
Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2012

Visual Odometry: Part II - Matching, Robustness, and Applications

Fraundorfer, Friedrich ; Scaramuzza, Davide

Abstract: Part II of the tutorial has summarized the remaining building blocks of the VO pipeline:
specifically, how to detect and match salient and repeatable features across frames and robust estimation
in the presence of outliers and bundle adjustment. In addition, error propagation, applications, and links
to publicly available code are included. VO is a well understood and established part of robotics. VO
has reached a maturity that has allowed us to successfully use it for certain classes of applications: space,
ground, aerial, and underwater. In the presence of loop closures, VO can be used as a building block
for a complete SLAM algorithm to reduce motion drift. Challenges that still remain are to develop and
demonstrate large-scale and long-term implementations, such as driving autonomous cars for hundreds of
miles. Such systems have recently been demonstrated using Lidar and Radar sensors [86]. However, for
VO to be used in such systems, technical issues regarding robustness and, especially, long-term stability
have to be resolved. Eventually, VO has the potential to replace Lidar-based systems for egomotion
estimation, which are currently leading the state of the art in accuracy, robustness, and reliability.
VO offers a cheaper and mechanically easier-to-manufacture solution for egomotion estimation, while,
additionally, being fully passive. Furthermore, the ongoing miniaturization of digital cameras offers the
possibility to develop smaller and smaller robotic systems capable of ego-motion estimation.

DOI: https://doi.org/10.1109/MRA.2012.2182810

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-71030
Journal Article
Accepted Version

Originally published at:
Fraundorfer, Friedrich; Scaramuzza, Davide (2012). Visual Odometry: Part II - Matching, Robustness,
and Applications. IEEE Robotics and Automation Magazine, 19(2):78-90.
DOI: https://doi.org/10.1109/MRA.2012.2182810

1

Visual Odometry: Part II

Matching, Robustness, Optimization, and

Applications
Friedrich Fraundorfer and Davide Scaramuzza

Abstract—This tutorial provides an introduction to visual
odometry and the research that has been undertaken from
1980 to 2011. Visual odometry is the process of estimating the
egomotion of an agent using only the input of a single or multiple
cameras attached to it. Application domains include robotics,
wearable computing, augmented reality, and automotive. While
the first two decades witnessed many off-line implementations,
only in the third decade have real-time working systems flour-
ished such that for the first time visual odometry has been
used on another planet by two Mars-exploration rovers. This
tutorial is the second of two parts. The first part presented
a historical review of the first thirty years of research in this
field and its fundamentals. The second part deals with feature
matching, robustness, and applications. Both tutorials provide
both the experienced and non-expert user with guidelines and
references to algorithms to build a complete visual odometry
system. It is discussed that an ideal and unique visual-odometry
solution for every possible working environment does not exist.
The optimal solution should be chosen carefully according to
the specific navigation environment and the given computational
resources.

I. INTRODUCTION

Visual Odometry (VO) is the process of estimating the

egomotion of an agent (e.g., vehicle, human, robot, etc.) using

only the input of a single or multiple cameras attached to

it. Application domains include robotics, wearable computing,

augmented reality, and automotive. The term VO was coined in

2004 by Nister in his landmark paper [1]. The term was chosen

for its similarity to wheel odometry, which incrementally

estimates the motion of a vehicle by integrating the number

of turns of its wheels over time. Likewise, VO operates

by incrementally estimating the pose of the vehicle through

examination of the changes that movement induces on the

images of its onboard cameras. For VO to work effectively,

there should be sufficient illumination in the environment and

a static scene with sufficient texture to allow apparent motion

to be extracted. Furthermore, consecutive frames should be

captured by ensuring that they have sufficient scene overlap.

The advantage of VO with respect to wheel odometry is that

VO is not affected by wheel slip in uneven terrain or other

adverse conditions. It has been demonstrated that compared

to wheel odometry, VO provides more accurate trajectory es-

timates, with relative position error ranging from 0.1% to 2%.

Friedrich Fraundorfer is with the Institute of Visual Computing, Department
of Computer Science, ETH Zurich, Switzerland. Davide Scaramuzza is with
the GRASP Lab, Department of Computer and Information Science, School of
Engineering and Applied Science, University of Pennsylvania, Philadelphia,
USA.

This capability makes VO an interesting supplement to wheel

odometry and, additionally, to other navigation systems such

as global positioning system (GPS), inertial measurement units

(IMUs), and laser odometry (similar to VO, laser odometry

estimates the egomotion of a vehicle by scan-matching of

consecutive laser scans). In GPS-denied environments, such

as underwater and aerial, VO has utmost importance.

This two-part tutorial and survey provides a broad intro-

duction to VO and the research that has been undertaken from

1980 to 2011. Although the first two decades witnessed many

offline implementations, only in the third decade did real-time

working systems flourish, which has led VO to be used on

another planet by two Mars-exploration rovers for the first

time. Part I presented a historical review of the first 30 years

of research in this field, a discussion on camera modeling and

calibration, and a description of the main motion-estimation

pipelines for both monocular and binocular scheme, outlining

pros and cons of each implementation. Part II (this tutorial)

deals with feature matching, robustness, and applications. It

reviews the main point-feature detectors used in VO and

the different outlier-rejection schemes. Particular emphasis is

given to the random sample consensus (RANSAC) and the

strategies devised to speed it up are discussed. Other topics

covered are error modeling, loop-closure detection (or location

recognition), and bundle adjustment. Links to online, ready-

to-use code are also given.

The mathematical notation and concepts used in this article

are defined in Part I of this tutorial and, therefore, are not

repeated here.

II. FEATURE SELECTION AND MATCHING

There are two main approaches to finding feature points

and their correspondences. The first one is to find features

in one image and track them in the next images using local

search techniques, such as correlation. The second one is to

detect features independently in all the images and match them

based on some similarity metric between their descriptors. The

former approach is more suitable when the images are taken

from nearby viewpoints, whereas the latter is more suitable

when a large motion or viewpoint change is expected. Early

research in VO opted for the former approach [2]–[5], while

the works in the last decade concentrated on the latter approach

[1], [6]–[9]. The reason is that early works were conceived

for small-scale environments, where images were taken from

nearby viewpoints, while in the last decade the focus has

2

shifted to large-scale environments, and so the images are

taken as far apart as possible from each in order to limit the

motion-drift-related issues.

A. Feature Detection

During the feature-detection step, the image is searched for

salient keypoints that are likely to match well in other images.

A local feature is an image pattern that differs from its

immediate neighborhood in terms of intensity, color, and

texture. For VO, point detectors, such as corners or blobs, are

important because their position in the image can be measured

accurately.

A corner is defined as a point at the intersection of two

or more edges. A blob is an image pattern that differs from

its immediate neighborhood in terms of intensity, color, and

texture. It is not an edge, nor a corner.

The appealing properties that a good feature detector should

have are: localization accuracy (both in position and scale),

repeatability (i.e., a large number of features should be re-

detected in the next images), computational efficiency, ro-

bustness (to noise, compression artifacts, blur), distinctiveness

(so that features can be matched accurately across different

images), and invariance (to both photometric changes [e.g.,

illumination] and geometric changes [rotation, scale (zoom),

perspective distortion]).

The VO literature is characterized by many point-feature

detectors, such as corner detectors (e.g., Moravec [2], Forstner

[10], Harris [11], Shi-Tomasi [12], and FAST [13]) and blob

detectors (SIFT [14], SURF [15], and CENSUR [16]). An

overview of these detectors can be found in [17]. Each detector

has its own pros and cons. Corner detectors are fast to compute

but are less distinctive, whereas blob detectors are more

distinctive but slower to detect. Additionally, corners are better

localized in image position than blobs, but are less localized

in scale. This means that corners cannot be redetected as often

as blobs after large changes in scale and viewpoint. However,

blobs are not always the right choice in some environments—

for instance SIFT neglects automatically corners, which urban

environments are extremely rich of. For these reasons, the

choice of the appropriate feature detector should be considered

carefully, depending on the computational constraints, real-

time requirements, environment type, and motion baseline

(i.e., how nearby images are taken). An approximate com-

parison of properties and performance of different corner and

blob detectors is given in Figure 1. A performance evaluation

of feature detectors and descriptors for indoor VO has been

given in [18] and for outdoor environments in [9], [19].

Every feature detector consists of two stages. The first is

to apply a feature-response function on the entire image (such

as the corner response function in the Harris detector or the

difference-of-Gaussian operator of the SIFT). The second step

is to apply non-maxima suppression on the output of the first

step. The goal is to identify all local minima (or maxima) of

the feature-response function. The output of the non-maxima

suppression represents detected features. The trick to make a

detector invariant to scale changes consists in applying the

detector at lower-scale and upper-scale versions of the same

Fig. 1. Comparison of feature detectors: properties and performance.

Fig. 2. The original image (top left) is smoothed with four Gaussian filters
with different sigmas, and this is repeated after downsampling the image of
a factor 2. Finally, difference-of-Gaussian (DoG) images are computed by
taking the difference between successive Gaussian-smoothed images. SIFT
features are found as local minima or maxima of DoG images across scales
and space.

image (Figure 2(top)). Invariance to perspective changes is

instead attained by approximating the perspective distortion

as an affine one.

SIFT is a feature devised for object and place recognition

and found to give outstanding results for VO. The SIFT

detector starts by convolving the upper and lower scales of

the image with a difference-of-Gaussian (DoG) operator and

then takes the local minima or maxima of the output across

scales and space (Figure 2). The power of SIFT is in its robust

descriptor, which will be explained in the next section.

The SURF detector builds upon the SIFT but uses box filters

to approximate the Gaussian, resulting in a faster computation

compared to SIFT, which is achieved with integral images.

3

Fig. 3. SIFT features shown with orientation and scale.

B. Feature Descriptor

In the feature description step, the region around each

detected feature is converted into a compact descriptor that

can be matched against other descriptors.

The simplest descriptor of a feature is its appearance, that

is, the intensity of the pixels in a patch around the feature

point. In this case, error metrics such as the sum of squared

differences (SSD) or the normalized cross correlation (NCC)

can be used to compare intensities [20]. Contrary to SSD,

NCC compensates well for slightly brightness changes. An

alternative and more robust image similarity measure is the

Census transform [21], which converts each image patch into

a binary vector representing which neighbors are above or

below the central pixel. The patch similarity is then measured

through the Hamming distance.

In many cases, the local appearance of the feature is not

a good descriptor of the information carried by the feature

because its appearance will change with orientation, scale, and

viewpoint changes. In fact, SSD and NCC are not invariant to

any of these changes and, therefore, their use is limited to

images taken at nearby positions. One of the most popular

descriptors for point features is the SIFT. The SIFT descriptor

is basically a histogram of gradient orientations. The patch

around the feature is decomposed into a 4 × 4 grid. For

each quadrant, a histogram of eight gradient orientations is

built. All these histograms are then concatenated together

forming a 128-element descriptor vector. To reduce the effect

of illumination changes, the descriptor is then normalized to

unit length.

The SIFT descriptor proved to be very stable against

changes in illumination, rotation, and scale, and even up to

60-degree changes in viewpoint. Example SIFT features are

shown in Figure 3. The orientation and scale of each feature

is shown.

The SIFT descriptor can in general be computed for corner

or blob features; however, its performance will decrease on

corners because, by definition, corners occur at the intersection

of edges. Therefore, its descriptor wont be as distinctive as for

blobs, which, conversely, lie in highly-textured regions of the

Fig. 4. SIFT-feature tracks.

image.

Between 2010 and 2011, three new descriptors have been

devised, which are much faster to compute than SIFT and

SURF. A simple binary descriptor named BRIEF [22] became

popular: it uses pairwise brightness comparisons sampled from

a patch around the keypoint. While extremely fast to extract

and to compare, it still exhibits high discriminative power

in the absence of rotation and scale change. Inspired by its

success, ORB [23] was developed, which tackles orientation

invariance and an optimization of the sampling scheme for

the brightness value pairs. Along the same lines, BRISK [24]

provides a keypoint detector based on FAST, which allows

scale and rotation invariance, and binary descriptor that uses

a configurable sampling pattern.

C. Feature Matching

The feature-matching step searches for corresponding fea-

tures in other images. Figure 4 shows SIFT features matched

across multiple frames overlaid on the first image. The set of

matches corresponding to the same feature is called feature

track.

The simplest way for matching features between two images

is to compare all feature descriptors in the first image to all

other feature descriptors in the second image. Descriptors are

compared using a similarity measure. If the descriptor is the

local appearance of the feature, then a good measure is the

SSD or the NCC. For SIFT descriptors, this is the Euclidean

distance.

1) Mutual consistency check: After comparing all feature

descriptors between two images, the best correspondence of a

feature in the second image is chosen as that with the closest

descriptor (in terms of distance or similarity). However, this

stage may cause that one feature in the second image match

with more than one feature in the first image. To decide which

match to accept, the mutual consistency check can be used.

This consists in pairing every feature in the second image

with features in the first image. Only pairs of corresponding

features that “want to get married” (i.e. that mutually have

each other as preferred match) are accepted as correct.

4

epipolar plane

Ck

Tk,k -1

Ck-1

p̃′
p̃

X

epipolar line epipolar line

Fig. 5. Illustration of the epipolar constraint.

2) Constrained matching: A disadvantage of this exhaus-

tive matching is that it is quadratic in the number of features,

which can become impractical when the number of features

is large (e.g. several thousands). A better approach is to use

an indexing structure, such as a multi-dimensional search tree

or a hash table, to rapidly search for features near a given

feature. A faster feature matching is to search for potential

correspondences in regions of the second image where they

are expected to be. These regions can be predicted using

a motion model and the 3D feature position (if available).

For instance, this is the case in the 3D-to-2D-based motion

estimation described in Part I of this tutorial. The motion can

be given by an additional sensor like IMU, wheel odometry

[25], laser, GPS, etc. or can be inferred from the previous

position assuming a constant velocity model, as proposed in

[26]. The predicted region is then calculated as an error ellipse

from the uncertainty of the motion and that of the 3D point.

Alternatively, if only the motion model is known but not the

3D feature position, the corresponding match can be searched

along the epipolar line in the second image. This process

is called epipolar matching. As can be observed in Figure

5, a single 2D feature and the two camera centers define a

plane in the 3D space which intersect both images into two

lines, called epipolar lines. An epipolar line can be computed

directly from a 2D feature and the relative motion of the

camera, as explained in Part I of this tutorial. Each feature

in the first image has a different epipolar line in the second

image.

In stereovision, instead of computing the epipolar line

for each candidate feature, the images are usually rectified.

Image rectification is a remapping of an image pair into a

new image pair where epipolar lines of the left and right

image are horizontal and aligned to each other. This has

the advantage of facilitating the image-correspondence search,

since epipolar lines do no longer have to be computed for each

feature: the correspondent of one feature in the left (right)

image can be searched across those features in the right (left)

image, which lie on the same row. Image rectification can be

executed very efficiently on graphics processing units (GPUs).

In stereovision the relative position between the two cameras

is known very precisely. However, if the motion is affected

by uncertainty, the epipolar search is usually expanded to a

rectangular area within a certain distance from the epipolar

line. In stereovision, SSD, NCC, and Census transform are

widely-used similarity metrics for epipolar matching.

D. Feature Tracking

An alternative to independently finding features in all candi-

date images and then matching them is to detect features in the

first image and, then, search for their corresponding matches in

the next images. This detect-then-track approach is suitable for

VO applications where images are taken at nearby locations,

where the amount of motion and appearance deformation be-

tween adjacent frames is small. For this particular application,

SSD and NCC can work well.

However, if features are tracked over long image sequences,

their appearance can undergo larger changes. In this case, the

solution is to apply an affine-distortion model to each fea-

ture. The resulting tracker is often called KanadeLucasTomasi

(KLT) tracker [12].

E. Discussion

1) SIFT matching: For SIFT feature matching, a distance-

ratio test was proposed by the authors, initially for use in place

and object detection [14]. This distance-ratio test accepts the

closest match (the one with minimum Euclidean distance) only

if the ratio between the closest match and the second closest

match is smaller than a user-specified threshold. The idea

behind this test is to remove matches that might be ambiguous,

e.g., due to repetitive structure. The threshold for the test can

only be set heuristically and an unlucky guess might remove

correct matches as well. Therefore, in many cases it might be

beneficial to skip the ratio test and let RANSAC take care of

the outliers as explained in section III.

2) Lines and edgelets: An alternative to point features for

VO is to use lines or edgelets, as proposed in [27], [28]. They

can be used in addition to points in structured environments

and may provide additional cues, such as direction (of the

line or edgelet), and planarity and orthogonality constraints.

Contrary to points, lines are more difficult to match because

lines are more likely to be occluded than points. Furthermore,

the origin and end of a line segment of edgelet may not exist

(e.g., occlusions, horizon line, etc.).

3) Number of features and distribution: The distribution of

the features in the image has been found to affect the VO

results remarkably [1], [9], [29]. In particular, more feature

provide more stable motion-estimation results than with fewer

features, but at the same time the keypoints should cover as

evenly as possible the image. In order to do this, the image can

be partitioned into a grid and the feature detector is applied to

each cell by tuning the detection thresholds until a minimum

number of feature is found in each subimage [1]. As a rule

of the thumb, one thousand features is a good number for a

640× 480-pixel image,

4) Dense and correspondence-free methods: An alternative

to sparse-feature extraction is to use dense methods, such as

optical flow [30], or feature-less methods [31]. Optical flow

aims at tracking, ideally, each individual pixel or a subset of

the whole image (e.g., all pixels on a grid specified by the

user). However, similar to feature tracking, it assumes very

small motion between frames and, therefore, is not suitable

5

Fig. 6. Comparison between visual odometry trajectories estimated before
and after removing the outliers.

for VO applications since motion error accumulates very

quickly. Another alternative is feature-less motion-estimation

methods, such as [31]: all the pixels in the two images are

used to compute the relative motion using a harmonic Fourier

transform. This method has the advantage to work especially

with low-texture images but is computationally extremely

expensive (can take up to several minutes) and the recovered

motion is less accurate than with feature-based methods.

III. OUTLIER REMOVAL

Matched points are usually contaminated by outliers, that

is, wrong data associations. Possible causes of outliers are

image noise, occlusions, blur, and changes in view point and

illumination for which the mathematical model of the feature

detector or descriptor does not account for. For instance, most

of the feature-matching techniques assume linear illumination

changes, pure camera rotation and scaling (zoom), or affine

distortion. However, these are just mathematical models which

approximate the more complex reality (image saturation, per-

spective distortion, motion blur, etc.). For the camera motion

to be estimated accurately, it is important that outliers be

removed. Outlier rejection is the most delicate task in VO.

An example VO result before and removing the outliers is

shown in Figure 6.

A. RANSAC

The solution to outlier removal consists in taking advantage

of the geometric constraints introduced by the motion model.

Robust estimation methods such as M-estimation [32], case

deletion, and explicitly fitting and removing outliers [33], can

be used but these often only work if there are relatively few

outliers. The random sample consensus (RANSAC) [34] has

been established as the standard method for model estimation

in the presence of outliers.

The idea behind RANSAC is to compute model hypotheses

from randomly-sampled sets of data points and then verify

these hypotheses on the other data points. The hypothesis that

shows the highest consensus with the other data is selected

as solution. For two-view motion estimation as used in VO,

the estimated model is the relative motion (R, t) between the

two camera positions, and the data points are the candidate

feature correspondences. Inlier points to a hypothesis are

found by computing the point-to-epipolar line distance [35].

The point-to-epipolar line distance is usually computed as

a first-order approximation—called Sampson distance—for

efficiency reasons [35]. An alternative to the point-to-epipolar

line distance is the directional error proposed by Oliensis [36].

The directional error measures the angle between the ray of

the image feature and the epipolar plane. The authors claim

that the use of the directional error is advantageous for the case

of omnidirectional and wide-angle cameras but also beneficial

for the standard camera case.

The outline of RANSAC is given in Algorithm 1.

Algorithm 1: RANSAC

1) Initial: let A be a set of N feature correspondences

2) repeat

2.1) Randomly select a sample of s points from A

2.2) Fit a model to these points

2.3) Compute the distance of all other points to this model

2.4) Construct the inlier set (i.e. count the number of points

whose distance from the model < d)

2.5) Store these inliers

2.6) until maximum number of iterations reached

3) The set with the maximum number of inliers is chosen as

a solution to the problem

4) Estimate the model using all the inliers

The number of subsets (iterations) N that is necessary to

guarantee that a correct solution is found can be computed by

N =
log(1− p)

log(1− (1− ε)s)
(1)

where s is the number of data points from which the model

can be instantiated, ε is the percentage of outliers in the data

points, and p is the requested probability of success [34].

For the sake of robustness, in many practical implementations

N is usually multiplied by a factor of 10. More advanced

implementations of RANSAC estimate the fraction of inliers

adaptively, iteration after iteration.

As observed, RANSAC is an iterative method and is non-

deterministic in that it exhibits a different solution on different

runs; however, the solution tends to be stable when the number

of iterations grows.

B. Minimal Model Parameterizations: 8, 7, 6, 5, 4, 2, and

1-point RANSAC

As can be observed in Figure 7, N is exponential in the

number of data points s necessary to estimate the model.

Therefore, there is a high interest in using a minimal pa-

rameterization of the model. In Part I of this tutorial, an 8-

point minimal solver for uncalibrated cameras was described.

Although it works also for calibrated cameras, the 8-point

algorithm fails when the scene points are coplanar. However,

6

Fig. 7. Number of RANSAC iterations versus fraction of outliers. ADD
PLOTS OF 8-7-6 point RANSAC with LOGARITMIC AXES.

when the camera is calibrated, its 6DOF motion can be

inferred from a minimum of 5-point correspondences and the

first solution to this problem was given in 1913 by Kruppa

[37]. Several 5-point minimal solvers were proposed later in

[38]–[40] but an efficient implementation, based on [39], was

found only in 2003 by Nister [41] and later revised in [42].

Before that, the 6-point [43], 7-point [44], or 8-point solvers

were commonly used. However, the 5-point solver has the

advantage that it works also for planar scenes.1

Despite the 5-point algorithm represents the minimal solver

for 6DOF motion of calibrated cameras, in the last decades

there have been several attempts to exploit different cues to

reduce the number of motion parameters. In [49], Fraundorfer

et al. proposed a 3-point minimal solver for the case of two

known camera-orientation angles. For instance, this can be

used when the camera is rigidly attached to a gravity sensor (in

fact, the gravity vector fixes two camera-orientation angles).

Later, Naroditsky et al. [50] improved on that work by showing

that the 3-point minimal solver can be used in a 4-point (3-

plus-1) RANSAC scheme. The 3-plus-1 stands for the fact

that an additional far scene point (ideally a point at infinity)

is used to fix the two orientation angles. Using their 4-point

RANSAC, they also show a successful 6DOF VO. A 2-point

minimal solver for 6DOF VO was proposed by Kneip et al.

[51], which uses the full rotation matrix from an IMU rigidly

attached to the camera.

In the case of planar motion, the motion model complexity

is reduced to 3DOF and can be parameterized with 2 points as

1Observe that 8-point and 7-point solvers work for uncalibrated, perspective
cameras. To use them also with omnidirectional camera, the camera needs to
be calibrated. Alternatively, n-point solvers for uncalibrated omnidirectional
cameras have also been proposed [45]–[47], where n depends on the type
of mirror or fisheye used. Lim et al. [48] showed that for calibrated omni-
directional cameras, 6DOF motion can be recovered using only two pairs
of antipodal image points. Antipodal image points are points whose rays
are aligned but which correspond to opposite viewing directions. They also
showed that antipodal points allow us to independently estimate translation
and rotation.

described in [52]. For wheeled vehicles, Scaramuzza et al. [9],

[53] showed that the motion can be locally described as planar

and circular and, therefore, the motion model complexity is

reduced to 2DOF, leading to a 1-point minimal solver. Using

a single point for motion estimation is the lowest motion

parameterization possible and results in the most efficient

RANSAC algorithm. Additionally, they show that by using

histogram voting outliers can be found in a small as a

single iteration. A performance evaluation of 5, 2, and 1-point

RANSAC algorithms for VO was finally presented in [54].

To recap, the reader should remember that, if the camera

motion is unconstrained, the minimum number of points to

estimate the motion is five and therefore the 5-point RANSAC

(or the 6, 7, or 8 point one) should be used. Of course, using

the 5-point RANSAC will require less iterations (and thus less

time) than with the 6, 7, or 8 point RANSAC. A summary of

the number of minimum RANSAC iterations as a function of

the number of model parameters s is shown in Table I for

the 8, 7, 5, 4, 2, 1-point minimal solvers. These values were

obtained from (1) assuming a probability of success p = 99%

and a percentage of outliers ε = 50%.

C. Reducing the Iterations of RANSAC

As can be observed in Table I, with p = 99% and ε = 50%

the 5-point RANSAC requires a minimum of 145 iterations.

However, in reality the things are not always so easy. Some-

times the number of outliers is underestimated and using more

iterations would increase the chances to find more inliers. In

some cases, it can even be necesary to allow for thousands of

iterations. Because of this, several works have been produced

in the endeavor of increasing the speed of RANSAC. MLE-

SAC [55] makes the measurement of correspondence more

reliable and improves the estimate of the hypotheses. PROSAC

[56] ranks the correspondences based on their similarly and

generates motion hypotheses starting from points with higher

rank. Preemptive RANSAC [57] uses preemptive scoring of

the motion hypotheses and a fixed number of iterations.

Uncertainty RANSAC [58] incorporates feature uncertainty

and shows that this determines a decrease in the number of

potential outliers, thus enforcing a reduction in the number

of iterations. In [59], a deterministic RANSAC approach is

proposed, which also estimates the probability that a match is

correct.

What all the mentioned algorithms have in common is

that the motion hypotheses are generated directly from the

points. Conversely, other algorithms operate by sampling the

hypotheses from a proposal distribution of the vehicle motion

model [60], [61].

Among all these algorithms, preemptive RANSAC has been

the most popular because the number of iterations can be

fixed a priori, which has several advantages when real-time

operation is necessary.

D. Is it Really Better to Use a Minimal Set in RANSAC?

If one is concerned with certain speed requirements, using a

minimal point set is definitely better than using a non-minimal

set. However, even the 5-point RANSAC might not be the best

7

TABLE I
NUMBER OF RANSAC ITERATIONS

Number of points (s): 8 7 6 5 4 2 1

Number of iterations (N): 1177 587 292 145 71 16 7

idea if the image correspondences are very noisy. In this case,

using more points than a minimal set is proved to give better

performance (and more inliers) [62], [63]. To understand it,

consider a single iteration of the 5-point RANSAC: at first, five

random points are selected and used to estimate the motion

model; secondly, this motion hypothesis is tested on all other

points. If the selected five points are inliers with large image

noise, the motion estimated from them will be inaccurate and

will exhibit fewer inliers when tested on all the other points.

Conversely, if the motion is estimated from more than five

points using the five-point solver, the effects of noise are

averaged and the estimated model will be more accurate, with

the effect that more inliers will be identified. Therefore, when

the computational time is not a real concern and one deals with

very noisy features, using a non-minimal set may be better

than using a minimal set [62].

IV. ERROR PROPAGATION

In VO, individual transformations Tk,k−1 are concatenated

to form the current pose of the robot Ck (see Part I of this

tutorial). Each of these transformations Tk,k−1 has an uncer-

tainty and the uncertainty of the camera pose Ck depends on

the uncertainty of the past transformations. This is illustrated

in Figure 8. The uncertainty of the transformation Tk+1,k

computed by VO depends on the camera geometry and the

image features. A derivation for the stereo case can be found

in [3].

C
k

C
k+1

Tk,k-1

Tk+1,k

C
k-1

Fig. 8. The uncertainty of the camera pose at Ck is a combination of
the uncertainty at Ck−1 (black solid ellipse) and the uncertainty of the
transformation Tk,k−1 (gray dashed ellipse)

In the following, the uncertainty propagation is discussed.

Each camera pose Ck and each transformation Tk,k−1 can be

represented by a six-element vector containing the position

(x,y,z) and orientation (in Euler angles φ ,θ ,ψ). These 6-

element vectors are denoted by �Ck and �Tk,k−1, respectively—

e.g., �Ck = (x,y,z,φ ,θ ,ψ)⊤ . Each transformation �Tk,k−1 is

represented by its mean and covariance Σk,k−1. The covariance

matrix Σk,k−1 is a 6×6 matrix. The camera pose �Ck is written

as �Ck = f (�Ck−1,�Tk,k−1), that is a function of the previous

pose �Ck−1 and the transformation �Tk,k−1 with their covariances

Σk and Σk,k−1, respectively. The combined covariance matrix
�Ck is a 12× 12 matrix and a compound of the covariance

matrices Σk,k−1 and Σk−1. �Ck can be computed by using the

error propagation law [64], which uses a first-order Taylor

approximation; therefore,

Σk = J

[

Σk−1 0

0 Σk,k−1

]

J⊤ (2)

= J�Ck−1
Σk−1J�Ck−1

⊤+ J�Tk,k−1
Σk,k−1J�Tk,k−1

⊤, (3)

where J�Ck−1
J�Tk,k−1

are the Jacobians of f with respect to

�Ck−1 and �Tk,k−1, respectively. As can be observed from this

equation, the camera-pose uncertainty is always increasing

when concatenating transformations. Thus, it is important to

keep the uncertainties of the individual transformations small;

this, in order to reduce the drift.

V. CAMERA POSE OPTIMIZATION

VO computes the camera poses by concatenating the trans-

formations, in most cases from two subsequent views at times

k and k−1 (see Part I of this tutorial). However, it might also

be possible to compute the transformations between the current

time k and the n last time steps Tk,k−2, ...,Tk,k−n, or even for

any time step Ti, j. If these transformations are known, they

can be used to improve the camera poses by using them as

additional constraints in a pose-graph optimization.

A. Pose-Graph Optimization

The camera poses computed from VO can be represented

as a pose graph, which is a graph where the camera poses

are the nodes and the rigid-body transformations between

the camera poses are the edges between nodes [65]. Each

additional transformation that is known can be added as an

edge into the pose graph. The edge constraints e i j define the

following cost function:

∑
ei j

‖Ci −Tei j
C j‖

2, (4)

where Tei j
is the transformation between the poses i and j.

Pose graph optimization seeks the camera pose parameters

that minimize this cost function. The rotation part of the

transformation makes the cost function non-linear and a non-

linear optimization algorithm (e.g., Levenberg-Marquardt) has

to be used.

8

1) Loop Constraints for Pose-Graph Optimization: Loop

constraints are very valuable constraints for pose graph opti-

mization. These constraints form graph edges between nodes

that are usually far apart and between which large drift might

have been accumulated. Commonly, events like reobserving a

landmark after not seeing it for a long time or coming back

to a previously-mapped area are called loop detections [66].

Loop constraints can be found by evaluating visual similarity

between the current camera images and past camera images.

Visual similarity can be computed using global image descrip-

tors (e.g. [67], [68]) or local image descriptors (e.g. [69]).

Recently, loop detection by visual similarity using local image

descriptors got a lot of attention and one of the most successful

methods are based on so called visual words [70]–[73]. In

these approaches an image is represented by a bag of visual

worlds. The visual similarity between two images is then

computed as the distance of the visual word histograms of

the two images. The visual word based approach is extremely

efficient to compute visual similarity between large sets of

image data, a property very important for loop detection. A

visual word represents a high-dimensional feature descriptor

(e.g. SIFT or SURF) with a single integer number. For this

quantization, the original high-dimensional descriptor space is

divided into non-overlapping cells by k-means clustering [74],

which is called the visual vocabulary. All feature descriptors

that fall within the same cell will get the cell number assigned,

which represents the visual word. Visual-word-based similarity

computation is often accelerated by organizing the visual-word

database as an inverted-file datastructure [75] which makes use

of the finite range of the visual vocabulary. Visual similarity

computation is the first step of loop detection. After finding the

top-n similar images usually a geometric verification using the

epipolar constraint is performed and, for confirmed matches,

a rigid-body transformation is computed using wide-baseline

feature matches between the two images. This rigid-body

transformation is added to the pose-graph as an additional loop

constraint.

B. Windowed (or Local) Bundle Adjustment

Windowed bundle adjustment [76] is similar to pose-graph

optimization as it tries to optimize the camera parameters

but, in addition, it also optimizes the 3D-landmark parameters

at the same time. It is applicable to the cases where image

features are tracked over more than two frames. Windowed

bundle adjustment considers a so called ”window” of n image

frames and then does a parameter optimization of camera

poses and 3D landmarks for this set of image frames. In

bundle adjustment, the error function to minimize is the image

reprojection error:

arg min
X i,Ck

∑
i,k

‖pi
k − g(X i,Ck)‖

2, (5)

where pi
k is the ith image point of the 3D landmark X i mea-

sured in the kth image and g(X i,Ck) is its image reprojection

according to the current camera pose Ck.

The reprojection error is a non-linear function and the op-

timization is usually carried out using Levenberg-Marquardt.

This requires an initialization that is close to the minimum.

Usually a standard 2-view VO solution serves as initialization.

The Jacobian for this optimization problem has a very specific

structure that can be exploited for efficient computation [76].

Windowed bundle adjustment reduces the drift compared to

2-view VO because it uses feature measurements over more

than 2 image frames. The current camera pose is linked via

the 3D landmark and the image feature track not only to the

previous camera pose but also to camera poses further back.

The current and n−1 previous camera poses need to be consis-

tent with the measurements over n image frames. The choice

of the window size n is mostly governed by computational

reasons. The computational complexity of bundle adjustment

in general is O((qM + lN)3) with M and N the number of

points and cameras poses and q and l the the number of

parameters for points and camera poses. A small window size

limits the number of parameters for the optimization and thus

makes real-time bundle adjustment possible. It is possible to

reduce the computational complexity by just optimizing over

the camera parameters and keeping the 3D landmarks fixed,

e.g. if the 3D landmarks are accurately triangulated from a

stereo setup.

VI. APPLICATIONS

VO has successfully been applied within various techno-

logical fields. It is used for egomotion estimation for space

exploration (e.g., computing the egomotion of Mars Rovers

[25] and that of a planetary lander in the decent phase [77]. On

the other hand, VO can also be found in consumer hardware,

e.g. the Dacuda scanner mouse [78].

VO is applied in all kinds of mobile-robotics systems, such

as space robots, ground robots, aerial robots, and underwater

robots. Initially, the term VO was coined in a ground robot

application [1], where it was used to compute the egomotion

of an all-terrain outdoor vehicle. However, the most popular

application of VO has been on NASA Mars exploration rovers

[25], [79]. NASA’s VO has been used since January 2004

to track the motion of the two NASA rovers Spirit and

Opportunity as a supplement to dead-reckoning. Their stereo

VO system was implemented on a 20Mhz CPU and took up to

three minutes for a two-view structure-from-motion step. VO

was mainly used to approach targets efficiently as well as to

maintain vehicle safety while driving near obstacles on slopes,

achieving difficult drive approaches, performing slip checks to

ensure that the vehicle is still making progress.

VO is also applied onboard of unmanned aerial vehicles of

all kinds of sizes, e.g. within the AVATAR [80] and SFLY [81]

projects. Within the SFLY project, VO was used to perform

autonomous take off, point-to-point navigation, and landing of

small scale quadrocopters.

Autonomous underwater vehicles is also a domain where

VO plays a big role. Underwater vehicles cannot rely on

GPS for position estimation; thus, onboard sensors need to be

used. Cameras provide a cost-effective solution; in addition,

the ocean-floor quite often provides a texture-rich environment

[82], which is ideal for computer vision methods. Applications

range from coral-reef inspection (e.g. the Starbug system [82]

to archaeological surveys [83].

9

VO also plays a big role for the automotive industry. Driver

assistance systems (e.g. assisted braking) already rely on com-

puter vision and digital cameras. VO for automotive market

is in development and first demonstrations have successfully

been shown, e.g. within the Daimler 6D-Vision system [84]

or as part of the VisLab autonomous vehicle [85]. Driving

the development of this technology is the low cost of vision

sensors as compared to Lidar sensors, which is an important

factor for the automotive industry.

VII. AVAILABLE CODE

A lot of the algorithms needed to build a VO system are

made publicly available by their authors. Table II points the

readers to a selection of these resources.

VIII. CONCLUSIONS

This Part II of the tutorial has summarized the remaining

building blocks of the VO pipeline: how to detect and match

salient and repeatable features across frames, robust estimation

in the presence of outliers, and bundle adjustment. In addition,

error propagation, applications, and links to free-to-download

code will be included. VO is a well understood and established

part of robotics.

VO, as a method to compute the egomotion of an agent from

camera images, has reached a maturity that made possible to

successfully use it for certain classes of applications: space,

ground, aerial, and underwater. In presence of loop closures,

VO can be used as a building block for a complete SLAM

algorithm in order to reduce the motion drift. Challenges

that still remain are to develop and demonstrate large-scale

and long-term implementations, such as driving autonomous

cars for hundreds of miles. Such systems have recently been

demonstrated using Lidar and Radar sensors [86]. However,

for VO to be used in such systems, technical issues regarding

robustness and, especially, long-term stability have to be re-

solved. Eventually, VO has the potential to replace Lidar-based

systems for egomotion estimation, which are currently leading

the state of the art in accuracy, robustness, and reliability. VO

will offer a cheaper and mechanically easier-to-manufacture

solution for egomotion estimation, while, additionally, being

fully passive. Furthermore, the ongoing miniaturization of

digital cameras will offer the possibility to develop smaller

and smaller robotic systems that will be capable of egomotion

estimation.

REFERENCES

[1] D. Nister, O. Naroditsky, and B. J., “Visual odometry,” in International

Conference on Computer Vision and Pattern Recognition, 2004.

[2] H. Moravec, “Obstacle avoidance and navigation in the real world by a
seeing robot rover,” Ph.D. dissertation, Stanford University, 1980.

[3] L. Matthies and S. Shafer, “Error modeling in stereo navigation,” IEEE

Journal of Robotics and Automation, pp. 239–248, 1987.

[4] S. Lacroix, A. Mallet, R. Chatila, , and L. Gallo, “Rover self localization
in planetary-like environments,” in International Symposium on Articial
Intelligence, Robotics, and Automation for Space (i-SAIRAS), 1999, pp.
433–440.

[5] C. Olson, L. Matthies, M. Schoppers, and M. W. Maimone, “Robust
stereo ego-motion for long distance navigation,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2000.

[6] M. Lhuillier, “Automatic structure and motion using a catadioptric
camera,” in IEEE Workshop on Omnidirectional Vision, 2005.

[7] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Real
time localization and 3d reconstruction,” in International Conference on

Computer Vision and Pattern Recognition, 2006.

[8] J. Tardif, Y. Pavlidis, and K. Daniilidis, “Monocular visual odometry
in urban environments using an omnidirectional camera,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2008.

[9] D. Scaramuzza, F. Fraundorfer, and R. Siegwart, “Real-time monocular
visual odometry for on-road vehicles with 1-point ransac,” in IEEE

International Conference on Robotics and Automation (ICRA’09), 2009.

[10] W. Forstner, “A feature based correspondence algorithm for image
matching,” International Archives of Photogrammetry, vol. 26, pp. 150–
166, 1986.

[11] C. Harris and J. Pike, “3d positional integration from image sequences,”
in Alvey Vision Conference, 1988.

[12] C. Tomasi and J. Shi, “Good features to track,” in CVPR’94, 1994, pp.
593–600.

[13] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in European Conference on Computer Vision, vol. 1, 2006.

[14] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 20, pp. 91–110, 2003.

[15] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust
features,” in ECCV, 2006, pp. 404–417.

[16] M. Agrawal, K. Konolige, and M. Blas, “Censure: Center surround
extremas for realtime feature detection and matching,” in European

Conference on Computer Vision, 2008.

[17] R. Siegwart, I. Nourbakhsh, and D. Scaramuzza, Introduction to Au-

tonomous Mobile Robots, second edition. MIT Press, 2011.

[18] A. Schmidt, M. Kraft, and A. Kasinski, “An evaluation of image
feature detectors and descriptors for robot navigation,” in International

Conference on Computer Vision and Graphics, 2010.

[19] N. Govender, “Evaluation of feature detection algorithms for structure
from motion,” 2009, technical Report, Council for Scientific and Indus-
trial Research, Pretoria.

[20] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
Prentice Hall, ISBN: 978-0131687288, 2007.

[21] R. Zabih and J. Woodfill, “Non-parametric local transforms for com-
puting visual correspondence,” in European Conference on Computer

Vision, 1994.

[22] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust
independent elementary features,” in European Conference on Computer
Vision, 2010.

[23] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf (pdf),” in IEEE International Conference on

Computer Vision (ICCV 2011), Barcelona, November 2011.

[24] S. Leutenegger, M. Chli, and R. Siegwart, “Brisk: Binary robust invariant
scalable keypoints,” in International Conference on Computer Vision,
2011.

[25] M. Maimone, Y. Cheng, and L. Matthies, “Two years of visual odometry
on the mars exploration rovers: Field reports,” Journal of Field Robotics,
vol. 24, no. 3, pp. 169–186, 2007.

[26] A. Davison, “Real-time simultaneous localisation and mapping with a
single camera,” in International Conference on Computer Vision, 2003.

[27] T. Lemaire and S. Lacroix, “Vision-based slam: Stereo and monocular
approaches,” International Journal of Computer Vision, 2006.

[28] G. Klein and D. Murray, “Improving the agility of keyframe-based
slam,” in European Conference on Computer Vision, 2008.

[29] H. Strasdat, J. Montiel, and A. Davison, “Real time monocular slam:
Why filter?” in IEEE International Conference on Robotics and Automa-

tion, 2010.

[30] B. Horn and B. Schunck, “Determining optical flow,” 1981, artificial
Intelligence.

[31] A. Makadia, C. Geyer, and K. Daniilidis, “Correspondence-free structure
from motion,” International Journal of Computer Vision, vol. 75, no. 3,
2007.

[32] P. Torr and D. Murray, “The development and comparison of robust
methods for estimating the fundamental matrix,” International Journal

of Computer Vision, vol. 24, no. 3, pp. 271–300, 1997.

[33] K. Sim and R. Hartley, “Recovering camera motion using l∞ minimiza-
tion,” in IEEE Conference on Computer Vision and Pattern Recognition,
2006.

[34] M. A. Fischler and R. C. Bolles, “RANSAC random sampling concen-
sus: A paradigm for model fitting with applications to image analysis
and automated cartography,” Communications of ACM, vol. 26, pp. 381–
395, 1981.

10

TABLE II
SOFTWARE AND DATASETS

Author Description Link

Willow Garage OpenCV: A computer vision library maintained by Willow
Garage. The library includes many of the feature detectors
mentioned in this tutorial (e.g., Harris, KLT, SIFT, SURF,
FAST, BRIEF, ORB). In addition, the library contains the
basic motion-estimation algorithms as well as stereo-matching
algorithms.

http://opencv.willowgarage.com

Willow Garage ROS (Robot Operating System): A huge library and mid-
dleware maintained by Willow Garage for developing robot
applications. Contains a visual-odometry package and many
other computer-vision-related packages.

http://www.ros.org

Willow Garage PCL (Point Cloud Library): A 3D-data-processing library
maintained from Willow Garage, which includes useful algo-
rithms to compute transformations between 3D-point clouds.

http://pointclouds.org

Henrik Stewenius et
al.

5-point algorithm: An implementation of the 5-point algo-
rithm for computing the essential matrix.

http://www.vis.uky.edu/∼stewe/FIVEPOINT/

Changchang Wu et al. SiftGPU: Real-time implementation of SIFT. http://cs.unc.edu/∼ccwu/siftgpu

Nico Cornelis et al. GPUSurf: Real-time implementation of SURF. http://homes.esat.kuleuven.be/∼ncorneli/gpusurf

Christopfer Zach GPU-KLT: Real-time implementation of the KLT tracker. http://www.inf.ethz.ch/personal/chzach/opensource.html

Edward Rosten Original implementation of the FAST detector. http://www.edwardrosten.com/work/fast.html

Michael Calonder Original implementation of the BRIEF descriptor. http://cvlab.epfl.ch/software/brief/

Leutenegger et al. BRISK feature detector. http://www.asl.ethz.ch/people/lestefan/personal/BRISK

Jean-Yves Bouguet Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib doc

Davide Scaramuzza OCamCalib: Omnidirectional Camera Calibration Toolbox for
MATLAB.

https://sites.google.com/site/scarabotix/ocamcalib-toolbox

Christopher Mei Omnidirectional Camera Calibration Toolbox for MATLAB http://homepages.laas.fr/∼cmei/index.php/Toolbox

Mark Cummins FAB-MAP: Visual-word-based loop detection. http://www.robots.ox.ac.uk/∼mjc/Software.htm

Friedrich Fraundorfer Vocsearch: Visual-word-based place recognition and image
search.

http://www.inf.ethz.ch/personal/fraundof/page2.html

Manolis Lourakis SBA: Sparse Bundle Adjustment http://www.ics.forth.gr/∼lourakis/sba

Christopher Zach SSBA: Simple Sparse Bundle Adjustment http://www.inf.ethz.ch/personal/chzach/opensource.html

Rainer Kuemmerle et
al.

G2O: Library for graph-based nonlinear function optimiza-
tion. Contains several variants of SLAM and bundle adjust-
ment.

http://openslam.org/g2o

RAWSEEDS EU
Project

RAWSEEDS: Collection of datasets with different sensors
(lidars, cameras, IMUs, etc.) with ground truth.

http://www.rawseeds.org

SFLY EU Project SFLY-MAV dataset: Camera-IMU dataset captured from an
aerial vehicle with Vicon data for ground truth.

http://www.sfly.org

Davide Scaramuzza ETH OMNI-VO: An omnidirectional-image dataset captured
from the roof of a car for several kilometers in a urban
environment. MATLAB code for visual odometry is provided.

http://sites.google.com/site/scarabotix

11

[35] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.

[36] J. Oliensis, “Exact two-image structure from motion,” PAMI, 2002.

[37] E. Kruppa, “Zur ermittlung eines objektes aus zwei perspektiven mit
innerer orientierung,” in Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw. Kl.,
Abt. IIa., vol. 122, pp. 1939–1948, 1913.

[38] O. Faugeras and S. Maybank, “Motion from point matches: multiplicity
of solutions,” International Journal of Computer Vision, vol. 4, no. 3,
pp. 225–246, 1990.

[39] J. Philip, “A non-iterative algorithm for determining all essential matri-
ces corresponding to five point pairs,” Photogrammetric Record, vol. 15,
no. 88, pp. 589–599, 1996.

[40] B. Triggs, “Routines for relative pose of two calibrated cameras from 5
points,” 2000, iNRIA Rhone-Alpes, Technical Report.

[41] D. Nister, “An efficient solution to the five-point relative pose problem,”
in CVPR03, 2003, pp. II: 195–202.

[42] H. Stewenius, C. Engels, and D. Nister, “Recent developments on direct
relative orientation,” ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 60, pp. 284–294, 2006.

[43] O. Pizarro, R. Eustice, and H. Singh, “Relative pose estimation for
instrumented, calibrated imaging platforms,” in DICTA, 2003.

[44] R. Sturm, “Das problem der projektivitaet und seine anwendung auf die
flaechen zweiten grades,” 1869, mathematische Annalen 1, 533-573.

[45] C. Geyer and H. Stewenius, “A nine-point algorithm for estimating para-
catadioptric fundamental matrices,” Jun. 2007.

[46] P. Sturm and J. Barreto, “General imaging geometry for central cata-
dioptric cameras,” in Proceedings of the 10th European Conference on
Computer Vision, Marseille, France, 2008.

[47] P. Sturm, S. Ramalingam, J. Tardif, S. Gasparini, and J. Barreto,
“Camera models and fundamental concepts used in geometric computer
vision,” Foundations and Trends in Computer Graphics and Vision,
vol. 6, no. 1-2, pp. 1–183, 2010.

[48] J. Lim, N. Barnes, and H. Li, “Estimating relative camera motion
from the antipodal-epipolar constraint,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 32, no. 10, pp. 1907–1914, 2010.

[49] F. Fraundorfer, P. Tanskanen, and M. Pollefeys, “A minimal case solution
to the calibrated relative pose problem for the case of two known
orientation angles,” in European Conference on Computer Vision, 2010.

[50] O. Naroditsky, X. S. Zhou, J. Gallier, S. I. Roumeliotis, and K. Dani-
ilidis, “Two efficient solutions for visual odometry using directional
correspondence,” 2011, iEEE Transactions on Pattern Analysis and
Machine Intelligence.

[51] L. Kneip, M. Chli, and R. Siegwart, “Robust real-time visual odometry
with a single camera and an imu,” in British Machine Vision Conference,
2011.

[52] D. Ortin and J. M. M. Montiel, “Indoor robot motion based on
monocular images,” Robotica, vol. 19, no. 3, pp. 331–342, 2001.

[53] D. Scaramuzza, “1-point-ransac structure from motion for vehicle-
mounted cameras by exploiting non-holonomic constraints,” Interna-

tional Journal of Computer Vision, vol. 95, no. 1, 2011.

[54] ——, “Performance evaluation of 1-point ransac visual odometry,”
Journal of Field Robotics, vol. 28, no. 5, pp. 792–811, 2011.

[55] P. Torr and A. Zisserman, “Mlesac: A new robust estimator with
application to estimating image geometry,” Computer Vision and Image

Understanding, 2000.

[56] O. Chum and J. Matas, “Matching with prosac - progressve sample
consensus,” in CVPR, 2005.

[57] D. Nister, “Preemptive ransac for live structure and motion estimation,”
Machine Vision and Applications, vol. 16, no. 5, pp. 321–329, 2005.

[58] R. Raguram, J. Frahm, and M. Pollefeys, “Exploiting uncertainty in
random sample consensus,” in ICCV, 2009.

[59] P. McIlroy, E. Rosten, S. Taylor, and T. Drummond, “Deterministic
sample consensus with multiple match hypotheses,” in British Machine

Vision Conference, 2010.

[60] J. Civera, O. Grasa, A. Davison, and J. Montiel, “1-point ransac for
ekf filtering: Application to real-time structure from motion and visual
odometry,” Journal of Field Robotics, vol. 27, pp. 609–631, 2010.

[61] D. Scaramuzza, A. Censi, and K. Daniilidis, “Exploiting motion priors
in visual odometry for vehicle-mounted cameras with non-holonomic
constraints,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2011.

[62] E. Rosten, G. Reitmayr, and T. Drummond, “Improved ransac per-
formance using simple, iterative minimal-set solvers,” 2010, technical
Report, University of Cambridge.

[63] O. Chum, J. Matas, and J. Kittler, “Locally optimized ransac,” in DAGM-

Symposium, 2003, pp. 236–243.

[64] R. C. Smith and P. Cheeseman, “On the representation and
estimation of spatial uncertainty,” The International Journal of Robotics

Research, vol. 5, no. 4, pp. 56–68, 1986. [Online]. Available:
http://ijr.sagepub.com/content/5/4/56.abstract

[65] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose
graphs with poor initial estimates,” 2006, pp. 2262–2269.

[66] T. Bailey and H. Durrant-Whyte, “Simultaneous localisation and map-
ping (slam): Part ii state of the art,” Robotics and Automation Magazine,
2006.

[67] I. Ulrich and I. Nourbakhsh, “Appearance-based place recognition for
topological localization,” in Proc. IEEE International Conference on
Robotics and Automation, April 2000, pp. 1023–1029.

[68] M. Jogan and A. Leonardis, “Robust localization using panoramic view-
based recognition,” in Proc. ICPR00, vol. 4, 2000, pp. 136–139.

[69] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. Van Gool, “A comparison of affine
region detectors,” International Journal of Computer Vision, vol. 65,
no. 1-2, pp. 43–72, 2005.

[70] P. Newman, D. Cole, and K. Ho, “Outdoor slam using visual appearance
and laser ranging,” in IEEE International Conference on Robotics and

Automation, 2006, pp. 1180–1187.
[71] M. Cummins and P. Newman, “FAB-MAP: Probabilistic Localization

and Mapping in the Space of Appearance,” The International Journal

of Robotics Research, vol. 27, no. 6, pp. 647–665, 2008. [Online].
Available: http://ijr.sagepub.com/cgi/content/abstract/27/6/647

[72] F. Fraundorfer, C. Engels, and D. Nistér, “Topological mapping, local-
ization and navigation using image collections,” in IEEE/RSJ Conference

on Intelligent Robots and Systems, vol. 1. IEEE, 2007.
[73] F. Fraundorfer, C. Wu, J.-M. Frahm, and M. Pollefeys, “Visual word

based location recognition in 3d models using distance augmented
weighting,” in Fourth International Symposium on 3D Data Processing,

Visualization and Transmission, 2008.
[74] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2001.
[75] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary

tree,” in Proc. IEEE Conference on Computer Vision and Pattern

Recognition, New York City, New York, 2006, pp. 2161–2168.
[76] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle

adjustment a modern synthesis,” in Vision Algorithms: Theory and

Practice, 1999.
[77] G. Sibley, L. Matthies, and G. Sukhatme, “Sliding window

filter with application to planetary landing,” Journal of Field

Robotics, vol. 27, no. 5, pp. 587–608, 2010. [Online]. Available:
http://dx.doi.org/10.1002/rob.20360

[78] D. AG, “Dacuda scanner mouse,” 2011. [Online]. Available:
http://www.dacuda.com/

[79] Y. Cheng, M. W. Maimone, and L. Matthies, “Visual odometry on the
mars exploration rovers,” IEEE Robotics and Automation Magazine,
2006.

[80] J. Kelly and G. S. Sukhatme, “An experimental study of aerial
stereo visual odometry,” in IFAC - International Federation
of Automatic Control Symposium on Intelligent Autonomous

Vehicles, Toulouse, France, Sep 2007. [Online]. Available:
http://cres.usc.edu/cgi-bin/print pub details.pl?pubid=543

[81] S. Weiss., D. Scaramuzza, and R. Siegwart, “Monocular-slam-based nav-
igation for autonomous micro helicopters in gps-denied environments,”
Journal of Field Robotics, vol. 28, no. 6, 2011.

[82] M. Dunbabin, J. Roberts, K. Usher, G. Winstanley, and P. Corke,
“A hybrid auv design for shallow water reef navigation,” in Robotics

and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE

International Conference on, april 2005, pp. 2105 – 2110.
[83] B. P. Foley, K. DellaPorta, D. Sakellariou, B. S. Bingham, R. Camilli,

R. M. Eustice, D. Evagelistis, V. L. Ferrini, K. Katsaros, D. Kourk-
oumelis, A. Mallios, P. Micha, D. A. Mindell, C. Roman, H. Singh,
D. S. Switzer, and T. Theodoulou, “The 2005 chios ancient shipwreck
survey: New methods for underwater archaeology,” Hesperia, vol. 78,
pp. 269–305, 2009.

[84] Daimler, “6d vision.” [Online]. Available: http://www.6d-vision.com/
[85] M. Bertozzi, A. Broggi, E. Cardarelli, R. Fedriga, L. Mazzei, and

P. Porta, “Viac expedition toward autonomous mobility [from the field],”
Robotics Automation Magazine, IEEE, vol. 18, no. 3, pp. 120 –124, sept.
2011.

[86] E. Guizzo, “How google’s self-driving
car works,” 2011. [Online]. Available:
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driv

	Introduction
	Feature Selection and Matching
	Feature Detection
	Feature Descriptor
	Feature Matching
	Mutual consistency check
	Constrained matching

	Feature Tracking
	Discussion
	SIFT matching
	Lines and edgelets
	Number of features and distribution
	Dense and correspondence-free methods

	Outlier Removal
	RANSAC
	Minimal Model Parameterizations: 8, 7, 6, 5, 4, 2, and 1-point RANSAC
	Reducing the Iterations of RANSAC
	Is it Really Better to Use a Minimal Set in RANSAC?

	Error Propagation
	Camera Pose Optimization
	Pose-Graph Optimization
	Loop Constraints for Pose-Graph Optimization

	Windowed (or Local) Bundle Adjustment

	Applications
	Available code
	Conclusions
	References

