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Abstract—This paper describes a new approach for improving
the estimation of the global position of a vehicle in complex urban
environments by means of visual odometry and map fusion.
The visual odometry system is based on the compensation of
the heterodasticity in the 3D input data using a weighted non-
linear least squares based system. RANdom SAmple Consensus
(RANSAC) based on Mahalanobis distance is used for outlier
removal. The motion trajectory information is used to keep track
of the vehicle position in a digital map during GPS outages.
The final goal is the autonomous vehicle outdoor navigation
in large-scale environments and the improvement of current
vehicle navigation systems based only on standard GPS. This
research is oriented to the development of traffic collective
systems aiming vehicle-infrastructure cooperation to improve
dynamic traffic management. We provide examples of estimated
vehicle trajectories and map fusion using the proposed method
and discuss the key issues for further improvement.

I. INTRODUCTION

Accurate global localization has become a key component

in vehicle navigation, not only for developing useful driver

assistance systems, but also for achieving autonomous driving.

Autonomous vehicle guidance interest has increased in the

recent years, thanks to events like the Defence Advanced

Research Projects Agency (DARPA) Grand Challenge and

lately the Urban Challenge. Recently, the development of

traffic collective systems for vehicle-infrastructure cooperation

to improve dynamic traffic management has become a hot

topic in Intelligent Transportation Systems (ITS) research.

Our final goal is the autonomous vehicle outdoor navigation

in large-scale environments and the improvement of current

vehicle navigation systems based only on standard GPS. The

work proposed in this paper is particularly efficient in areas

where GPS signal is not reliable or even not fully available

(tunnels, urban areas with tall buildings, mountainous forested

environments, etc). Our research objective is to develop a

robust localization system based on a low-cost stereo camera

system that assists a standard GPS sensor for vehicle naviga-

tion tasks. Then, our work is focused on stereo vision-based

real-time localization as the main output of interest.

The idea of estimating displacements from two 3D frames

using stereo vision has been previously used in [1], [2] and [3].

A common factor of these works is the use of robust estimation

and outliers rejection using RANdom SAmple Consensus

(RANSAC) [4]. In [2] a so-called firewall mechanism is

implemented in order to reset the system to remove cumulative

error. Both monocular and stereo-based versions of visual

odometry were developed in [2], although the monocular

version needs additional improvements to run in real time,

and the stereo version is limited to a frame rate of 13 images

per second. In [5] a stereo system composed of two wide Field

of View cameras was installed on a mobile robot together with

a GPS receiver and classical encoders. The system was tested

in outdoor scenarios on different runs under 150 m. with a

precision in the estimation of the travelled distance of 2-5%. In

order to maintain consistency in long sequences of images, [6]

and [7] introduce a local bundle adjustment. This local bundle

adjustment tries to estimate the extrinsic parameter for the last

𝑛 cameras and the 3D points positions taking into account the

2D re-projections in the 𝑁 (with 𝑁 ≥ 𝑛) last frames. The

solution is carried out taking advantage of the sparse nature

of the Jacobian matrix of the error measure vector as described

in [8]. Although these systems increase the final accuracy in

the position estimation, their results are similar to those not

using bundle adjustment (About 5% accuracy for [7] and errors

in the order of meters for [6]). Reaching similar accuracy in

monocular systems involves the use of very high resolution

images as in [9] (2-3% with 5 768 × 1024 images) or a

previously known 3D model of the environment to recover

the real scale as in [10].

In our previous work [11] the ego-motion of the vehicle

relative to the road is computed using a stereo-vision system

mounted next to the rear view mirror of the car. Feature

points are matched between pairs of frames and linked into 3D

trajectories. Vehicle motion is estimated using the non-linear,

photogrametric approach based on RANSAC.

In this paper a solution based in a weighted non-linear

least squares algorithm is tested in real environments with

real traffic conditions. Results show a 20 times improvement

in the medium distance to the ground truth data [12] and a

better fit to the shape of the trajectory. The obtained motion

trajectory information is then translated into a digital map to

obtain global localization. The final goal is to perform the
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localization of the vehicle during GPS outages.

The rest of the paper is organized as follows: in section II

the solution to the motion trajectory estimation is described;

section III presents how the visual odometry trajectory infor-

mation is converted and corrected with the digital map; in

section IV the improvements achieved in the visual odometry

system and the map fusion are shown on real data, and finally

section V is devoted to conclusions and discussion on how to

improve the current system performance in the future.

II. VISUAL ODOMETRY USING WEIGHTED NON-LINEAR

ESTIMATION

The problem of estimating the trajectory followed by a

moving vehicle can be defined as that of determining at frame

𝑖 the rotation matrix R𝑖−1,𝑖 and the translational vector T𝑖−1,𝑖

that characterize the relative vehicle movement between two

consecutive frames (see Fig. 1).

Fig. 1. Motion estimation problem

Given two triplets of 3D points at times 0 and 1 the

equations describing the motion are:

p
1
= R0,1 ⋅ p

0
+ T0,1, (1)

where p
0

= [𝑥0, 𝑦0, 𝑧0]
𝑡 and p

1
= [𝑥1, 𝑦1, 𝑧1]

𝑡 are the

3D coordinates of the points at times 0 and 1 respectively.

Considering that there are only 6 unconstrained parameters

(translational vector and 3 rotation angles) we need a mini-

mum of 2 pairs of linked 3D points to get the solution. In

practise, we will use as many points as possible to solve an

overdetermined system.

For this purpose a RANSAC based on non-linear least-

squares method was developed for a previous visual odometry

system. A complete description of this method can be found

in [11] and [12].

The use of non-linear methods becomes necessary since the

9 elements of the rotation matrix can not be considered indi-

vidually (the rotation matrix has to be orthonormal). Indeed,

there are only 3 unconstrained, independent parameters, i.e.

the three rotation angles 𝜃𝑥, 𝜃𝑦 and 𝜃𝑧 respectively. Using a

linear method can lead to a non-realistic solution where the

rotation matrix is not orthonormal.

On the other hand, non-linear least squares is based on

the assumption that the errors are uncorrelated with each

other and with the independent variables and have equal

variance. The Gauss-Markov theorem shows that, when this

is so, this is a best linear unbiased estimator (BLUE). If,

however, the measurements are uncorrelated but have different

uncertainties, a modified approach might be adopted. Aitken

showed that when a weighted sum of squared residuals is

minimised, the estimation is BLUE if each weight is equal

to the reciprocal of the variance of the measurement [13].

In our case, the uncertainty in the 3D position of a feature

depends heavily on its location, making a weighted scheme

more adequate to solve the system. This is due to the perspec-

tive model in the stereo reconstruction process. A Gaussian-

multivariate model of the uncertainty is used to compensate

for the heterodasticity in the input data. This solution based in

a weighted non-linear least squares algorithm was developed,

tested on synthetic data and compared to previous works in

[12].

III. GPS ASSISTANCE USING OPENSTREETMAP

Map-matching algorithms use inputs generated from posi-

tioning technologies and supplement this with data from a high

resolution spatial road network map to provide an enhanced

positioning output. The general purpose of a map-matching

algorithm is to identify the correct road segment on which

the vehicle is travelling and to determine the vehicle location

on that segment [14] [15]. Map-matching not only enables

the physical location of the vehicle to be identified but also

improves the positioning accuracy if good spatial road network

data are available [16].

Our final goal is the autonomous vehicle outdoor navigation

in large-scale environments and the improvement of current

vehicle navigation systems based only on standard GPS. In

areas where GPS signal is not reliable or even not fully

available (tunnels, urban areas with tall buildings, mountain-

ous forested environments, etc) this system will perform the

localization during the GPS outages. Our research objective is

to develop a robust localization system based on a low-cost

stereo camera system that assists a standard GPS sensor for

vehicle navigation tasks.

To do so, the system controls the quality of the GPS signal

based on the Horizontal Dilution Of Position (HDOP) from

the GPS. When the signal is not reliable the last reliable

position will be used as starting point and the motion tra-

jectory computed from that point using the system explained

before. Fusing the motion information provided by the visual

odometry system with the topological information provided by

OpenStreetMap (OSM) maps [17], we can keep track of our

position until the GPS signal is recovered.

In the next sections the nature of the topological infor-

mation, the GPS signal quality assessment and the geo-

localization using the motion trajectory data and the OSM

maps are explained.
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A. OpenStreetMap

OpenStreetMap is a collaborative project to create a free

editable map of the world. The maps are created using

data from portable GPS devices, aerial photography, other

free sources or simply from local knowledge. OSM data is

published under an open content license, with the intention

of promoting free use and re-distribution of the data (both

commercial and non-commercial).

OSM uses a topological data structure along with longitude

and latitude information. It uses the WGS 84 latitude/longitude

datum exclusively. The amount of information stored in the

maps varies from one area to another but at least the following

items can be found:

∙ Nodes: Points with a geographic position expressed in

latitude and longitude.

∙ Ways: Lists of nodes, representing a polyline or polygon.

They can represent buildings, parks, lakes, streets, high-

ways, etc.

∙ Tags: can be applied to nodes, ways or relations and

consist of name=value pairs. Examples of pieces of

information stored in these tags are the king of way (high-

way, secondary, tertiary), orientation (oneway, twoways),

name, speed limit, etc.

In our system, the OSM maps can be downloaded at running

time using OSM servers or can be downloaded offline and

stored into a hard drive to be accessed on running time. Once

the GPS signal is lost, the last reliable position is used to

load an area of the OSM map surrounding that position. The

map information is parsed and converted to Northing-Easting

coordinates. All the conversions from and to WGS-84 latitude,

longitude and ellipsoid height to and from Universal Space

Rectangular XYZ coordinates has been performed using the

equations in [18]. In this way, the motion information delivered

by the visual odometry system in meters can be directly

translated to the map and our new position is estimated. Finally

our new position is converted back to longitude/latitude and

sent to a server which will represent our trajectory in the map.

B. Visual odometry and map fusion

Traditionally GPS and Dead Reckoning (DR) has been used

as input to map-matching algorithms however the conventional

integration does not correct the position after re-location.

Given the cumulative nature of errors in visual odometry

estimations, the drift will keep increasing without bounding.

Moreover, the complex nature of the urban environment and

the numerous non-static objects (other cars, pedestrians,..)

will make the map-matching process unreliable and eventually

loose the vehicle position. If accurate localization is needed for

long periods of GPS outage additional information available

in the digital map has to be used to correct the actual vehicle

position and reset the cumulative errors from visual odometry.

Otherwise, small misestimations due to poor quality of the

input images (rain, glares,...) or non-static objects, can quickly

lead to mislocalizations.

In our approach, we propose a probabilistic map-matching

algorithm constrained to the road which uses map features

to control the errors of the visual odometry by feeding back

corrections from the map-matching process. Every time the

map-matching algorithm correctly matches the vehicle position

at one of these features the vehicle position and heading is

corrected. This calibration process (see Figure 2) looks for

sharp turns and roundabouts and correct the vehicle position

removing the cumulative error of the visual odometry. This

idea is based on the previous work in [19] where GPS and

DR were fused using a similar approach.

The motion trajectory information is filtered and down-

sampled to 1 position per second to emulate the sampling

rate of the real GPS. This way the user will not notice the

difference between the GPS or the visual odometry fix. The

actual position of the vehicle is represented as a distance from

a map node and an orientation with respect to the segment

between the two nodes the car is on. The car position is forced

to be in the segment between nodes, what is usually known

as lock on road on commercial GPS’s. As long as the vehicle

moves, its position in the map is updated according to the

input from the visual odometry system.

1) Integration of Visual Odometry and GPS: The signal

from each GPS satellite has level of precision; depending

on the relative geometry of the satellites. When visible GPS

satellites are close together in the sky, the geometry is said to

be weak and the Dilution Of Position (DOP) value is high;

when far apart, the geometry is strong and the DOP value is

low.

In our system when the HDOP is greater than 10 the signal

is considered to be not reliable and the position in the map is

computed using the visual odometry information (see Figure

2).

Fig. 2. Integration of the GPS and VO measures

2) Identification of the actual link: The most complex

element of any map-matching algorithm is to identify the

actual link among the candidate links [14]. In our map-

matching algorithm 3 basic assumptions are made:

1) The vehicle travels on the road most of the time.

2) The vehicle can not jump from one place to another one

with no connection.

3) The vehicle has to follow certain road rules.

Firstly the initial road segment in which the vehicle is

travelling is estimated through an initialization process; when

the GPS fix is lost an elliptical confidence region is computed

using the visual odometry uncertainty and the last reliable

GPS fix. The confidence region is projected into the map and
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the road segments that are within the confidence region are

taken as candidate regions (see Figure 3 ). For simplicity the

elliptical confidence region is approximated to a rectangular

one.

Fig. 3. Elliptical confidence region (red) and candidate segments blue) over
the converted OSM map of Alcalá de Henares

If the confidence region contains more than one candidate

segment, the heading over the last 5 seconds is computed and

compared to the segments orientation. If there is only one

candidate left after the heading check, that is the initial road

segment. If not, the distance from the motion trajectory to the

segment is computed as follows:

1) Compute the starting point using the point-to-curve

algorithm [20] for the last GPS fix.

2) Compare the estimated run distance to the distance left

on the starting point segment. If it is greater than the

distance left discard the starting point segment and go

to step 3. Otherwise the starting point segment is the

initial segment.

3) Compute the distance from the motion trajectory estima-

tion to the candidate segments by computing the area

under the motion estimation trajectory to a stretch of

each one of the candidate segments. This stretch will

have the same length as the motion trajectory estimation

for all the candidate segments (see Figure 4) [20].

4) Select the segment closer to the curve as the initial

segment.

Fig. 4. Implemented curve-to-curve map-matching algorithm.

3) Tracking of the vehicle position in the map: After setting

the initial position of the vehicle in the map subsequent motion

estimations from the visual odometry are matched in the map

following a different approach. Firstly the vehicle velocity,

heading and position uncertainty are used to estimate if the

vehicle is turning or driving trough a junction. If so, the

identification of the actual link is started. Otherwise a simple

tracking of the vehicle position in the map is performed (see

Figure 5). The steps of this process are:

1) If the difference between the heading of the vehicle and

the current road segment is higher than a threshold or

there is at least one juncture in the uncertainty region

start the identification of the actual link. If this process

was triggered by the heading but not by the uncertainty

region increase the uncertainty region a 20%. If not

continue.

2) Using the vehicle heading and velocity, check the pre-

dicted position and the measured one, if close feedback

the position to the visual odometry. The position in the

road is computed using the point-to-curve algorithm and

the heading is the road segment orientation.

Fig. 5. Map-matching flow diagram.

This localization process is repeated until the GPS HDOP is

greater than 10, then the GPS position fix will be used again.

IV. IMPLEMENTATION AND RESULTS

The system described in this paper was implemented in a

QuadCore Q9550 at 2.83GHz with a GNU/Linux 2.6.27-16-

server kernel version. The algorithm was programmed in C

using OpenCV libraries. A stereo vision platform based on

Basler scA640 74-fm cameras was installed in the prototype

vehicle. The stereo sequences were recorded using an external

trigger signal for synchronization at 30 fps with a resolution

of 640x480 pixels in grayscale. All sequences correspond

to real traffic conditions in urban environments with non

stationary vehicles and pedestrians. The test vehicle was part

of a Floating Car Data (FCD) which collected information

about the current traffic state. Each vehicle, which can be seen
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as a moving sensor that operates in a distributed network, is

equipped with global positioning and communication systems,

transmitting its global location, speed and direction to a central

control unit that integrates the information provided by the

vehicles.

The results of the visual odometry system alone are sum-

marized in table I along with ground truth data from GPS

and Real Time Kinematic RTK-GPS. The accuracy in the

trajectory estimation is very high specially taking into account

that they were recorded in real traffic conditions with many

non stationary cars crossing the scene and strong glarings and

shadows. Also an example of the performance of the system

in a tunnel is provided.

−100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

x (m)

z
 
(
m
)

Visual Odometry 2D Trajectory Estimation Video 00 May 8th

 

 

VO 

GPS

RTK GPS

Fig. 6. Reconstructed trajectory for a 1.1km loop using visual odometry
alone (solid line). GPS used as ground truth (circles) and RTK-GPS used as
ground truth (diamons).
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Fig. 7. Reconstructed trajectory for a 680m trajectory using visual odometry
alone (solid line). GPS used as ground truth (circles) and RTK-GPS used as
ground truth (diamons).

On Fig. 6 the VO results, the RTK-GPS and GPS ground

truth for a loop closure of 1.1Km are shown. In this case the

input video images are of poor quality as a result of glares

on the windscreen and dazzling of the cameras. Several cars

and one pedestrian crossed with the test vehicle while driving.

Still, the system was able to correctly reconstruct the trajectory

with a very high accuracy using only visual information and

no prior knowledge of the environment.

On Fig. 7 the VO results for a 680m experiment in tunnel

are shown. In this case the accuracy is lower (3%) due to

strong shadows and glarings at the tunnel’s entrance and exit.

Fig. 8. Vehicle motion trajectory in the OSM and GPS information as shown
to the user for the tunnel experiment.

Fig. 9. Vehicle motion trajectory in the OSM and GPS information as shown
to the user for the urban canyon experiment.

In Figures 8 and 9 the output as shown to the user is shown

for the tunnel and the urban canyon experiments. The map-

matching algorithm output (latitude and longitude positions)

are fed to the Java interface to OSM, Travelling Salesman

[21], which performs the map rendering and trajectory repre-

sentation. As shown in Figure 8 the vehicle runs through a

roundabout and a tunnel. The global position of the vehicle

is tracked with no mistakes and the errors of the visual
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TABLE I
GROUND TRUTH AND ESTIMATED LENGTHS USING VO ALONE FOR EXPERIMENTS

dGPS (m) GPS (m) VO (m) Distance Error (%) Loop Error (m) Loop Error (%)

Loop closure Lost 1098.1 1101.5 0.31 2.48 0.2

Urban Canyon Lost 418.2 421.14 0.41 - -

Tunnel 679 643.96 700.63 3.19 - -

odometry are corrected by the map matching algorithm. The

map-matching algorithm correctly estimates all the turnings

and the exit for the roundabout. Other cars and buses present

on the video sequence do not affect the global localization

accuracy.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have described a new method for estimating the vehicle

global position in a network of roads by means of visual

odometry. To do so, a new weighted non-linear scheme, to

represent the input data nature, has been explained and tested.

To improve the outlier removal Mahalanobis distance and

RANSAC has been used. The resulting motion information

has been used to get the global position of the vehicle in OSM.

Both systems have been used to compensate the GPS outages,

performing the global localization of the vehicle when the

GPS signal is not available. The system has been implemented

and tested on real traffic conditions. We provide examples of

estimated vehicle trajectories as well as of the estimation of

the global position in a map. Results show that the system is

capable of compensating the GPS outages and provide the

global position to the user. The cumulative error from the

visual odometry system is compensated using the topological

information of the map. This indicates that longer outages can

be corrected.

B. Future Works

As part of our future work we envision to develop a

method for discriminating stationary points for those which

are moving in the scene. Moving points can correspond to

pedestrians or other vehicles. The ego-motion estimation will

mainly rely on stationary points. The system can benefit from

other vision-based applications currently under development

and refinement in our lab, such as pedestrian detection and

ACC (based on vehicle detection). The output of these systems

can guide the search for stationary points in the 3D scene.

Also longer runs of several kilometers have to be performed

to estimate the correcting capability of the map fusion.
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rough terrain,” Proceedings of the International Symposium on Research

in Robotics (ISRR), 2007.
[8] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision. Cambridge University Press, 2004.
[9] J.-P. Tardif, Y. Pavlidis, and K. Danilidis, “Monocular visual odometry in

urban environments using an omnidirectional camera,” Intelligent Robots

and Systems (IROS), pp. 2531–2538, October 2008.
[10] P. Lothe, S. Bourgeois, F. Dekeyser, E. Royer, and M. Dhome, “Towards

geographical referencing of monocular slam reconstruction using 3d
city models: Application to real-time accurate vision-based localization,”
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2882–2889, 2009.

[11] I. Parra, M. Sotelo, D. F. Llorca, and M. O. na, “Robust visual odometry
for vehicle localization in urban environments,” ROBOTICA, vol. 28, pp.
441–452, May 2010.

[12] I. Parra, M. Sotelo, D. F. Llorca, and C. Fernández, “Visual odometry
for accurate vehicle localization - an assistant for gps based navigation,”
17th International Intelligent Transportation Systems World Congress,
pp. 1–6, October 2010.

[13] A. C. Aitken, “On least squares and linear combinations of observa-
tions,” Proceedings of the Royal Society of Edinburgh, vol. 55, pp. 42–
48, 1935.

[14] J. S. Greenfeld, “Matching gps observations to locations on a digital
map,” Proceedings of the 81st Annual Meeting of the Transportation

Research Board, January 2002.
[15] M. A. Quddus, W. Y. Ochieng, and R. B. Noland, “Current map-

matching algorithms for transport applications: State-of-the-art and
future research directions,” Transportation Research Part C, vol. 15,
pp. 312–328, 2007.

[16] W. Ochieng, M. Quddus, and R. Noland, “Map-matching in complex
urban road networks,” Brazilian Journal of Cartography, vol. 55, pp.
1–18, 2004.

[17] “Openstreetmaps,” 2010. [Online]. Available:
http://wiki.openstreetmap.org

[18] L. S. H. and S. T. A., Electronic Surveying and Navigation. John Wiley
& Sons, 1976.

[19] C. Wu, Y. meng, L. Zhi-lin, C. Yong-qi, and J. Chao, “Tight integration
of digital map and in-vehicle positioning unit for car navigation in urban
areas,” Wuhan University of Natural Sciences, vol. 8, pp. 551–556, 2003.

[20] A. K. D. Bernstein, “An introduction to map matching for personal
navigation assistants,” 2002.

[21] “Travelling salesman,” 2010. [Online]. Available:
http://wiki.openstreetmap.org/wiki/Travelling salesman

837




