

processing. When a target is located in one frame of

a video, it is often useful to track that object in subse-

quent frames. Every frame in which the target is success-

fully tracked provides more information about the identity

and the activity of the target. Because tracking is easier

than detection, tracking algorithms can use fewer compu-

tational resources than running an object detector on every

frame.

Visual tracking has received much attention in recent

Figure 1: This figure shows the results of the MOSSE filter

based tracker on a challenging video sequence. This tracker has

the ability to quickly adapt to scale and rotation changes. It is

also capable of detecting tracking failure and recovering from

occlusion.

years. A number of robust tracking strategies have been

proposed that tolerate changes in target appearance and

track targets through complex motions. Recent examples

include: Incremental Visual Tracking (IVT) [17], Robust

Fragments-based Tracking (FragTrack) [1], Graph Based

Discriminative Learning (GBDL) [19], and Multiple In-

stance Learning (MILTrack) [2]. Although effective,

these techniques are not simple; they often include com-

plex appearance models and/or optimization algorithms,

and as result struggle to keep up with the 25 to 30 frames

per second produced by many modern cameras (See Ta-

ble 1).

In this paper we investigate a simpler tracking strategy.

The targets appearance is modeled by adaptive correlation

filters, and tracking is performed via convolution. Naive

1



methods for creating filters, such as cropping a template

from an image, produce strong peaks for the target but

also falsely respond to background. As a result they are

not particularly robust to variations in target appearance

and fail on challenging tracking problems. Average of

Synthetic Exact Filters (ASEF), Unconstrained Minimum

Average Correlation Energy (UMACE), and Minimum

Output Sum of Squared Error (MOSSE) (introduced in

this paper) produce filters that are more robust to appear-

ance changes and are better at discriminating between tar-

gets and background. As shown in Figure 2, the result is

a much stronger peak which translates into less drift and

fewer dropped tracks. Traditionally, ASEF and UMACE

filters have been trained offline and are used for object de-

tection or target identification. In this research, we have

modified these techniques to be trained online and in an

adaptive manor for visual tracking. The result is tracking

with state of the art performance that retains much of the

speed and simplicity of the underlying correlation based

approach.

Despite the simplicity of the approach, tracking based

on modified ASEF, UMACE, or MOSSE filters performs

well under changes in rotation, scale, lighting, and par-

tial occlusion (See Figure 1). The Peak-to-Sidelobe Ratio

(PSR), which measures the strength of a correlation peak,

can be used to detect occlusions or tracking failure, to

stop the online update, and to reacquire the track if the

object reappears with a similar appearance. More gen-

erally, these advanced correlation filters achieve perfor-

mance consistent with the more complex trackers men-

tioned earlier; however, the filter based approach is over

20 times faster and can process 669 frames per second

(See Table 1).

Table 1: This table compares the frame rates of the MOSSE

tracker to published results for other tracking systems.

Algorithm Frame Rate CPU

FragTrack[1] realtime Unknown

GBDL[19] realtime 3.4 Ghz Pent. 4

IVT [17] 7.5fps 2.8Ghz CPU

MILTrack[2] 25 fps Core 2 Quad

MOSSE Filters 669fps 2.4Ghz Core 2 Duo

The rest of this paper is organized as follows. Section 2

reviews related correlation filter techniques. Section 3 in-

troduces the MOSSE filter and how it can be used to create

a robust filter based tracker. Section 4 presents experimen-

tal results on seven video sequences from [17]. Finally,

Naive UMACE ASEF MOSSE

IN
P

U
T

F
IL

T
E

R
O

U
T

P
U

T

Figure 2: This figure shows the input, filters, and correlation

output for Frame 25 of the fish test sequence. The three correla-

tion filters produce peaks that are much more compact than the

one produced by the Naive filter.

Section 5 will revisit the major findings of this paper.

2 Background

In the 1980’s and 1990’s, many variants of correla-

tion filters, including Synthetic Discriminant Functions

(SDF) [7, 6], Minimum Variance Synthetic Discrimi-

nant Functions (MVSDF) [9], Minimum Average Cor-

relation Energy (MACE) [11], Optimal Tradeoff Filters

(OTF) [16], and Minimum Squared Error Synthetic Dis-

criminant Functions (MSESDF) [10]. These filters are

trained on examples of target objects with varying appear-

ance and with enforced hard constraints such that the fil-

ters would always produce peaks of the same height. Most

relevant is MACE which produces sharp peaks and high

PSRs.

In [12], it was found that the hard constraints of SDF

based filters like MACE caused issues with distortion tol-

erance. The solution was to eliminate the hard constraints

and instead to require the filter to produce a high av-

erage correlation response. This new type of “Uncon-

strained” correlation filter called Maximum Average Cor-

relation Height (MACH) led to a variant of MACE called

UMACE.

A newer type of correlation filter called ASEF [3] in-

troduced a method of tuning filters for particular tasks.

Where earlier methods just specify a single peak value,

ASEF specifies the entire correlation output for each train-

ing image. ASEF has performed well at both eye local-

ization [3] and pedestrian detection [4]. Unfortunately

2



in both studies ASEF required a large number of train-

ing images, which made it too slow for visual tracking.

This paper reduces this data requirement by introducing

a regularized variant of ASEF that is suitable for visual

tracking.

3 Correlation Filter Based Tracking

Filter based trackers model the appearance of objects us-

ing filters trained on example images. The target is ini-

tially selected based on a small tracking window cen-

tered on the object in the first frame. From this point on,

tracking and filter training work together. The target is

tracked by correlating the filter over a search window in

next frame; the location corresponding to the maximum

value in the correlation output indicates the new position

of the target. An online update is then performed based

on that new location.

To create a fast tracker, correlation is computed in the

Fourier domain Fast Fourier Transform (FFT) [15]. First,

the 2D Fourier transform of the input image: F = F(f),
and of the filter: H = F(h) are computed. The Convolu-

tion Theorem states that correlation becomes an element-

wise multiplication in the Fourier domain. Using the ⊙

symbol to explicitly denote element-wise multiplication

and ∗ to indicate the complex conjugate, correlation takes

the form:

G = F ⊙H∗ (1)

The correlation output is transformed back into the spa-

tial domain using the inverse FFT. The bottleneck in this

process is computing the forward and inverse FFTs so that

the entire process has an upper bound time of O(P logP )
where P is the number of pixels in the tracking window.

In this section, we discuss the components of filter

based trackers. Section 3.1 discusses preprocessing per-

formed on the tracking window. Section 3.2 introduces

MOSSE filters which are an improved way to construct

a stable correlation filter from a small number of images.

Section 3.3 shows how regularization can be used to pro-

duce more stable UMACE and ASEF filters. Section 3.4

discusses the simple strategy used for the online update of

the filters.

3.1 Preprocessing

One issue with the FFT convolution algorithm is that the

image and the filter are mapped to the topological struc-

ture of a torus. In other words, it connects the left edge

of the image to the right edge, and the top to the bottom.

During convolution, the images rotate through the toroidal

space instead of translating as they would in the spatial do-

main. Artificially connecting the boundaries of the image

introduces an artifact which effects the correlation output.

This effect is reduced by following the preprocessing

steps outlined in [3]. First, the pixel values are trans-

formed using a log function which helps with low con-

trast lighting situations. The pixel values are normalized

to have a mean value of 0.0 and a norm of 1.0. Finally, the

image is multiplied by a cosine window which gradually

reduces the pixel values near the edge to zero. This also

has the benefit that it puts more emphasis near the center

of the target.

3.2 MOSSE Filters

MOSSE is an algorithm for producing ASEF-like filters

from fewer training images. To start, it needs a set of train-

ing images fi and training outputs gi. Generally, gi can

take any shape. In this case, gi is generated from ground

truth such that it has a compact (σ = 2.0) 2D Gaussian

shaped peak centered on the target in training image fi.

Training is conducted in the Fourier domain to take ad-

vantage of the simple element-wise relationship between

the input and the output. As in the previous section, we

define the upper case variables Fi, Gi and the filter H to

be the Fourier transform of their lower case counterparts.

H∗

i =
Gi

Fi

(2)

where the division is performed element-wise.

To find a filter that maps training inputs to the desired

training outputs, MOSSE finds a filter H that minimizes

the sum of squared error between the actual output of

the convolution and the desired output of the convolution.

This minimization problem takes the form:

min
H∗

�

i

|Fi ⊙H∗

−Gi|
2 (3)

The idea of minimizing Sum of Squared Error (SSE)

over the output is not new. In fact, the optimization prob-

lem in Equation 3 is almost identical to optimization prob-

lems presented in [10] and [12]. The difference is that

in those works it was assumed that the target was always

carefully centered in fi and that the output (gi) was fixed

for the entire training set, whereas customizing every gi
is a fundamental idea behind ASEF and MOSSE. In the

tracking problem the target is not always centered, and the

peak in gi moves to follow the target in fi. In a more gen-

eral case gi can have any shape. For example, in [4] fi
contains multiple targets and gi has multiple correspond-

ing peaks.

3



0
5

1
0

1
5

2
0

2
5

3
0

3
5

Initialization Quality − dudek

Initial Frame Perturbations

S
e
c
o
n
d
 F

ra
m

e
 P

S
R

1 2 4 8 16 32 64 128 256

MOSSE

ASEF

UMACE

Figure 3: Results shown without regularization.

Solving this optimization problem is not particularly

difficult but does require some care because the function

being optimized is a real valued function of a complex

variable. First, each element of H (indexed by ω and ν)

can be solved for independently because all operations in

the Fourier domain are performed element-wise. This in-

volves rewriting the function in terms of both Hων and

H∗

ων
. Then, the partial W.R.T. H∗

ων
is set equal to zero,

while treating Hων as an independent variable [13].

0 =
∂

∂H∗

ων

�

i

|FiωνH
∗

ων
−Giων |

2 (4)

By solving for H∗ a closed form expression for the

MOSSE filter is found:

H∗ =

�
i Gi ⊙ F ∗

i�
i Fi ⊙ F ∗

i

(5)

A complete derivation is in Appendix A. The terms in

Equation 5 have an interesting interpretation. The numer-

ator is the correlation between the input and the desired

output and the denominator is the energy spectrum of the

input.

From Equation 5, we can easily show that UMACE

is a special case of MOSSE. UMACE is defined as

H∗ = D−1m∗ where m is a vector containing the FFT

of the average centered cropped training images, and D is

a diagonal matrix containing the average energy spectrum

of the training images [18]. Because D is a diagonal ma-

trix, multiplication by its inverse essentially performs an

5
1
0

1
5

2
0

Initialization Quality − dudek

Regularization Parameter

S
e
c
o
n
d
 F

ra
m

e
 P

S
R

0.0001 0.001 0.01 0.1 1.0 10.0

MOSSE

ASEF

UMACE

Figure 4: In this figure all three filters were initialized using the

same eight images while adjusting the regularization parameter.

At � ≈ 0.1 all three filters have a high PSR.

element-wise division. When rewritten with the current

notation, UMACE takes the form:

H∗ =

�
i F

∗

i�
i Fi ⊙ F ∗

i

(6)

however, UMACE requires that the target is centered in

Fi. Recentering can be performed using correlation. If

we define gi to be a Kronecker delta (with a peak of one at

the target center and zero elsewhere) this will essentially

recenter the target and compute a UMACE filter. The dif-

ference between this and the traditional implementation is

that here we crop and then translate, where the traditional

method translates and then crops.

To show that MOSSE produces better filters than

ASEF, an experiment was conducted which varied the

number of images used to train the filters. The filters were

initialized by applying random small affine perturbations

to the tracking window for the first frame of the video.

The PSR on the second frame was used as a measure of

filter quality. Figure 3 shows that MOSSE produces better

filters when trained on a small number of image windows.

The reason will be discussed in the next section.

3.3 Regularization of ASEF

ASEF takes a slightly different approach to minimizing

error in the correlation transformation. It turns out that

when there is only one training image Fi and one output

image Gi, there is a filter that produces zero error. That

filter is called an exact filter and can be found by solving

4



Equation 1:

H∗

i =
Gi

Fi

=
Gi ⊙ F ∗

i

Fi ⊙ F ∗

i

(7)

An exact filter trained on one image will almost always

overfit that image. When applied to a new image, that

filter will often fail. Averaging is used to produce a fil-

ter that is more general. Motivation for averaging comes

from Bootstrap Aggregation [5] where the output of weak

classifiers can be averaged to produce a much stronger

classifier. With some manipulation, the equation for an

ASEF filter can be shown to be:

H∗ =
1

N

�

i

Gi ⊙ F ∗

i

Fi ⊙ F ∗

i

(8)

If only one image is used for training, MOSSE and ASEF

both produce an exact filter.

ASEF filters are unstable when trained on small num-

bers of images because the element-wise division in Equa-

tion 8 becomes unstable when a frequency in the training

image contains very little energy (or the denominator is

close to zero). Averaging large numbers of exact filters

compensates for this problem and produces robust ASEF

filters. Because the denominator for MOSSE is the sum

of the energies over more images, it will rarely produce

small numbers and is therefore more stable.

Alternatively, regularization can be used to correct for

low-energy frequencies and produce more stable ASEF

filters. This is performed by adding a small value to each

element in the energy spectrum. The Fi ⊙ F ∗

i is replaced

with Fi ⊙ F ∗

i + � where � is the regularization parameter.

Regularization is similar to a result that came from

OTF theory which is typically used in conjunction with

UMACE filters. This result suggests that adding the en-

ergy spectrum of the background noise to that of the train-

ing imagery will produce a filter with better in noise tol-

erance [16]. Here we have essentially added white noise.

Figure 4 shows the effect of adjusting �. With proper

regularization all of the filters are producing good peaks

and should be stable enough to produce a good track.

3.4 Filter Initialization and Online Updates

Equations 8 and 5 describe how filters are constructed dur-

ing initialization. The training set is constructed using

random affine transformations to generate eight small per-

turbations (fi) of the tracking window in the initial frame.

Training outputs (gi) are also generated with their peaks

corresponding to the target center.

During tracking, a target can often change appearance

by changing its rotation, scale, pose, by moving through

different lighting conditions, or even by undergoing non-

rigid deformation. Therefore, filters need to quickly adapt

in order to follow objects. Running average is used for

this purpose. For example, the ASEF filter learned from

Frame i is computed as:

H∗

i = η
Gi ⊙ F ∗

i

Fi ⊙ F ∗

i

+ (1− η)H∗

i−1
(9)

and the the MOSSE filter as:

H∗

i =
Ai

Bi

(10)

Ai = ηGi ⊙ F ∗

i + (1− η)Ai−1 (11)

Bi = ηFi ⊙ F ∗

i + (1− η)Bi−1 (12)

where η is the learning rate. This puts more weight on

recent frames and lets the effect of previous frames decay

exponentially over time. In practice we have found that

η = 0.125 allows the filter to quickly adapt to appearance

changes while still maintaining a robust filter.

3.5 Failure Detection and PSR

As mentioned before a simple measurement of peak

strength is called the Peak to Sidelobe Ratio (PSR). To

compute the PSR the correlation output g is split into the

peak which is the maximum value and the sidelobe which

is the rest of the pixels excluding an 11 × 11 window

around the peak. The PSR is then defined as gmax−µsl

σsl

where gmax is the peak values and µsl and σsl are the

mean and standard deviation of the sidelobe.

In our experience, PSR for UMACE, ASEF, and

MOSSE under normal tracking conditions typically

ranges between 20.0 and 60.0 which indicates very strong

peaks. We have found that when PSR drops to around 7.0
it is an indication that the object is occluded or tracking

has failed. For the Naive implementation PSR ranges be-

tween 3.0 and 10.0 and is not useful for predicting track

quality.

4 Evaluation

Initially a realtime MOSSE based tracking system was

created and evaluated on live video from a webcam. Re-

altime feedback makes it easy to test small changes to the

tracker configuration and to perform qualitative analyses

of the tracker performance for various targets and tracking

conditions. These tests provided valuable insights into the

operation of the tracker and helped produce the fast and

robust tracker that is presented in this paper.

5



A more controlled evaluation was per-

formed on seven commonly used test videos

which can be freely downloaded from

http://www.cs.toronto.edu/∼dross/ivt/.

The test videos are all in grayscale and include challeng-

ing variations in lighting, pose, and appearance. The

camera itself is moving in all the videos which adds to

the erratic motion of the targets. The seven sequences

include two vehicle tracking scenarios (car4, car11), two

toy tracking scenarios (fish, sylv), and three face tracking

scenarios (davidin300, dudek, and trellis70).

4.1 Filter Comparison

This section evaluates tracking quality of the UMACE,

ASEF, and MOSSE filters. These are compared with a

Naive filter which was based on an average preprocessed

tracking window with online updates. The tracking output

was manually labeled as good tracking, tracking which

had drifted off center, or a lost track (See Figure 5).

Qualitatively, all of the filters including the Naive fil-

ter were able to track objects with very little drift through

the full range of scale, rotation, and illumination changes

found in the test set. Most drifting and failures occur when

the target undergoes a large out-of-plane rotation. See

Figure 6 for an example from the davidin300 sequence.

The filters tend to track a point in the center of the target.

As the target is rotated that point moves towards the target

boundary, and the tracker ends up in a state where much

of the tracking window is covered by background. The

filters adapt to this half background window and when the

target rotates back to a frontal pose, the filters sometimes

shift to a new location or they may loose the target and

track the background.

These results show that the advanced correlation filters

track targets longer than the Naive method. The sharp

peaks also have the benefit that the PSR is a good predic-

tor of track quality, while PSR is not particularly informa-

tive for the Naive filter. For the advanced filters drifting

and failures are always associated with low PSRs. This is

shown in Figure 7 which shows that the MOSSE PSR can

locate the most challenging sections of that video.

For the filter based trackers it is difficult to claim that

any one filter type clearly out performs another. On four

of the seven video sequences the correlation filters per-

form perfectly. On davidin300 all the filters drift from

the center of the face to the eye during the same out-of-

plane rotation and in sylv the filters drift during the same

difficult section of that sequence. These two sequences

suggest that the choice of filter type is not particularly im-

0 100 200 300 400 500 600

car4

MOSSE

ASEF

UMACE

Naive

0 100 200 300 400

car11

MOSSE

ASEF

UMACE

Naive

0 100 200 300 400

davidin300

MOSSE

ASEF

UMACE

Naive

0 100 200 300 400 500

dudek

MOSSE

ASEF

UMACE

Naive

0 100 200 300 400

fish

MOSSE

ASEF

UMACE

Naive

0 200 400 600 800 1000 1200

sylv

MOSSE

ASEF

UMACE

Naive

0 100 200 300 400 500

trellis70

MOSSE

ASEF

UMACE

Naive

Figure 5: This figure shows the performance of the filter based

trackers on all seven of the video sequences. Each output video

was hand annotated where Green indicates a good track, Yellow

indicates the track drifted off center, and Red indicates tracking

failure. The black lines shows PSR that was clipped to the range

[0,20] and indicates the quality of the track for each frame of the

video.

portant because the filters are failing in exactly the same

way.

Only on the dudek sequence is there a notable differ-

ence among the three filters. While MOSSE completed

6



Figure 6: An example of drifting caused by out-of-plain rota-

tion.

the sequence perfectly, UMACE and ASEF had issues at

challenging parts of the video. Even though evidence pre-

sented in Section 3 indicates MOSSE may be the best fil-

ter for this task, single failures on one video sequence are

not enough to support a strong claim; more research is

needed.

4.2 Comparison to Other Trackers

To evaluate the ability of the algorithm to maintain

tracks we compared our output to videos posted by

the authors of IVT [17] and MILTrack [2] (see Sec-

tion 4.1). Those videos also contain sample results

for Robust Online Appearance Models (ROAM) [8],

Online Ada-Boost (OAB) [14], and FragTrack[1]. We

considered downloading code for these other algorithm

but we opted instead to study the authors own videos

which represent the best performance of those algorithms

and which also mitigates arguments that we failed to

properly implement or tune those algorithms. In those

comparisons our method was able to maintain tracks as

well as or better than those algorithms. In this spirit,

we have also posted our results to our website/YouTube

(http://youtube.com/users/bolme2008) so

that others can conduct the same comparison. Figure 8

describes format and annotations in the videos.

In [17], IVT [17] and ROAM [8] were compared on the

four sequences in Figure 5. Of those, the davidin300 and

dudek sequences completed successfully. IVT failed

near frame 620 for sylv and near frame 330 for trellis70.

In the published video sequences, the ROAM tracker per-

formed perfectly; however the videos for sylv and trel-

lis70 stopped shortly after IVT failure, and it is unclear

if ROAM successfully completed those sequences. One

feature of these two trackers that the filter based tracker

lacks, is that they estimate scale and orientation of the tar-

get which provides more information about its position in

space.

In [2], MILTrack [2], OAB [14], and FragTrack [1]

were compared on the davidin300 and sylv sequences.

Figure 8: This shows a sample from the davidin300 sequence

for the MOSSE filter. The frame number and PSR are shown in

the upper left hand corner. Thin gray box around the face shows

starting location of the tracking window for each frame. The

thick red box shows the updated location of the track window.

The red dot shows the center point of the tracking window and

helps to determine if the windows has drifted off the original

location. In the Taz video, failure detection is enabled and a red

X is drawn in the window to indicate that a failure or occlusion

has been detected. Across the bottom of the video are images

are the input (cropped from the grey rectangle), the updated filter

from this frame, and the correlation output.

All the trackers showed significant drift with OAB and

FragTrack failing on davidin300. The drifting for these

trackers was very different than that seen with the filters.

In these videos, the tracking windows wandered back and

forth across the targets. When the filters drifted, they

tended to shift off center when the target underwent pose

changes, and then they locked on to a new center point.

4.3 Real Time Performance

Tests were performed on an a single processor of a 2.4Ghz

Core 2 Duo MacBook Pro. The tracker tested in this

paper was written in Python using the PyVision library,

OpenCV, and SciPy.1 The original Python implementa-

tion averages approximately 250 track updates per second

when using a 64 × 64 tracking window. To better bench-

mark runtime performance of the tracker, some of the

slower parts of the code were reimplemented in C which

included better memory management and more efficient

1http://pyvision.sourceforge.net,

http://opencv.willowgarage.com, and

http://www.scipy.org

7



!!
!

!

!

!

!
!
!

!

!

!

!

!!

!

!
!

!!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!!!!

!

!!
!

!

!

!

!

!
!!

!!

!

!
!

!

!

!

!

!

!

!
!
!

!
!!

!

!

!

!

!

!

!

!!!!

!

!
!!
!

!
!

!

!

!

!

!

!

!

!
!

!!
!
!

!
!

!

!

!

!
!
!

!

!

!
!!
!

!!

!

!

!

!

!

!!
!!
!

!

!

!

!!

!

!

!
!

!
!
!!

!

!

!!

!

!

!

!

!
!

!

!!!

!
!

!
!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!!

!

!

!!

!

!

!

!

!

!

!

!
!

!!
!

!!!

16X16 32X32 64X64 128X128 256X256

Track Update Rate − car4

Filter Size

U
p

d
a

te
s
 P

e
r 

S
e

c
o

n
d

0
3

0
0

6
0

0
9

0
0

1
2

0
0

Figure 9: This figure shows the track update rates for various

filter sizes. The red x’s indicates the rate during initialization.

computation of time consuming tasks such as normaliza-

tion, FFTs, and PSRs. These optimizations result in a me-

dian frame rate of 669 updates per second as shown in

Figure 9.

The computational complexity of filter based tracking

is O(P logP ), where P is the number of pixels in the

filter. This comes from the FFTs used during the correla-

tion operation and the online update. Track initialization

incurs a one time cost of O(NP logP ) where N is the

number of affine perturbations that are used to initialize

the first filter. While this is many times slower than online

updates, initialization is still faster than realtime at 66.32

updates per second.

5 Conclusions

This paper has shown that the visual tracking prob-

lem, which is traditionally solved using heavy weight

classifiers, complex appearance models, and stochastic

search techniques can be replaced by efficient and sim-

pler MOSSE correlation filters. The result is an algorithm

that is easy to implement, can be just as accurate, and is

much faster.

In this paper the tracker was kept simple to evaluate

the filter’s ability to follow and adapt to difficult tracking

scenarios. There are a number of simple ways that this

tracker can be improved. For example, if the appearance

of the target is relatively stable, drifting could be miti-

gated by occasionally recentering the filter based on the

initial frame. The tracker can also be extended to esti-

mate changes in scale and rotation by filtering the log-

polar transform of the tracking window after an update.

References

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-

based tracking using the integral histogram. In CVPR,

2006. 1, 2, 7

[2] B. Babenko, M.-H. Yang, and S. Belongie. Visual Tracking

with Online Multiple Instance Learning. In CVPR, 2009.

1, 2, 7

[3] D. S. Bolme, B. A. Draper, and J. R. Beveridge. Average

of synthetic exact filters. In CVPR, 2009. 2, 3

[4] D. S. Bolme, Y. M. Lui, B. A. Draper, and J. R. Beveridge.

Simple real-time human detection using a single correla-

tion filter. In PETS, 2009. 2, 3

[5] L. Breiman. Bagging Predictors. Machine Learning,

24(2):123–140, 1996. 5

[6] D. Casasent. Unified synthetic discriminant function com-

putational formulation. Appl. Opt, 23(10):1620–1627,

1984. 2

[7] C. Hester and D. Casasent. Multivariant technique for mul-

ticlass pattern recognition. Appl. Opt., 19(11):1758–1761,

1980. 2

[8] A. Jepson, D. Fleet, and T. El-Maraghi. Robust on-

line appearance models for visual tracking. T-PAMI,

25(10):1296–1311, 2003. 7

[9] B. Kumar. Minimum-variance synthetic discriminant func-

tions. J. Opt. Soc. of America., 3(10):1579–1584, 1986. 2

[10] B. Kumar, A. Mahalanobis, S. Song, S. Sims, and J. Epper-

son. Minimum squared error synthetic discriminant func-

tions. Optical Engineering, 31:915, 1992. 2, 3

[11] A. Mahalanobis, B. V. K. V. Kumar, and D. Casasent.

Minimum average correlation energy filters. Appl. Opt.,

26(17):3633, 1987. 2

[12] A. Mahalanobis, B. Vijaya Kumar, S. Song, S. Sims, and

J. Epperson. Unconstrained correlation filters. Applied

Optics, 33(17):3751–3759, 1994. 2, 3

[13] D. Messerschmitt. Stationary points of a real-valued func-

tion of a complex variable. Technical report, EECS, U.C.

Berkeley, 2006. 4, 10

[14] N. C. Oza. Online Ensemble Learning. PhD thesis, U.C.

Berkeley, 2001. 7

[15] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Nu-

merical Recipes in C. Cambridge Univ. Press, 1988. 3

[16] P. Refregier. Optimal trade-off filters for noise robustness,

sharpness of the correlation peak, and Horner efficiency.

Optics Letters, 16:829–832, June 1991. 2, 5

[17] D. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning

for robust visual tracking. IJCV, 77(1):125–141, 2008. 1,

2, 7

[18] M. Savvides, B. Kumar, and P. Khosla. Face verification

using correlation filters. In AIAT, 2002. 4

[19] X. Zhang, W. Hu, S. Maybank, and X. Li. Graph based dis-

criminative learning for robust and efficient object track-

ing. In ICCV, 2007. 1, 2

8



0 100 200 300 400 500

0
1
0

2
0

3
0

4
0

MSSE PSR on dudek

Frame Number

P
S

R

A

B

C

D
E

F

A - Occlusion B - Remove Glasses C - Fast Motion

D - Rotation E - Off Frame F - Rotation

Figure 7: This figure shows that the most challenging section of a video can be located by finding low points in the PSR.

9



A Minimizing the Output Sum of Squared Error

Here we include a more detailed derivation of the MOSSE process. The paper covers the major steps, and the final

result. The explanation here shows most of the intermediate steps. The first step in finding a MOSSE filter is to set up

the Minimization problem that will be optimized:

H = min
H

�

i

|Fi ⊙H∗

−Gi|
2 (13)

Where Fi and Gi are the input images and the corresponding desired outputs in the Fourier domain and goal is to find

a filter H that minimizes the sum of squared output error. Because correlation in the Fourier domain is an element-

wise multiplication, each element of the filter H can be optimized independently. The optimization problem can

therefore be transformed from a multivariate optimization problem to a problem that optimizes each element of H

independently.

Hων = min
Hων

�

i

|FiωνH
∗

ων
−Giων |

2 (14)

where ω and ν index the elements of H .

This function is real valued, positive, and convex so it will have only a single optima. Normally to find the optima of

a function, the stable points are found by setting the derivative equal to zero and then solving for the for the variable of

interest. Finding the stable point for this function is different because it is a real valued function of a complex variable.

Care needs to be taken to solve this problem correctly. It turns out that finding the stable points of such a function is

not that difficult. To summarize, it involves rewriting the function in terms of both Hων and H∗

ων
. Then, the partial

W.R.T. H∗

ων
is set equal to zero, while treating H as an independent variable.

0 =
∂

∂H∗

ων

�

i

|FiωνH
∗

ων
−Giων |

2 (15)

It can be shown that any Hων which satisfies this equation is a stable point. A short tutorial on this technique can be

found in [13]. Transforming this equation leads to:

0 =
∂

∂H∗

ων

�

i

(FiωνH
∗

ων
−Giων)(FiωνH

∗

ων
−Giων)

∗ (16)

0 =
∂

∂H∗

ων

�

i

[(FiωνH
∗

ων
)(FiωνH

∗

ων
)∗ − (FiωνH

∗

ων
)G∗

iων
−Giων(FiωνH

∗

ων
)∗ +GiωνG

∗

iων
] (17)

0 =
∂

∂H∗

ων

�

i

FiωνF
∗

iων
HωνH

∗

ων
− FiωνG

∗

iων
H∗

ων
− F ∗

iων
GiωνHων +GiωνG

∗

iων
(18)

Computing the partial derivative leads to:

0 =
�

i

[FiωνF
∗

iων
Hων − FiωνG

∗

iων
] (19)

We can then distribute the summation and solve for Hων .

Hων =

�
i FiωνG

∗

iων�
i FiωνF

∗

iων

(20)

Finally, we rewrite this expression in our original array notation as:

H =

�
i Fi ⊙G∗

i�
i Fi ⊙ F ∗

i

(21)

10


	Introduction
	Background 
	Correlation Filter Based Tracking
	Preprocessing 
	MOSSE Filters 
	Regularization of ASEF 
	Filter Initialization and Online Updates 
	Failure Detection and PSR

	Evaluation 
	Filter Comparison 
	Comparison to Other Trackers
	Real Time Performance 

	Conclusions 
	Minimizing the Output Sum of Squared Error 

