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Abstract—This paper presents the methods for sensing obsta-
cles and vehicles implemented on the University of Parma exper-
imental vehicle (ARGO). The ARGO project is briefly described
along with its main objectives; the prototype vehicle and its func-
tionalities are presented. The perception of the environment is per-
formed through the processing of images acquired from the vehicle.
Details about the stereo vision-based detection of generic obsta-
cles are given, along with a measurement of the performance of the
method; then a new approach for leading vehicles detection is de-
scribed, relying on symmetry detection in monocular images. This
paper is concluded with a description of the current implementa-
tion of the control system, based on a gain scheduled controller,
which allows the vehicle to follow the road or other vehicles.

Index Terms—Automatic steering, image processing, obstacle
detection, platooning, vehicle detection, vision-based autonomous
vehicles, visual servoing.

I. INTRODUCTION

A MONG the many functionalities an intelligent vehicle
must perform,Obstacleand Vehicle Detectionplay a

basic role. In fact, an autonomous vehicle must be able to
detect vehicles and potential obstacles on its path in order to
perform Road Following, namely, the automatic movement
along a predefined path, orPlatooning, namely, the automatic
following of a preceding vehicle.

A number of different vision-based techniques have been pro-
posed in the literature and tested on prototype vehicles. Sev-
eral approaches to obstacle detection rely on the localization of
specific patterns (possibly supported by features such as shape,
symmetry, or edges) and are therefore based on the analysis of
monocular images [1], [2]. They generally offer simple algo-
rithmic solutions, allow fast processing and do not suffer from
vehicle movements. For example, the research group of the Isti-
tuto Elettrotecnico Nazionale “G. Ferraris” limits the processing
to the image portion that is assumed to represent the road; bor-
ders that could represent a potential vehicle are looked for and
examined [3]. People at the Universität der Bundeswehr en-
force an edge detection process with obstacle modelization; the
system is able to detect and track up to twelve objects around
the vehicle [4].
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Following a more general definition, an obstacle is defined as
an object that can obstruct the vehicle’s driving path or, in other
words, anything rising out significantly from the road surface. In
this case the problem of Obstacle Detection is dealt with using
more complex techniques, such as the analysis of theoptical
flow field [5], [6] or the processing ofstereoimages [7]–[9].
As an example, the ASSET-2 [10], [11] is based on optical flow
only. Its main feature is that no restrictive assumptions are made
about the world, the motion or the calibration of the camera,
or other parameters. A different approach has been used for the
UTA demonstrator car; in this case a feature-based stereo vision
system has been developed and is able to run in real-time even
on a 200 MHz powerPC [7].

Besides their intrinsic higher computational complexity,
caused by a significant increment in the amount of data to
be processed, these techniques must also be robust enough
to tolerate the noise caused by vehicle movements and drifts
in the calibration of the multiple cameras’ setup. Optical
flow-based techniques permit the computation of ego-motion
and obstacle’s relative speed, but, as the presence of obstacles
is indirectly derived from the analysis of the velocity field,
they fail when both the vehicle and obstacle have small or
null speed. Conversely, from the analysis of stereo images,
obstacles can be directly detected and a three-dimensional
(3-D) reconstruction of the environment can be performed.
Moreover, to decrease the complexity of stereo vision, some
domain specific constraints can be adopted.

On the ARGO autonomous vehicle, obstacle Detection is re-
duced to the identification of thefree-space(the area in which
the vehicle can safely move). A geometrical transform is per-
formed to detect the free space, using a pair of stereo images
of the portion of the road in front of ARGO. This functionality
has been thoroughly tested on different obstacles—with varying
shape and size—displaced in front of the vehicle in different po-
sitions. Results have been collected and analyzed highlighting
the characteristics and deficiencies of this approach.

While Obstacle Detection has been proven to be robust
allowing ARGO to reliably detect generic obstacles close to
the vehicle, the tests demonstrated that its sensitivity is too low
in the region far ahead of the vehicle. Therefore, a different ap-
proach is needed for finding and following a preceding vehicle.
For this reason, a Vehicle Detection functionality has been
developed. This functionality is aimed at detecting vehicles
only, therefore it is based on a search for specific patterns using
shape, symmetry, and size constraints. Vehicles are localized
and tracked using a single monocular image sequence whilst
a distance refinement is computed using stereo vision. The
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steering control for the Platooning functionality is based on
a gain scheduled proportional controller whose error input is
evaluated using the estimated position of the preceding vehicle.

This paper is organized as follows: the next section presents
the ARGO project and the prototype vehicle developed within
this framework. Section III presents the Obstacle Detection
functionality used in the last few years on ARGO as well as a
critical analysis of this algorithm. The Vehicle Detection func-
tionality is addressed in Section IV; Section V presents timings
issues, while Section VI describes the control subsystem that
drives ARGO. Section VII ends the paper with some remarks.

II. THE ARGO PROJECT

The main target of the ARGO Project [12] is the development
of an active safety system which can also act as an automatic
pilot for a standard road vehicle.

The capability of perceiving the environment is essential for
an intelligent vehicle which is expected to use the existing road
network with no need for specific infrastructures, Although very
efficient in some fields of application, active sensors—besides
polluting the environment—feature some specific problems
in automotive applications due to inter-vehicle interference
amongst the same type of sensors, and due to the wide variation
in reflection ratios caused by many different reasons, such as
obstacles’ shape or material. Moreover, the maximum signal
level must comply with safety rules, i.e., it must be lower than
a safety threshold. For this reason, in the implementation of the
ARGO vehicle, the use of sensors has been restricted to passive
ones, such as cameras.

A second design choice was to keep the system costs low.
These costs include both production costs (which must be mini-
mized to allow a widespread use of these devices) and operating
costs, which must not exceed a certain threshold in order not
to alter vehicle performance. Therefore, low-cost devices have
been preferred, both for image acquisition and processing: the
prototype is based on cheap cameras and a commercial PC.

A. The ARGO Vehicle Prototype

ARGO, shown in Fig. 1, is an experimental autonomous ve-
hicle equipped with vision systems and automatic steering ca-
pability.

It is able to determine its position with respect to the lane,
to compute road geometry, to detect generic obstacles on the
path, and to localize a leading vehicle. The images acquired
by a stereo rig placed behind the windshield are analyzed in
real-time by the computing system located in the boot. The re-
sults of the processing are used to drive an actuator mounted
onto the steering wheel and other driving assistance devices.

The system was initially conceived as a safety enhancement
unit: in particular it is able to supervise the driver behavior and
issue both optic and acoustic warnings or even take control of
the vehicle when dangerous situations are detected. Further de-
velopments have extended the system functionalities to a com-
plete automatic steering.

1) The Sensing System:Only passive sensors are used on
ARGO to sense the surrounding environment:

Fig. 1. ARGO prototype vehicle.

• A stereoscopic vision system consisting of two low-cost
synchronized cameras able to acquire pairs of grey level
images simultaneously. The cameras lie inside the vehicle
at the top corners of the windshield, so that the longitu-
dinal distance between the two cameras is maximum.

• A speedometer which is used to detect the vehicle’s ve-
locity. A Hall effect device has been chosen for its sim-
plicity and reliability and has been interfaced to the com-
puting system via a digital I/O board.

In addition, a button-based control panel has been installed en-
abling the driver to modify a few driving parameters, select
the system functionality, issue commands, and interact with the
system.

2) The Processing System:The architectural solution
currently installed on the ARGO vehicle is based on a standard
450 MHz Pentium II processor. Thanks to recent advances in
computer technologies, commercial systems offer nowadays
sufficient computational power for this application. All the
processing needed for the driving task (image feature extraction
and vehicle trajectory control) is performed in real-time: 50
pairs of single field images are processed every second.

3) The Output System:Several output devices have been in-
stalled on ARGO: acoustical (stereo loudspeakers) and optical
(LED-based control panel) devices are used to issue warnings
to the driver in case dangerous conditions are detected, while a
color monitor is mainly used as a debugging tool.
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A mechanical device provides autonomous steering capabili-
ties. It is composed of an electric stepping motor coupled to the
steering column by means of a belt. The output fed by the vision
system is used to turn the steering wheel to maintain the vehicle
inside the lane or follow the leading vehicle.

B. System Functionalities

Thanks to a control panel, the driver can select the level of
system intervention. The following three driving modes are in-
tegrated.

1) Manual Driving: The system simply monitors and logs
the driver’s activity.

2) Supervised Driving:In case of danger, the system warns
the driver with acoustic and optical signals. A LED row on the
control panel encodes the vehicle position within the lane, while
the right or left speakers warn in case the vehicle is approaching
too much to the right or left lane marking, respectively.

3) Automatic Steering:The system maintains the full con-
trol of the vehicle’s trajectory, and the two following function-
alities can be selected:

Road Following: the automatic movement of the vehicle
inside the lane. It is based on:Lane De-
tection (which includes the localization
of the road, the determination of the rela-
tive position between the vehicle and the
road, and the analysis of the vehicle’s
heading direction) andObstacle Detec-
tion (which is mainly based on local-
izing possible generic obstacles on the
vehicle’s path).

Platooning: The automatic following of the preceding
vehicle, that requires the localization and
tracking of a target vehicle (Vehicle De-
tection and Tracking).

III. OBSTACLE DETECTION

The Obstacle Detection functionality is aimed at thelocal-
ization of genericobjects that can obstruct the vehicle’s path,
without their completeidentification or recognition. For this
purpose a complete 3-D reconstruction is not required and a
match with a given model suffices: the model represents the en-
vironment without obstacles, and any deviation from the model
represents a potential obstacle.

A. The Inverse Perspective Mapping

The Obstacle Detection functionality is based on the removal
of the perspective effect through the Inverse Perspective Map-
ping (IPM) [13]. The IPM allows to remove the perspective ef-
fect from incoming images remapping each pixel toward a dif-
ferent position. It exploits the knowledge about the acquisition
parameters (camera orientation, position, optics, etc) and the as-
sumption of a flat road in front of the vehicle. The result is a new
two-dimensional (2-D) array of pixels (theremapped image)
that represents a bird’s eye view of the road region in front of
the vehicle [Fig. 2(c) shows the result of the application of IPM
technique on the image Fig. 2(a)].

Fig. 2. Obstacle Detection: (a) the left stereo images; (b) the right stereo
image; (c) and (d) the remapped images; (e) the difference image; (f) the angles
of view overlapped with the difference image; (g) the polar histogram; and (h)
the result of Obstacle Detection using a black marker superimposed on the
original left image; the light-gray area represents the road region visible from
both cameras.

B. Obstacle Detection Processing Steps

The application of IPM to stereo images [12], [13] plays a
strategic role for Obstacle Detection.

Assuming aflat road, the IPM is performed on both stereo im-
ages.1 The flat road model is checked through a pixel-wise dif-
ference between the two remapped images: in correspondence
to a generic obstaclein front of the vehicle, namely anything
rising up from the road surface, the difference image features
sufficiently large clusters of nonzero pixels that possess a partic-
ular shape. Due to the stereo cameras’ different angles of view,
an ideal homogeneous square obstacle produces two clusters of
pixels with a triangular shape in the difference image, in corre-
spondence to its vertical edges [13].

1An alternative solution is to warp the left or right image to the domain of the
other one. Nevertheless, the Lane Detection functionality [12], not described in
this work, relies on the image generated by the IPM. Moreover, the mapping of
both images onto the ground eases the computation of object’s distance as well
as other features.
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Fig. 3. Obstacle Detection. Result is shown with a black marking superimposed onto a brighter version of the image captured by the left camera; a black thin line
limits the portion of the road seen by both cameras.

Unfortunately due to texture, irregular shape, and nonhomo-
geneous brightness of generic obstacles, in real cases the de-
tection of the triangles becomes difficult. Nevertheless, in the
difference image some clusters of pixels with a quasitriangular
shape are anyway recognizable, even if they are not clearly dis-
jointed. Moreover, in case two or more obstacles are present in
the scene at the same time, more than two triangles appear in
the difference image. A further problem is caused by partially
visible obstacles which produce a single triangle.

The low-level portion of the process (see Fig. 2) is conse-
quently reduced to the computation of the difference between
the two remapped images, a threshold, and a morphological
opening aimed at removing small-sized details in the thresh-
olded image.

The following process is based on the localization of pairs of
triangles in the difference image by means of a quantitative mea-
surement of their shape and position [14]. It is divided into: com-
puting a polar histogram for the detection of triangles, finding
and joining the polar histogram’s peaks to determine the angle
of view under which obstacles are seen, and estimating the ob-
stacle distance.

1) Polar Histogram: A polar histogramis used for the de-
tection of triangles: it is computed scanning the difference image
with respect to a point calledfocusand counting the number
of over-threshold pixels for every straight line originating from
the focus. It is important to note that the image area consid-
ered when building the polar histogram is not uniform along
the scanning angle: under small angles, the considered sector is
short, while for angles close to 90, it gets longer. Therefore,
the polar histogram’s values are normalized applying a noncon-
stant threshold computed using the polar histogram of an image
where all pixels are set. Finally, a low-pass filter is applied in
order to decrease the influence of noise.

The polar histogram’s focus is placed in the middle point be-
tween the projection of the two cameras onto the road plane; in
this case the polar histogram presents an appreciable peak corre-

Fig. 4. Test-bed (black circles indicate the positions where obstacles have been
placed).

sponding to each triangle [13]. Since the presence of an obstacle
produces two disjointed triangles (corresponding to its edges) in
the difference image, Obstacle Detection is limited to the search
for pairs of adjacent peaks. The position of a peak in fact deter-
mines the angle of view under which the obstacle edge is seen.
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Fig. 5. Measured sensitivity in a 0–100 scale for three different kind of obstacles: (a) small and short obstacle; (b) large and tall obstacle; and (c) human shape.

Peaks may have different characteristics, such as amplitude,
sharpness, or width. This depends on the obstacle distance,
angle of view, and difference of brightness and texture between
the background and the obstacle itself.

2) Peaks Joining:Two or more peaks can be joined ac-
cording to different criteria. Starting from the analysis of a
large number of different situations a criterion has been found,
aimed to the grouping of peaks, that takes into account several
characteristics such as the peaks amplitude and width, the
area they subtend, as well as their distance [15]. Obviously, a
partially visible obstacle produces a single peak that cannot be
joined to any other.

The amplitude and width of peaks, as well as the interval
between joined peaks, are used to determine the angle of view
under which the whole obstacle is seen.

3) Estimation of Obstacle Distance:The difference image
can also be used to estimate the obstacle distance. For each peak
of the polar histogram aradial histogramis computed scanning
a specific sector of the difference image. The width of this sector
is determined from the width of the polar histogram peak [14].
The number of over-threshold pixels in the sector is computed
as a function of the distance from the cameras and the result
is normalized. The radial histogram is analyzed to detect the
corners of triangles, which represent the contact points between
obstacles and road plane, therefore allowing the determination
of the obstacle distance through a simple threshold [13].

C. Results

Concerning qualitative outcomes, Fig. 3 shows the results ob-
tained in a number of different situations including multiple ob-
stacles placed in different positions inside the stereo field of
view. The result is displayed with black markings superimposed
on a brighter version of the left image; markers encode both the
obstacles’ distance and width.

Fig. 6. Average values of the sensitivity for Obstacle Detection.

D. Performance Analysis

Due to its fundamental importance, the Obstacle Detection
module must be extremely robust and must reliably detect
objects in a given distance range (i.e., in 100% of all cases). In
order to evaluate the performance of the algorithm implemented
on ARGO and determine possible enhancements, extensive
tests have been carried out. Previous experiments [15] demon-
strated that Obstacle Detection is robust to errors in vision
system calibration (i.e., vehicle movements or deviations from
the flat road hypothesis like the ones that should be expected
in a highway/freeway scenario).

Neverthless, an extensive test has been carried out for deter-
mining the sensitivity of Obstacle Detection to dimensions and
position of obstacles.

1) The Test-Bed:Obstacles with different size and shape
have been positioned in front of the vehicle at given distances
and the sensitivity of the algorithm has been measured. The
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Fig. 7. Three-dimensional scene and projection of the obstacle on a linear profile of the image: (a) a small obstacle far from the camera; (b) a high obstacle far
from the camera; (c) a small obstacle near the camera; and (d) a small obstacle near the camera but located on the right of the viewing region.

obstacle’s characteristics that have been varied during the tests
are the following:

• obstacle’s position: ahead distance and lateral offset,
ranging from 10 to 30 m for the distance perpendicular to
the camera’s stereo rig and from4 to 4 m for the lateral
offset;

• obstacle’s size: the tests included small obstacles (25 cm
wide 60 cm high) and large ones (50 cm wide90 cm
high);

• obstacle’s height: the range varied from 60 to 180 cm in
height.

Moreover, sensitivity to human shapes has been tested.
During the tests, the following set-up and assumptions were

used:

• The vehicle was standing still. Since noise is generally
due to drifts in the cameras’ calibration (generated by ve-
hicle movements), this assumption permitted to remove
this kind of noise.

• The obstacle’s color has been selected to be homogeneous
and different from the background.

Although many experiments were performed, this section re-
ports on the tests made with the following three obstacles:

• small obstacle: 25 cm wide 60 cm high;
• large obstacle: 50 cm wide 90 cm high;
• human shape: 40 cm wide 180 cm high.

The obstacles have been positioned on a grid, shown in Fig. 4.
2) Obstacle Detection Sensitivity:In order to determine the

sensitivity ( ) to obstacles, the height of the polar histogram
peak ( ) is analyzed and compared to the threshold () used
for the decision whether the peak is due to an obstacle or noise.
In addition, the sensitivity is normalized using the height value
( ) of the highest peak, namely

where

where

When two or more peaks are localized in the polar histogram,
the highest is considered.

Since different illumination conditions can slightly affect the
final result, several images have been acquired and processed

for each obstacle’s position on the grid shown in Fig. 4. In case
all the values were greater than the threshold their average was
computed, otherwise a zero was taken.

Fig. 5 shows the results for three different obstacles: Fig. 5(a)
shows a small sized obstacle; Fig. 5(b) shows a large and tall
obstacle; and Fig. 5(c)shows a human shape. For each single
obstacle, the values representing the sensitivity are scaled be-
tween 0 and 100, therefore they are not directly comparable.

However, in order to give an overview of the system’s be-
havior, Fig. 6 graphically summarizes all the measurements: it
has been computed as an average of all the tests performed on
the different obstacles. It is clearly visible that the sensitivity
to the presence of obstacles is high in the area right ahead of
the vehicle (the cameras’ angular aperture is nearly 40), and
decreases—almost linearly—with the distance. The lateral re-
gions have a lower sensitivity.

3) Analysis of the Results:The results obtained during the
tests demonstrated that the sensitivity mainly depends on ob-
stacle’s height and position. Conversely the obstacle’s width
barely impacts on the sensitivity, affecting only the distance be-
tween the peaks of the polar histogram.

First of all, it is important to note that tall obstacles lying far
from the camera share the same characteristics of short ones:
this is due to the reduced region analyzed by the system, as
it can be seen comparing Fig. 7(a) and (b). Therefore, the ob-
stacle’s height only impacts on the result when the obstacle is
short enough to be fully visible by the cameras, as shown in
Fig. 7(c). In this case, the sensitivity to obstacle’s height is linear
with the distance. This is clearly shown in Fig. 5: the closer the
obstacle to the camera, the more reliable its detection.

Due to the variable threshold along the polar histogram’s
scanning angle, the system is much more sensitive to small ob-
stacles when they lie on the sides of the viewing region. This
behavior is explained by Fig. 7(d), which shows that in case of
lateral obstacles, the considered area (sector) of the image is
shorter than for the in-front analysis. Therefore, since the image
profile is shorter, the projection of an obstacle covers a larger
percentage of it, and thus the sensitivity to obstacles—and un-
fortunately also to noise—is higher in the peripheral (lateral)
region. Fig. 5(a) confirms this behavior: a small obstacle is de-
tected more reliably when it lies on the sides of the viewing area.
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(a) (b) (c)

Fig. 8. Typical road scenes: (a) a strong sun reflection reduces the vehicle gray level symmetry; (b) a uniform area can be regarded as a highly symmetrical
region; and (c) background symmetrical patterns.

(a) (b)

Fig. 9. Edges enforce the detection of real symmetries: (a) strong reflections
have lower effects while (b) uniform areas are discarded since they do not
present edges.

Since this approach is characterized by a low sensitivity to
obstacles (and therefore the presence of noise becomes signif-
icant) in some areas, such as the region far away ahead of the
vehicle, a new module is required to gain a better reliability and
higher robustness in the detection in these areas. The next sec-
tion presents the solution currently implemented on ARGO: a
different algorithm which is limited to Vehicle Detection. It can
be efficiently employed for Platooning due to its good sensi-
tivity in the area far in front of the vehicle.

IV. V EHICLE DETECTION

The platooning functionality depends on a robust detection of
the distance and speed of the preceding vehicle. Since Obstacle
Detection does not generate sufficiently reliable results—in par-
ticular regarding obstacledistance,—a new functionality (Ve-
hicle Detection) has been considered; the vehicle is localized
and tracked using a single monocular image sequence; the cor-
rect distance is refined thanks to stereo vision.

The Vehicle Detection algorithm is based on the following
considerations: a vehicle is generally symmetric, characterized
by a rectangular bounding box which satisfies specific aspect
ratio constraints, and placed in a specific region of the image.
First an area of interest is identified on the basis of road position
and perspective constraints. This area is searched for possible
vertical symmetries; not only gray level symmetries are con-
sidered, but vertical and horizontal edges symmetries as well,
in order to increase the detection robustness. Once the width
and position of the symmetrical area have been detected, a new
search begins, aimed at the detection of the two bottom corners

Fig. 10. Grey level symmetries: the two rightmost images show the enlarged
symmetry maps encoding high symmetries with bright points.

of a rectangular bounding box. Finally, the top horizontal limit
of the vehicle is searched for, and the preceding vehicle local-
ized.

The tracking phase is performed through the maximization
of the correlation between the portion of the image contained
in the bounding box of the previous frame (partially stretched
and reduced to take into account small size variations due to
the increment or reduction of the relative distance) and the new
frame.

A. Vehicle Detection Processing Steps

1) Symmetry Detection:In order to search for symmetrical
features, the analysis of gray level images is not sufficient. Fig.
8 shows that strong reflections cause irregularities in vehicle
symmetry, while uniform areas and background patterns
may present highly correlated symmetries. In order to cope
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Fig. 11. Edge symmetries: the symmetries are computed on the binary images
obtained after thresholding the gradient image.

with these problems, also symmetries in other domains are
computed.

To get rid of reflections and uniform areas, vertical and hori-
zontal edges are extracted and thresholded, and symmetries are
computed in these domains as well. Fig. 9 shows that, although
a strong reflection is present on the left side of the vehicle, edges
are anyway visible and can be used to extract symmetries; more-
over, in uniform areas no edges are extracted and therefore no
symmetries are detected. Fig. 10 shows two examples in which
gray level symmetries alone can be successful for vehicle detec-
tion, while Fig. 11 shows the result of edge symmetry.

For each image, the search area is shown in dark gray and
the resulting vertical axis is superimposed. For each image its
symmetry map is also depicted both in its original size and—on
the right—zoomed for better viewing. Bright points encode the
presence of high symmetries. The 2-D symmetry maps are com-
puted for different values of the axis’ horizontal position within
the grey area in the original image (horizontal axis) and the hor-
izontal width of the symmetry area (vertical axis). The lower
triangular shape is due to the limitation in scanning large hori-
zontal windows for peripheral vertical axes.

Similarly, the analysis of symmetries of horizontal and ver-
tical edges produces other symmetry maps, which, with specific
coefficients detected experimentally which depend on the vision
system set-up, can be combined with the previous ones to form
a single symmetry map. Fig. 12 shows all symmetry maps and
the final one, that allows to detect the vehicle.

2) Bounding Box Detection:After the localization of the
symmetry, the symmetrical region in the edge image is checked
for the presence of two corners representing the bottom of the
bounding box around the vehicle. A traditional pattern matching
technique is used. Moreover, perspective constraints as well as
size constraints are used to speed-up the search. Fig. 13 shows
possible and impossible bottom parts of the bounding box, while
Fig. 14 presents the results of the lower corners detection.

This process is followed by the detection of the top part of
the bounding box, which is looked for in a specific region whose

Fig. 12. Computing the resulting symmetry: (a) grey-level symmetry; (b) edge
symmetry; (c) horizontal edges symmetry; (d) vertical edges symmetry; and (e)
total symmetry. For each row, the resulting symmetry axis is superimposed onto
the leftmost original image.

Fig. 13. Detection of the lower part of the bounding box. (a) Correct position
and size, taking into consideration perspective constraints and knowledge on
the acquisition system setup, as well as typical vehicles’ (b) Incorrect bounding
boxes.

location is again determined by perspective and size constraints.
Fig. 15 shows the search area.

3) Backtracking: Sometimes it may happen that in corre-
spondence to the symmetry maximum no correct bounding
boxes exist. Therefore, a backtracking approach is used: the
symmetry map is again scanned for the next local maximum
and a new search for a bounding box is performed. Fig. 16
shows a situation in which the first symmetry maximum,
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(a) (b) (c)

Fig. 14. Detection of the lower part of the bounding box: (a) original image
with superimposed results; (b) edges; and (c) localization of the two lower
corners.

Fig. 15. Search area for the upper part of the bounding box is shown in dark
gray. It takes into account knowledge about the typical vehicles’ aspect ratio.

generated by a building, does not lead to a correct bounding
box; on the other hand, the second maximum leads to the
correct detection of the vehicle.

4) Distance Refinement:The distance to the leading vehicle
is computed with the knowledge of the camera calibration. Un-
fortunately, it may assume wrong values since it may happen
that the lower part of the vehicle is not correctly detected. Some-
times, in fact, the luminance gradient of the region between the
rear bumper and the chassis is so high to be misinterpreted as
the lower part of the vehicle. In order to refine this measure-
ment, which is of importance for the platooning functionality, an
adjustment step is mandatory: it is performed taking advantage
of stereo techniques. Starting from the distance value estimated
from the left image, a portion of the right image is searched for
a pattern similar to the one enclosed into the bounding box.

This step relies on the following assumptions:

• the rear side of the vehicle is approximated as a vertical
plane;

• luminance differences in the vehicle pattern, caused by
light reflections, are negligible in the two stereo views.

Since the stereo set-up is known, once the same pattern en-
closed into the bounding box is detected on the right image, a
simple triangulation allows to measure the vehicle distance: the
offset of the bounding boxes containing the vehicle, measured
in both images, is used to compute the vehicle distance.

Besides being simpler than traditional stereo-based tech-
niques, this approach has the following advantages:

• it only requires one triangulation since the computation of
the vehicle distance is the only final goal;

Fig. 16. Case in which the background symmetry is higher than the vehicle
symmetry: (a) original image; (b) first symmetry map; (c) second symmetry
map after the backtracking process has removed the peak near the maximum;
and (d) final bounding box detection.

• errors are reduced to a minimum since the triangulation
refers to a large and complex pattern whose identification
is fairly easy;

• since not only the search pattern is known, but an estimate
of the vehicle distance as well, the search is performed
only in a reduced region of the image and therefore this
step is not as computation intensive as traditional stereo
techniques.

Fig. 17 shows the steps used for distance refinement:
Fig. 17(b) shows the incorrect result of the detection step,
Fig. 17(c) shows that using a null offset the vehicle in the two
images does not overlap, while figure Fig. 17(d) shows that a
specific offset brings the two rears to a perfect correspondence.

B. Results

Fig. 18 shows some qualitative results of Vehicle Detection in
different situations: the preceding vehicle is correctly detected
at different distances, even on complex scenes.

V. COMPUTATIONAL PERFORMANCE

Table I shows the timing performance; since Obstacle and
Lane Detection (the latter is not described in this work) share
the removal of the perspective effect, the timings for IPM are
separated from the others. In addition, due to the different com-
putational burden of Vehicle Detection when looking for a ve-
hicle or tracking an already found one, two distinct timings for
Vehicle Detection and Tracking are shown.



BROGGIet al.: VISUAL PERCEPTION OF OBSTACLES AND VEHICLES FOR PLATOONING 173

Fig. 17. Distance refinement: (a) left and right stereo images; (b) incorrect
result of the detection step (the lower part of the bounding box indicates a
wrong distance); (c) superimposition of stereo images with a null offset; and
(d) superimposition of correctly shifted stereo images.

The acquisition adapter installed on the ARGO system is able
to continuously capture images into a circular buffer in main
memory, therefore, not requiring a synchronization with the pro-
cessing (see Fig. 19).

When all the three functionalities are turned on, the system
can work up to a 45 Hz rate.

VI. V EHICLE CONTROL

This section addresses the problem of automatic steering
which has recently gained considerable attention from both the
theoretical [16], [17] and experimental side [18], [19].

Roughly speaking this problem is centered on finding a sat-
isfactory law for the command of the steering wheel. Many
works have been reported in the literature [20], [21], and various
steering control designs were proposed for systems in which the

sensing is performed with nonvisual devices (e.g., guiding wire,
microwave radars, etc.).

On the other hand, a visual servoing paradigm was proposed
by Epiauet al. [22] by considering a simple omnidirectional
mobile robot. Neural networks were adopted and subsequently
developed at CMU [23], [24]. A comparative survey on various
vision-based control strategies for autonomous vehicles can be
found in the paper by Tayloret al. [19].

The following paragraph presents a gain scheduled propor-
tional controller currently implemented on the ARGO vehicle.
By using a feedback supervisor this control law can be adopted
to perform both Path Following and Platooning. A simple pro-
portional control law was previously examined by Özgüneret
al. [25] for the Road Following functionality solely.

A. Gain Scheduled Proportional Controller

The controller currently adopted for the ARGO vehicle was
initially designed and optimized for the Road Following task
[12]. Minor changes have been introduced to implement also
the Platooning functionality.

The basic control scheme is visible in Fig. 20. The command
steering angle is obtained with a variable gain proportional
controller. The vision based system reconstructs the road envi-
ronment and the supervisor uses the results to select the most
appropriate gain for the proportional controller and estimate the
error signal. Initially, the offset existing between the vehicle
heading and the desired path is computed at the look-ahead dis-
tance (see Fig. 21). The estimated signalis inherently noisy
so that it cannot be directly supplied to the proportional con-
troller. To reduce the disturbances,is preliminary filtered with
a moving average filter. The look-ahead distance is variable and
depends on the vehicle speed; more precisely,is obtained ac-
cording to the following expression:

if
if
if

(1)

where and indicate the min-
imum and maximum look-ahead distance, respectively,is the
look-ahead time, and is the vehicle speed. is a contin-
uous function because and are chosen according to
the relations . Basically, is
proportional to the vehicle speed but it is saturated not to ex-
ceed the bounds imposed by the vision system, i.e.,

. The choice of influences the behavior of the
controller. It has been demonstrated [19] that, asincreases,
the damping factor of the closed loop system gets worse and can
be improved, under certain limits, by increasing the look-ahead
distance. For the ARGO vehicle, the supervisor uses the param-
eters reported in Table II.

To further improve the performances of the closed loop
system a gain scheduling technique has been adopted for
the proportional controller. Specifically, controller gain
inversely depends on the velocityaccording to

if
if .

(2)
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Fig. 18. Vehicle Detection: the images show the search area and the detected vehicle with black markings superimposed onto a brighter version of the original
image.

Fig. 19. Image acquisition (a) and processing (b) performance.

TABLE I
TIMINGS OF PROCESSINGSTEPS

If the velocity becomes smaller then, the proportional gain
is upper bounded by (for ARGO 2.777 ms 10
km/h). is continuous because must satisfy the equa-
tion . The parameter (and consequently

) has been set by means of a series of experiments on
ARGO.

The controller sampling time is imposed by the vision system
(it is given by the refresh rate of the cameras) and is equal to
0.02 s (50 Hz).

Fig. 20. Control scheme with the gain scheduled proportional controller.

Fig. 21. Offset from the desired path, estimated by the vision system.

TABLE II
LOOK-AHEAD DISTANCE PARAMETERS

The control strategy adopted for Platooning takes advantage
of the previously defined control scheme (see Fig. 20). The main
and crucial difference with respect to the path-following func-
tionality is on the supervisor estimation of the offset error.
When the Platooning functionality is activated, the target point
is centered on the preceding vehicle so that the target look-ahead
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Fig. 22. Evaluation of the proper error signal for a Platooning application.

distance is neither constant nor the most appropriate for the
current velocity (see Fig. 22). Obviously, the use of this look-
ahead distance and the corresponding target offset error
could degrade the performance of the Platooning functionality.
The efficiency of the Platooning control algorithm is recovered
by scaling the tracking error measured at to an estimated
offset error given through avirtual target point placed at
the appropriate look-ahead distance [cf. (1)]

(3)

Indeed, (3) provides the suitable regardless of the actual
distance of the target vehicle, i.e., can be greater or less than

indifferently.

VII. CONCLUSIONS ANDFUTURE WORK

In this paper, the Obstacle Detection module of the ARGO
prototype was discussed. Since the robust localization of ob-
stacles and other vehicles is a basic prerequisite for bothRoad
Following andPlatooningfunctionalities, also an experimental
performance evaluation test was performed with the aim of de-
termining the main bottlenecks and devising possible enhance-
ments.

The test results indicate that the Obstacle Detection function-
ality is weak in some areas, such as the lateral or far ones. This
result suggested the development of the Vehicle Detection func-
tionality, that relies on shape information and is now integrated
on ARGO.

Preliminary experimental results demonstrated that pre-
ceding vehicles are correctly detected at different distances,
even on complex scenes. Therefore, the simple control al-
gorithm described in Section VI, which had proved to be
sufficiently robust for Lane Detection [26], has been applied
to Platooning. However, the higher complexity of this task
requires a more sophisticated approach. In fact, the leading
vehicle position is used by the Platooning functionality to
automaticallyfollow the vehicle ahead, but it is not enough to
thoroughlyreproduce its trajectory. As Fig. 23 shows, not only
the current position of the leading vehicle is required, but its
trajectory must be reconstructed as well, since the lateral offset

Fig. 23. Knowledge of the offset is not enough: the offset measurement
shown in (a) may correspond to the two following situations: (b) overtaking on
a straight road and and (c) driving on a curved road, requiring the generation
of two different trajectories.

between the two vehicles must be reduced to zero according to
different rules depending on the situation.

New control strategies and the integration of the results of the
Lane Detection module are now under study and will be dis-
cussed in a future paper. Their integration on the ARGO vehicle
will lead to:

1) superior road following with smooth cruising and
2) highly-flexible functionality.

In particular, flexibility can be simply obtained by modifying
the supervisor strategy in order to perform, e.g., lane changing,
lane inserting, Platooning, and even car parking maneuvers.
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