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Abstract—Visual perception refers to the process of organizing,
identifying and interpreting visual information in environmental
awareness and understanding. With the rapid progress of multi-
media acquisition technology, research on visual perception
has been a hot topic in the academical field and industrial
applications. Especially after the introduction of artificial intelli-
gence theory, intelligent visual perception has been widely used
to promote the development of industrial production towards
intelligence. In this paper, we review the previous research and
application of visual perception in different industrial fields such
as product surface defect detection, intelligent agricultural pro-
duction, intelligent driving, image synthesis and event reconstruc-
tion. The applications basically cover most of the intelligent visual
perception processing technologies. Through this survey, it will
provide a comprehensive reference for research on this direction.
Finally, this paper also summarizes the current challenges of
visual perception and predicts its future development trends.

Index Terms—Visual perception, industrial application, artifi-
cial intelligence

I. INTRODUCTION

A
MONG the five senses, vision provides a wealth of infor-

mation for humans to observe and understand the world.

Visual perception is an intuitive and internal observation and

understanding process. Based on the feature-integration theory

proposed by Treisman and Gelade, human visual perception

is divided into feature registration stage and integration stage

[1]. The first stage is that the visual system performs parallel

and automated processing of features such as color, brightness,

orientation, and size from the light stimulation mode. In the

feature integration stage, the visual system locates the feature

representations that are separate from each other. Through

concentrated attention, just like glue, the original and separate

features are integrated into a single object to complete visual

perception. People always imitate the human visual perception

mode, hope that the machine can convert the real-world three-

dimensional information into pictures and videos through

visual acquisition devices (CCD cameras, CMOS cameras,

etc.), and then process, identify and explain these pictures or
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Fig. 1: Typical application fields of visual perception.

videos to understand the real environment, so that the machine

has the ability to replace humans to complete various tasks.

In industrial applications, this process is also called machine

vision [2].

At present, although there is a large gap between the

machine’s visual perception comprehension ability and human

visual perception level, it has a wide range of observations,

which can not be observed by the human eye, such as infrared

[3], microwave [4], ultrasound [5], etc. In addition, it is non-

contact and can be widely used in long and harsh working

environments [6], so the theoretical research and practical

application of industrial visual information perception tech-

nology has been a research hotspot in various industrial

fields. Especially in the era of Industry 4.0, visual perception

technology is destined to become the leading technology [7].

With the rapid development of artificial intelligence technol-

ogy, vision perception have become essential research topics

pursued in the field of artificial intelligence. Computer vision

is usually the pioneer and it is gradually used and developed

in industry to promote automation and informatization of

industrial production, enable the machine to autonomously

perform intelligent activities such as analysis, reasoning, judg-

ment, conception and decision-making [8] to save manpower,

improve efficiency and reduce risk.

At present, intelligent visual perception technology has
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developed into an interdisciplinary discipline involving many

fields such as artificial intelligence, neurobiology, psy-

chophysics, computer science, pattern recognition, etc. Its

technology mainly includes image and video generation [9],

processing [10], quality evaluation [11] [12], and three-

dimensional vision [13], object location, recognition, detec-

tion [14] and ranging [15], etc. Nowadays, visual percep-

tion has been widely used in aerospace [16], military [17],

ocean [18], medical [19], infrastructure [20], agriculture [21],

transportation [22], food [23] and other fields, as shown in

Fig.1. Regarding the application fields of visual perception

technology, there have been many review articles [24] [23]

[22] [14], but most of them summarize the single application

field or technology field and there has not been an review

literature on the overall introduction of visual perception. In

this survey, we introduce some applications and corresponding

technologies of intelligent visual perception from a macro

perspective, showing its advantages and its progressive impact

on human production and life.

The outline of the contributions of this paper can be

summarized as follows:

• Compared with other survey papers in the fields of visual

perception, this survey summarizes the latest industrial

applications of visual perception for the first time and not

only does research on a single field including product sur-

face defect detection, agricultural production intelligence,

intelligent driving, image synthesis, event reconstruction

and object pose measurement, these applications cover

the aerospace, military, ocean, medical, infrastructure,

agriculture, transportation, food fields shown in Fig. 1.

At the same time, these applications also basically cover

the latest technologies used in current visual perception,

such as image and video processing, generation, object

location, recognition, detection and 3D reconstruction,

etc. Through these, reader can clearly understand the

application field and technical composition of intelligent

visual perception.

• We have summarized some of the limitations and in-

troduced the main challenges faced by current visual

perception from the perspective of users and researchers.

• We also put forward some visible development prospects

of visual perception to reflect the theme of the paper,

for which researchers in this field have pointed out the

direction of scientific research.

The rest of this paper is organized as follows. Section

II introduces some different industrial applications of vision

perception and corresponding technologies, Section III gives

some challenges faced by visual perception we can see now,

Section IV illustrates its development prospects and trends,

and Section V concludes this paper.

II. INDUSTRIAL APPLICATIONS

As visual perception becomes more intelligent and

information-based, its applications have penetrated into many

aspects of industry [25]. In this section, we introduce some

applications of intelligent vision, including product surface

defect detection, intelligent agricultural production, intelligent

Fig. 2: General process of product surface defect detection.

driving, image synthesis, event reconstruction and pose mea-

surement. These applications often affect people’s production

and life that are hot spots for researchers and basically cover

different intelligent visual perception technologies.

A. Product Surface Defect Detection

A high-quality industrial product not only meets the re-

quirements of clients and production enterprises in terms

of performance, but also has good aesthetics and safety in

appearance. The surface defects of some products will seri-

ously affect the use of the products and even cause serious

consequences. Different products have different definitions

and types. Generally, surface defects are areas with uneven

physical or chemical properties on the product surface, such as

scratches, spots, holes, glass on metal surfaces, and inclusions,

stains and damage on non-metal surfaces, etc. In the process

of manufacturing products, the occurrence of surface defects

is often unavoidable. Therefore, in the industrial field, the

detection of surface defects has been paid much attention.

Vision-based manual detection is the traditional detection

method for product surface defects which has low sampling

rate, low accuracy, poor real-time performance, low efficiency,

high labor intensity, and is greatly affected by artificial ex-

perience and subjective factors. Detection based on machine

vision methods can largely overcome the above drawbacks

[26]. The usual detection process includes predefine nomal

products, image preprocessing, target region segmentation,

defect recognition and classification as shown in Fig.2.

Machine vision has been used to carry out a lot of work on

the automatic detection and classification of textile defects.

1) Textile defects detection: For textile defects detection,

there are mainly statistical-based methods, transform-domain-

based methods, and model-based methods [27] [28]. Ngan

et al. [29] proposed a method based on pattern primitives

to detect defects in patterned textured fabrics, and used the

symmetry of the primitives to calculate the moving energy

variance between different primitives. The distribution of

values is learned, the boundary conditions are determined, and

then defects are identified. Chandra et al. [30] believed that

because basic morphological operations were difficult to select
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Fig. 3: Some applications of visual perception in intelligent agricultural production.

structural elements expediently, it was not easy to detect all

kinds of defects appearing on woven fabrics. He proposed that

utilizes artificial neural networks (ANN) to obtain structural

elements and perform morphological reconstruction of the

binary image of the fabric to detect defects. Chan et al. [31]

used the simulated fabric model to get the relationship between

the fabric structure in image space and frequency space and

defined the two central space spectra in the three-dimensional

spectrum, then used the difference between the simulation

model and the real samples to analyze fabric defects.

2) Textile defects classification: For machine vision-based

defect classification methods, there are some studies that

use bayesian classifiers to classify fabric defects [32]. The

gray level co-occurrence matrix method was used to extract

the features of defects in the image, and then the k-nearest

neighbor algorithm was used to classify the defects [33].

Support vector machine(SVM) was also often used in fabric

defect classification [34]. There were also some studies that

use neural networks to complete the task of classifying fabric

defects in images or videos [35]. Although traditional image

processing-based fabric detection and classification methods

have achieved good results, most methods require manual

feature extraction, which often consumes a lot of computing

time. As a result, the processing process is not intelligent and

robust. Until deep learning was applied to the field of image

processing, the convolutional neural network(CNN) [36] has

made remarkable progress in the field of image processing,

and it has also been widely used in textile defect detection and

classification. Jing et al. [37] improved that AlexNet extracted

the characteristics of defective fabrics, and realized the clas-

sification of yarn-dyed fabric defects. In [38], authors studied

the combination of compression sampling theorem and CNN

in the case of few-shot and applies it to the classification of

fabric texture defects, which achieves good results. Recently,

Zhao et al. [39] inspired by human visual perception and

memory mechanism proposed a CNN model based on visual

long-term and short-term memory, which greatly improved the

classification of fabric defects.

Similarly, machine vision-based product surface defect de-

tection has applications in many industries, such as steel plates

[40], glass [41], printing [42], parts [43], rail [44], fruit [45]

and so on.

B. Intelligent Agricultural Production

Agricultural production is an important part of the global

economy. As the global population continues to grow, ur-

banization will lead to a continuous reduction in the area

of arable land and the number of farmers. The agricultural

production system faces many challenges [46], so we must

seek to some efficient intelligent and information agricultural

technologies which save manpower and material resources to

promote high-quality and high-yield agricultural development

[47]. The application research of machine vision technology

in the agricultural field started in the 1970s when most of the

initial researches were on the feasibility of machine vision

in agricultural applications and the development of image

processing and analysis algorithm. With the rapid development

of computer software and hardware, image acquisition and

processing devices, and image processing technology, the

application of machine vision technology in agriculture con-

tinuously expands. At present, some countries have begun to

apply machine vision systems to various stages of agricultural

production to solve the problem of increasing population aging

and labor shortage [48]. This section mainly introduces two
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Fig. 4: General procedure of lane detection.

applications of machine vision technology in the field of

agricultural production: agricultural robot and crop pest and

disease monitoring.

1) Agricultural robot: Agricultural robot is an automated or

semi-automated equipment to identify targets, collaborate, and

identify color, texture, and odor characteristics [49], which can

not only greatly increase labor productivity and reduce labor

costs, but also reduce the damage of pesticides to the natural

environment such as soil and water resources [50].

Research on agricultural robots began in Japan where

picking robots began in the early 1980s. Kondo et al. [51]

developed a cherry tomato picking robot, which used color

cameras to collect images, through thresholding, filtering and

other steps to segment fruits from the image background and

identify the number of fruits, locating fruit three-dimensional

information by stereoscopic vision. However, due to envi-

ronmental influences, it was unable to complete obstacle-

free picking and it was difficult to harvest short and hard

fruits with inflorescences. Yaguchi et al. [52] used an electric

wheeled omnidirectional chassis, a robotic arm, a binocular

stereo camera, and a two-degree-of-freedom twisting actuator

to form a tomato picking robot, which could complete picking

operations in the shallow passage of the greenhouse under

natural light.

In recent years, in order to realize the automatic recognition

of cherries in the natural environment, Zhang et al. [53] has

designed a method to implement robot vision using median

filtering preprocessing, otsu algorithm threshold segmentation,

and region threshold denoising by which the cherry recogni-

tion success rate was over 96 percet, and the picking efficiency

was improved. In order to make the robot more efficient in

picking mature apples, and has the ability to continuously

recognize and operate at night, Ji et al. [54] proposed a

Retinex algorithm based on pilot filtering to enhance nighttime

images. The improvement of the vision-based control system

has expanded the application scope of agricultural robots in

greenhouses and orchards, etc. [55] [56], and has reduced

workload and labor intensity.

2) Crop pest and disease monitoring: The control of crop

diseases and insect pests and weeds is the key to achieving

high quality, pollution-free and high yield in agricultural

production. Traditional large-scale spraying of pesticides not

only wastes resources, but also causes pollution and damage

to the environment. The development of intelligent vision

technology makes crop disease and pest diagnosis and weed

identification faster, cheaper and non-destructive [46].

In early years, Pydipati et al. [57] proposed a method for

identifying citrus diseased leaves and normal leaves. This

method used color and texture to represent the features of

the image, combined with the designed feature extraction and

classification algorithm. Finally, the detection of citrus leaf

disease was realized. Mayo et al. [58] described the features in

moth images, used various classifiers and datasets for various

experiments, and applied them to the automatic recognition of

living moths.

In recent years, the literature [59] proposed the method of

using region descriptors to simplify images containing aphids,

and then used the histogram’s directed gradient feature and

support vector machine (SVM) to build models to realize the

identification and population monitoring of aphids. Simple and

easy to use, it could be used to investigate aphid infection in

wheat field. Liu et al. [60] believed that traditional machine

vision was limited by laboratories or pest traps in counting and

identification, and has developed a vision-based multispectral

detector for detecting 12 species on crops. Recently, research

has proposed a method [61] for long-term pest behavior obser-

vation and integrated pest management. This work proposed

a sensor network based on an integrated camera module

and an embedded system that could simultaneously perform

automatic detection and counting of sticky trap pests and other

tasks, achieving integrated pest monitoring.

In this section, we introduced the advantages of visual

perception in agricultural intelligence, and introduced agri-

cultural robots, crop pest and disease monitoring in detail

which are more representative in the application of visual

perception technology. In addition to these two parts, the

application of machine vision in agricultural intelligence also

includes agricultural product quality inspection [62], crop

healthy growth monitoring [63], agricultural vehicle visual

navigation [64], and UAV farmland information monitoring

[65], which are shown in Fig.3.

C. Intelligent Driving

Vision is the main source of information for humans in the

course of various types of traffic [66]. Since the successful

attempt of autonomous driving in the 1980s [67], people have

paid attention to autonomous driving, At present, research on

autonomous driving has attracted a large number of researchers

and investors, and a large number of review papers have

appeared [68] [69] [70]. Autonomous driving refers to the
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Fig. 5: Basic process of face synthesis based on GAN.

process of autonomously completing environmental perception

and action execution for which the visual based environmental

perception is an important source of information. Its main

technologies are: detection of vehicles, pedestrians, and non-

motorized vehicles on the road [71] [72] , traffic sign detection

[73], lane detection [74], departure warning [75], drivable area

detection [76],3D detection [77] [78], map 3D reconstruction

[79], and object ranging [80], etc. Among them, lane detection

is an important link to realize autonomous driving. In this

section, we mainly introduce the application and development

of visual perception technology in lane detection.

Most lane detection mainly have three steps: image prepro-

cessing, feature extraction and parameter curve fitting [81], as

shown in Fig.4.

1) Image preprocessing: The main purpose of image pre-

processing is to enhance the image features and robustness, so

that the detection can adapt to a variety of weather conditions,

such as day, night, sunny, rain, etc. Usual preprocessing

methods include color image gray processing [82], gradient

enhancement Image 6507318, low-contrast image enhanced

by histogram equalization [83], image binarization by edge

detector [84], and cropped image by region of interest [85],

etc.

2) Feature extraction: Feature extraction is a key step in

detecting lanes. Liu et al. [86] obtaind the light intensity and

width characteristics of the lane, and used the local thresh-

old segmentation algorithm and morphological operations to

accurately identify the lane. Others were different, Gopalan

et al. [87] used the edge and texture features of the lane

to achieve detection. Abramov et al. [88] proposed to use

multi-source sensors to collect information, and used Graph

simultaneous localization and mapping (SLAM) to fuse multi-

source features obtained from various sensors, and finally

through the fusion results to perceive multiple lanes in real

time.

3) Parameter curve fitting: The detected lane points usually

need to form lane lines in the graph by curve fitting. General

algorithms usually use approximate clothoid curve models,

such as quadratic curve, cubic curve, hyperbolic polynomial

curve, parabola, B-spline, straight line [89], etc. Some algo-

rithms do not use a fixed curve model, and are mainly used

in scenarios without clear lanes, such as deserts. Broggi et al.

[90] proposed an ant colony optimization method, which was

a road boundary determination method based on reinforcement

learning.

The detection algorithms mentioned above are mostly man-

ual feature extraction at the feature extraction stage which

usually has disadvantages such as low detection efficiency,

poor robustness, and poor curve detection effect, etc. In re-

cent years, lane detection methods using convolutional neural

networks (CNN) have become popular, making lane detection

easier to implement and highly accurate. Lee et al. [91]

proposed an end-to-end multi-tasking network that utilized

vanishing point information to simultaneously identify lane

and road markings in extreme weather conditions, and solved

rainy and low-light conditions for the first time. Pan et al. [92]

proposed a new network structure Spatial CNN by converting

the traditional convolutional layer-by-layer connection form

into the form of slice-by-slice in a continuous volume which

enabled information to be transmitted between rows and

columns in a pixel, and enhances the ability of CNN to obtain

semantic information of long continuous shape structures or

large objects, such as lane lines, telephone poles, etc. In the

detection phase, a network branch was added to enable the

network to directly distinguish between different lanes and

improve robustness. Recently, Hou et al. [93] introduced a

method named Self Attention Distillation(SAD). The CNN

model can learn by itself without labels and achieve substantial

improvements with SAD. This method not only has a good

detection effect, but also runs fast and has fewer model

parameters.

D. Image Synthesis

Generative Adversarial Networks(GAN), proposed in 2014,

is an emerging technology in the field of neural networks in

recent years whose basic idea is derived from the zero-sum

game. It regards the generation problem as the confrontation

and game between the two networks, the generator and the

discriminator. The former tries to produce data closer to the

real and the latter tries to distinguish between real data and

generated data more perfectly [94]. GAN can be applied to

different types of signal processing. Visual image or video
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Fig. 6: A typical MCS architecture.

processing is one of its important application fields, such as

image generation [95], video generation and prediction [96],

object detection [97], image translation [98], image editing

[99], image restoration [100], style migration [101], super-

resolution reconstruction [102], etc.

Face synthesis has been a research hotspot in the field of

computer vision, and has achieved many remarkable results

[103] [104]. With the success of GANs in image and video

generation, this end-to-end approach has attracted many re-

searchers to start using GANs for face synthesis. Until now,

GAN-based face synthesis technology has been impossible

for human eyes to recognize as shown in Fig.5, and it is

expected to be used in movies, animations, games, virtual

reality, etc. But at the same time, it has caused a lot of public

discussions about the dangers of this technology and many

techniques for identifying computer-generated fake faces have

also been developed [105]. In this section, we introduce a new

application of visual perception: GAN-based face synthesis

and corresponding fake face recognition techniques.

1) Face synthesis: In 2016, Isola et al. [106] proposed a

method that changed the objective function of the Conditional

Generative Adversarial Network(CGAN) [107], the network

structure of the generator and the discriminator’s discrimina-

tion, so that the network could learn the mapping relationship

between the input and the output image and the loss function

during training, providing a new framework for pixel-to-pixel

conversion. On this basis, Wang et al. [108] used a multi-

scale generator and discriminator to implement an interactive

semantic editing for generating high-resolution images. Based

on the principle of pix2pix [106], a face swapping software

called Face2Face has aroused people’s interest which could

control the facial expressions and movements of people in

TV or videos through cameras and face tracking software.

Shen et al. [109] learned a symmetrical triad GAN to ease

the training difficulty of the GAN, which could generate faces

with multiple perspectives and expressions and retained the

identity of this person. For video-to-video synthesis, Wang

et al. [110] added optical flow constraints to the generator

and discriminator, and designed a spatio-temporal objective

function to focus on the inconsistency in front and back frames

during video-to-video conversion applied to face swapping

well. Recently, in order to solve the previous model’s inability

to work on few-shot during the training process and need to

consume a lot of data resources. Wang et al. [111] introduced

video-to-video synthesis under the condition of few-shot by

adding attention mechanism in the network. In addition to

the techniques discussed above, there were some studies that

changed specific facial features, such as aging [112], makeup

[113], complexion [114], etc.

2) Forgery detection: With the continuous upgrading of

faking face technology, the public’s voice for identifying fake

is getting higher and higher, and more and more researchers

have begun to study forgery detection methods. Two scientists

from the Idiap Institute in Switzerland conducted a compre-

hensive evaluation of the effectiveness of face recognition

methods in detecting DeepFake [115] which is also a popular

face swapping software, and they found that general face

recognition algorithms, such as FaceNet [116], identifying face

generated by GAN was extremely poor. It was proposed that

only image-based methods could effectively detect DeepFake

videos. At present, many detection algorithms are proposed

specifically for detecting forged images. In [117], the authors

used CNN to complete this task that the performance was

significantly improved compared to traditional detectors. Later,

many CNN-based image forgery detection technologies are

developed, such as [118] [119]. In [120], the authors evaluated

the performance of related technologies in face forgery detec-

tion. Aiming at the problem that many people apply face fraud

technology to national leaders, Agarwal et al. [105] studied

that the facial expressions and movements of people when
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they were speaking from which they used the correlation to

identify real and fake faces, the probability of identifying fake

videos reached 92 percent, and they said that the next study

would be made on the rhythm and characteristics of people’s

speaking voices to further improve the accuracy of forgery

detection.

E. Event Reconstruction

The development of the world’s information industry has

experienced two major trends: Computer and Internet. With the

rapid development of mobile communication and perceptive

technology, a large number of innovative applications and

services have emerged, which has quickly brought us into the

third information industry revolution — the Internet of Things

(IoT) [121]. In the era of the IoT, people are increasingly using

mobile smart terminals with cameras and various sensors,

such as laptops, smartphones, GPS, smart bracelets, automo-

tive sensing devices, smart watches, etc. A large amount of

data obtained by using mobile terminals will be connected

together through the network (Wi-Fi, 3G/4G/5G, Bluetooth,

etc.) to form a group-aware network, which enables us to

more comprehensively and large-scale perception of various

physical objects and environmental conditions in the real world

[122] [123]. They greatly expand the dimensions of human

perception of the world, change the way people perceive the

world, and open up a new field of mobile Internet — Mobile

Crowd Sensing (MCS) [124], whose architecture is shown

in Fig.6. At present, MCS has entered a stage of rapid and

deep development and has penetrated deeply into all aspects

of society, such as intelligent transportation [125], infrastruc-

ture and municipal management services [126], environmental

monitoring and early warning [127], social relations and public

safety services [128], etc.

In MCS, using the built-in camera of the mobile device

to perceive is still an extremely important way. In this field,

related research on vision-based MCS has also attracted a

large number of researchers. In this regard, Guo et al. [129]

puts forward the concept of visual crowdsensing(VCS), and

summarizes the task models, characteristics, important tech-

nologies and applications of VCS in recent years. According

to the summaryof VCS [129], its application scope can be

divided into: floor plan generation [130], scene reconstruction

[131], event reconstruction [132], indoor localization [133],

indoor navigation [134], personal wellness and health [135],

disaster relief [136], and city awareness [137]. In most cases,

MCS is better than traditional visual perception methods that

rely on fixed visual perception devices for monitoring. Event

reconstruction is closest to people’s daily life, so it has high

research value. In this section, we discuss the development

and significance of event reconstruction related technologies

based on VCS.

With the popularity of wireless internet and smart phones

by which people can record events in their lives in the form of

pictures or videos and share them with others via the Internet,

such as the popular short video platforms Vine, Instagram,

Douyin, etc. Thousands of users record events in all corners

of the world in this way, which not only broadens people’s

horizons, but also provides sufficient data for researchers in

various fields [138]. Bao et al. [132] proposed a smartphone-

based on-demand system MoVi, which used smartphones to

cooperatively sense the surrounding environment, and per-

formed video recording based on event trigger points (laughter,

etc.). Videos recorded on different phones would be spliced

into video highlights to provide users with key social informa-

tion. Giridhar et al. [139] introduced an adaptive positioning

algorithm that utilized image information in the social network

Instagram to locate events that occured in cities in time

and space. People in other cities could also experience the

current event remotely from the sight of a witness. Bano

et al. [138] proposed a framework that could match and

cluster user-generated videos at the same time and space

which automatically grouped and aligned videos captured by

multiple user devices from different locations simultaneously,

completing event reconstruction. Participants can review the

entire event from different perspectives through information

provided by others. Bohez et al. [140] introduced an integrated

framework to mix users phones shooting perspectives with

professional camera lenses and displayed during the event. The

framework could transmit, process, and display hundreds of

user videos in real time in an ultra-dense Wi-Fi environment.

Some studies focus on user feedback on videos on the net-

work to evaluate video quality and classification, and then feed

them back to users. Singhal et al. [141] analyzed the emotions

of multiple users watching the same video through Electroen-

cephalogram(EEG) signals, including sadness, happiness, and

neutrality, and combined the video with various emotions.

Then he adopted crowdsourcing mode [142] to summarize

and evaluate the video, extracted the video summary, let users

better understand it. Event reconstruction based on VCS will

also have a certain impact on ecommerce. Recently, Diwanji

et al. [143] discussed the users review videos of the product

after purchasing. He found that this user-generated video

greatly affected other consumers ’perceptions, attitudes and

purchase intentions of the product, and provided an important

management reference for online sellers.

F. Pose Measurement

Object pose measurement is also one of the important

application directions of visual perception, refering to obtain-

ing three position parameters and three attitude parameters

of the target in a specific coordinate system, which can be

the world coordinate system, object coordinate system or

camera coordinate system. Object pose measurement has very

important applications in the fields of robots [146], aerospace

[145], industrial production [147], rotorcraft [148], vehicles

[149], and ocean [150]. For example, in the space docking

between a spacecraft and a target spacecraft, it is indispensable

to accurately measure the relative position and attitude parame-

ters between the spacecraft and the target spacecraft. The same

is true in industrial production. Only by accurately measuring

the pose of the accessory can the industrial robot grasp the

object in a prescribed posture and align it for installation.

Vision-based pose measurement has the characteristics of non-

contact, high accuracy, good stability [162], which is of great
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Fig. 7: CNN-based pose measurement and application.

significance for improving industrial production efficiency.

Among them, the method based on monocular vision is the

mainstream of pose measurement, and its biggest advantage

is that the equipment is simple and easy to implement [151].

There is also a method based on binocular vision, which adds

auxiliary depth information to the RGB image to help improve

the measurement accuracy [152].

Most of the traditional pose measurement methods are

based on geometric features. These methods have a certain

dependence on the texture of the target surface and are

susceptible to factors such as lighting, occlusion, and complex

backgrounds. Later, the pose measurement mostly used feature

descriptor-based methods to train classifiers by constructing

distinguishing feature descriptors around the feature points

of objects [153] [154]. Gee et al. [155] proposed a method

for estimating the 6D pose of the camera using RGB-D

information. This method extracted points of interest from the

image based on sparse features, and described these points of

interest with local descriptors then matching to the database.

The sparse feature-based method and the traditional geometry-

based method have some similarities, both of which are more

difficult to recognize objects with less texture. Some studies

used dense feature-based methods to predict the desired result

with each pixel. Brachmann et al. [156] introduced a method

for estimating the 6D pose of a specific target from a single

frame of RGB-D images by using a new representation that

combined dense 3D target coordinates and object class labels.

This method could flexibly deal with textured or non-textured

targets, and was robust under different lighting conditions.

Later, the author improved on the basis of previous work

[157]. He proposed a method to estimate the 6D pose using

only a single RGB image by marginalizing the weight of the

depth image and using only color to obtain the pose. There are

also some studies that use template-based matching methods

to scan pictures with a fixed template to find the best match. In

the paper [158], the author sampled the object to be detected

sufficiently by rendering in the possible SE3 space, extractd a

sufficiently robust template, and then matched the template to

estimate the pose.

In recent years, CNNs have also been widely used for

vision-based object pose estimation in the field of industrial

production, spacecraft docking and robots, etc. This process

can be simply summarized as Fig. 7. Based on the literature

[158], Wohlhart et al. [159]trained object types and object

view templates together by CNN to learn descriptors repre-

senting object types and poses to detecte low textures. The

method had a certain effect. Kehl et al. [160] used a 2D

detector SSD to achieve 3D object detection and full 6D

pose estimation only by RGB data and training the data of

the synthetic model. For each 2D detection result, the most

likely perspective and in-plane rotation were analyzed, and

then a series of 6D hypotheses were established to select an

optimal one as the result. Recently, Yang et al. [161] proposed

a method of target pose measurement using CNN. This method

directly returned the 6D attitude information of the object,

eliminating the template used by the previous methods, which

was simpler, faster speed and higher accuracy.

In order to more intuitively compare the applications of

visual perception we have listed, we summarize the relevant

fields and technologies of each application which are shown

in Table 1.

III. THE SERIOUS CHALLENGES FACED BY VISUAL

PERCEPTION

With the development of software and hardware tech-

nologies such as parallel computing, cloud computing, and

machine learning, related technologies of visual perception

have been greatly improved whose applications have also taken

root in various fields. However, there are also many problems

with current visual perception. The technology and application

in many aspects are not mature enough, and even cannot

be applied to actual production and life. In this section, we

analyze the challenges faced by current visual perception.

A. Vision acquisition

Most of the existing methods of vision acquisition use

various sensors to convert perceptual information into images
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TABLE I: Summary of related fields and technologies of visual perception applications introduced in this survey

Application Description Related fields Related technologies

Product
Surface
Defect

Detection

The detection method based on ma-
chine vision can detect the surface
defect areas that occur in the pro-
duction process of the product. Com-
pared with manual, it has the ad-
vantages of high sampling rate, high
accuracy, strong real-time, high effi-
ciency, and labor saving.

Textile [27], [29]–[31], [33]–[35], [37]–[39]
Transportation [44]

Food [45]
Printing [42]

Industrial manufacturing [40], [41], [43]

Object detection [29]–[31]
Object classification [32]–[35]

CNN-based object detection and classification
[37]–[39]

Agricultural
Production
Intelligence

Machine vision perception can be
applied to all aspects in agricultural
production such as planting, monitor-
ing, prevention, and picking, which
is conducive to solving the problems
of increasing population aging and
lack of labor.

Agricultural robot [49]–[56]
Disease and pest monitoring [46], [57]–[61]
Agricultural product quality inspection [62]

Crop healthy growth monitoring [63]
Agricultural vehicle visual navigation [64]
UAV farmland information monitoring [65]

Object segmentation [51]
Binocular-based 3D information acquisition [51]

Object recognition [53], [57]
Image enhancement [53]

Improved vision sensor [60], [61]

Intelligent
Driving

Vision-based environmental percep-
tion is an important source of infor-
mation for autonomous driving and
provides strong support for the real-
ization of autonomous driving.

Transportation [70]
Military

Agriculture [64]

Object segmentation [82]–[87], [144]
Multi-source information fusion [88]

SLAM [88]
Reinforcement learning [90]

CNN-based object detection [71]–[73],
3D object detection [77], [78],

object segmentation [74], [76], [91]–[93]
Deviation warning [75]

Map 3D reconstruction [79]
Object ranging [80]

Image
Synthesis

Generative adversarial networks
(GAN) have made great progress
in generating images. It can learn
its distribution based on target data
and does not need to infer hidden
variables during training.

Face synthesis and identification
[105], [106], [108]–[111], [115]–[117], [120]

Movies, animations, games, virtual reality.

GAN-based image generation,
video generation and prediction [96],

object detection [97],
image translation [98],

image editing [99],
image restoration [100],
style migration [101],

image super-resolution [102]
CNN-based image forgery detection

[105], [118]–[120]

Event
Reconstruction

The information collected by the
multi-person visual device is inte-
grated through the Mobile Internet,
allowing people to perceive a va-
riety of physical objects and en-
vironmental conditions in the real
world more comprehensively and on
a larger scale.

Social [139]
Health [135]

Smart City [131], [137]
Architecture [130]

Navigation [131], [133], [134]
Rescue [136]

Image or video information fusion [132], [140]
Event location [139]

Event matching and clustering [138]
Crowdsourcing analysis [141]

Object Pose
Measurement

The three position parameters and
three pose parameters of the object
are obtained in a specific coordinate
system. The advantages of vision-
based pose measurement are: non-
contact, high accuracy, and good sta-
bility.

Aerospace [145]
Robot [146]

Industrial production [147]
Aircraft [148]
Vehicle [149]
Ocean [150]

Monocular-based pose measurement [151]
Binocular-based pose measurement [152]

Feature descriptors-based pose measurement
[153]–[157]

Template matching-based pose measurement
[158]

CNN-based pose measurement [159]–[161]

or videos. For example, the most common CCD and CMOS

cameras are converted into electronic signals according to

different light. The quality of vision acquisition and imaging

technology directly affects the authenticity of information

and is an important basis for visual information processing.

Although the existing vision acquisition equipment and imag-

ing technology have made significant progress, such as high

dynamic range (HDR), global shutter, near infrared enhance-

ment (NIR+), RGB-IR, power scalability and so on. However,

under the influence of changes in real-world lighting and lens

distortion, current vision acquisition and imaging technologies

sometimes do not accurately reflect the real world. Backward

vision acquisition equipment and imaging technology may

become an obstacle to the development of visual perception

technology.

B. Information Security

With the combination of artificial intelligence and visual

perception technology, there are endless examples of percep-

tion is not true, so it is especially important to think about

the security of visual information. For example, the GAN-

based face synthesis technology mentioned earlier. Now some

criminals use AI face swapping to pretend to be a national

leader to make a bad speech and interfere with the presidential

election. If the society cannot detect it in time, there may be

serious consequences [105]. The security of visual perception

is a key issue that researchers must attach great importance to

during its rapid development.
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Fig. 8: Development Prospects of Visual Perception.

C. Speed, accuracy, and robustness

The trade-off between speed and accuracy has always been

an important issue in the field of visual perception, especially

in the field of computer vision [163]. Increasing the process-

ing speed will inevitably reduce the information acquisition

and analysis capabilities of deep networks, and vice versa.

Its importance is self-evident. For example, in the field of

automatic driving, the speed of detecting obstacles cannot

achieve real-time or insufficient accuracy of recognition will

hinder the realization of automatic driving [70]. And there

is currently no machine vision technology that can achieve

batch detection in the true sense while ensuring extremely

high accuracy, minimal false detection rates, and eliminating

missed detections. This goal cannot be achieved, reducing the

application expectations of machine vision.

Due to the variability of the real world, the visual infor-

mation collected by people is also diverse, and current visual

perception and processing technologies in various fields often

cannot adapt to such changing visual conditions, such as light

intensity and shadows. The low robustness of the algorithm is

also a universal problem in this field.

D. Construction in deep learning

CNN under deep learning is currently widely used in the

processing of visual images or videos. Its theoretical problems

are mainly reflected in statistics and computing. For any non-

linear function, a shallow network and a deep network can be

found to represent it. The deep model has better performance

for nonlinear functions than the shallow model. But the rep-

resentability of deep networks does not represent learnability

[164]. That is to say, deep learning is not intelligent enough,

often accompanied by over-fitting and under-fitting problems

[165], and requires the support of big data, but humans do

not complete a large number of calculations to achieve related

functions. Therefore, deep learning cannot be used as the main

idea for the development of intelligent vision. Whether in

terms of learning or implementation, the intelligence of visual

perception is still a severe test.

E. Computing power and device volume

The success of computer vision depends not only on

deep learning and large-scale data, but also on the comput-

ing carriers it implements, such as Central Processing Unit

(CPU), Graphics Processing Unit (GPU), Application Specific

Integrated Circuit (ASIC), Field Programmable Gate Array

(FPGA) [166]. In the future, visual perception technology will

also be inseparable from these computing units. Insufficient

and slow computing power will also restrict the development

of visual perception. The volume of integrated computing de-

vices is also an important factor. At present, many companies

are making such high-performance development boards for

edge computing, such as Jetson TX2, Jetson AGX Xavier and

so on. Small computing devices are of great significance to the

practical application of the algorithm, but now there are still

problems such as slow speed, insufficient computing power,

and small memory.

F. The combination of software and hardware

The convergence of hardware and software has reached

a turning point, and the two are no longer independent of

each other, but are increasingly showing a mirror dependency.

However, since software and hardware are two completely

different fields, in the application of visual perception, many

researchers have failed to implement the hardware well after

proposing excellent visual perception algorithms, so the prob-

lem of combining software and hardware is also a challenge

in this field.
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IV. DEVELOPMENT PROSPECTS OF VISUAL PERCEPTION

Vision is the most important source of information for hu-

mans to understand the world. The research on visual percep-

tion and processing will always accompany human scientific

steps. In this section, we introduce its future development

directions and trends based on the current challenges of visual

perception, as shown in Fig.8.

A) Multi-source information fusion technology will become

a hot research topic in the future. A single vision sensor

has a specific range of use, and there are shortcomings

such as less information and less accuracy. Different visual

sensors have specific advantages. For example, ordinary

visible light camera is good at acquiring color and shape

information, lidar can obtain more depth information and

point cloud information, infrared detectors can sense am-

bient temperature information, hyperspectral sensors can

improve the ability to detect the attribute information of

ground objects, etc. Multi-source information fusion tech-

nology has always been an effective method to maximize

the amount of information. In the future, it will still be an

important research direction. On the one hand, researchers

can focus their research on sensors and hardware devices

that can simultaneously acquire more visual information to

improve ability to acquire visual information and compute

big data. On the other hand, in terms of software, the

fusion algorithm with high precision, low latency and

less calculation will be further upgraded to achieve more

reliable and accurate results for specific visual perception

tasks.

B) Active vision and visual question answering is a hotspot in

the field of computer vision and machine vision research

today, and will be an important direction for solving

current visual perception problems. Here the vision system

can actively sense the environment, and according to

certain rules, let the computer actively extract the required

image features and answer questions about the picture. In

active vision, multiple artificial intelligence methods may

be integrated, such as reinforcement learning and other

unsupervised, weakly supervised learning, which may help

solve the current state of research that relies too much on

mathematical modeling and mathematical calculations to

meet the requirements of system speed and intelligence.

C) Visual perception will develop towards higher adaptability

and robustness in the face of different tasks, which may

include domain adaptation and meta-learning. Domain

adaptation is a sub-discipline of machine learning that

deals with the use of models trained on information source

distributions in the context of different target distributions.

According to the amount of training data required for a

new specific computer vision task, the performance of the

function of deep domain adaptation is closer to human

intelligence. Progress in this field is critical to the entire

field of computer vision, and deep-domain adaptation can

ultimately lead people to reuse effective and simple knowl-

edge in vision tasks. Similarly, meta-learning is intended

to allow machines to learn to learn. When the machine has

the ability to learn, it can quickly adapt to different tasks.

Meta-learning is also an important direction for improving

the robustness of future visual perception.

D) Visual crowdsensing is a technological idea that conforms

to the trend of world development. As humans enter the

age of the Internet of Things, valuable data is gradually

being socialized, shared, and experiential. In VCS, pic-

tures and videos can contain richer information, and they

are more closely related to the environment and others.

The volume of data items is larger, and conform to the

development idea of IoT, it may become a mainstream

technology in visual perception. Similarly, Federated Ma-

chine Learning [167] is an emerging artificial intelligence

basic technology, which is proposed in order to solve the

problem of data islands and strengthen data security. In

recent years, research on federal learning has continuously

emerged, and will lead the next wave of commercialization

of machine learning technology. Federal learning is also a

new road for the development of visual perception under

the tide of the IoT.

E) The global Internet and semiconductor giants have laid

out, showing that intelligent image and video processing

will be the next arena, which may mean that vision

technology is ushering in a golden period of development.

In the future, visual perception will continue to make

breakthroughs in applications such as unmanned aerial

vehicle (UAV), autonomous driving, smart doctors, smart

security, and smart cities, etc. Exploring new technical

support and application areas is always the trend of visual

perception development.

V. CONCLUSION

Overall, in this paper we have reviewed and analyzed several

major application fields of visual perception, including indus-

trial quality inspection, agricultural production, autonomous

driving, visual fraud and crowd sensing. Specifically, we in-

troduced textile defect detection in product surface inspection,

agricultural robots, agricultural pest and disease monitoring

in intelligent agricultural production, lane detection in au-

tonomous driving, image synthesis and forgery detection in

visual fraud and event reconstruction in crowd sensing and

object measurement. These applications basically cover the

popular visual perception research directions in recent years,

including classification in image or video, segmentation, object

detection, tracking, image or video generation, forgery detec-

tion, 3D reconstruction and multi-source information fusion.

We can conclude that most of the current visual perception

technologies and applications are combined with artificial

intelligence, which is helpful to human production and life,

and has the advantages of low cost, high precision and high

efficiency.

In addition, based on the status quo, we analyze the current

challenges faced by humans when using visual perception

technology, including vision acquisition, computing power,

device volume, technology security, speed, accuracy, robust-

ness, and intelligence, software and hardware combination, etc.

Based on these challenges, we have made predictions about

the development prospects of visual perception. In the future,
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visual perception will be more closely integrated with artificial

intelligence, and will move towards multi-source information

fusion, active vision, domain adaptation, meta-learning, rein-

forcement learning, federal learning, crowd sensing and other

directions, and more fields will be applied to visual perception

technology. With the continuous development and intelligen-

tization of visual perception technology, human production

efficiency and quality will continue to improve, which will be

one of the important driving forces for human social progress.

REFERENCES

[1] A. M. Treisman and G. Gelade, “A feature-integration theory of
attention,” Cognitive Psychology, vol. 12, no. 1, pp. 97 – 136, 1980.

[2] A. O. Fernandes, L. F. E. Moreira, and J. M. Mata, “Machine vision
applications and development aspects,” 2011 9th IEEE International

Conference on Control and Automation (ICCA), pp. 1274–1278, 2011.

[3] R. Alfredo Osornio-Rios, J. A. Antonino-Daviu, and R. de Jesus
Romero-Troncoso, “Recent industrial applications of infrared thermog-
raphy: A review,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 2, pp. 615–625, 2019.

[4] C. Ding, X. Qiu, F. Xu, X. Liang, Z. Jiao, and F. Zhang, “Synthetic
aperture radar three-dimensional imaging – from tomosar and array
insar to microwave vision,” Journal of Radars, vol. 8, p. 1, 2019.

[5] T. C. Lei and L. X. Dong, “Ultrasonic phased array length measurement
of internal detects in butt weld,” 2016 23rd International Conference

on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–7,
2016.

[6] B. Prasad, K. Prabha, and P. Kumar, “Condition monitoring of turning
process using infrared thermography technique – an experimental
approach,” Infrared Physics and Technology, vol. 81, pp. 137–147,
2017.

[7] D. Gorecky, M. Schmitt, M. Loskyll, and D. Zuhlke, “Human-machine-
interaction in the industry 4.0 era,” 2014 12th IEEE International

Conference on Industrial Informatics (INDIN), pp. 289–294, 2014.

[8] L. Fu, Y. Zhang, Q. Huang, and X. Chen, “Research and application
of machine vision in intelligent manufacturing,” 2016 Chinese Control

and Decision Conference (CCDC), pp. 1126–1131, 2016.

[9] A. Clark, J. Donahue, and K. Simonyan, “Adversarial video generation
on complex datasets,” arXiv preprint arXiv:1907.06571, 2019.

[10] A. Mohan and S. Poobal, “Crack detection using image processing: A
critical review and analysis,” Alexandria Engineering Journal, vol. 57,
no. 2, pp. 787 – 798, 2018.

[11] J. Yang, K. Sim, X. Gao, W. Lu, Q. Meng, and B. Li, “A blind stereo-
scopic image quality evaluator with segmented stacked autoencoders
considering the whole visual perception route,” IEEE Transactions on

Image Processing, vol. 28, no. 3, pp. 1314–1328, 2019.

[12] B. Jiang, J. Yang, Q. Meng, B. Li, and W. Lu, “A deep evaluator for
image retargeting quality by geometrical and contextual interaction,”
IEEE Transactions on Cybernetics, vol. 50, no. 1, pp. 87–99, 2020.

[13] B. Wandt and B. Rosenhahn, “Repnet: Weakly supervised training of
an adversarial reprojection network for 3d human pose estimation,”
The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2019.

[14] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A
survey,” arXiv preprint arXiv:1905.05055, 2019.

[15] B. Xu, S. Zhao, X. Sui, and C. Hua, “High-speed stereo match-
ing algorithm for ultra-high resolution binocular image,” 2018 IEEE

International Conference on Automation, Electronics and Electrical

Engineering (AUTEEE), pp. 87–90, 2018.

[16] Z. Tang, R. Cunha, T. Hamel, and C. Silvestre, “Aircraft landing
using dynamic two-dimensional image-based guidance control,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 55, no. 5, pp.
2104–2117, 2019.

[17] X. Xiaozhu and H. Cheng, “Object detection of armored vehicles based
on deep learning in battlefield environment,” 2017 4th International

Conference on Information Science and Control Engineering (ICISCE),
pp. 1568–1570, 2017.

[18] C. Xie, M. Li, H. Wang, and J. Dong, “A survey on visual analysis of
ocean data,” Visual Informatics, vol. 3, no. 3, pp. 113 – 128, 2019.

[19] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,
J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Ger-
stner, M. Weber, T. Arbel, B. B. Avants, N. Ayache, P. Buendia, D. L.
Collins, N. Cordier, J. J. Corso, A. Criminisi, T. Das, H. Delingette,
C. Demiralp, C. R. Durst, M. Dojat, S. Doyle, J. Festa, F. Forbes,
E. Geremia, B. Glocker, P. Golland, X. Guo, A. Hamamci, K. M.
Iftekharuddin, R. Jena, N. M. John, E. Konukoglu, D. Lashkari, J. A.
Mariz, R. Meier, S. Pereira, D. Precup, S. J. Price, T. R. Raviv, S. M. S.
Reza, M. Ryan, D. Sarikaya, L. Schwartz, H. Shin, J. Shotton, C. A.
Silva, N. Sousa, N. K. Subbanna, G. Szekely, T. J. Taylor, O. M.
Thomas, N. J. Tustison, G. Unal, F. Vasseur, M. Wintermark, D. H.
Ye, L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes, and K. Van
Leemput, “The multimodal brain tumor image segmentation benchmark
(brats),” IEEE Transactions on Medical Imaging, vol. 34, no. 10, pp.
1993–2024, 2015.

[20] W. Fang, L. Ding, P. E. Love, H. Luo, H. Li, F. Pena-Mora, B. Zhong,
and C. Zhou, “Computer vision applications in construction safety
assurance,” Automation in Construction, vol. 110, p. 103013, 2020.

[21] D. I. Patricio and R. Rieder, “Computer vision and artificial intelli-
gence in precision agriculture for grain crops: A systematic review,”
Computers and Electronics in Agriculture, vol. 153, pp. 69 – 81, 2018.

[22] W. Shi, M. B. Alawieh, X. Li, and H. Yu, “Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A
survey,” Integration, the VLSI Journal, vol. 59, 2017.

[23] I. Witus, C. On, R. Alfred, A. A. Ag Ibrahim, T. G. Tan, and P. Anthony,
“A review of computer vision methods for fruit recognition,” Advanced

Science Letters, vol. 24, pp. 1538–1542, 02 2018.

[24] C. S. Pereira, R. Morais, and M. J. C. S. Reis, “Recent advances
in image processing techniques for automated harvesting purposes: A
review,” 2017 Intelligent Systems Conference (IntelliSys), pp. 566–575,
2017.

[25] P. Ranky, “Advanced machine vision systems and application exam-
ples,” Sensor Review - SENS REV, vol. 23, pp. 242–245, 2003.

[26] B. Tang, J. Kong, and S. Wu, “Review of surface defect detection based
on machine vision,” Journal of Image and Graphics, vol. 22, no. 12,
pp. 1640–1663, 2017.

[27] A. Kumar, “Computer-vision-based fabric defect detection: A survey,”
IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 348–
363, 2008.

[28] H. Y. Ngan, G. K. Pang, and N. H. Yung, “Automated fabric defect
detection–a review,” Image and Vision Computing, vol. 29, no. 7, pp.
442 – 458, 2011.

[29] ——, “Motif-based defect detection for patterned fabric,” Pattern

Recognition, vol. 41, no. 6, pp. 1878 – 1894, 2008.

[30] J. K. Chandra, P. K. Banerjee, and A. K. Datta, “Neural network trained
morphological processing for the detection of defects in woven fabric,”
The Journal of The Textile Institute, vol. 101, no. 8, pp. 699–706, 2010.

[31] Chi-Ho Chan and G. K. H. Pang, “Fabric defect detection by fourier
analysis,” IEEE Transactions on Industry Applications, vol. 36, no. 5,
pp. 1267–1276, 2000.

[32] M. T. Habib, S. B. Shuvo, M. S. Uddin, and F. Ahmed, “Automated
textile defect classification by bayesian classifier based on statistical
features,” 2016 International Workshop on Computational Intelligence

(IWCI), pp. 101–105, 2016.

[33] K. Yildiz, A. Buldu, and M. Demetgul, “A thermal-based defect clas-
sification method in textile fabrics with k-nearest neighbor algorithm,”
Journal of Industrial Textiles, vol. 45, no. 5, pp. 780–795, 2016.

[34] W. Li and L. Cheng, “Yarn-dyed woven defect characterization and
classification using combined features and support vector machine,”
The Journal of The Textile Institute, vol. 105, no. 2, pp. 163–174,
2014.

[35] H. Celik, L. Dulger, and M. Topalbekiroglu, “Development of a ma-
chine vision system: real-time fabric defect detection and classification
with neural networks,” The Journal of The Textile Institute, vol. 105,
no. 6, pp. 575–585, 2014.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in Neural Infor-

mation Processing Systems 25, pp. 1097–1105, 2012.

[37] J. Jing, A. Dong, P. Li, and K. Zhang, “Yarn-dyed fabric defect classi-
fication based on convolutional neural network,” Optical Engineering,
vol. 56, no. 9, pp. 1–9, 2017.

[38] B. Wei, K. Hao, X. song Tang, and Y. Ding, “A new method using
the convolutional neural network with compressive sensing for fabric
defect classification based on small sample sizes,” Textile Research

Journal, vol. 89, no. 17, pp. 3539–3555, 2019.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 13

[39] Y. Zhao, K. Hao, H. He, X. Tang, and B. Wei, “A visual long-short-
term memory based integrated cnn model for fabric defect image
classification,” Neurocomputing, 2019.

[40] D. K. H. Singhka, N. Neogi, and D. Mohanta, “Surface defect classifi-
cation of steel strip based on machine vision,” International Conference

on Computing and Communication Technologies, pp. 1–5, 2014.

[41] J. George, S. Janardhana, J. Jaya, and K. J. Sabareesaan, “Automatic
defect detection inspectacles and glass bottles based on fuzzy c
means clustering,” 2013 International Conference on Current Trends

in Engineering and Technology (ICCTET), pp. 8–12, 2013.

[42] H. Kalviainen, “Machine vision based quality control from pulping to
papermaking for printing,” Pattern Recognition and Image Analysis,
vol. 21, pp. 486–490, 2011.

[43] P. Kunakornvong and P. Sooraksa, “Machine vision for defect detection
on the air bearing surface,” 2016 International Symposium on Com-

puter, Consumer and Control (IS3C), pp. 37–40, 2016.

[44] Z. Liu, W. Wang, and P. Wang, “Design of machine vision system
for inspection of rail surface defects,” JOURNAL OF ELECTRONIC

MEASUREMENT AND INSTRUMENT, vol. 24, pp. 1012–1017, 2010.

[45] D. Rong, X. Rao, and Y. Ying, “Computer vision detection of surface
defect on oranges by means of a sliding comparison window local
segmentation algorithm,” Computers and Electronics in Agriculture,
vol. 137, pp. 59 – 68, 2017.

[46] H. Tian, T. Wang, Y. Liu, X. Qiao, and Y. Li, “Computer vision tech-
nology in agricultural automation–a review,” Information Processing in

Agriculture, 2019.

[47] Seema, A. Kumar, and G. S. Gill, “Automatic fruit grading and
classification system using computer vision: A review,” 2015, pp. 598–
603.

[48] K. Jha, A. Doshi, P. Patel, and M. Shah, “A comprehensive review
on automation in agriculture using artificial intelligence,” Artificial

Intelligence in Agriculture, vol. 2, pp. 1 – 12, 2019.

[49] K. Tanigaki, T. Fujiura, A. Akase, and J. Imagawa, “Cherry-harvesting
robot,” Computers and Electronics in Agriculture, vol. 63, no. 1, pp.
65 – 72, 2008, special issue on bio-robotics.

[50] R. Shamshiri, C. Weltzien, I. Hameed, I. Yule, T. Grift, and e. a. Bal-
asundram, S.K., “Research and development in agricultural robotics:
A perspective of digital farming,” Int J Agric and Biol Eng, vol. 11,
no. 4, pp. 1–14, 2018.

[51] N. Kondo, M. Monta, and T. Fujiura, “Fruit harvesting robots in
japan,” Advances in Space Research, vol. 18, no. 1, pp. 181 – 184,
1996, physical, Chemical, Biochemical and Biological Techniques and
Processes.

[52] H. Yaguchi, K. Nagahama, T. Hasegawa, and M. Inaba, “Development
of an autonomous tomato harvesting robot with rotational pluck-
ing gripper,” 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 652–657, 2016.

[53] Q. Zhang, S. Chen, T. Yu, and Y. Wang, “Cherry recognition in natural
environment based on the vision of picking robot,” IOP Conference

Series: Earth and Environmental Science, vol. 61, p. 012021, 2017.

[54] J. Wei, Q. Zhijie, X. Bo, and Z. Dean, “A nighttime image enhancement
method based on retinex and guided filter for object recognition of
apple harvesting robot,” International Journal of Advanced Robotic

Systems, vol. 15, no. 1, p. 1729881417753871, 2018.

[55] Y. Zhao, L. Gong, Y. Huang, and C. Liu, “A review of key techniques of
vision-based control for harvesting robot,” Computers and Electronics

in Agriculture, vol. 127, pp. 311 – 323, 2016.

[56] S. Mehta, W. MacKunis, and T. Burks, “Robust visual servo control in
the presence of fruit motion for robotic citrus harvesting,” Computers

and Electronics in Agriculture, vol. 123, pp. 362 – 375, 2016.

[57] R. Pydipati, T. Burks, and W. Lee, “Identification of citrus disease
using color texture features and discriminant analysis,” Computers and

Electronics in Agriculture, vol. 52, no. 1, pp. 49 – 59, 2006.

[58] M. Mayo and A. T. Watson, “Automatic species identification of live
moths,” Knowledge-Based Systems, vol. 20, no. 2, pp. 195 – 202, 2007,
aI 2006.

[59] T. Liu, W. Chen, W. Wu, C. Sun, W. Guo, and X. Zhu, “Detection of
aphids in wheat fields using a computer vision technique,” Biosystems

Engineering, vol. 141, pp. 82 – 93, 2016.

[60] H. Liu and J. S. Chahl, “A multispectral machine vision system for
invertebrate detection on green leaves,” Computers and Electronics in

Agriculture, vol. 150, pp. 279 – 288, 2018.

[61] “Application of an image and environmental sensor network for au-
tomated greenhouse insect pest monitoring,” Journal of Asia-Pacific

Entomology, vol. 23, no. 1, pp. 17 – 28, 2020.

[62] B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan, J. Wu, and C. Liu,
“Principles, developments and applications of computer vision for
external quality inspection of fruits and vegetables: A review,” Food

Research International, vol. 62, pp. 326 – 343, 2014.

[63] M. Rico-Fernandez, R. Rios-Cabrera, M. Castelan, H.-I. Guerrero-
Reyes, and A. Juarez-Maldonado, “A contextualized approach for
segmentation of foliage in different crop species,” Computers and

Electronics in Agriculture, vol. 156, pp. 378 – 386, 2019.

[64] M. H. Jones, J. Bell, D. Dredge, M. Seabright, A. Scarfe, M. Duke,
and B. MacDonald, “Design and testing of a heavy-duty platform for
autonomous navigation in kiwifruit orchards,” Biosystems Engineering,
vol. 187, pp. 129 – 146, 2019.

[65] Y. Niu, L. Zhang, H. Zhang, W. Han, and X. Peng, “Estimating above-
ground biomass of maize using features derived from uav-based rgb
imagery,” Remote Sensing, vol. 11, no. 11, 2019.

[66] B. Ranft and C. Stiller, “The role of machine vision for intelligent
vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp.
8–19, 2016.

[67] J. Janai, F. Guney, A. Behl, and A. Geiger, “Computer vision for
autonomous vehicles: Problems, datasets and state of the art,” arXiv

preprint arXiv:1704.05519, 2017.

[68] H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-based
image recognition for autonomous driving,” IATSS Research, 2019.

[69] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby,
and A. Mouzakitis, “A survey on 3d object detection methods for
autonomous driving applications,” IEEE Transactions on Intelligent

Transportation Systems, vol. 20, no. 10, pp. 3782–3795, 2019.

[70] W. Shi, M. B. Alawieh, X. Li, and H. Yu, “Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A
survey,” Integration, vol. 59, pp. 148 – 156, 2017.

[71] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in Neural

Information Processing Systems 28, pp. 91–99, 2015.

[72] P. Yu, Y. Zhao, J. Zhang, and X. Xie, “Pedestrian detection using
multi-channel visual feature fusion by learning deep quality model,”
Journal of Visual Communication and Image Representation, vol. 63,
p. 102579, 2019.

[73] T. Yang, X. Long, A. K. Sangaiah, Z. Zheng, and C. Tong, “Deep
detection network for real-life traffic sign in vehicular networks,”
Computer Networks, vol. 136, pp. 95 – 104, 2018.

[74] J. Liu, “Learning full-reference quality-guided discriminative gradient
cues for lane detection based on neural networks,” Journal of Visual

Communication and Image Representation, vol. 65, p. 102675, 2019.

[75] I. Gamal, A. Badawy, A. M. Al-Habal, M. E. Adawy, K. K. Khalil,
M. A. El-Moursy, and A. Khattab, “A robust, real-time and calibration-
free lane departure warning system,” Microprocessors and Microsys-

tems, vol. 71, p. 102874, 2019.

[76] Z. Liu, S. Yu, and N. Zheng, “A co-point mapping-based approach to
drivable area detection for self-driving cars,” Engineering, vol. 4, no. 4,
pp. 479 – 490, 2018.

[77] P. Li, X. Chen, and S. Shen, “Stereo r-cnn based 3d object detection
for autonomous driving,” The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2019.

[78] L. Wang, X. Fan, J. Chen, J. Cheng, J. Tan, and X. Ma, “3d object
detection based on sparse convolution neural network and feature
fusion for autonomous driving in smart cities,” Sustainable Cities and

Society, p. 102002, 2019.

[79] C. Hane, L. Heng, G. H. Lee, F. Fraundorfer, P. Furgale, T. Sattler,
and M. Pollefeys, “3d visual perception for self-driving cars using a
multi-camera system: Calibration, mapping, localization, and obstacle
detection,” Image and Vision Computing, vol. 68, pp. 14 – 27, 2017,
automotive Vision: Challenges, Trends, Technologies and Systems for
Vision-Based Intelligent Vehicles.

[80] X. Sun, Y. Jiang, Y. Ji, W. Fu, S. Yan, Q. Chen, B. Yu, and X. Gan,
“Distance measurement system based on binocular stereo vision,” IOP

Conference Series: Earth and Environmental Science, vol. 252, no. 5,
p. 052051, 2019.

[81] H. Zhu, K. Yuen, L. Mihaylova, and H. Leung, “Overview of en-
vironment perception for intelligent vehicles,” IEEE Transactions on

Intelligent Transportation Systems, vol. 18, no. 10, pp. 2584–2601,
2017.

[82] Z. Kim, “Robust lane detection and tracking in challenging scenarios,”
IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 1,
pp. 16–26, 2008.

[83] U. Meis, W. Klein, and C. Wiedemann, “A new method for robust far-
distance road course estimation in advanced driver assistance systems,”



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 14

13th International IEEE Conference on Intelligent Transportation

Systems, pp. 1357–1362, 2010.

[84] J. Wang, Y. Wu, Z. Liang, and Y. Xi, “Lane detection based on random
hough transform on region of interesting,” The 2010 IEEE International

Conference on Information and Automation, pp. 1735–1740, 2010.

[85] J. Son, H. Yoo, S. Kim, and K. Sohn, “Real-time illumination invariant
lane detection for lane departure warning system,” Expert Systems with

Applications, vol. 42, no. 4, pp. 1816 – 1824, 2015.

[86] G. Liu, S. Li, and W. Liu, “Lane detection algorithm based on local
feature extraction,” 2013 Chinese Automation Congress, pp. 59–64,
2013.

[87] R. Gopalan, T. Hong, M. Shneier, and R. Chellappa, “A learning
approach towards detection and tracking of lane markings,” IEEE

Transactions on Intelligent Transportation Systems, vol. 13, no. 3, pp.
1088–1098, 2012.

[88] A. Abramov, C. Bayer, C. Heller, and C. Loy, “Multi-lane perception
using feature fusion based on graphslam,” 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 3108–3115,
2016.

[89] S. Jung, J. Youn, and S. Sull, “Efficient lane detection based on spa-
tiotemporal images,” IEEE Transactions on Intelligent Transportation

Systems, vol. 17, no. 1, pp. 289–295, 2016.

[90] A. Broggi and S. Cattani, “An agent based evolutionary approach
to path detection for off-road vehicle guidance,” Pattern Recognition

Letters, vol. 27, no. 11, pp. 1164 – 1173, 2006, evolutionary Computer
Vision and Image Understanding.

[91] S. Lee, J. Kim, J. Shin Yoon, S. Shin, O. Bailo, N. Kim, T.-H. Lee,
H. Seok Hong, S.-H. Han, and I. So Kweon, “Vpgnet: Vanishing point
guided network for lane and road marking detection and recognition,”
The IEEE International Conference on Computer Vision (ICCV), 2017.

[92] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as deep: Spatial
cnn for traffic scene understanding,” AAAI Conference on Artificial

Intelligence (AAAI), 2018.

[93] Y. Hou, Z. Ma, C. Liu, and C. C. Loy, “Learning lightweight lane
detection cnns by self attention distillation,” 2019.

[94] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in Neural Information Processing Systems 27, pp. 2672–
2680, 2014.

[95] E. L. Denton, S. Chintala, a. szlam, and R. Fergus, “Deep generative
image models using a laplacian pyramid of adversarial networks,”
Advances in Neural Information Processing Systems 28, pp. 1486–
1494, 2015.

[96] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz, “Mocogan: Decompos-
ing motion and content for video generation,” The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

[97] J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, and S. Yan, “Perceptual
generative adversarial networks for small object detection,” The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[98] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image transla-
tion with conditional adversarial networks,” The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.

[99] H. Zhang, V. Sindagi, and V. M. Patel, “Image de-raining using a
conditional generative adversarial network,” IEEE Transactions on

Circuits and Systems for Video Technology, pp. 1–1, 2019.

[100] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro,
“Image inpainting for irregular holes using partial convolutions,” The

European Conference on Computer Vision (ECCV), 2018.

[101] C. Li and M. Wand, “Precomputed real-time texture synthesis with
markovian generative adversarial networks,” Computer Vision–ECCV

2016, pp. 702–716, 2016.

[102] Y. Wang, F. Perazzi, B. McWilliams, A. Sorkine-Hornung, O. Sorkine-
Hornung, and C. Schroers, “A fully progressive approach to single-
image super-resolution,” The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, 2018.

[103] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Niessner,
“Face2face: Real-time face capture and reenactment of rgb videos,”
The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[104] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. NieBssner,
“Facevr: Real-time gaze-aware facial reenactment in virtual reality,”
ACM Trans. Graph., vol. 37, no. 2, pp. 25:1–25:15, Jun. 2018.

[105] S. Agarwal, H. Farid, Y. Gu, M. He, K. Nagano, and H. Li, “Protecting
world leaders against deep fakes,” The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops, 2019.

[106] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” arXiv preprint

arXiv:1611.07004, 2016.

[107] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[108] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with
conditional gans,” The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018.

[109] Y. Shen, P. Luo, J. Yan, X. Wang, and X. Tang, “Faceid-gan: Learning
a symmetry three-player gan for identity-preserving face synthesis,”
The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[110] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz,
and B. Catanzaro, “Video-to-video synthesis,” arXiv preprint

arXiv:1808.06601, 2018.

[111] T.-C. Wang, M.-Y. Liu, A. Tao, G. Liu, B. Catanzaro, and J. Kautz,
“Few-shot video-to-video synthesis,” Advances in Neural Information

Processing Systems 32, pp. 5014–5025, 2019.

[112] G. Antipov, M. Baccouche, and J. Dugelay, “Face aging with con-
ditional generative adversarial networks,” 2017 IEEE International

Conference on Image Processing (ICIP), pp. 2089–2093, 2017.

[113] Y. Li, L. Song, X. Wu, R. He, and T. Tan, “Learning a bi-level
adversarial network with global and local perception for makeup-
invariant face verification,” Pattern Recognition, vol. 90, pp. 99–108,
2019.

[114] Y. Lu, Y.-W. Tai, and C.-K. Tang, “Conditional cyclegan for attribute
guided face image generation,” European Conference on Computer

Vision, 2014.

[115] P. Korshunov and S. Marcel, “Deepfakes: a new threat to face recog-
nition? assessment and detection,” arXiv preprint arXiv:1812.08685,
2018.

[116] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2015.

[117] D. Cozzolino, G. Poggi, and L. Verdoliva, “Recasting residual-based
local descriptors as convolutional neural networks: An application to
image forgery detection,” Proceedings of the 5th ACM Workshop on

Information Hiding and Multimedia Security, pp. 159–164, 2017.

[118] N. Rahmouni, V. Nozick, J. Yamagishi, and I. Echizen, “Distinguishing
computer graphics from natural images using convolution neural net-
works,” 2017 IEEE Workshop on Information Forensics and Security

(WIFS), pp. 1–6, 2017.

[119] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “Mesonet: a com-
pact facial video forgery detection network,” 2018 IEEE International

Workshop on Information Forensics and Security (WIFS), pp. 1–7,
2018.

[120] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and
M. NieBner, “Faceforensics++: Learning to detect manipulated facial
images,” arXiv preprint arXiv:1901.08971, 2019.

[121] H.-D. Ma, “Internet of things: Objectives and scientific challenges,”
Journal of Computer Science and Technology, vol. 26, no. 6, pp. 919–
924, 2011.

[122] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,”
IEEE Communications Magazine, vol. 52, no. 8, pp. 29–35, 2014.

[123] B. Guo, Z. Yu, X. Zhou, and D. Zhang, “From participatory sensing
to mobile crowd sensing,” pp. 593–598, 2014.

[124] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T.
Campbell, “A survey of mobile phone sensing,” IEEE Communications

Magazine, vol. 48, no. 9, pp. 140–150, 2010.

[125] J. Wan, J. Liu, Z. Shao, A. V. Vasilakos, M. Imran, and K. Zhou,
“Mobile crowd sensing for traffic prediction in internet of vehicles,”
Sensors, vol. 16, no. 1, 2016.

[126] Y. Wang, Q. Chen, L. Liu, X. Li, A. K. Sangaiah, and K. Li,
“Systematic comparison of power line classification methods from als
and mls point cloud data,” Remote Sensing, vol. 10, no. 8, 2018.

[127] A. Antonic, V. Bilas, M. Marjanovic, M. Matijasevic, D. Oletic,
M. Pavelic, I. P. Zarko, K. Pripuzic, and L. Skorin-Kapov, “Urban
crowd sensing demonstrator: Sense the zagreb air,” 2014 22nd Inter-

national Conference on Software, Telecommunications and Computer

Networks (SoftCOM), pp. 423–424, 2014.

[128] T. Ludwig, C. Reuter, T. Siebigteroth, and V. Pipek, “Crowdmonitor:
Mobile crowd sensing for assessing physical and digital activities of
citizens during emergencies,” Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems, pp. 4083–4092,
2015.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 15

[129] B. Guo, Q. Han, H. Chen, L. Shangguan, Z. Zhou, and Z. Yu,
“The emergence of visual crowdsensing: Challenges and opportunities,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2526–
2543, 2017.

[130] R. Gao, M. Zhao, T. Ye, F. Ye, Y. Wang, K. Bian, T. Wang, and X. Li,
“Jigsaw: Indoor floor plan reconstruction via mobile crowdsensing,”
Proceedings of the 20th Annual International Conference on Mobile

Computing and Networking, pp. 249–260, 2014.

[131] Z. Peng, S. Gao, B. Xiao, S. Guo, and Y. Yang, “Crowdgis: Updating
digital maps via mobile crowdsensing,” IEEE Transactions on Automa-

tion Science and Engineering, vol. 15, no. 1, pp. 369–380, 2018.

[132] X. Bao and R. Roy Choudhury, “Movi: Mobile phone based video
highlights via collaborative sensing,” Proceedings of the 8th Interna-

tional Conference on Mobile Systems, Applications, and Services, pp.
357–370, 2010.

[133] H. Xu, Z. Yang, Z. Zhou, L. Shangguan, K. Yi, and Y. Liu, “Enhancing
wifi-based localization with visual clues,” Proceedings of the 2015

ACM International Joint Conference on Pervasive and Ubiquitous

Computing, pp. 963–974, 2015.

[134] E. Dong, J. Xu, C. Wu, Y. Liu, and Z. Yang, “Pair-navi: Peer-to-peer
indoor navigation with mobile visual slam,” IEEE INFOCOM 2019 –

IEEE Conference on Computer Communications, pp. 1189–1197, 2019.

[135] J. Lee, A. Banerjee, and S. K. S. Gupta, “Mt-diet: Automated smart-
phone based diet assessment with infrared images,” 2016 IEEE In-

ternational Conference on Pervasive Computing and Communications

(PerCom), pp. 1–6, 2016.

[136] T. Dao, A. K. Roy-Chowdhury, H. V. Madhyastha, S. V. Krishna-
murthy, and T. La Porta, “Managing redundant content in bandwidth
constrained wireless networks,” IEEE/ACM Trans. Netw., vol. 25, no. 2,
pp. 988–1003, 2017.

[137] Y. Li, F. Xue, X. Fan, Z. Qu, and G. Zhou, “Pedestrian walking safety
system based on smartphone built-in sensors,” IET Communications,
vol. 12, no. 6, pp. 751–758, 2018.

[138] S. Bano and A. Cavallaro, “Discovery and organization of multi-camera
user-generated videos of the same event,” Information Sciences, vol.
302, pp. 108 – 121, 2015.

[139] P. Giridhar, S. Wang, T. Abdelzaher, R. Ganti, L. Kaplan, and J. George,
“On localizing urban events with instagram,” IEEE INFOCOM 2017 -

IEEE Conference on Computer Communications, pp. 1–9, 2017.

[140] S. Bohez, , G. Daneels, L. Van Herzeele, , N. Van Kets, S. Decrock,
M. D. Geyter, G. Van Wallendael, P. Lambert, B. Dhoedt, P. Simoens,
S. Latre, and J. Famaey, “The crowd as a cameraman: on-stage display
of crowdsourced mobile video at large-scale events,” Multimedia Tools

and Applications, vol. 77, no. 1, pp. 597–629, 2018.

[141] A. Singhal, P. Kumar, R. Saini, P. P. Roy, D. P. Dogra, and B.-G.
Kim, “Summarization of videos by analyzing affective state of the user
through crowdsource,” Cognitive Systems Research, vol. 52, pp. 917 –
930, 2018.

[142] D. C. Brabham, “Crowdsourcing as a model for problem solving: An
introduction and cases,” Convergence, vol. 14, no. 1, pp. 75–90, 2008.

[143] V. S. Diwanji and J. Cortese, “Contrasting user generated videos
versus brand generated videos in ecommerce,” Journal of Retailing

and Consumer Services, vol. 54, p. 102024, 2020.

[144] H. Yoo, U. Yang, and K. Sohn, “Gradient-enhancing conversion for
illumination-robust lane detection,” IEEE Transactions on Intelligent

Transportation Systems, vol. 14, no. 3, pp. 1083–1094, 2013.

[145] H. Li and H. Duan, “Verification of monocular and binocular pose
estimation algorithms in vision-based uavs autonomous aerial refueling
system,” Science China Technological Sciences, vol. 59, no. 11, pp.
1730–1738, 2016.

[146] T. Lemaire, C. Berger, I.-K. Jung, and S. Lacroix, “Vision-based slam:
Stereo and monocular approaches,” International Journal of Computer

Vision, vol. 74, no. 3, pp. 343–364, 2007.

[147] D. WU and F. DU, “A multi-constraints based pose coordination
model for large volume components assembly,” Chinese Journal of

Aeronautics, 2019.

[148] T. P. Nascimento and M. Saska, “Position and attitude control of multi-
rotor aerial vehicles: A survey,” Annual Reviews in Control, vol. 48,
pp. 129 – 146, 2019.

[149] G. Toulminet, M. Bertozzi, S. Mousset, A. Bensrhair, and A. Broggi,
“Vehicle detection by means of stereo vision-based obstacles features
extraction and monocular pattern analysis,” IEEE Transactions on

Image Processing, vol. 15, no. 8, pp. 2364–2375, 2006.

[150] G. Wang, W. Wang, and C. Wang, “The method and error analysis of
deep-sea pose measurement system,” Measurement, vol. 98, pp. 276 –
282, 2017.

[151] Z. He, Z. Jiang, X. Zhao, S. Zhang, and C. Wu, “Sparse template-based
6-d pose estimation of metal parts using a monocular camera,” IEEE

Transactions on Industrial Electronics, vol. 67, no. 1, pp. 390–401,
2020.

[152] J. Li, “Relative pose measurement of moving rigid bodies based on
binocular vision,” Optik, vol. 180, pp. 159 – 165, 2019.

[153] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” Computer Vision – ECCV 2006, pp. 404–417, 2006.

[154] V. Lepetit and P. Fua, “Keypoint recognition using randomized trees,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 9, pp. 1465–1479, 2006.

[155] A. P. Gee and W. Mayol-cuevas, “6d relocalisation for rgbd cameras
using synthetic view regression,” BMVC, 2012.

[156] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6d object pose estimation using 3d object
coordinates,” Computer Vision – ECCV 2014, pp. 536–551, 2014.

[157] E. Brachmann, F. Michel, A. Krull, M. Ying Yang, S. Gumhold, and
c. Rother, “Uncertainty-driven 6d pose estimation of objects and scenes
from a single rgb image,” The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.
[158] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,

and N. Navab, “Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes,” Computer Vision –

ACCV 2012, pp. 548–562, 2013.
[159] P. Wohlhart and V. Lepetit, “Learning descriptors for object recognition

and 3d pose estimation,” The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015.
[160] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “Ssd-6d:

Making rgb-based 3d detection and 6d pose estimation great again,”
The IEEE International Conference on Computer Vision (ICCV), 2017.

[161] J. Yang, J. Man, M. Xi, X. Gao, W. Lu, and Q. Meng, “Precise
measurement of position and attitude based on convolutional neural
network and visual correspondence relationship,” IEEE Transactions

on Neural Networks and Learning Systems, pp. 1–12, 2019.
[162] P. Ferrara, A. Piva, F. Argenti, J. Kusuno, M. Niccolini, M. Ragaglia,

and F. Uccheddu, “Wide-angle and long-range real time pose estima-
tion: A comparison between monocular and stereo vision systems,”
Journal of Visual Communication and Image Representation, vol. 48,
pp. 159 – 168, 2017.

[163] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy,
“Speed/accuracy trade-offs for modern convolutional object detectors,”
The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017.
[164] G. Marcus, “Deep learning: A critical appraisal,” arXiv preprint

arXiv:1801.00631, 2018.
[165] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely

connected convolutional networks,” The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017.
[166] X. Feng, Y. Jiang, X. Yang, M. Du, and X. Li, “Computer vision

algorithms and hardware implementations: A survey,” Integration,
vol. 69, pp. 309 – 320, 2019.

[167] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, 2019.

Jiachen Yang (Member, IEEE) received the M.S.
and Ph.D. degrees in communication and informa-
tion engineering from Tianjin University, Tianjin,
China, in 2005 and 2009, respectively. He is cur-
rently a professor at Tianjin University. He was also
a visiting scholar with the Department of Computer
Science, School of Science, Loughborough Univer-
sity, U.K and the Department of Electrical, Com-
puter, Software, and Systems Engineering, Embry-
Riddle Aeronautical University, U.S. His research
interests include image quality evaluation stereo

vision research, pattern recognition and virtual reality.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 16

Chenguang Wang received the B.S degree in
communication and information engineering from
Yanshan University, Hebei, China, in 2018. He is
currently pursuing the M.S. degree at school of
information and communication engineering, Tianjin
University, Tianjin, China. His research interests
include object detection, computer vision and pattern
recognition.

Bin Jiang received the B.S. and M.S. degree in
communication and information engineering from
Tianjin University, Tianjin, China, in 2013 and 2016.
He is currently pursuing the Ph.D. degree at the
School of Electrical and Information Engineering,
Tianjin University, Tianjin, China. He is also a vis-
iting scholar in Department of Electrical, Computer,
Software, and Systems Engineering, Embry-Riddle
Aeronautical University, Daytona Beach, FL, US,
where he is a member of Security and Optimiza-
tion for Networked Globe Laboratory. His research

interests lie in multimedia processing and cyber-physical systems.

Houbing Song (Senior Member, IEEE) received the
Ph.D. degree in electrical engineering from the Uni-
versity of Virginia, Charlottesville, VA, in August
2012, and the M.S. degree in civil engineering from
the University of Texas, El Paso, TX, in December
2006.

In August 2017, he joined the Department of
Electrical Engineering & Computer Science, Embry-
Riddle Aeronautical University, Daytona Beach, FL,
where he is currently an Assistant Professor and
the Director of the Security and Optimization for

Networked Globe Laboratory (SONG Lab, www.SONGLab.us). He served on
the faculty of West Virginia University from August 2012 to August 2017. In
2007 he was an Engineering Research Associate with the Texas A&M Trans-
portation Institute. He has served as an Associate Technical Editor for IEEE
Communications Magazine (2017-present), an Associate Editor for IEEE
Internet of Things Journal (2020-present) and a Guest Editor for IEEE Journal
on Selected Areas in Communications (J-SAC), IEEE Internet of Things
Journal, IEEE Transactions on Industrial Informatics, IEEE Sensors Journal,
IEEE Transactions on Intelligent Transportation Systems, and IEEE Network.
He is the editor of six books, including Big Data Analytics for Cyber-
Physical Systems: Machine Learning for the Internet of Things, Elsevier,
2019, Smart Cities: Foundations, Principles and Applications, Hoboken, NJ:
Wiley, 2017, Security and Privacy in Cyber-Physical Systems: Foundations,
Principles and Applications, Chichester, UK: Wiley-IEEE Press, 2017, Cyber-
Physical Systems: Foundations, Principles and Applications, Boston, MA:
Academic Press, 2016, and Industrial Internet of Things: Cybermanufacturing
Systems, Cham, Switzerland: Springer, 2016. He is the author of more
than 100 articles. His research interests include cyber-physical systems,
cybersecurity and privacy, internet of things, edge computing, AI/machine
learning, big data analytics, unmanned aircraft systems, connected vehicle,
smart and connected health, and wireless communications and networking.
His research has been featured by popular news media outlets, including IEEE
GlobalSpec’s Engineering360, USA Today, U.S. News & World Report, Fox
News, Association for Unmanned Vehicle Systems International (AUVSI),
Forbes, WFTV, and New Atlas.

Dr. Song is a senior member of ACM. Dr. Song was a recipient of the
Best Paper Award from the 12th IEEE International Conference on Cyber,
Physical and Social Computing (CPSCom-2019), the Best Paper Award from
the 2nd IEEE International Conference on Industrial Internet (ICII 2019), and
the Best Paper Award from the 19th Integrated Communication, Navigation
and Surveillance technologies (ICNS 2019) Conference.

Qinggang Meng (Senior Member, IEEE) received
his B.S. and M.S. degrees in electronic engineering
from Tianjin University, Tianjin, China, and the
Ph.D. degree in intelligent robotics from the Depart-
ment of Computer Science at Aberystwyth Univer-
sity, Aberystwyth, U.K. He is currently a Professor
with the Department of Computer Science, Lough-
borough University, Loughborough, U.K. His cur-
rent research interests include biologically inspired
learning algorithms and developmental robotics, ser-
vice robotics, robot learning and adaptation, multi-

UAV cooperation, human motion analysis and activity recognition, activity
pattern detection, pattern recognition, artificial intelligence, and computer
vision. Prof. Meng is on the editorial boards of several journals including
IEEE Transactions on Cybernetics.


