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1 Introduction

‘Quality’ according to the International Standards Organization (ISO) is the
degree to which a set of inherent characteristics of a product fulfils customer
requirements [1]. Even though this definition seems relatively straightforward
at first, introspection leads one to the conclusion that the ambiguity inherent
in the definition makes the quality assessment task highly subjective and hence
difficult to model. Indeed, over the years researchers in the field of visual quality
assessment have found that judging the quality of an image or a video is a
challenging task. The highly subjective nature of the task, coupled with the
human visual systems’ peculiarities make this an interesting problem to study
and in this chapter we attempt to do just that.

This chapter is concerned with the algorithmic evaluation of quality of an
image or video, which is referred to as objective quality assessment. What
makes this task difficult is that the measure of quality produced by the algorithm
should match up to that produced by a human assessor. In order to obtain a
statistically relevant measure of what a human thinks the quality of an image or
video is; a set of images or videos are shown to a group of human observers who
are asked to rate the quality on a particular scale. The mean rating for an image
or video is referred to as the mean opinion score (MOS) and is representative
of the perceptual quality of that visual stimulus. Such assessment of quality is
referred to as subjective quality assessment. In order to gauge the performance
of an objective algorithm, the scores produced by the algorithm are correlated
with MOS; a higher correlation is indicative of better performance. In this
chapter, we focus on a subset of image/video quality assessment algorithms
(IQA/VQA) which are referred to as full reference (FR) algorithms. In these
algorithms; the original, pristine stimulus is available along with the stimulus
whose quality is to be assessed. The FR IQA/VQA algorithm accepts as input
the pristine reference stimulus and its distorted version and produces a score
that is representative of the visual quality of the distorted stimulus [2].

One of the primary questions that arise when we talk of visual quality as-
sessment is : ‘why not use mean square error (MSE) for this purpose?’. MSE
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between two N -dimensional vectors x and y is defined as:

MSE =
1

N

N∑

i=1

(xi − yi)
2 (1)

A low MSE value indicates that the two vectors are similar. Generally, in order
to follow a convention where a higher value indicates greater similarity, the peak
signal to noise ratio (PSNR) is utilized. PSNR is defined as:

PSNR = 10log10(
L2

MSE
) (2)

where, L is the dynamic range of the pixel values (eg. L = 255 for grayscale
images).Through this chapter, we use MSE and PSNR interchangeably.

Let us now return to the valid question of why one should not use MSE for
visual quality assessment. After all MSE has several elegant properties and is a
prime candidate of choice to measure the deviation of one signal from another.
How is visual quality assessment different from this task? The major difference
for visual quality assessment (as for audio quality assessment) is the ultimate
receiver. For images and videos, the ultimate receiver is the human observer.
Immaterial of whether there exists a difference between the stimuli under test,
the difference is not perceptually significant as long as the human is unable to
observe the difference. This begs the question - are not all differences equally
significant for a human? The answer is an emphatic NO! As vision researchers
have observed, the human visual system (HVS) is replete with peculiarities.
The properties of the HVS - as we shall see in the next section - govern the
perceivability of the distortions and hence an algorithm that seeks to evaluate
visual quality must be tuned human perception. MSE, as many researchers have
argued, is not tuned to human perception and hence does not make for a good
visual quality assessment algorithm [3, 4].

In this chapter we will begin with a short description of how visual stimulus is
processed by the human. We shall then go on to describe various FR IQA/VQA
algorithms. Our discussion then moves on to how one assess the performance
of an IQA/VQA algorithm and we describe some standard databases that are
used for this task. Finally, we conclude this chapter with a discussion of possible
future research directions in the field of quality assessment.

2 The Human Visual System

The first stage of the human visual system (HVS) is the eye, where the visual
stimulus passes through the optics of the eye and then on to the photoreceptors
at the back of the eye. Even though the eye exhibits some peculiarities includ-
ing lens aberrations; these are generally not modeled in HVS-based IQA/VQA
algorithms. The optics of the eye are band-limited and act as a low-pass fil-
ter; hence some HVS-based IQA/VQA systems model this using a point-spread
function (PSF).
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The photoreceptors are classified as rods - which are responsible for vision
under scotopic conditions and cones - which are responsible for vision under
photopic conditions. Cones are also responsible for encoding color information.
The distribution of rods and cones in the eye is not uniform. In fact, the number
of photoreceptors are high at a region called the fovea and fall off as one moves
away from the fovea [5]. Why this is important for IQA/VQA is because of
the fact that the human does not assimilate the entire visual stimulus at the
same ‘resolution’. That part of the stimulus which is imaged on the fovea has
the highest resolution and regions which are imaged farther away have lower
resolution. In order to assimilate the entire stimulus, the human scans the
image using a set of fixations followed by rapid eye movements called saccades.
Little or no information is gathered during a saccade. This implies that for
visual stimuli, certain regions may be of greater importance than others [6].

The information from the photoreceptors is then processed by the retinal
ganglion cells. The ganglion cells are an interesting area of study and many
researchers have devoted their energies toward such research. However, we will
not dwell upon the ganglion cells here, the interested reader is referred to [5] for
a thorough explanation. The information from the ganglion cells are passed onto
the Lateral Geniculate Neucleus (LGN), which has been hypothesized to act as
a ‘relay’ station [5, 7]. The LGN is the first location along the visual pathway
where the information from the left and the right eye merges. The LGN receives
not only the feed-forward information from the retinal cells, but also feed-back
information from the next stage of processing - the primary visual cortex (area
V1) [7]. The amount of feedback received leads one to believe that the LGN
may not be just a relay station in the visual pathway [7]. Further, recent
discoveries show that the LGN may perform certain normalization computations
[8]. Further research in understanding the LGN and its functioning may be for
import for visual quality assessment algorithm design.

Moving along, the information from the LGN is projected onto area V1 or the
primary visual cortex. Area V1 is hypothesized to encompass two types of cells
- simple cells and complex cells. Simple cells are known to be tuned to different
orientations, scales and frequencies. This tuning of cells can be regarded as the
HVS performing a scale-space-orientation decomposition of the visual stimulus
(see Chapter 8). This is the rational behind many HVS based IQA/VQA sys-
tems performing a wavelet-like decomposition of the visual stimulus. Complex
cells are currently modeled as receiving inputs from a set of simple cells [5, 7].
Complex cells are known to be direction selective. Even though V1 is connected
to many other regions, one region of interest is area V5/MT which is hypoth-
esized to play a key role in motion processing [9, 10]. Area MT along with its
neighboring area MST are attributed with computing motion estimates. It is
not surprising that motion processing is essential, since it allows us to perform
many important tasks, including depth perception, tracking of moving objects,
and so on. Humans are extremely good at judging velocities of approaching ob-
jects and in discriminating opponent velocities [5, 11]. A significant amount of
neural activity is devoted to motion processing. Given that the HVS is sensitive
to motion, it is imperative that objective measures of video quality take motion
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into consideration.
Even though we have made progress in understanding the HVS, there is

still a lot to be done. Indeed, some researchers have claimed that we have
understood only a significantly small portion of the primary visual cortex [12].
Each of the above mentioned areas is an active field of research. Interested
readers are directed to [5] and [7] for good overviews and [13] for an engineering
perspective to understanding and analyzing the HVS.

Now that we have looked at the basics of human visual processing, let us
list out some peculiarities of the HVS. These are relevant for IQA/VQA, since
many of these peculiarities govern the discernibility of distortions and hence of
quality.

Light Adaptation refers to the property that the HVS response depends much
more upon the difference in the intensity between the object and the background
than upon the actual luminance levels. This allows the human to see over a very
large range of intensities.

Contrast sensitivity functions (CSFs) model the decreasing sensitivity of
the HVS with increasing spatial frequencies. The HVS also exhibits varying
sensitivity to temporal frequencies. Generally, most models for QA assume that
the spatial and temporal responses are approximately separable. A thorough
modeling would involve a spatio-temporal CSF [14].

Masking refers to the property of the HVS in which the presence of a ‘strong’
stimulus renders the weaker stimulus imperceptible. Types of masking include
texture masking - where certain distortions are masked in the presence of strong
texture; contrast masking - where regions with larger contrast mask regions
with lower contrast and temporal masking - where the presence of a temporal
discontinuity masks the presence of some distortions.

After having described the HVS briefly, we now run through some visual
quality assessment algorithms. We broadly classify QA algorithms as i) those
based on the HVS, ii) those that utilize a feature-based approach and iii) struc-
tural and information-theoretic approaches. For VQA, we also describe algo-
rithms that utilize motion information explicitly - motion-modeling based ap-
proaches. While the HVS-based approaches seem the best way to evaluate visual
quality, our limited understanding of the HVS leads to poor HVS models, which
in turn do not function well as QA algorithms. Feature-based approaches em-
ploy heuristics and extracted features are generally only tenuously related to the
HVS. Structural and information theoretic measures, on the other hand, utilize
an approach based on Natural Scene Statistics (NSS) [15], which are hypothe-
sized to be the inverse problem to that of modeling the HVS [16]. For VQA,
explicit incorporation of motion is of prime importance and motion-modeling
based approaches do just that.

3 Human Visual System based models

Human Visual System (HVS) based models for IQA/VQA generally follow a
series of operations akin to those hypothesized to occur along the visual pathway
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in humans. The first major component of these models in a linear decomposition
of the stimulus over multiple scales and orientations. Contrast sensitivity is
parameterized by a contrast sensitivity function (CSF). Generally, the spatial
CSF is modeled using a low-pass filter (since the HVS is not as sensitive to
higher frequencies) and the temporal CSF is modeled using band-pass filters.
Parameters for the filters are estimated from psychovisual experiments. It is
generally far more easier to model the spatial and temporal CSF’s separately
instead of modeling a spatio-temporal CSF [17]. The spatial and temporal
responses of the HVS are approximately separable [5]. Masking is another HVS
property that is taken into account for IQA. A good overview of HVS based
models for IQA/VQA can be found in [18].

Visual Difference Predictor (VDP) Visual Difference Predictor (VDP)
first applies a point-non linearity to the images to model the fact that visual
sensitivity and perception of lightness are nonlinear functions of luminance,
followed by a CSF [19]. A modified version of the Cortex transform [20] is then
utilized to model the initial stage of the human detection mechanisms. Masking
then follows. In order to account for the fact that the probability of detection
increases with increase in stimulus contrast, VDP then applies a psychometric
function followed by a probability summation.

Visual Discrimination Model (VDM) The Sarnoff Visual Discrimination
Model(VDM) which was later modified to the popular Sarnoff JND metric for
video [21] was proposed by Lubin in [22]. A PSF is first applied to the im-
ages, followed by a modeling of the retinal cone-sampling. A Laplacian pyra-
mid performs a decomposition of the signal and a contrast energy measure is
computed. This measure is then processed through a masking function and a
just-noticeable-difference (JND) distance measure is computed to produce the
quality index.

Teo and Heeger model Teo and Heeger proposed a model for IQA based on
the HVS [23]. The model performs a linear decomposition of the reference and
test images using a hex-quadrature mirror filter (QMF), and then squares each
coefficient at the output. Contrast normalization is accomplished by computing:

Rθ = k
(Aθ)2∑

φ(A
φ)2 + σ2

(3)

where, Aθ is a coefficient at the output of the linear transform at orientation
θ and k, σ2 are the scaling and saturation constants. φ sums over all the possible
orientations of the linear transform, thus performing a normalization. The final
error measure is then the vector distance between the responses of the test and
reference images.

Visual Signal to Noise Ratio (VSNR) Proposed by researchers at Cor-
nell, Visual Signal to Noise Ratio (VSNR), which aims to evaluate the effect of
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supra-threshold distortion, utilizes parameters for the HVS model derived from
experiments where the stimulus was an actual image as against sinusoidal grat-
ings or Gabor patches [24]. Many arguments that support the use of natural
images/videos for estimating HVS parameters are enlisted in [13]. VSNR first
computes a difference image from the reference and distorted images. This dif-
ference image is then subjected to a discrete wavelet transform. Within each
subband, VSNR then computes the visibility of distortions, by comparing the
contrast of the distortion to the detection threshold and then computes the RMS
contrast of the error signal (dpc). Finally, using a strategy inspired from what
is termed as global precedence in the HVS, VSNR computes a global precedence
preserving contrast (dgp). The final index is a linear combination of dpc and
dgp.

Digital Video Quality Metric (DVQ) Watson et. al. proposed the digital
video quality metric (DVQ) which evaluates visual quality in the Discrete Cosine
Transform (DCT) domain [25]. We note that even though the algorithm is
labeled as a ‘metric’, it is not a metric in the true sense of the word. We continue
its usage in this chapter for this and other metrics, however appropriate use of
terminology for IQA/VQA metrics is essential (see [26] for relevant discussion).
DVQ metric evaluates the quality in the YOZ opponent color space [27]. We
note that this space is unusual in the sense that most researchers operate in the
YUV color space. However the authors propose arguments for their choice [25].
A 8 × 8 block DCT is then performed on the reference and test videos. The
ratio of the DCT (AC) amplitude to the DC amplitude is computed as the local
contrast, which is then converted into just-noticeable-differences (JNDs) using
thresholds derived from a small human study. Contrast masking follows. The
error scores (which can be viewed as quality scores) are then computed using a
Minkowski formulation.

Moving Picture Quality Metric (MPQM) The metric proposed by Van
den Branden Lambrecht in [28] uses Gabor filters for spatial decomposition, two
temporal mechanisms and a spatio-temporal CSF. It also models a simple intra-
channel contrast masking. One difference in MPQM is the use of segmentation
to identify regions - uniform areas, contours and textures - within an image and
the error scores in each of these regions is pooled separately. An elementary
evaluation of the metric was done to demonstrate its performance.

Scalable wavelet-based distortion metric for VQA This VQA algorithm
filters the reference and test videos using a lowpass filter [29]. The Haar wavelet
transform is then used to perform a spatial frequency decomposition. A subset
of these coefficients is selected for distortion measurement. This model utilizes
a CSF for weighting as well as masking. The reason this metric differs from
other HVS-based metrics is that the parameters used for the CSF and masking
function are derived from human responses to natural videos as against sinu-
soidal gratings as is generally the case (as in VSNR [24]). The algorithm then
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computes a quality score for the distorted video using the differences in the
responses from the reference and distorted videos.

4 Feature based models

Feature-based models generally extract features from images or videos, which
are deemed to be of importance in visual quality assessment. For example, some
algorithms extract the presence of edges and the relative edge strength using
simple edge filters or a Fourier analysis. Some of the models extract elemen-
tary motion features for VQA. The primary argument against such models is
the fact that the extracted features may not be correlated with the HVS. Some
other arguments include the use of unmotivated thresholds and pooling strate-
gies. However, as we shall see, some of these models perform well in terms of
correlation with human perception.

A Distortion Measure Based on Human Visual Sensitivity Karunasek-
era and Kingsbury filter the difference (error) image (computed from the ref-
erence and distorted images) using direction filters - vertical, horizontal and 2
diagonal orientations to form oriented edge images [30]. The outputs of each
of these orientations is processed independently, and then pooled to produce
a distortion measure. Masking computation based on a activity measure and
brightness is undertaken. A non-linearity is then applied to obtain the direc-
tional error. This model proposed in [30], is an extension of the authors’ pre-
vious blocking measure proposed in [31] and incorporates ringing and blurring
measures using the above described process.

Singular Value Decomposition and Quality Singular value decomposi-
tion (SVD) is a well known tool from linear algebra which has been used for a
host of multimedia applications. In [32], the authors use SVD for image quality
assessment. SVD is applied on 8×8 blocks in the reference and test images and
then the distortion per block is computed as Di =

√∑n
i=1

(si − ŝi), where si
and ŝi are the singular values for block i from the reference and test images. The
final quality score is computed as: M−SVD =

∑
i∈all blocks |Di−Dmid|, where

Dmid represents the median of the block distortions. Even though the authors
claim that the algorithm performs well, its relation to the HVS is unclear as is
the significance of the SVD for IQA.

Curvature-based Image Quality Assessment The IQA index proposed
in [33], first uses the discrete wavelet transform to decompose the reference and
test images. In each subband, mean surface curvature maps are obtained as:

H =
Iuu + Ivv + IuuI

2

v + IvvI
2

u − 2IuIvIuv
2(1 + I2u + I2v )

3/2
(4)

where Iuu, Ivv, Iu and Iv are the partial derivatives of the image I. The cor-
relation coefficient between the curvatures of the original and distorted images
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is then evaluated. These correlation coefficients are then collapsed across the
subbands to produce a quality score.

Perceptual Video Quality Metric (PVQM) Proposed by Swisscom/KPN
research, the perceptual video quality metric (PVQM) extracts three features
from the videos under consideration [34]. Edginess is essentially indicated by
a difference between the (dialated) edges of the reference and distorted frames
computed using an approximation to the local gradient. The edginess indicator
is supposed to reflect the loss in spatial detail. The temporal indicator for a
frame is the correlation coefficient between adjacent frames subtracted from 1.
Finally, a chrominance indicator based on color saturation is computed. Each of
these indicators are pooled separately across the video and then a weighted sum
of these pooled values is utilized as the quality measure. PVQM utilizes a large
number of thresholds for each of the indicators as well as for the final pooling.
Some of these thresholds are claimed to be based on psychovisual evaluation.

Video Quality Metric (VQM) Pinson and Wolf proposed the video quality
metric (VQM) [35] which was the top performer in the video quality experts
group (VQEG) phase-II studies [36]. Owing to its performance, VQM has also
been standardized by the American National Standards Institute and the Inter-
national Telecommunications Union (ITU) has included VQM as a normative
measure for digital cable television systems [37]. VQM which was trained on the
VQEG phase-I dataset [38], first performs a spatio-temporal alignment of the
videos followed by gain and offset correction. This is followed by extraction of
a set of features which are thresholded. The final quality score is computed as
a weighted sum of these features. The computed features include a feature that
describes the loss of spatial detail; one that describes a shift in the orientation
of the edges; one that describes the spread of chrominance components as well
as one to describe severe color impairments. VQM also includes elementary
motion information in the form of the difference between frames and a quality
improvement feature that accounts for improvements arising from (for example)
sharpness operations. The quality score ranges from 0 to 1.

Temporal Variations of Spatial Distortion based VQA Ninassi et. al.
proposed a VQA index recently [39]. They model temporal distortions like
mosquito noise, flickering, jerkiness as an evolution of spatial distortions over
time. A spatio-temporal tube consisting of a spatio-temporal chunk of the video
computed from motion vector information is created, which is then evaluated for
its spatial distortion. The spatial distortion is computed using the WQA quality
index [40]. A temporal filtering of the spatial distortion is then undertaken,
followed by a measurement of the temporal variation of the distortion. The
quality scores are then pooled across the video to produce the final quality
index.
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Temporal Trajectory Aware Quality Measure One of the few algorithms
that utilize motion information is the one proposed by Barkowsky et. al. -
the Tetra Video Quality Metric [41]. Information from a block-based motion
estimation algorithm for each (heuristically determined) shot [42] is utilized
for temporal trajectory evaluation of the distorted video. This information
is logged in a temporal information buffer, which is followed by a temporal
visibility mask. Spatial distortion is evaluated by MSE - the authors claim
that this is for reducing the complexity of the algorithm. A spatial-temporal
distortion map is then created. The pooling stage first applies a mask to reflect
human foveation and then a temporal summation is performed. The proposed
algorithm also models the frame rate, pauses and skips. All of these indicators
are then combined to form a quality score for the video.

5 Structural and Information Theoretic models

A structural approach for IQA was proposed by Wang and Bovik in [43]. This
approach was later modified for VQA [44]. These models are based on the
premise that the HVS extracts (and is hence sensitive to) structural information
in the stimulus. Loss of structural information is hence related to perceptual loss
of quality. Information theoretic models utilize natural scene statistics (NSS)
in order to quantify loss of information in the wavelet domain. Recent research
indicates how these two metrics are closely related to each other and to mutual
masking hypothesized to occur in the HVS [45].

Single Scale Structural Similarity Index (SS-SSIM) For two image
patches drawn from the same location of the reference and distorted images
- x = {xi|i = 1, 2, . . . , N} and y = {yi|i = 1, 2, . . . , N} -respectively SS-SSIM
computes three terms - luminance, contrast and structure as [43]:

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

(5)

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

(6)

s(x,y) =
σxy + C3

σxσy + C3

(7)

where C1, C2 and C3 are small constants. The constants C1, C2 and C3 (
C3 = C2/2) are included to prevent instabilities from arising when the denomi-
nator tends to zero. µx, µy, σ

2

x, σ
2

y and σxy are the means of x, y, the variances
of x, y and the covariance between x & y respectively, computed using a sliding
window approach. The window used is a 11 × 11 circular-symmetric Gaussian
weighting function w = {wi|i = 1, 2, . . . , N}, with standard deviation of 1.5

samples, normalized to sum to unity (
∑N

i=1
wi = 1).

Finally,the SSIM index between signal x and y is defined as:
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SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(8)

This index produces a map of quality scores having the same dimensions as
that of the image. Generally, the mean of the scores is utilized as the quality
index for the image. The SSIM index is an extension of the Universal Quality
Index (UQI) [46], which is the SSIM index with C1 = C2 = 0.

Multi-scale Structural Similarity Index (MS-SSIM) Images are natu-
rally multi-scales. Further, the perception of image quality depends upon a
host of scale-related factors. In order to evaluate image quality at multiple
resolutions, in [47], the Multi-Scale SSIM (MS-SSIM) index was proposed.

In MS-SSIM, quality assessment is accomplished over multiple scales of the
reference and distorted image patches (the signals defined as x and y in the
previous discussion on SS-SSIM) by iteratively low-pass filtering and downsam-
pling the signals by a factor of 2. The original image scale is indexed as 1, the
first down-sampled version is indexed as 2 and so on. The highest scale M is
obtained after M − 1 iterations.

At each scale j, the contrast comparison (6) and the structure comparison
(7) terms are calculated and denoted cj(x,y) and sj(x,y), respectively. The
luminance comparison (5) term is computed only at scale M and is denoted
lM (x,y). The overall SSIM evaluation is obtained by combining the measure-
ment over scales:

SSIM(x,y) = [lM (x,y)]αM ·

M∏

j=1

[cj(x,y)]
βj · [sj(x,y)]

γj (9)

The highest scale used here is M = 5.
The exponents αj , βj , γj are selected such that αj = βj = γj and

∑M
j=1

γj =
1.

SSIM Variants SS-SSIM proposed in [43] was extended to the complex wavelet
domain in [48] and the proposed index was labeled as the complex wavelet struc-
tural similarity index (CW-SSIM). CW-SSIM is computed as:

S(cx, cy) =
2|
∑N

i=1
cx,ic

∗

y,i|+K
∑N

i=1
|cx,i|2 +

∑N
i=1

|cy,i|2 +K
(10)

where, cx = {cx,i|i = 1, . . . , N} and cy = {cy,i|i = 1, . . . , N} are two sets of
complex wavelet coefficients drawn from the same location in the reference and
test images. CW-SSIM has been used for face recognition [49] and for a host of
other applications [50].

Other variants of SSIM which modify the pooling strategy from the mean to
fixation-based pooling [51], percentile pooling [6] and information-content-based
pooling [52] have also been proposed. Modifications of SSIM include a gradient-
based approach [53] and another technique based on pooling three perceptually
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important parameters [54]. In [55], a classification based on the type of region
is undertaken, after applying SSIM on the images. A weighted sum of the SSIM
scores from each of the regions is combined to produce a score for the image.

Visual Information Fidelity (VIF) It is known that when images are fil-
tered using oriented band-pass filters (eg. a wavelet transform), the distribution
of resulting (marginal) coefficients are highly peaked around zeros and possess
heavy tails [15]. Such statistical descriptions of natural scenes are labeled as
natural scene statistics (NSS) and NSS has been an active area of research. Vi-
sual Information Fidely (VIF) [56] utilizes the Gaussian scale mixture (GSM)
model for wavelet NSS [57]. VIF first performs a scale-space-orientation wavelet
decomposition using the steerable pyramid [58] and models each subband in the
source as C = S · U , where S is a random field (RF) of scalars and U is a
Gaussian vector RF. The distortion model is D = GC + ν, where G is a scalar
gain field and ν is additive Gaussian noise RF. VIF then assumes that the dis-
torted and source images pass through the human visual system and the HVS
uncertainty is modeled as visual noise: N and N ′ for the source and distorted
image respectively; where N and N ′ are zero-mean uncorrelated multivariate
Gaussians. It then computes E = C +N and F = D +N ′. The VIF criterion
is then evalauted as:

V IF =

∑
j∈allsubbands I(C

j ;F j |sj)
∑

j∈allsubbands I(C
j ;Ej |sj)

where, I(X ;Y |Z) is the conditional mutual information between X and Y ,
conditioned on Z ; sj is a realization of Sj for a particular image and the index
j runs through all the sub bands in the decomposed image.

Structural Similarity for VQA SS-SSIM defined for images was applied on
a frame-by-frame basis on videos for VQA and was shown to perform well [44].
Realizing the importance of motion information, the authors in [44] also utilized
a simple motion-based weighting strategy that was used to weight the spatial
SSIM scores. Video SSIM - the resulting algorithm was shown to perform well
[44].

Video VIF VIF was extended to VQA in [59]. The authors justified the use
of VIF for video by first motivating the GSM model for the spatio-temporal
natural scene statistics. The model for video VIF then is essentially the same
as that for VIF with the exception being the application of the model to the
spatio-temporal domain as opposed to the spatial domain.

6 Motion Modeling Based Algorithms

As described before, the areas MT and MST in the human visual system are
responsible for motion processing. Given that the HVS is sensitive to motion, it
is imperative that objective measures of quality take motion into consideration.
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An observant reader would have observed that the models for VQA described
so far were essentially IQA algorithms applied on a frame-by-frame basis. Some
of these algorithms utilized motion-information, however, the incorporation was
ad-hoc. In this section, we describe some recent VQA algorithms that incor-
porate motion information. We believe that the importance of spatio-temporal
quality assessment as against a spatial-only technique for VQA cannot be under-
stated.

Speed-weighted Structural Similarity Index (SW-SSIM) Speed-weighted
SSIM (SW-SSIM) first computes SS-SSIM at each pixel location in the video
using SS-SSIM in the spatial domain [60]. Motion estimates are then obtained
using Black and Anandan’s optical flow computation algorithm [61]. Using a
histogram based approach for each frame, a global motion vector for that frame
is identified. Relative motion is then extracted as the difference between the
absolute motion vectors (obtained from optical flow) and the computed global
motion vectors. Then, a weight for each pixel is computed. This weight is
a function of the computed relative and global motion and the stimulus con-
trast. The weight so obtained is then used to weight the SS-SSIM scores. The
weighted scores are then pooled across the video and normalized to produce the
quality index for the video. The described weighting scheme was inspired by
the experiments into human visual speed perception by Stocker and Simoncelli
[62].

Motion-based Video Integrity Evaluation (MOVIE) Motion-based Video
Integrity Evaluation (MOVIE) first decomposes the reference and test videos us-
ing a multi-scale spatio-temporal Gabor filter-bank [63]. Spatial quality assess-
ment is conducted using a technqiue similar to MS-SSIM. A modified version of
the Jepson and Fleet algorithm for optical flow[64] is used to produce motion es-
timates. The same set of Gabor filters are utilized for optical flow computation
and quality assessment. Translational motion in the spatio-temporal domain
manifests itself as a plane in the frequency domain [65]. MOVIE assigns pos-
itive excitatory weights to the response of those filters which lie close to the
spectra plane defined by the computed motion vectors and negative inhibitory
weights to those filter responses which lie farther away from the spectral plane.
Such weighting results in a strong response if the motion in the test and refer-
ence video coincide and a weak response is produced if the test video has motion
deviant from that in the reference video. The mean-squared error between the
responses from the test and reference filter banks then provides the temporal
quality estimate. The final MOVIE index is the product of the spatial and
temporal quality indices - a technique inspired from the spatial and temporal
separability of the HVS.

We have described a handful of algorithms in this chapter. There exist many
other algorithms for visual quality assessment that are not covered here. The
reader is referred to [66, 18, 67, 68, 69, 2] for reviews of other such approaches
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to FR QA. Further, we have covered only FR QA algorithms - partly due to
the maturity of this field. Algorithms that do not require a reference stimulus
for QA are called no-reference (NR) algorithms [2]. Some examples of NR
IQA algorithms include [70, 71, 72, 73, 74, 75]. Some NR VQA algorithms
can be found in [76, 77, 78]. There also exist another class of algorithms -
reduced reference (RR) algorithms, in which the distorted stimulus contains
some additional information about the pristine reference [2]. Recent RR QA
algorithms can be found in [79, 80, 81].

Having described visual quality assessment algorithms, let us now move on
to analyzing how performance of these algorithms can be computed.

7 Performance Evaluation & Validation

Now that we have gone through the nuts-and-bolts of a set of algorithms, the
question of evaluating the performance of the algorithm follows. Simply demon-
strating that the ranking of a handful of videos/images produced by the algo-
rithm scores matches human perception is not an accurate measure of algorithm
performance. In order to compare algorithm performance a common testing
ground that is publicly available must be used. This testing ground, which we
will refer to as a dataset, must contain a large number of images/videos which
have undergone all possible kinds of distortions. For eg., for IQA, distortions
should include - gaussian noise, blur, distortion due to packet-loss, distortion
due to compression and so on. Further, each image in the dataset must be
rated by a sizeable number of human observers in order to produce the subjec-
tive quality score for the image/video. This subjective assessment of quality is
what forms the basis of performance evaluation for IQA/VQA algorithms. The
International Telecommunication Union (ITU) has listed procedures and recom-
mendations on how such subjective assessment is to be conducted [82]. After a
group of human observers have rated the stimuli in the dataset, a mean opinion
score (MOS) which is the mean of the ratings given by the observers (which is
computed after subject rejection - see [82]) is computed for each of the stimuli.
The MOS is representative of the perceived quality of the stimulus. In order
to evaluate algorithm performance, each stimulus in the dataset is evaluated
by the algorithm and receives an objective score. The objective and subjective
scores are then correlated using statistical measures of correlation. The higher
the correlation the better the performance of the algorithm.

Traditional measures of correlation that have been used to evaluate perfor-
mance of visual quality assessment algorithms include - Spearman’s rank or-
dered correlation coefficient (SROCC), linear (Pearson’s) correlation coefficient
(LCC), root mean squared error (RMSE) and outlier ratio (OR) [38]. SROCC is
a measure of the prediction monotonicity and can directly be computed using al-
gorithmic scores and MOS. OR is a measure of the prediction consistency. LCC
and RMSE measure the prediction accuracy and are generally computed after
transforming the algorithmic scores using a logistic function. This is because
LCC assumes that the data under test are linearly related, and tries to quantify
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this linear relationship. However, algorithmic quality scores may be non-linearly
related to subjective MOS. After transforming the objective algorithmic scores
using the logistic, we eliminate this non-linearity which allows us to evaluate
LCC and RMSE. The logistic functions generally used are those proposed in
[38] and [83]. The parameters of the logistic function are those that provide the
best fit between the objective and subjective scores. In general, an algorithm
with higher values (close to 1) for SROCC and LCC and lower values (close
to 0) for RMSE and OR is considered to be a good visual quality assessment
algorithm. One final statistical measure is that of statistical significance. This
measure indicates whether, given a particular dataset, the obtained differences
in correlation between algorithms is statistically significant. The F-Statistic and
ANOVA [84] have been utilized in the past for this purpose [38, 83].

Even though the above described procedure is one that is currently adopted,
there have been efforts directed at improving the performance evaluation of vi-
sual quality assessment algorithms. For example, a recently proposed approach
by Wang and Simoncelli calls for the use of a technique called MAximum Dif-
ferentiation competition (MAD) [85]. Images and video sequences live in a
high-dimensional signal space, where the dimension equals the number of pix-
els. However, only hundreds or at most thousands of images can be tested in a
practical subjective test, and thus their distribution is extremely sparse in the
space of all possible images. Examining only a single sample from each orthant
of an N -dimensional space would require a total of 2N samples, an unimagin-
ably large number for an image signal space with dimensionality on the order
of thousands to millions. In [85] the authors propose an efficient methodology
- MAD, where test images were synthesized to optimally distinguish competing
perceptual quality models. Although this approach cannot fully prove the valid-
ity of a quality model, it offers an optimal means of selecting test images that are
most likely to falsify it. As such, it provides a useful complementary approach
to the traditional performance evaluation method. Other approaches based on
Maximium Likelihood Difference Scaling (MLDS) [86] have been proposed as
well [87, 88].

Now that we have an idea of the general procedure to evaluate algorithm
performance, let us shift our attention to the databases which are used for these
purposes. For IQA, one the most popular databases, which is currently the de
facto standard for all IQA algorithms is the Laboratory for Image and Video
Engineering (LIVE) image quality assessment database [83]. The LIVE image
database was created at researchers at The University of Texas at Austin and
consists of 29 reference images. Each reference image was distorted using five
different distortion processes (eg. compression, noise etc.) and with varying
level of severity for each distortion type. A subjective study was conducted as
outlined earlier and each image was viewed by approximately 29 subjects. A
host of leading IQA algorithms were then evaluated for their performance in [83].
MS-SSIM and VIF were shown to have correlated extremely well with human
perception [83]. In order to demonstrate how the structural and information-
theoretic approaches compare to the often-criticized PSNR, in table ?? we (par-
tially) reproduce the SROCC values between these algorithms and DMOS on
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J2k#1 J2k#2 JPG#1 JPG#2 WN Gblur FF

PSNR 0.9263 0.8549 0.8779 0.7708 0.9854 0.7823 0.8907
MS-SSIM 0.9645 0.9648 0.9702 0.9454 0.9805 0.9519 0.9395

VIF 0.9721 0.9719 0.9699 0.9439 0.9282 0.9706 0.9649

Table 1: Spearman’s rank ordered correlation coefficient (SROCC) on the LIVE
image quality assessment database. J2k = JPEG2000 compression, JPG =
JPEG compression, WN = white noise, Gblur = Gaussian blur, FF = Rayleigh
fast-fading channel.

the LIVE IQA database. The reader is referred to [83] for other correlation
measures and statistical analysis for these and other algorithms.

Other IQA datasets include the one from researchers at Cornell [89], the IVC
dataset [90], the TAMPERE image dataset [91] and the one from researchers at
Toyama university [92]. Readers interested in a package that encompasses some
of the discussed algorithms are referred to [93].

For VQA, the largest known publicly available dataset is that from the video
quality experts group (VQEG) and is labeled as the VQEG FRTV phase-I
dataset1 [38]. Even though the VQEG has conducted other studies, none of
the data has been made publicly available [36, 94]. The VQEG dataset con-
sists of a total of 320 distorted videos created by distorting 20 reference video
sequences. Even though the VQEG dataset has been widely used, it is not
without its flaws. The VQEG dataset (and the associated study) was specifi-
cally aimed at television and hence contains interlaced videos. De-interlacing
algorithms used before VQA may add distortions of their own thereby possi-
bly reducing the correlation of the algorithmic scores with subjective DMOS.
Further the dataset consists of non-natural videos, and many VQA algorithms
which rely on the assumption of natural scenes face a distinct disadvantage 2

[63]. Again, the perceptual separation of the dataset is such that humans and al-
gorithms have difficulty in making consistent judgments. It is to alleviate many
such problems and to provide for a common publicly available testing bed for
future VQA algorithms that the researchers at LIVE have developed the LIVE
video quality assessment and LIVE wireless video quality assessment databases
[95, 96]. These databases have recently been made publicly available at no cost
to researchers in order to further the field of VQA.

Before we conclude this chapter, we would like to stress on the importance
of utilizing a common publicly available test-set for evaluating IQA and VQA
algorithms. Even though a host of new IQA/VQA algorithms have been pro-
posed, comparing algorithmic performance makes no sense if one is unable to see
relative algorithmic performance. The LIVE image dataset and the associated
scores for algorithms, for example, allow for an objective comparison of IQA al-
gorithms. The publicly available dataset must encompass a range of distortions

1We refer to this as the VQEG dataset henceforth
2This is not only for those algorithms that explicitly utilize NSS models, like VIF; but also

models like SSIM which have been shown to be equivalent to NSS-based models [45]
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and perceptual distortion levels so as to test accutately the algorithm. Report-
ing results on small and/or private test sets fails to prove the performance of
the proposed algorithm.

8 Conclusion

In this chapter we undertook a brief tour of the human visual system (HVS)
and studied some HVS based algorithms for image and video quality assessment
(IQA/VQA). We then looked at some feature-based approaches and moved on
to describe structural and information theoretic measures for IQA/VQA. We
then stressed the importance of motion modeling for VQA and described re-
cent algorithms that incorporate motion information. This was followed by a
description of performance evaluation techniques for IQA/VQA and relevant
databases for this purpose.

The area of visual quality assessment has been an active area of research for a
long period of time. With the advent of structural approaches (and its variants)
for image quality assessment, the field of FR IQA seems to have found a winner
[83]. This is mainly because the simplicity of the structural approach coupled
with its performance make it an algorithm of choice in practical systems. Fur-
ther simplifications of the index make it even more attractive [97]. Even though
authors have tried to improve the performance of these approaches, the im-
provements have been minimal and in most cases do not justify the additional
complexity [52, 51, 6]. What remains un-answered at this stage is the rela-
tionship between the structural approach and the human visual system. Even
though some researchers have demonstrated a link [45], further research in un-
derstanding the index needs to be performed.

FR VQA is a far tougher problem to solve, since incorporation of motion
information and temporal quality assessment are fields still in the nascent stage.
Even though the structural approach does well on the VQEG dataset, improve-
ments can be achieved by using appropriate motion modeling based techniques
[60].

The field of RR/NR QA is one that has tremendous potential for research.
RR/NR algorithms are particularly useful in applications where quality evalu-
ation is of utmost importance, but the reference stimulus is unavailable - for
example in systems which monitor quality of service (QoS) at the end-user.
Further, FR/NR/RR algorithms that not only perform well but are computa-
tionally efficient need to be developed for real-time quality monitoring systems.

Having reviewed some algorithms in this chapter, we hope that the reader
has obtained a general idea of approaches that are utilized in the design and
analysis of visual quality assessment systems and that it has piqued his interest
in this broad field which involves researchers from a host of areas ranging from
engineering to psychology.
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