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Abstract RGB-D cameras provide both a color image and per-pixel depth esti-

mates. The richness of their data and the recent development of low-cost sensors

have combined to present an attractive opportunity for mobile robotics research. In

this paper, we describe a system for visual odometry and mapping using an RGB-D

camera, and its application to autonomous flight. By leveraging results from recent

state-of-the-art algorithms and hardware, our system enables 3D flight in cluttered

environments using only onboard sensor data. All computation and sensing required

for local position control are performed onboard the vehicle, reducing the depen-

dence on unreliable wireless links. We evaluate the effectiveness of our system for

stabilizing and controlling a quadrotor micro air vehicle, demonstrate its use for

constructing detailed 3D maps of an indoor environment, and discuss its limitations.

1 Introduction

Stable and precise control of an autonomous micro air vehicle (MAV) demands fast

and accurate estimates of the vehicle’s pose and velocity. In cluttered environments

such as urban canyons, under a forest canopy, and indoor areas, knowledge of the

3D environment surrounding the vehicle is additionally required to plan collision-

free trajectories. Navigation systems based on wirelessly transmitted information,

such as Global Positioning System (GPS) technologies, are not typically useful in
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e-mail: dimatura@puc.cl

1



2 Huang et. al.

Fig. 1 Our quadrotor micro air vehicle (MAV). The RGB-D camera is mounted at the base of the

vehicle, tilted slightly down.

these scenarios due to limited range, precision, and reception. Thus, the MAV must

estimate its state and plan collision-free trajectories using only its onboard sensors.

RGB-D cameras capture RGB color images augmented with depth data at each

pixel. A variety of techniques can be used for producing the depth estimates, such

as time-of-flight imaging, structured light stereo, dense passive stereo, laser range

scanning, etc. While many of these technologies have been available to researchers

for years, the recent application of structured light RGB-D cameras to home enter-

tainment and gaming [32] has resulted in the wide availability of low-cost RGB-D

sensors well-suited for robotics applications. In particular, the Microsoft Kinect sen-

sor, developed by PrimeSense, provides a 640×480 RGB-D image at 30 Hz. When

stripped down to its essential components, the Kinect weighs 115 g – light enough

to be carried by a small MAV.

Previously, we have developed algorithms for MAV flight in cluttered environ-

ments using LIDAR [3] and stereo cameras [1]. LIDAR sensors currently available

in form factors appropriate for use on a MAV are very high precision, but only

provide range measurements along a plane around the sensor. Since they can only

detect objects that intersect the sensing plane, they are most useful in environments

characterized by vertical structures, and less so in more complex scenes.

Structured light RGB-D cameras are based upon stereo techniques, and thus

share many properties with stereo cameras. The primary differences lie in the range

and spatial density of depth data. Since RGB-D cameras illuminate a scene with an

structured light pattern, they can estimate depth in areas with poor visual texture,

but are range-limited by their projectors.

This paper presents our approach to providing an autonomous micro air vehicle

with fast and reliable state estimates and a 3D map of its environment by using an

on-board RGB-D camera and inertial measurement unit (IMU). Together, these al-

low the MAV to safely operate in cluttered, GPS-denied indoor environments. The

control of a micro air vehicle requires accurate estimation of not only the position of

the vehicle but also the velocity – estimates that our algorithms are able to provide.

Estimating a vehicle’s 3D motion from sensor data typically consists of estimating

its relative motion at each time step by aligning successive sensor measurements

such as laser scans or RGB-D frames, a process most often known as “visual odom-

etry” when comparing camera or RGB-D images. The primary contribution of this
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paper is to provide a systematic experimental analysis of how the best practices in

visual odometry using an RGB-D camera enable the control of a micro air vehicle.

Given knowledge of the relative motion of the vehicle from sensor frame to sen-

sor frame, the 3D trajectory of the vehicle in the environment can be estimated by

integrating the relative motion estimates over time. Given knowledge of the vehicle

position in the environment, the locations of obstacles in each sensor frame can also

be used to construct a global map. However, while often useful for local position

control and stability, visual odometry methods suffer from long-term drift and are

not suitable for building large-scale maps. To solve this problem, we also demon-

strate how our previous work on RGB-D Mapping [14] can be incorporated to detect

loop closures, correct for accumulated drift and maintain a representation of consis-

tent pose estimates over the history of previous frames. We describe our overall

system, justify the design decisions made, provide a ground-truth evaluation, and

discuss its capabilities and limitations.

2 Related Work

Visual odometry refers to the process of estimating a vehicle’s 3D motion from vi-

sual imagery alone, and dates back to Moravec’s work on the Stanford cart [25]. The

basic algorithm used by Moravec and others since then is to identify features of in-

terest in each camera frame, estimate depth to each feature (typically using stereo),

match features across time frames, and then estimate the rigid body transforma-

tion that best aligns the features over time. Since then, a great deal of progress has

been made in all aspects of visual odometry. Common feature detectors in modern

real-time algorithms include Harris corners [12] and FAST features [33], which are

relatively quick to compute and resilient against small viewpoint changes. Meth-

ods for robustly matching features across frames include RANSAC-based meth-

ods [28, 18, 22] and graph-based consistency algorithms [17]. In the motion estima-

tion process, techniques have ranged from directly minimizing Euclidean distance

between matched features [16], to minimizing pixel reprojection error instead of 3D

distance [28]. When computation constraints permit, bundle adjustment has been

shown to help reduce integrated drift [22].

Visual odometry estimates local motion and generally has unbounded global

drift. To bound estimation error, it can be integrated with simultaneous localiza-

tion and mapping (SLAM) algorithms, which employ loop closing techniques to

detect when a vehicle revisits a previous location. Most recent visual SLAM meth-

ods rely on fast image matching techniques [35, 26] for loop closure. As loops are

detected, a common approach is to construct a pose graph representing the spatial

relationships between positions of the robot during its trajectory and environmen-

tal features, creating constraints that link previous poses. Optimization of this pose

graph results in a globally aligned set of frames [10, 30, 19]. For increased visual

consistency, Sparse Bundle Adjustment (SBA) [37] can be used to simultaneously

optimize the poses and the locations of observed features.

In the vision and graphics communities, a large body of work exists on alignment

and registration of images for 3D modeling and dense scene reconstruction (e.g.,
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Polleyfeys et al. [31]). However, our focus is on primarily on scene modeling for

robot perception and planning, and secondarily for human situational awareness

(e.g., for a human supervisor commanding the MAV).

The primary focus in the visual odometry communities has been on ground

vehicles, however, there has been significant amount of research on using visual

state estimation for the control of MAVs. For larger outdoor helicopters, several re-

searchers have demonstrated various levels of autonomy using vision based state

estimates [20, 6]. While many of the challenges for such vehicles are similar to

smaller indoor MAVs, the payload and flight environments are quite different. For

smaller MAVs operating in indoor environments, a number of researchers have used

monocular camera sensors to control MAVs [36, 2, 5, 8]. However, these algorithms

require specific assumptions about the environment (such as known patterns) to ob-

tain the unknown scale factor inherent in using a monocular camera. Previous work

in our group used a stereo camera to stabilize a MAV in unknown indoor environ-

ments [1], but the computation had to be performed offboard, and no higher level

mapping or SLAM was performed. Finally, there has been considerable work in

using laser range finders for MAV navigation and control [13, 3, 11, 34] with the

limitations discussed earlier in this paper.

3 Approach

The problem we address is that of a quadrotor helicopter navigating in an unknown

environment. The quadrotor must use the onboard RGB-D sensor to estimate its

own position (local estimation), build a dense 3D model of the environment (global

simultaneous localization and mapping) and use this model to plan trajectories

through the environment.

Our algorithms are implemented on the vehicle shown in Figure 1. The vehicle is

a Pelican quadrotor manufactured by Ascending Technologies GmbH. The vehicle

has a maximal dimension of 70 cm, and a payload of up to 1000 g. We have mounted

a stripped down Microsoft Kinect sensor and connected it to the onboard flight com-

puter. The flight computer, developed by the Pixhawk project at ETH Zurich [24],

is a 1.86 GHz Core2Duo processor with 4 GB of RAM. The computer is powerful

enough to allow all of the real-time estimation and control algorithms to run onboard

the vehicle.

Following our previous work, we developed a system that decouples the real-

time local state estimation from the global simultaneous localization and mapping

(SLAM). The local state estimates are computed from visual odometry (section 3.1),

and to correct for drift in these local estimates the estimator periodically incorpo-

rates position corrections provided by the SLAM algorithm (section 3.2). This archi-

tecture allows the SLAM algorithm to use much more processing time than would

be possible if the state estimates from the SLAM algorithm were directly used to

control the vehicle.
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Fig. 2 The input RGB-D data to the visual odometry algorithm alongside the detected feature

matches. The top row images are from time t, the bottom row images are from time t +1. The left

column is the depth image, and the middle column is the corresponding RGB image. The right

hand column shows the pixels that are matched between frames, where inlier feature matches are

drawn in blue and outliers are drawn in red.

3.1 Visual Odometry
The visual odometry algorithm that we have developed is based around a standard

stereo visual odometry pipeline, with components adapted from existing algorithms.

While most visual odometry algorithms follow a common architecture, a large num-

ber of variations and specific approaches exist, each with its own attributes. The

contribution of this paper is to specify the steps of our visual odometry algorithm

and compare the alternatives for each step. In this section we specify these steps,

and in section 4 we provide the experimental comparison of each step in the visual

odometry pipeline. Our overall algorithm is most closely related to the approaches

taken by Mei et al. [23] and Howard [17].

1. Image Preprocessing: An RGB-D image is first acquired from the RGB-D cam-

era (Fig. 2). The RGB component of the image is converted to grayscale and

smoothed with a Gaussian kernel of σ = 0.85, and a Gaussian pyramid is con-

structed to enable more robust feature detection at different scales. Each level

of the pyramid corresponds to one octave in scale space. Features at the higher

scales generally correspond to larger image structures in the scene, which gener-

ally makes them more repeatable and robust to motion blur.

2. Feature Extraction: Features are extracted at each level of the Gaussian pyra-

mid using the FAST feature detector [33]. The threshold for the FAST detector

is adaptively chosen using a simple proportional controller to ensure a sufficient

number of features are detected in each frame. The depth corresponding to each

feature is also extracted from the depth image. Features that do not have an asso-

ciated depth are discarded. To maintain a more uniform distribution of features,

each pyramid level is discretized into 80×80 pixel buckets, and the 25 features

in each bucket with the strongest FAST corner score are retained.
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3. Initial Rotation Estimation: For small motions such as those encountered in

successive image frames, the majority of a feature’s apparent motion in the image

plane is caused by 3D rotation. Estimating this rotation allows us to constrain the

search window when matching features between frames. We use the technique

proposed by Mei et al. [23] to compute an initial rotation by directly minimizing

the sum of squared pixel errors between downsampled versions of the current

and previous frames.

One could also use an IMU or a dynamics model of the vehicle to compute this

initial motion estimate, however the increased generality of the image based es-

timate is preferable, while providing sufficient performance. An alternative ap-

proach would be to use a coarse-to-fine motion estimation that iteratively esti-

mates motion from each level of the Gaussian pyramid, as proposed by Johnson

et al [18].

4. Feature Matching: Each feature is assigned an 80-byte descriptor consisting

of the brightness values of the 9× 9 pixel patch around the feature, normalized

to zero mean and omitting the bottom right pixel. The omission of one pixel re-

sults in a descriptor length more suitable for vectorized instructions. Features are

then matched across frames by comparing their feature descriptor values using

a mutual-consistency check [28]. The match score between two features is the

sum-of-absolute differences (SAD) of their feature descriptors [17], which can be

quickly computed using SIMD instructions such as Intel SSE2. A feature match

is declared when two features have the lowest scoring SAD with each other, and

they lie within the search window defined by the initial rotation estimation.

Once an initial match is found, the feature location in the newest frame is refined

to obtain a sub-pixel match. Refinement is computed by minimizing the sum-of-

square errors of the descriptors, using ESM to solve the iterative nonlinear least

squares problem [4]. We also use SIMD instructions to speed up this process.

5. Inlier Detection: Although the constraints imposed by the initial rotation esti-

mation substantially reduce the rate of incorrect feature matches between frames,

an additional step is necessary to further prune away bad matches. We follow

Howard’s approach of computing a graph of consistent feature matches, and then

using a greedy algorithm to approximate the maximal clique in the graph [17, 15].

The graph is constructed according to the fact that rigid body motions are

distance-preserving operations – the Euclidean distance between two features at

one time should match their distance at another time. Thus, each pair of matched

features across frames is a vertex in the graph, and an edge is formed between

two such pairs of matched feature if the 3D distance between the features does

not change substantially from the prior frame to the subsequent frame. For a

static scene, the set of inliers make up the maximal clique of consistent matches.

The max-clique search is approximated by starting with an empty set of matched

feature pairs and iteratively adding matched feature pairs with greatest degree

that is consistent with all matched feature pairs in the clique (Fig. 2). Overall,

this algorithm has a runtime quadratic in the number of matched feature pairs,

but runs very quickly due to the speed of the consistency checking. In section 4,

we compare this approach to RANSAC-based methods [28, 22].
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6. Motion estimation

The final motion estimate is computed from the matched features in three steps.

First, Horn’s absolute orientation method provides an initial estimate by mini-

mizing the Euclidean distances between the inlier feature matches [16]. Second,

the motion estimate is refined by minimizing feature reprojection error using a

nonlinear least-squares solver [4]. This refinement step implicitly accounts for

the increase in depth uncertainty with range due to the fact that the depth esti-

mates are computed by stereo matching in image space. Finally, feature matches

exceeding a fixed reprojection error threshold are discarded from the inlier set

and the motion estimate is refined once again.

To reduce short-scale drift, we additionally use a keyframe technique. Motion is

estimated by comparing the newest frame against a reference frame. If the camera

motion relative to the reference frame is successfully computed with a sufficient

number of inlier features, then the reference frame is not changed. Otherwise,

the newest frame replaces the reference frame after the estimation is finished. If

motion estimation against the reference frame fails, then the motion estimation

is tried again with the second most recent frame. This simple heuristic serves to

eliminate drift in situations where the camera viewpoint does not vary signifi-

cantly, a technique especially useful when hovering.

3.2 Mapping

Visual odometry provides locally accurate pose estimates; however global consis-

tency is needed for metric map generation and navigation over long time-scales. We

therefore integrate our visual odometry system with our previous work in RGBD-

Mapping [14]. This section focuses on the key decisions required for real-time op-

eration; we refer readers to our previous publication for details on the original algo-

rithm that emphasizes mapping accuracy [14].

Unlike the local pose estimates needed for maintaining stable flight, map updates

and global pose updates are not required at a high frequency and can therefore be

processed on an offboard computer. The MAV transmits RGB-D data to an offboard

laptop, which detects loop closures, computes global pose corrections, and con-

structs a 3D log-likelihood occupancy grid map. For coarse navigation, we found

that a grid map with 10 cm resolution provided a useful balance between map size

and precision. Depth data is downsampled to 128×96 prior to a voxel map update

to increase the update speed, resulting in spacing between depth pixels of approx-

imately 5 cm at a range of 6 m. Incorporating a single frame into the voxel map

currently takes approximately 1.5 ms.

As before, we adopt a keyframe approach to loop closure – new RGB-D frames

are matched against a small set of keyframes to detect loop closures, using a fast

image matching procedure [14]. New keyframes are added when the accumulated

motion since the previous keyframe exceeds either 10 degrees in rotation or 25 cen-

timeters in translation. When a new keyframe is constructed, a RANSAC procedure

over FAST keypoints [33] compares the new keyframe to keyframes occurring more

than 4 seconds prior. As loop closure requires matching non-sequential frames, we

obtain putative keypoint matches using Calonder randomized tree descriptors [7]. A
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new keypoint is considered as a possible match to an earlier frame if the L2 distance

to the most similar descriptor in the earlier frame has a ratio less than 0.6 with the

next most similar descriptor. RANSAC inlier matches establish a relative pose be-

tween the frames, which is accepted if there are at least 10 inliers. Matches with a

reprojection error below a fixed threshold are considered inliers. The final refined

relative pose between keyframes is obtained by solving a two-frame sparse bundle

adjustment (SBA) system, which minimizes overall reprojection error.

To keep the loop closure detection near constant time as the map grows, we

limit the keyframes against which the new keyframe is checked. First, we only

use keyframes whose pose differs from the new frame (according to the existing

estimates) by at most 90 degrees in rotation and 5 meters in translation. We also

use Nistér’s vocabulary tree approach [29], which uses a quantized “bag of vi-

sual words” model to rapidly determine the 15 most likely loop closure candidates.

Keyframes that pass these tests are matched against new frames, and matching is

terminated after the first successful loop closure. On each successful loop closure, a

new constraint is added to a pose graph, which is then optimized using TORO [9].

Pose graph optimization is typically fast, converging in roughly 30 ms. Corrected

pose estimates are then transmitted back to the vehicle, along with any updated

voxel maps.

Greater global map consistency can be achieved using a sparse bundle adjustment

technique that optimizes over all matched features across all frames [21]. However,

this is a much slower approach and not yet suitable for real-time operation.

3.3 State estimation and control

To control the quadrotor, we integrated the new visual odometry and RGB-D

Mapping algorithms into our system previously developed around 2D laser scan-

matching and SLAM [3]. The motion estimates computed by the visual odometry

are fused with measurements from the onboard IMU in an Extended Kalman Filter.

The filter computes estimates of both the position and velocity, which are used by

the PID position controller to stabilize the position of the vehicle.

We keep the SLAM process separate from the real-time control loop, instead

having it provide corrections for the real-time position estimates. Since these posi-

tion corrections are delayed significantly from when the measurement upon which

they were based was taken, we must account for this delay when we incorporate the

correction by retroactively modifying the appropriate position estimate in the state

history. All future state estimates are then recomputed from this corrected position,

resulting in globally consistent real-time state estimates.

By incorporating the SLAM corrections after the fact, we allow the real-time

state estimates to be processed with low enough delay to control the MAV, while still

incorporating the information from SLAM to ensure drift free position estimation.

4 Experiments

This section presents results that compare our design decisions with other ap-

proaches, especially with respect to the ways these decisions affect autonomous
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Fig. 3 Panorama photograph of the motion capture room used to conduct our ground-truth exper-

iments. Visual feature density varies substantially throughout this room.

flight. First, we compare our approach to visual odometry and mapping with al-

ternatives. In some cases, computational speed is preferred over accuracy. Second,

we present results using the RGB-D camera to stabilize and control a MAV. We

characterize the performance of the system as a whole, including its limitations.

4.1 Visual Odometry

There are a variety of visual odometry methods, and the existing literature is often

unclear about the advantages and limitations of each. We present results comparing

a number of these approaches and analyze their performance. As is true in many

domains, the tradeoffs can often be characterized as increased accuracy at the ex-

pense of additional computational requirements. In some cases, the additional cost

is greatly offset by the improved accuracy.

We conducted a number of experiments using a motion capture system that pro-

vides 120 Hz ground truth measurements of the MAV’s position and attitude. The

motion capture environment can be characterized as a single room approximately

11 m×7 m×4 m in size, lit by overhead fluorescent lights and with a wide variation

of visual clutter – one wall is blank and featureless, and the others have a varying

number of objects and visual features (see Fig. 3). While this is not a large volume,

it is representative of many confined, indoor spaces, and provides the opportunity to

directly compare against ground truth.

We recorded a dataset of the MAV flying various patterns through the motion

capture environment. Substantial movement in X, Y, Z, and yaw were all recorded,

with small deviations in roll and pitch. We numerically differentiated the motion

capture measurements to obtain the vehicle’s ground truth 3D velocities, and com-

pared them to velocities and trajectories as estimated by the visual odometry and

mapping algorithms.

Table 1 shows the performance of our integrated approach, and its behavior when

adjusting different aspects of the algorithm. Each experiment varied a single aspect

from our approach. We present the mean velocity error magnitude, the overall com-

putation time per RGB-D frame, and the gross failure rate. We define a gross failure

to be any instance where the visual odometry algorithm was either unable to pro-

duce a motion estimate (e.g., due to insufficient feature matches) or where the error

in the estimated 3D velocities exceeded a fixed threshold of 1 m/s. Timing results

were computed on a 2.67 GHz laptop computer.
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Velocity error (m/s) % gross failures total time (ms)

Our approach 0.387 ± 0.004 3.39 14.7

Inlier detection

RANSAC 0.412 ± 0.005 6.05 15.3

Preemptive RANSAC 0.414 ± 0.005 5.91 14.9

Greedy max-clique – our approach 0.387 ± 0.004 3.39 14.7

Initial rotation estimate

None 0.388 ± 0.004 4.22 13.6

Gaussian pyramid levels

1 0.387 ± 0.004 5.17 17.0

2 0.385 ± 0.004 3.52 15.1

3 – our approach 0.387 ± 0.004 3.39 14.7

4 0.387 ± 0.004 3.50 14.5

Reprojection error minimization

Bidir. Gauss-Newton 0.387 ± 0.004 3.24 14.7

Bidir. ESM – our approach 0.387 ± 0.004 3.39 14.7

Unidir. Gauss-Newton 0.391 ± 0.004 3.45 14.6

Unidir. ESM 0.391 ± 0.004 3.47 14.6

Absolute orientation only 0.467 ± 0.005 10.97 14.4

Feature window size

3 0.391 ± 0.004 5.96 12.8

5 0.388 ± 0.004 4.24 13.7

7 0.388 ± 0.004 3.72 14.2

9 – our approach 0.387 ± 0.004 3.39 14.7

11 0.388 ± 0.004 3.42 15.7

Subpixel feature refinement

No refinement 0.404 ± 0.004 5.13 13.1

Adaptive FAST threshold

Fixed threshold (10) 0.385 ± 0.004 3.12 15.3

Feature grid/bucketing

No grid 0.398 ± 0.004 4.02 24.6

Table 1 Comparison of various approaches on a challenging dataset. Error is computed using a

high resolution motion capture system for ground truth.

The dataset was designed to challenge vision-based approaches to the point of

failure, and includes motion blur and feature-poor images, as would commonly be

encountered indoors and under moderate lighting conditions. Our algorithm had a

mean velocity error of 0.387 m/s and a 3.39% gross failure rate, and is unlikely

to have been capable of autonomously flying the MAV through the entire recorded

trajectory. In contrast, in environments with richer visual features, we have observed

mean velocity errors of 0.08 m/s, with no gross failures, significantly lower than the

values reported in table 1.

Inlier detection RANSAC based methods [28] are more commonly used than

the greedy max-clique approach. We tested against two RANSAC schemes, tradi-

tional RANSAC and Preemptive RANSAC [27]. The latter attempts to speed up

RANSAC by avoiding excessive scoring of wrong motion hypotheses. In our ex-

periments, when allocated a comparable amount of computation time (by using 500

hypotheses), greedy max-clique outperformed both.
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Initial rotation estimation A good initial rotation estimate can help constrain

the feature matching process and reduce the number of incorrect feature matches.

Disabling the rotation estimate results in slightly faster runtime, but more frequent

estimation failures.

Gaussian pyramid levels Detecting and matching features on different levels of

a Gaussian pyramid provides provides resilience against motion blur and helps track

larger features.

Reprojection error We compared undirectional motion refinement, which min-

imizes the reprojection error of newly detected features onto the reference frame,

with bidirectional refinement, which additionally minimizes the reprojection error

of reference features projected onto the new frame. We additionally compared a

standard Gauss-Newton optimization technique with ESM. Bidirectional refinement

does provide slightly more accuracy without substantially greater cost, and we found

no significant difference between Gauss-Newton and ESM.

Feature window size As expected, larger feature windows result in more suc-

cessful motion estimation at the cost of additional computation time. Interestingly,

a very small window size of 3×3 yielded reasonable performance, a behavior we

attribute to the constraints provided by the initial rotation estimate.

Subpixel refinement, adaptive thresholding, and feature bucketing We found

the accuracy improvements afforded by subpixel feature refinement outweighed its

additional computational cost. While the lighting in the motion capture experiments

did not substantially change, adaptive thresholding still yielded a lower failure rate.

We would expect the accuracy difference to be greater when flying through more

varied lighting conditions. Finally, without feature bucketing, the feature detector

often detected clusters of closely spaced features, which in turn confused the match-

ing process and resulted in both slower speeds and decreased accuracy.

Timing

On the 2.6 GHz laptop computer used for comparisons, our algorithm requires

roughly 15 ms per frame. The timing per stage is as follows. Preprocessing: 2.1 ms,

feature extraction: 3.1 ms, initial rotation estimation: 1.0 ms, feature matching:

6.0 ms, inlier detection: 2.2 ms, and motion estimation required less than 0.1 ms.

Runtimes for the computer onboard the MAV are roughly 25 ms per frame due to

the slower clock speed (1.86 GHz), but are still well within real-time.

4.2 Mapping and Autonomous Flight

In addition to evaluating the visual odometry algorithms against motion capture re-

sults, we also conducted a number of autonomous flight experiments in the motion

capture system and in larger environments. In these experiments, the vehicle flew

autonomously with state estimates provided by the algorithms presented in this pa-

per. The vehicle was commanded through the environment by a human operator

selecting destination waypoints using a graphical interface.
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Fig. 4 A plot showing the ground truth trajectory of the vehicle during position hold. The red dot

near the center is the origin around which the vehicle was hovering. The vehicle was controlled

using visual odometry, and its position measured with a motion capture system.

(a) (b)

Fig. 5 Trajectories flown by the MAV in two navigation experiments.

Figure 4 shows an example trajectory where the MAV was commanded to hover

at a target point, along with statistics about how well it achieved this goal. The

ground truth trajectory and performance measures were recorded with the motion

capture system.

In addition to the flights performed in the small motion capture environment,

we have flown in a number of locations around the MIT campus, and at the Intel

Research office in Seattle. Two such experiments are shown in figure 5.

As the MAV covers greater distances, the RGB-D mapping algorithm limits the

global drift on its position estimates by detecting loop closures and correcting the

trajectory estimates. The trajectory history can then be combined with the RGB-

D sensor data to automatically generate maps that are useful both for a human

operator’s situational awareness, and for autonomous path planning and decision

making. While the ground truth position estimates are not available, the quality of

the state estimates computed by our system is evident in the rendered point cloud.

A video demonstrating autonomous flight and incremental mapping is available at

http://groups.csail.mit.edu/rrg/isrr2011-mav.
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(a) (b)

Fig. 6 Voxel maps for the environments in Fig. 5. (a) Dense maximum-likelihood occupancy voxel

map of the environment depicted in Fig. 5a, false-colored by height. Unknown/unobserved cells

are also tracked, but not depicted here. (b) A voxel map of the environment in Fig. 5b allows the

vehicle to plan a collision-free 3D trajectory (green).

4.3 Navigation

Figure 6a shows an occupancy voxel map populated using the dense depth data pro-

vided by the RGB-D sensor. These occupancy maps can be used for autonomous

path planning and navigation in highly cluttered environments, enabling flight

through tight passageways and in close proximity to obstacles. Figure 6b shows

a rendering of the MAV’s internal state estimate as it flew through the environment

depicted in Figure 5b, and a path planned using the occupancy map and a simple

dynamic programming search strategy. While these renderings are not necessary

for obstacle avoidance, they would serve to provide a human operator with greater

situational awareness of the MAV’s surrounding environment.

5 Discussion and Future Work

The system described in this paper enables autonomous MAV flight in many un-

known indoor environments. However, there remain a great number more challeng-

ing situations that would severely tax our system’s abilities. Motion estimation algo-

rithms based on matching visual features, such as ours and virtually all other visual

odometry techniques, do not perform as well in regions with few visual features. In

large open areas, the visible structure is often far beyond the maximum range of the

Kinect. As a result, the system actually performs better in cluttered environments

and in close quarters than it does in wide open areas. Handling these challenges will

likely require the integration of other sensors such as conventional stereo cameras or

laser range-finders. As these sensors have different failure modes, they serve to com-

plement each other’s capabilities. Additional sensing modalities can reduce, but not

eliminate, state estimation failures. Further robustness can be gained by designing

planning and control systems able to respond appropriately when the state estimates

are extremely uncertain, or to plan in ways that minimize future uncertainty [13].
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Fig. 7 Textured surfaces generated offline using sparse bundle adjustment, with data collected

from autonomous flights.

Our state estimation algorithms assume a static environment, and assume that the

vehicle moves relatively slowly. As the vehicle flies faster, the algorithms will need

to handle larger amounts of motion blur, and other artifacts resulting from the rolling

shutter in the Kinect cameras. Larger inter-frame motions resulting from greater

speeds may in turn require more efficient search strategies to retain the real-time es-

timation capabilities required to control the vehicle. Relaxing the static environment

assumptions will likely require better ways of detecting the set of features useful for

motion estimation. When moving objects comprise a substantial portion of the visi-

ble image, the maximal clique of consistent feature matches may not correspond to

the static environment.

Further work is also required to improve the accuracy and efficiency of the pre-

sented algorithms. Currently, the visual odometry, sensor fusion, and control algo-

rithms are able to run onboard the vehicle; however, even with the modifications

discussed in section 3.2, the loop closing and SLAM algorithms are not quite fast

enough to be run using the onboard processor. In other cases, we have actively traded

estimation accuracy for computational speed. Figure 7 shows the mapping accuracy

possible with further processing time, using more computationally intensive tech-

niques presented in our previous work [14].

While the maps presented in this paper are fairly small, the methods presented

scale to much larger environments. We have previously demonstrated building-scale

mapping with a hand-collected data set [14], although autonomous map construction

of very large spaces will require exploration algorithms that keep the vehicle well

localized (e.g., in visually rich areas).

6 Conclusion

This paper presents an experimental analysis of our approach to enabling au-

tonomous flight using an RGB-D sensor. Our system combines visual odometry

techniques from the existing literature with our previous work on autonomous flight

and mapping, and is able to conduct all sensing and computation required for local

position control onboard the vehicle. Using the RGB-D sensor, our system is able to
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plan complex 3D paths in cluttered environments while retaining a high degree of

situational awareness. We have compared a variety of different approaches to visual

odometry and integrated the techniques that provide a useful balance of speed and

accuracy.
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