
Visual Odometry for Pixel Processor Arrays

Laurie Bose1 Jianing Chen2 Stephen J. Carey2 Piotr Dudek2 Walterio Mayol-Cuevas1

1University of Bristol, Bristol, United Kingdom
2University of Manchester, Manchester, United Kingdom

Abstract

We present an approach of estimating constrained ego-

motion on a Pixel Processor Array (PPA). These devices

embed processing and data storage capability into the pix-

els of the image sensor, allowing for fast and low power

parallel computation directly on the image-plane. Rather

than the standard visual pipeline whereby whole images are

transferred to an external general processing unit, our ap-

proach performs all computation upon the PPA itself, with

the camera’s estimated motion as the only information out-

put. Our approach estimates 3D rotation and a 1D scale-

less estimate of translation. We introduce methods of im-

age scaling, rotation and alignment which are performed

solely upon the PPA itself and form the basis for conduct-

ing motion estimation. We demonstrate the algorithms on

a SCAMP-5 vision chip, achieving frame rates >1000Hz at

∼2W power consumption.

1. Introduction

PPA sensors consist of a parallel array of neighbor-

connected processing elements, each of which features light

capture, processing and storage capabilities allowing for

various image processing tasks to be efficiently performed

directly on the focal plane itself [4],[15],[9],[1],[2],[19].

This is in contrast to traditional camera sensors in which

each pixel element is only capable of light capture, meaning

that whole images must be transferred to a separate external

device for processing. PPA devices need only output spe-

cific information e.g. feature point locations or even higher

level events such as ego-motion coordinates. This results in

requiring little bandwidth, energy consumption and allow-

ing for high speed visual processing.

Low power and bandwidth consumption draw compari-

son between such PPA cameras and Dynamic Vision Sen-

sors (DVS) [14]. These devices produce an asynchronous

stream of events encoding brightness changes incurred at

specific pixels, allowing very fast response times and dy-

namic ranges. DVS have been demonstrated in agile UAVs

maneuvers [17], orientation tracking [7], [11], visual odom-

Figure 1: The architecture of SCAMP-5. Each processing

element / pixel has own storage and processing capabilities.

etry [13], 6DOF tracking and SLAM [12],[20]. However,

DVS based systems still require the actual processing of

visual data to be conducted on a separate external device,

often via having to reconstruct a whole image. In con-

trast, PPA cameras are capable of carrying out all processing

within the sensor device itself.

In this work, we investigate one potential approach for

estimating camera ego-motion on PPA devices, estimating

both rotation and motion along the camera’s forward axis.

Specifically our approach involves conducting image align-

ment between the current image and a previously acquired

key-frame image. This involves determining the set of im-

age transformations (in terms of image rotation, scaling and

translation) needed to align these two images. The cam-

era orientation and translation along the camera axis rela-

tive to the key-frame is then deduced from these transfor-

mations. The estimation process is conducted entirely upon

the SCAMP-5 camera [2] at rates that can exceed 1000Hz.

Section 2 introduces the SCAMP-5 vision system. Sec-

tion 3 and Section 4 present our approaches for image scal-

ing and rotation, which form the basis for our image stabi-

lization based approach for motion estimation presented in

Section 5. Results vs accurate groundtruth as well as out-

door explorations are then presented in Section 6.

14604

2. Hardware Architecture

The Scamp-5 system [16],[2] is a novel vision sensor fol-

lowing a Cellular Processor Array (CPA) design, with the

focal plane of the sensor consisting of a grid of 256x256

processing elements (PEs), each capable of storage and pro-

cessing visual data. The architecture of SCAMP-5 is illus-

trated in Figure 1. Every PE in the array contains 7 analog

registers (AReg), and 13 1-bit digital registers (DReg), ef-

fectively allowing for the direct in-plane storage and ma-

nipulation of 7 different grayscale images and 13 binary

images, each of 256x256 resolution. Various parallel op-

erations can be conducted upon these stored images, such

as the addition and subtraction of grayscale (analog) im-

ages, and bit-wise operations between binary (digital) im-

ages. It should be noted however that the content of analog

registers is subject to decay over time, making them unsuit-

able to store information longer than a couple of seconds.

We denote images by functions, with grayscale images by

Ai : Ω → R, and binary images by Di : Ω → {0, 1} where

Ω ⊂ N
2 is the set of all pixel coordinates in the 256x256

array.

Additionally each PE is capable of communication with

its four neighbors, enabling each PE to retrieve and copy

data from its neighboring elements into its own registers.

This allows images stored in the PE registers to be shifted

around horizontally and vertically within the image plane

along the ”North”,”South”,”East” and ”West” directions as

indicated in Figure 1. For brevity we let IN denote the

image resulting from shifting an image I (being either

greyscale of digital) in the ”North” direction, such that

IN (x, y) = I(x, y − 1). IS , IE and IW are similarly de-

fined for the other directions.

Finally each PE also contains a digital 1-bit activity

”FLAG” register which controls whether a PE executes the

latest received instruction, thus enabling conditional execu-

tion. The value of FLAG can be set by a number of different

mechanisms including selection of an arbitrary-shaped rect-

angle of processing elements, or based upon thresholding

the content of a given register (either analog or digital).

Featuring both neighbor communication and conditional

execution makes it possible to perform many visual pro-

cesses directly on the focal plane in an efficient parallel

manner. This enables the PPA device to capture and pro-

cess visual information at very high frame rates, with spe-

cific tasks such as simple target identification achievable at

frame rates exceeding 100,000 fps given sufficient lighting

conditions [2].

3. In-Plane Image Scaling

This section describes the method used to achieve scal-

ing of images stored on SCAMP-5 hardware, examples of

which can be seen in Figure 2. Scaling involves compress-

Figure 2: Examples of in-plane image transformations

performed on SCAMP-5. L-R: original, zoom-in, zoom-

in+CWrotate and zoom-out+CCWrotate+Rshift

ing or expanding image content in order to fit into a smaller

or larger array of pixels, while simultaneously preserving as

much information as possible.

The value of each pixel in such a scaled image consists

of a weighted average of some subset of pixels taken from

the original image. However such an arbitrary mapping be-

tween the pixels of one image to those of another cannot

directly be performed on SCAMP-5 hardware, on which

direct communication can only occur between neighboring

processing elements as described in Section 2.

Instead, our approach performs nearest neighbor image

scaling incrementally, where at each step two columns and

rows of pixels are either duplicated (for up-scaling) or re-

moved (for down-scaling) from the image. Specifically one

column from both the right and left halves of the image, and

one row from both the top and bottom halves, thus either in-

creasing or decreasing the image’s width and height by two

pixels.

3.1. Column and Row Manipulation Order

In order to produce a uniformly scaled image different

rows and columns must be manipulated at each scaling step.

Let us examine the horizontal downscaling of the right hand

half of a captured image as shown in Figure 3. Let n ∈ N

denote the current scaling step and then consider which col-

umn of pixels to remove in the first step n = 1. Though

somewhat arbitrary, one intuitive choice would be the cen-

tral column of pixels (column 64) indicated in red. When

performing subsequent scaling steps however more consid-

eration must be given into what column of pixels to next re-

move. To achieve uniform scaling, columns of pixels should

be removed in an order such that the resulting loss of con-

tent is spread equally across the image. Thus the column to

remove at each step should be that furthest from the loca-

tions at which any columns have been previously removed,

and also furthest from the edges of the half-image to avoid

scaling artifacts. Thus on the second scaling step (n = 2)

one potential candidate to remove would be column 32 as

shown in blue in Figure 3, after which column 96 (n = 3),

column 16 (n = 4) and column 80 (n = 5) would be re-

moved. Thus the ordered indexes of the columns to remove

under this scheme follow the pattern of 64, 32, 96, 16, 80

and so on. This sequence of indexes follows the pattern ob-

4605

Figure 3: An illustration of which column of pixels is se-

lected for manipulation at each scaling step.

tained by reversing the order of the seven least significant

bits of the scaling step number n as shown in Figure 3. Let

r : N → N represent the function which performs this bit

reversal process. Then for any image scaling task the bit re-

versal of the current scaling step r(n) is used to determine

which rows and columns to remove or duplicate in each of

the half images. It should be noted the sequence resulting

from this bit reversal does not account for the current size

of the image being scaled, leading to artifacts when signif-

icant image scaling has taken place. It is possible to re-

fine this sequence separately for both image up-scaling and

down-scaling to account for this issue. However, for our

purposes of detecting camera motion between frames cap-

tured at high fps, significant image scaling is not required.

3.2. Column and Row Duplication and Removal

The process of removing rows and columns from the im-

age involves shifting the appropriate section of the image

to overwrite the desired row or column. For example to

eliminate the ith column from the right hand half image,

all columns from i to 256 are selected such that only their

FLAG registers are active. With these columns selected,

a one pixel shift to the left (WEST) is then performed on

the desired image. This causes each selected PE to take the

pixel value it is storing for the image in question and replace

it with the pixel value from its EAST neighbor, resulting in

the elimination of the ith column. Insertion of a duplicate

column in the right hand half image is similarly achieved

but by shifting the image once to the right (EAST). Elim-

ination and duplication of columns from the left hand half

image, and rows from the top and bottom half images are

Figure 4: Example of using three consecutive shear opera-

tions to perform image rotation.

achieved in a similar fashion.

4. In-Plane Image Rotation

It is also possible to perform image rotation operations

directly upon images stored on SCAMP-5, examples of

which can be seen in Figure 2.

Similar to image scaling, image rotation involves map-

ping each pixel’s value to a weighted average of a subset

of pixels from the original image. We again restrict our-

selves to only conducting nearest neighbor image rotation,

in which each pixel’s value is directly mapped to that of

another pixel from the original image.

Sequentially manipulating pixels individually would re-

quire a vast number of operations to rotate the entire image,

making such an approach infeasible for real-time applica-

tions. Instead we first describe a method of conducting ef-

ficient parallel image shearing, and then demonstrate how

image rotation can be conducted by performing a combina-

tion of these shear operations.

4.1. InPlane Image Shearing

A shear transformation is a linear mapping in which each

point undergoes a displacement along a given axis, propor-

tional to the point’s signed distance from another axis or-

thogonal to the first. Consider the 2D shear parallel to the x

axis associated with the matrix below.

[

x
′

y
′

]

=

[

1 α
0 1

] [

x
y

]

This shear matrix results in each point (x, y) being

mapped to (x
′

, y
′

) = (x+ αy, y).
Consider applying this shear to the top half of a SCAMP-

5 image. Clearly the number of horizontal shifts that need

to be applied to each row increases linearly with y accord-

ing |αy|, with the sign of αy dictating the shift direction.

Further a minimum number of |128α| horizontal shifts are

required to correctly shift the top row. Note that each row

of the image needs to be shifted an equal or greater number

of times than all rows below it. This fact can be exploited

to efficiently perform the shear operation by shifting sub-

sets of contiguous rows in parallel. Specifically subsets of

the form of rows {i, ..., 256 : 128 < i ≤ 256} (i.e. the ith

row and all rows above it). This parallel shifting approach

4606

allows the entire shear to be performed in the smallest pos-

sible number of |128α| shift operations.

Let n denote the current shearing step number, and

{in, ..., 256 : 128 < in ≤ 256} denote the subset of rows

to horizontally shift at the nth step shearing. In order to

produce a correctly sheared image the sequence of values

i1, i2, i3... must be equally spread across the rows of the

half image (as this results in the number of times a given

row is shifted being proportional to its location in y). The

same bit reversal function r introduced previously for im-

age scaling in Section 3 can be again used to determine a

sequence of in values (in = r(n)) that are approximately

evenly spread at every scaling step. This allows for shearing

to be conducted in a stepwise manner where at each step the

intermediate image is sheared as needed.

Horizontal shearing upon the bottom half image and ver-

tical shearing upon the left and right half images are con-

ducted in an a similar fashion, thus allowing arbitrary shear-

ing to be conducted about the center of the image.

4.2. Rotation by Shearing

Consider that the standard 2D rotation matrix (Equation

1) can be pulled apart and expressed in terms of three shear

matrices of the form shown in Equation 2.

A rotation by angle θ can thus be performed by a se-

quence of three shearing operations determined by the ma-

trices of Equation 2. Specifically, two identical horizontal

shearing operations and one vertical (however these direc-

tions can be flipped). This approach to image rotation was

first introduced by [18] for use in computer graphics.

[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]

(1)

[

1 −tan(θ
2
)

0 1

] [

1 0
sin(θ) 1

] [

1 −tan(θ
2
)

0 1

]

(2)

By performing shearing operations in the stepwise man-

ner described in Section 4.1 image rotation can likewise be

performed incrementally in small rotation steps, as illus-

trated in Figure 4.

5. Odometry on the focal Plane

This section presents the proposed method of estimating

ego-motion on the SCAMP-5 system pictured in Figure 6.

The entire process is conducted upon SCAMP-5 itself with

only the estimated motion information being communicated

to external devices.

Each new camera image is processed into a binary edge

image E : Ω → {0, 1} as shown in Figure 5, and stored

within a single digital register. An iterative image align-

ment process is then conducted between the latest edge im-

age denoted E and a previously acquired edge image key-

frame denoted K. Each iteration tests various image trans-

formations upon both images, in order to find those which

result in the best local alignment between the two. Specifi-

cally this involves determining the horizontal and vertical 1

pixel shifts to apply to K, and the image rotation and scal-

ing steps to apply to E, which achieve this best alignment.

The number and direction of each of these transformations

are denoted by the values αr, βr, γr, λr ∈ Z.

αr : Horizontal shifts applied to K
βr : Vertical shifts applied to K
γr : Rotation steps applied to E
λr : Scaling steps applied to E

The values of αr, βr, γr and λr determined for the pre-

vious frame are used as a prior to initialize this image align-

ment process. By applying the transformations associated

with these previous values fewer iterations are required to

achieve image alignment.

The estimated camera pose relative to the pose at which

the key-frame K was acquired is then deduced from the

transformations determined to result in best image align-

ment. The values of αr, βr and γr are used to determine the

camera’s yaw, pitch and roll, while λr is related to trans-

lation along the camera’s forward axis. This deduction is

made under the assumption that there is no camera trans-

lation parallel to the image plane, restricting the range of

camera motions under which this estimation is valid. Fur-

ther, let us use αk, βk, γk, λk to denote the cumulative val-

ues of αr, βr, γr, λr up until the time of acquisition of the

latest key-frame K. The estimated orientation and distance

traveled since the initial key-frame acquired at the start of

the program can be deduced from the combined values of

αk + αr , βk + βr, γk + γr and λk + λr.

A new key-frame is acquired to replace the current K
whenever the number of times a certain transformation

needs to be applied to achieve image alignment between

E and K exceeds a specific threshold. This is to ensure

that there will be sufficient overlapping information be-

tween the K and E for the following camera image to per-

form image alignment. These thresholds are denoted by

Tα, Tβ , Tγ , Tλ ∈ N for αr, βr, γr, λr respectively.

These concepts are now described in greater depth in the

following subsections.

5.1. Binary Edge Extraction

The edges within an image typically contain a great

deal of information regarding the scene in view, and are

those parts of the image most sensitive to changes in cam-

era pose. As has been demonstrated in many prior works

[6],[5],[10],[8] such edges can provide sufficient informa-

tion to determine camera motion. Additionally the edges

extracted from an image can be stored within a single bi-

nary image upon SCAMP-5 providing a good fit both to the

4607

Figure 5: An example of edge extraction on SCAMP-5.

Figure 6: Left : SCAMP-5 camera with yaw (green), pitch

(blue) and roll (red) axi.

hardware resources available on SCAMP-5 and for the pur-

poses of determining camera motion.

A simple edge detection method is used to process each

camera image C : Ω → R into a binary edge image

E : Ω → {0, 1}. This involves generating the absolute

difference image DV (x) = |C(x) − CW(x)| between the

current camera image and a horizontally shifted copy of it-

self. Pixels of high value within DV then indicate the pres-

ence of vertically orientated edges. Similarly the absolute

difference image DH(x) = |C(x) − CS(x)| representing

horizontally orientated edges is also generated. These two

differences images are then combined into a single image

DE(x) = DH(x) +DV (x), which is then thresholded to a

binary image of edge pixels E : Ω → {0, 1} such that.

E(x) =

{

0 if D(x) < δ

1 if D(x) > δ

Where δ ∈ Z is a specified edge detection threshold.

5.2. Image Alignment Overview

The implemented image alignment process is performed

iteratively, where at each step a number of potential trans-

formations to apply to either ET or KT (copies of E and

K) are evaluated to determine which would improve the

alignment between the two images. Those transformations

that improve alignment are then applied to their respective

images. This process is then repeated for the updated ET

and KT images. Given sufficient iterations, this results in

ET and KT converging to a pair of aligned edge images.

The camera pose relative to the pose at which the key-frame

K was acquired is determined from the transformations ap-

plied to ET and KT .

It should be noted that due to the high frame-rate capabil-

ities of SCAMP-5, it is possible to run at a rate at which only

a single iteration is required to achieve best image align-

ment even under violent camera motion. This is due to there

being only very small image changes from one frame to the

next at high frame-rates.

To evaluate if a given transformation would improve the

alignment between ET and KT requires a method of mea-

suring the quality of the alignment between two different

edge images. This is performed by counting the number of

overlapping edge pixels between the two images. For two

edge images E1, K2 this is performed by first generating the

image EO(x) = AND(E1,K2) of overlapping edge pixels,

using an AND operation to combine E1 and K2. A global

sum of all pixels of the image EO is then performed. The

higher the resulting sum value the greater the overlap be-

tween the edges of two images, indicating a better image

alignment.

The various image transformations tested at each itera-

tion of the image alignment process along with their inter-

pretation in terms of change in camera pose are described

in the following subsections. This entire alignment process

is listed in Algorithm 1.

5.3. Image Transformations : Yaw And Pitch

The transformations tested upon KT at each iteration

consist of four different translations (KN
T ,KS

T ,K
E
T ,KW

T),

shifting KT either up, down, left or right across the im-

age plane by a single pixel. The values αr and βr denote

the horizontal and vertical shifts applied to KT determined

to achieve best alignment with ET . Under the constraints

upon camera motion previously described, these two values

αr and βr are proportional to the current yaw and pitch of

the camera relative to the orientation at which the current

key-frame K was acquired. Combined with the cumulative

values αk and βk the current estimated yaw α ∈ R and pitch

β ∈ R of the camera in radians is then given by

α = f(αr + αk)/M
β = f(βr + βk)/M

where where f is the horizontal field of view of the camera

(being the same as the vertical), and with M = 256 being

the width and height of the PE grid of SCAMP-5.

5.4. Image Transformations : Roll

Additionally two rotation operations are tested upon ET

each iteration. These consist of rotating the image by a sin-

4608

Algorithm 1 Edge Image Alignment

ET = E // create a copy of E
KT = K // create a copy of K
Translate KT according to αr and βr

Rotate and scale ET according to γr and λr

for n = 1 to N do

Sα = {KT ,K
N
T ,KS

T }
KT = argmax

k∈Sα

(gsum(AND(ET , k)))

Sβ = {KT ,K
E
T ,KW

T }
KT = argmax

k∈Sβ

(gsum(AND(ET , k)))

Sγ = {ET , E
R+

T , ER−

T }
ET = argmax

e∈Sγ

(gsum(AND(e,KT)))

Sλ = {ET , E
S+

T , ES−

T }
ET = argmax

e∈Sλ

(gsum(AND(e,KT)))

Update αr, βr, γr, λr based on selected transforms

end for

if |αr| > Tα ∨ |βr| > Tβ ∨ |γr| > Tγ ∨ |λr| > Tλ then

// update key-frame and transformation values

K = E
αk = αk + αr βk = βk + βr

γk = γk + γr λk = λk + λr

αr, βr, γr, λr = 0
end if

gle step in the clock-wise direction and the second rotating

by a single step anti clock-wise, producing the rotated im-

ages ER+

T and ER−

T . The number and direction of the ro-

tation steps determined to achieve best alignment between

ET and KT is denoted by γr. Intuitively γr is proportional

to the camera’s current roll angle relative to key-frame K.

Combined with the value of cumulative rotation steps γk
the current estimated roll angle γ of the camera in radians

is given by γ = γr + γk.

5.5. Image Transformations : Translation

Finally two scaling operations are tested upon ET at

each iteration of the image alignment process. One up-

scaling the image by a single step, duplicating two rows and

columns and a second down-scaling by a single step by re-

moving two rows and columns, producing the images ES+

T

and ES−

T respectively. The number and direction (up vs

down scaling) of scaling steps that result in best alignment

between Et and Kt is denoted by λr.

Generally forward camera motion results in an increase

in the size of objects observed within the camera’s image,

backwards motion on the other hand results in a decrease

in object scale. Thus the scaling applied to the image ET

deemed to produce the best alignment with KT can be used

to infer the presence of forward or backward camera transla-

Figure 7: Rotational estimates under rapid shaking motion

at 1000fps. Yaw, Pitch and Roll are shown in Red,Green

and Blue respectively. Dashed lines are the ground-truth

provided by motion capture. See text for details.

tion that has occurred since the acquisition of K. It must be

noted that the rate at which objects within the camera’s im-

age change in size from forward and backward translation

is inversely proportional to their distance from the camera.

Thus the reported rate of forward and backward motion is

both scaleless and also dependent upon the camera’s dis-

tance from the objects in view, rather than being propor-

tional to the actual true rate of forward or backward transla-

tion.

Thus from this the forward and backward translation

along the camera’s axis relative to the pose of the latest key-

frame K can be inferred from λr. A scaleless measure λ of

the total translation along the camera axis is then given by

λ = λr + λk.

6. Experiments and Results

The accuracy of the proposed method of estimating ori-

entation and forward and backward translation was eval-

uated by subjecting the camera to various sequences of

hand held motion and comparing the estimated motion to

4609

Figure 8: Rotational estimates under steady motion at

500fps. Yaw, Pitch and Roll are shown in Red,Green and

Blue respectively. Dashed lines are the ground-truth pro-

vided by motion capture. See text for details.

ground-truth from an OptiTrack motion capture system.

The SCAMP-5 system was connected to a laptop to record

the estimated motion, no other information was transferred.

The key-frame acquisition thresholds were taken to be Tα =
60, Tβ = 60, Tγ = 30, Tλ = 15 for all sequences. The time

taken to conduct edge detection as described in Section 5.1

averaged around 50µs, while the time taken to conduct a

single iteration of the image alignment search described in

Section 5.2 averaged 300µs. While the time taken for these

two processes remained roughly constant the time taken to

apply the prior transformations to copies of the current im-

age and key-frame varied depending upon the magnitude of

the transformations meaning that the frame rate was vari-

able during execution.

The proposed method was able to achieve frame rates in

excess of 1000Hz upon the SCAMP-5 hardware (varying

between 1000-1500Hz), consuming less than 2W of power

in the process. However due to the associated low exposure

time sufficient lighting was required to obtain images usable

for the estimation process. A small construction site lamp

was used to illuminate a small area inside of the motion

tracking volume to conduct experiments at this high frame-

rate. It should be noted that daytime outdoor scenes have

sufficient illumination to operate at such frame-rates even

on cloudy English overcast days. At such high frame-rates

it was sufficient to perform only a single iteration per frame

of the image alignment process as described in Section 5.2.

In all sequences, it was observed that the proposed ap-

proach produced highly accurate estimates of the camera’s

angular velocity. Figure 7 shows an example of results of

the algorithm working at 1000Hz in which the camera was

subject to violent hand held motion (5 shakes per second).

A closer examination of this sequence over a one second

interval is given by Figure 7 middle. From this it can be

seen that in this scenario the estimated yaw has drifted from

the ground truth while the pitch and roll estimations re-

main highly accurate. Figure 7 bottom shows the estimated

rates of yaw,pitch and roll for the same one second interval,

which are seen to closely follow the ground-truth angular

velocity. A total of ten sequences of such rapid shaking

camera motion were evaluated, ranging between 30 to 120

seconds each. The average rate of angular drift from the

ground-truth orientation was found to be 0.14 deg/s. The

standard deviation of the estimated angular velocity from

that derived from motion capture was measured at 18.03
deg/s.

Experiments were also conducted at a lower frame-rate

of 500Hz allowing a greater range of orientations changes

due to the increased exposure time and hence reduced need

for sufficient scene illumination. At this reduced frame-rate

five iterations were used in the image alignment process of

Section 5.2. The estimated orientation closely followed the

ground truth in many such 500Hz sequences such as that

shown in Figure 8. Magnified views of the estimations near

the start and end of this sequence are given in Figure 8 mid-

dle and Figure 8 bottom illustrating the increasing deviation

from the ground truth over time. Again the accuracy was

evaluated over ten such 500Hz sequences with the average

rate of drift being 0.19 deg/s. This is greater than that of

the rapid shaking motion sequences at 1000Hz largely due

to the larger range of motion leading to a greater number of

key-frames being necessary, each of which may introduce

additional deviation from the ground-truth.

For all sequences the estimated translational motion was

scaled such that the magnitude of the minimum and maxi-

mum estimated translation matched that of the ground-truth

in order to perform a direct comparison between the two.

As with the estimation of the camera’s rotation, the es-

timated translation always exhibited increasing drift away

from ground-truth over time. Additionally the fact that the

estimated rate of translational change is dependent upon the

camera’s distance from objects within it’s view also con-

tributed to this deviation. Despite this however, we see that

4610

Figure 9: Top: forward and backward translation estima-

tion. Bottom: translation rate estimation. Goundtruth is

shown by the dashed lines.

the produced translational estimate, once scaled, is highly

correlated with the ground-truth motion as shown in Figure

9 with an average drift of 0.08 meters/s over 10 sequences

between 30 to 120 seconds in length of near constant trans-

lational hand held motion. Note that due to the nature of the

process employed for detecting translational motion (based

upon comparing discretely scaled images to a key-frame),

a certain degree of motion must occur before a definite

change in the estimated translation is made. This fact can

also be observed in Figure 9 in which the estimated trans-

lation is seen to change in small discrete increments. Due

to the discrete nature of this estimation the raw estimated

velocity along the camera’s axis features a large degree of

jitter and discontinuous jumps, however the estimation still

very closely follows the trend of the ground-truth velocity.

In addition to these motion tracked sequences we tested

our approach outdoors following simple paths starting and

ending in the same location. Figure 9 shows one such path

taken around the perimeter of a 53m x 30m court yard (the

total path length thus being approximately 166m) with the

camera facing forward in the direction of motion produces

a scaleless estimation of forward motion which is affected

greatly by the scene in view. This leads to two sides of the

rectangular path as seen in Figure 9 being estimated at dif-

ferent lengths to one another. The accuracy of these outdoor

sequences in terms of final distance from start location di-

vided by total estimated path length was found to be 10%

on average. This is on the same order of error wrt recent

visual odometry systems even when using stereo imagery

[3].

Figure 10: The estimated path of the sensor following a

long rectangular path.

Though these outdoor results are qualitative in nature,

they still provide a useful indication of the approaches ac-

curacy in practical scenarios.

7. Conclusions and Future Directions

This work investigated an image alignment based ap-

proach for conducting constrained ego-motion estima-

tion upon PPA cameras, specifically implemented on the

SCAMP-5 vision system. We presented methods of con-

ducting in-plane image transformations and their use in es-

timating the camera’s rotational motion, along with track-

ing forward and backward translational motion parallel to

the camera’s axis. Evaluation of the proposed approach for

rotational motion estimation was conducted against ground-

truth from motion tracking, revealing highly accurate re-

sults for derived angular velocity estimation. At 1000Hz

under rapid rotational hand held motion the raw estimations

of yaw, pitch and roll were seen to drift at an average rate

of 0.14 deg/s, while the standard deviation of angular ve-

locity error was measured at 18.03 deg/s. The estimation

of translational camera motion, despite being scaleless was

also seen to closely follow the ground-truth trend with a

drift of 0.08 m/s once scale corrected. The demonstrated

accuracy and high frame rate capabilities illustrate the great

potential such a device carries in terms of application to ar-

eas such as high speed robotics.

Data Access and Acknowledgements

Supported by UK EPSRC EP/M019454/1 and

EP/M019284/1. The nature of the PPA means that

the data used for evaluation in this work is never recorded.

4611

References

[1] S. J. Carey, D. R. Barr, B. Wang, A. Lopich, and P. Dudek.

Mixed signal simd processor array vision chip for real-time

image processing. Analog Integrated Circuits and Signal

Processing, 77(3):385–399, 2013.

[2] S. J. Carey, A. Lopich, D. R. Barr, B. Wang, and P. Dudek. A

100,000 fps vision sensor with embedded 535gops/w 256×

256 simd processor array. In VLSI Circuits (VLSIC), 2013

Symposium on, pages C182–C183. IEEE, 2013.

[3] A. Comport, E. Malis, and P. Rives. Real-time quadrifo-

cal visual odometry. International Journal of Robotics Re-

search, 29:245–266, 2010.

[4] P. Dudek and P. J. Hicks. A general-purpose processor-per-

pixel analog simd vision chip. IEEE Transactions on Circuits

and Systems I: Regular Papers, 52(1):13–20, 2005.

[5] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry.

arXiv preprint arXiv:1607.02565, 2016.

[6] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale

direct monocular slam. In European Conference on Com-

puter Vision, pages 834–849. Springer, 2014.

[7] G. Gallego and D. Scaramuzza. Accurate angular velocity

estimation with an event camera.

[8] A. P. Gee and W. Mayol-Cuevas. Real-time model-based

slam using line segments. In International Symposium on

Visual Computing, pages 354–363. Springer, 2006.

[9] M. Ishikawa, K. Ogawa, T. Komuro, and I. Ishii. A cmos vi-

sion chip with simd processing element array for 1 ms image

processing. In Solid-State Circuits Conference, 1999. Digest

of Technical Papers. ISSCC. 1999 IEEE International, pages

206–207. IEEE, 1999.

[10] J. Jose Tarrio and S. Pedre. Realtime edge-based visual

odometry for a monocular camera. In Proceedings of the

IEEE International Conference on Computer Vision, pages

702–710, 2015.

[11] H. Kim, A. Handa, R. Benosman, S.-H. Ieng, and A. J. Davi-

son. Simultaneous mosaicing and tracking with an event

camera. In BMVC, 2014.

[12] H. Kim, S. Leutenegger, and A. J. Davison. Real-time 3d

reconstruction and 6-dof tracking with an event camera. In

European Conference on Computer Vision, pages 349–364.

Springer, 2016.

[13] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza.

Low-latency visual odometry using event-based feature

tracks. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2016.

[14] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128×128

120 db 15µ s latency asynchronous temporal contrast vision

sensor. IEEE journal of solid-state circuits, 43(2):566–576,

2008.

[15] A. Lopich and P. Dudek. A simd cellular processor ar-

ray vision chip with asynchronous processing capabilities.

IEEE Transactions on Circuits and Systems I: Regular Pa-

pers, 58(10):2420–2431, 2011.

[16] J. N. Martel and P. Dudek. Vision chips with in-pixel proces-

sors for high-performance low-power embedded vision sys-

tems. 2016.
[17] E. Mueggler, N. Baumli, F. Fontana, and D. Scaramuzza.

Towards evasive maneuvers with quadrotors using dynamic

vision sensors. European Conference on Mobile Robots

(ECMR), 2015.

[18] A. W. Paeth. A fast algorithm for general raster rotation. In

Graphics Interface, volume 86, 1986.

[19] J. Poikonen, M. Laiho, and A. Paasio. Mipa4k: A 64× 64

cell mixed-mode image processor array. In Circuits and Sys-

tems, 2009. ISCAS 2009. IEEE International Symposium on,

pages 1927–1930. IEEE, 2009.

[20] H. Rebecq, T. Horstschafer, G. Gallego, and D. Scaramuzza.

Evo: A geometric approach to event-based 6-dof parallel

tracking and mapping in real-time. IEEE Robotics and Au-

tomation Letters, 2016.

4612

