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Abstract

Despite advances in experimental techniques and accumulation of large datasets concern-

ing the composition and properties of the cortex, quantitative modeling of cortical circuits

under in-vivo-like conditions remains challenging. Here we report and publicly release a bio-

physically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving tha-

lamo-cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual

stimuli, and results were compared to published work and new in vivo experiments. Simula-

tions reproduced a variety of observations, including effects of optogenetic perturbations.

Critical to the agreement between responses in silico and in vivo were the rules of functional

synaptic connectivity between neurons. Interestingly, after extreme simplification the model

still performed satisfactorily on many measurements, although quantitative agreement with

experiments suffered. These results emphasize the importance of functional rules of cortical

wiring and enable a next generation of data-driven models of in vivo neural activity and

computations.

Author summary

How can we capture the incredible complexity of brain circuits in quantitative models,

and what can such models teach us about mechanisms underlying brain activity? To

answer these questions, we set out to build extensive, bio-realistic models of brain cir-

cuitry by employing systematic datasets on brain structure and function. Here we report

the first modeling results of this project, focusing on the layer 4 of the primary visual cor-

tex (V1) of the mouse. Our simulations reproduced a variety of experimental observations

in response to a large battery of visual stimuli. The results elucidated circuit mechanisms
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determining patters of neuronal activity in layer 4 –in particular, the roles of feedforward

thalamic inputs and specific patterns of intracortical connectivity in producing tuning of

neuronal responses to the orientation of motion. Simplification of neuronal models led to

specific deficiencies in reproducing experimental data, giving insights into how biological

details contribute to various aspects of brain activity. To enable future development of

more sophisticated models, we make the software code, the model, and simulation results

publicly available.

Introduction

Although our knowledge of the cortex has been improving dramatically thanks to the ongoing

revolution in experimental neuroscience methods, the field is still far from an overall under-

standing of cortical circuits and their specific function. One essential component necessary to

address this problem is the development of data-driven quantitative models that integrate

experimental information and enable predictive simulations under a wide range of realistic in-

vivo-like conditions–following the dictum attributed to Richard Feynman, “What I cannot cre-

ate, I do not understand” [1]. Whereas detailed data-driven models of cortical tissue have been

reported, in particular, [2] and [3], modeling applications at the biophysical level to an in-vivo-

like regime have been fewer (although see, e.g., [4] and references therein).

A typical systems neuroscience experiment involves a battery of different stimuli and, ide-

ally, perturbations of the investigated circuit. Reproducing this in simulations of a data-con-

strained cortical model has proven challenging. To investigate the feasibility of in-vivo-like

comprehensive simulations, and to build a platform for further studies, we set out to simulate

a set of visual physiology experiments in the mouse primary visual cortex (area V1), with the

emphasis on the first step in the cortical processing of visual information–namely, modeling

the V1 input layer, the layer 4 (L4). We decided early on to replicate a small set of what we con-

sider to be canonical physiological findings characterizing cells in L4 of V1. Given the thou-

sands or more of published experiments carried out over the years in this region of cortex, our

list is small, non-exclusive and may be considered idiosyncratic by some. However, we believe

it is critical to start somewhere solid before generalizing indiscriminately. Our list of explored

phenomena includes the approximately log-normal distributions of firing rates [5], orientation

selectivity [6, 7, 8, 9], oscillatory population dynamics [10, 11, 12, 13, 14, 15], sparsity of

responses to natural stimuli [16], amplification of thalamic inputs by recurrent connections

[17, 18, 19, 20, 21, 22, 23], preferential connectivity among similarly tuned neurons [24, 25, 26,

27, 28, 29], and a number of others.

The model was constructed in a data-driven fashion from what is known about the L4 cir-

cuit organization. Indeed, we think of it as a consistent summary of our collective anatomical

and physiological knowledge about this region of the nervous system. Of course, it is not the

most compact such summary (e.g. in terms of Kolmogorov complexity) nor was it meant to be

that. To the extent that we can reproduce physiology across scales–from post-synaptic poten-

tials to local field potentials–we would argue that we understand the phenomena that we

observe experimentally.

Although the model was biophysically and anatomically detailed, we also used simplifica-

tions when appropriate, typically choosing computationally inexpensive approximations for

biological mechanisms. A crucial component was a set of filters that represented visual infor-

mation processing from image to the output of the lateral geniculate nucleus (LGN) of the thal-

amus, which projects to L4. This feature enabled one to use arbitrary movies as visual stimuli.

Visual physiology of layer 4 in silico
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We presented the same or similar sets of stimuli to the model and to mice in experiments and

then compared the in silico and in vivo responses.

We asked three major questions: (1) How well does our model reproduce experimentally

observed neural responses from the above list? (2) What are the major mechanisms that deter-

mine the neuronal activity patterns? And (3), how does the ability to reproduce experimental

recordings depend on the level of granularity of the model?

To address (1), we assessed neuronal responses to artificial (e.g., drifting gratings) and natu-

ralistic (e.g., movies) stimuli and selected a number of features of these responses that are gen-

erally considered important and interesting in the field. We then benchmarked the model

performance on these features against the experimental data. Whereas typically models are

developed to explain a specific phenomenon and may aim to reproduce 1–2 observed quanti-

ties, the key element in our study was to observe generalization over a wide variety of visual sti-

muli and response features. We found that our simulations reproduced many of experimental

observations (with some exceptions) under a range of different stimuli.

For (2), we performed in silico experiments to investigate how individual neurons process

inputs from different sources and how recurrent connections shape the network activity. This

approach relied in part on simulated optogenetic experiments paralleling in vivo optogenetic

studies. The most striking observation was that tuning properties of neurons were critically

affected by the functional connectivity rules.

For question (3), we introduced two much simplified versions of our model, where bio-

physical neuron models were replaced by point-neuron models with either instantaneous or

time-dependent synaptic action, and compared simulations of these simplified networks to the

biophysical model. We found that, although the simplified network models qualitatively repro-

duced the trends observed in the biophysical simulations (as also reported by [30]), the quanti-

tative agreement with experiment suffered. The time-dependent synaptic kinetics in the

simplified model allowed for better agreement with the biophysical model and experiment,

such as, for example, in terms of producing oscillations in a gamma range.

No circuit in the brain exists in isolation, but including all the brain complexity in the

model is impossible at present due to absence of data and inadequate computing resources.

Therefore, we attempted to build a model of L4 of V1, which can be handled with available

resources and for which a substantial amount of information could be found. The good perfor-

mance of the model compared to the experiment may indicate a relative compartmentalization

of L4 computation (see Discussion); this should not be expected everywhere in the cortex. Our

L4 model provides a comprehensive characterization of activity and mechanisms in this corti-

cal circuit and may serve as a stepping-stone for future, more sophisticated studies of all corti-

cal layers. To enable this, we make the software code, the model, and simulation results

publicly available (see SI).

Results

Construction and optimization of the model

The network (Fig 1A and 1B) consisted (see Methods) of models of individual neurons [31]

from an early version of the Allen Cell Types Database [32], employing compartmental repre-

sentation of somato-dendritic morphologies (~100–200 compartments per cell) and 10 active

conductances at the soma that enabled spiking and spike adaptation. Although recent addi-

tions to the Allen Cell Types Database include models of neurons with active conductances in

the dendrites as well, those models are very computationally expensive, which was prohibitive

for the breadth of our study (see below). In addition, in terms of somatic spike output, the cur-

rent versions of such models do not exhibit much better performance than the models with

Visual physiology of layer 4 in silico
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active conductances restricted to the soma [32]. Thus, we used these latter, computationally

cheaper models. The cells were distributed uniformly in a cylinder ~400 μm in radius, repre-

senting the central portion of V1, and 100 μm height with density of 200,000 mm-3 [33]. Five

Fig 1. Construction of the model. (a) The biophysical and LIF portions of the model on the cortical surface with delineations of cortical areas (top; “VISp” is V1; the
other labels starting with “VIS” correspond to higher visual areas) and with individual cells rendered (bottom; only a small subset of cells is shown for clarity). (b)
Morphologies and action potential shapes of the five neuron models used to generate the L4 network; numbers of cells of each type are listed. (c-e) Connection
probability (c,d) and synaptic weights (e) of excitatory (E) or inhibitory (I) cell targets and sources. The rules incorporate the dependence on the distance between
somata (c) or difference of the assigned preferred orientations, Δori (d, e). Rules dependent on Δori were applied to E-to-E connections only, and synaptic weights for all
connections were independent of distance. (f) Connection probability computed for cells within 50 μm using actual preferred orientation observed in simulations (cf.
[24]). Numbers of connected and total pairs, used to obtain the probability, are shown inside the bars. (g) Three types of LGN filters (ON, OFF, and ON/OFF),
superimposed onto an image, providing inputs to a L4 cell. Example filter’s spatial and temporal profiles are at the bottom. (h) The proportion of excitatory
thalamocortical synapses (VGLUT2+) in the neuropil of V1 L4, as determined experimentally using EM. Proportions for individual samples of tissue are in gray; mean
and s.e.m. for each mouse are in black. Right, an exemplar EM image of a putative VGLUT2+ synapse from the LGN onto an L4 neuron (Sp, spine; Bt, bouton; arrows:
postsynaptic densities within the spine).

https://doi.org/10.1371/journal.pcbi.1006535.g001
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single neuron models represent five “types” of neurons–three major excitatory groups as deter-

mined by Cre-lines (Scnn1a, Rorb, Nr5a1, 85% of all cells) and two groups of parvalbumin-

positive fast-spiking interneurons (15%, denoted as PV1 and PV2), which form the majority of

interneurons in L4 [34]. All 10,000 biophysical cells were exact copies of these five models. The

cell models correspond to regular-spiking excitatory cells and fast-spiking interneurons (PV

+); whereas non-PV+ interneurons do exist in L4, they are a relative minority [34], and there-

fore were neglected for simplicity. Furthermore, 35,000 much simpler leaky-integrate-and-fire

(LIF) neurons, with only two groups–excitatory and inhibitory–were placed around the bio-

physically detailed “core” to prevent boundary artefacts (see SI). The complete model

accounted for over half of V1 L4 cells (45,000 out of ~70,000). Below, we primarily focus on

the properties of the biophysical core circuit.

Three independent instantiations were generated using different random seeds. The con-

nectivity and inputs into these three model instantiations were distinct, but all followed the

rules described below. All simulations were performed using the Python 2.7 code (an early ver-

sion of the BioNet package [35]) employing NEURON 7.4 [36].

Recurrent connections (Fig 1C) were established randomly according to probability decay-

ing with intersomatic distance (e.g., [37]). Recent experiments [25, 26, 27, 29] showed that

excitatory neurons in the mouse V1 L2/3 exhibit more likely and stronger connections if neu-

rons prefer similar stimuli (“like-to-like connectivity”). We sought to investigate how such a

rule affects neural activity. The rule (Fig 1D) was applied to all excitatory cells by assigning a

preferred orientation to each excitatory neuron (which was also used to select LGN inputs, see

below) and using the difference between such orientations to compute a probability of connec-

tion. A similar like-to-like rule was applied to the amplitude of synaptic weights (Fig 1E). The

like-to-like rules were parameterized to correspond approximately to the observations for L2/3

[25] (Fig 1F) and did not apply to pairs containing one or more inhibitory neurons. See Meth-

ods (section “Connectivity within the Network” and “Synaptic characteristics”) for further

details.

We directly converted visual stimuli to spikes of LGN cells (which provide the input to L4)

via space-time separable linear-nonlinear Poisson (LNP) filters (Fig 1G; see, e.g., [38, 39, 40])

of ON, OFF, and ON/OFF types (see Methods), all of which produced relatively transient

responses. Such a considerable simplification of the wide variety of response types that the

LGN cells exhibit (see, e.g., [41, 42, 17]) was necessary to make the model tractable, especially

because rules of connectivity from various functional LGN cell types and L4 in the mouse are

largely unknown. Because the retinotopy of the complete model did not cover the entire field

of view, we employed 9,000 LGN filters–approximately half of the mouse LGN. Based on the

experimental data about receptive fields of L4 neurons [6, 7, 17], we used retinotopy of L4 cells

to “pool” inputs from LGN filters with similar retinotopy, and the assigned preferred orienta-

tion (see above) to establish the geometry of the ON and OFF subfields (Fig 1G; see Methods).

This helped to establish orientation selectivity in the combined LGN inputs to individual L4

cells [17]. Due to the distance dependence of recurrent connections and retinotopy of LGN

inputs, the L4 cells that were connected to each other had a higher chance to receive inputs

from the same LGN cells, in comparison with unconnected L4 cells (see Methods). This is con-

sistent with recent experimental observations for L4 and L2/3 cells [27].

The numbers of synapses for recurrent connections were chosen based on the literature

(see Methods). Using electron microscopy (EM), we found (Fig 1H) that LGN synapses consti-

tute 15–30% of all synapses in the neuropil in L4 (see Methods for details), consistent with

observations for mouse S1 and M1 [43]. This corresponds to over 1,000 synapses from the

LGN per excitatory L4 neuron (given ~8,000 synapses total per mouse V1 cell [33] on average,

we assume relatively small L4 neurons to receive ~6,000 synapses). Thus, the number of LGN-
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to-L4 synapses is an order of magnitude higher in the mouse than in the cat V1 (for which this

number has been long established to be ~100 [44]). These new data determined the numbers of

LGN-to-L4 synapses in the model (see Methods for further details). For the majority of connec-

tions, multiple synapses per connection were assigned, typically in the 3–7 range (see Methods).

Synaptic dynamics was described by a sum of two decaying exponentials. We assumed no

short-term plasticity as it is plausible that in vivo synapses operate at steady-state conditions

[18]. Long-term plasticity was neglected because simulations covered several seconds at most.

To account for inputs from the rest of the brain and for different brain states, we introduced

externally generated waves of background activity sweeping across the L4 model (Fig 2A),

inspired by reports of activity propagation over cortical surface in vivo [45]. Poisson spike gen-

erators were distributed within the cortical plane and were activated whenever the wave swept

through their positions, sending spikes to the nearby L4 cells. This enabled the L4 model (Fig

2B) to operate with an extremely simple analogue of distinct cortical states (see, e.g., [46, 47,

Fig 2. Examples of simulated responses to various visual stimuli. (a) Spontaneous activity in the model was generated by waves of background excitation (“Bkg. on”,
yellow arrow denotes the direction of motion of the yellow bar-like region) alternated with intervals of no background excitation (“Bkg. off”). (b) Model activity in a gray
screen trial. Examples of membrane potential traces from simulated biophysical cells are in the middle. (c) Spike raster in response to a drifting grating (TF = 4 Hz, at 0
degrees direction). Bottom, example orientation tuning curves for an excitatory and inhibitory cell from simulation. (d) Spikes in response to a 50 ms full-field flash. (e)
Spike raster for a single trial of a natural movie (top) and for a temporally scrambled version of the same movie (bottom). The raster in (b) shows all neurons and those
in (c-e) for clarity show the 10,000 cells in the biophysical core of the model (inset on top of (c) zooms in on 200 cells). All rasters are examples from one trial; all trials
used unique combinations of “Bkg. on” and “Bkg. off” states (shown at the bottom of plots), which overlapped (or not) in different ways with the visual stimuli.

https://doi.org/10.1371/journal.pcbi.1006535.g002
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48]), which we call “Bkg. on” and “Bkg. off.” (see Methods). The random generation of the

background waves, as well as random generation of background spike trains from the wave

profiles and of LGN spike trains from deterministic filter outputs were the sole sources of inde-

terminacy, leading to differences between individual trials.

After the steps above, all parameters were fixed except the synaptic weights (conductance

amplitudes). The LGN-to-L4 weights were selected to produce experimentally observed excit-

atory currents from LGN [17]. The weights for recurrent connections were then manually

optimized, while constraining post-synaptic potentials and currents (PSPs and PSCs) to the

experimentally reported range for mouse cortex [49] (see Methods). The weights were not

adjusted individually; instead, we uniformly scaled all weights belonging to a particular con-

nection type, such as, for example, excitatory-to-Rorb connections or inhibitory-to-Nr5a1

connections. Optimization was limited to two training stimuli–a single trial of a drifting grat-

ing and one of a gray screen, 500 ms each. The target was to reproduce the mean spontaneous

firing rate and the rate in response to the preferred grating (Rmax), while avoiding synchronous

epileptic-like activity. Published data from [6] were used for this optimization, before our own

experiments were finalized. After optimizing the synaptic weights using this limited training

set, we applied the model without any further modification to all the other stimuli, which

served as a test set. The exact synaptic weights obtained during the optimization stage may not

represent a unique solution, due to degeneracy [50]. Nevertheless, it is reassuring that synaptic

properties from our optimized models were consistent with published experimental reports

(see S2 Fig), exhibiting, e.g., current amplitudes of ~10–30 pA for excitatory and ~40–60 pA

for inhibitory synapses [49] or voltage amplitudes of ~1 mV [51] for L4 excitatory-to-excit-

atory connections (as measured at the soma).

Benchmarking simulated neuronal activity to the experimental data

How well does the model reproduce experimentally observed neural responses in vivo? The

answer will depend on the types of stimuli and features of responses to those stimuli that one

chooses for comparison. We reasoned that a successful model should be versatile; in other

words, it is not sufficient to be able to model responses to one type of stimuli well, and instead

one should strive to reproduce features across many types of stimuli. Therefore, our battery of

visual stimuli included gray screen, a variety of drifting gratings, 10 natural images, 3 natural

movie clips, 2 types of full-field flashes, and 4 moving-bar stimuli (see example responses in

Fig 2C–2E; see also Methods, S3 and S4 Figs, and S2 Table). Altogether, ~3,600 simulations

were carried out. Our own experiments used for benchmarking consisted of two series of

extracellular electrophysiological recordings in mouse V1 employing multi-electrode silicon

probes. In the first [7], responses to drifting gratings with a variety of spatial and temporal fre-

quencies were measured, in both awake and anesthetized mice. In the second (previously

unpublished), spontaneous activity (responses during gray screen presentation) as well as

responses to natural movies, natural images, full-field flashes, and other stimuli were recorded

in awake mice.

We chose several features of visual responses that are generally considered important and

are often reported in the field of cortical visual physiology and compared their values between

experiment and simulations (Fig 3). It should be noted that, although the measured metrics

differed slightly among the three excitatory cell types (Scnn1a, Rorb, and Nr5a1), as well as

among the two inhibitory types (PV1 and PV2), we do not ascribe significance to these differ-

ences. This is because during model construction and optimization no experimental data was

available on distinctions in response features or connectivity between these L4 cell populations,

and, in absence of either, we assumed the same optimization targets for all excitatory or
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inhibitory cells (which, however, allowed for ~1 Hz rate deviation from the target, resulting in

different types settling at slightly different activity levels).

The first characteristic we checked is whether neuron firing rates follow a positively-

skewed, log-normal-like distribution, which is a ubiquitous hallmark feature of brain activity

in vivo [5]. Such distributions were indeed observed in our simulations for spontaneous activ-

ity and all types of visually-driven responses (Figs 3A and S5A). Consistent with published

Fig 3. Benchmarking the simulation results. (a) Log-normal like distribution of firing rates. Top, firing rates of all biophysical cells from three models during
spontaneous activity and in response to a drifting grating, averaged over 10 trials. Large red dots are firing rates averaged over all cells in 0.1 Hz bins over the
spontaneous activity axis. Bottom, examples of firing rate distributions on a log scale for a single trial. Solid lines indicate log-normal fits of the data. (b) Comparison of
the spontaneous rates, maximal rates in response to gratings (Rmax), orientation selectivity index (OSI), and direction selectivity index (DSI) between the simulation (by
cell type, color) and experimental measurements using extracellular electrophysiology (gray). Here and in all other box plots, the box bottom and top mark the inter-
quartile range (IQR), the median is in red, whiskers mark +/-1.5 IQR; mean and standard deviation are shown in black (see Methods for further details). “An.”–
experiments in anesthetized mice, “Aw.”–in awake mice. (c) The local field potential (LFP; see Methods) measured at the center of the L4 model, for a drifting grating.
The spectra from 10 trials are shown in gray, and the averaged spectrum is in black. (d) The model PSTH in response to a 50 ms flash (average over all biophysical
excitatory cells, all models, and all trials, in 2 ms bins). (e) The magnitude and time-to-peak (from flash onset) for the first and second peaks of the response to the 50 ms
flash, for both simulation and electrophysiological data. (f) Distributions of lifetime sparsity of simulated and experimental responses of excitatory neurons, computed
for three directions of a grating (0, 45, and 90 degrees) and for three movies. See Methods for details on computing all values presented.

https://doi.org/10.1371/journal.pcbi.1006535.g003
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reports, our simulated rate distributions spanned 2–3 decades and may widen further in longer

simulations (for instance, spontaneous rates were computed from 20 trials of 500 ms each,

resulting in the lowest possible rate of 0.1 Hz). Also in agreement with literature [5], individual

neurons tended to keep their low or high firing rates across different stimulus conditions (Fig

3A, top). The positive skewness of firing rate distribution (i.e., the third standardized moment,

h((f −hfi)/σf)
3i, where f is the firing rate and σf is its standard deviation, both computed in the

linear (i.e., not log) firing-rate space) was typically between 0 and 4 (S5A Fig). While it is hard

to expect an exact match of the experimental skewness distributions from our relatively rough

model, it is reassuring that the model reproduced the overall experimental trends of firing rate

distributions with positive skewness in the 0–4 range. Note that a normal distribution has zero

skewness, whereas log-normal distribution has positive skewness.

The mechanisms underlying log-normal like distributions of activity of individual neurons

in vivo are not well understood [5], and may involve both cell-intrinsic and network phenom-

ena. One major mechanism proposed based on point-neuron network simulations [52]

involves a transformation of an approximately normal distribution of total inputs to a cortical

cell by a rectified and expansive input-output nonlinearity, which results in a heavy-tailed dis-

tribution of firing rates. This, combined with the log-normally distributed strength of back-

ground inputs in our model (see S1C Fig), likely underlie our observations.

Another aspect of activity that we checked was whether the magnitude of responses was

consistent with the experiment; presumably, it is important for network computations that

cells of certain types fire at certain rates in response to particular stimuli. For this purpose, we

considered the rates of spontaneous activity and maximal rates (Rmax) in response to drifting

gratings (Fig 3B; see Methods for definitions). The spontaneous rates were 0.5–1.0 Hz for

excitatory and 1.5–2.0 Hz for inhibitory cells, broadly consistent with our experimental mea-

surements and published data [6], and Rmax levels were also similar to experimental ones.

Furthermore, the L4 responses to gratings are known to exhibit orientation and direction

selectivity (e.g., [6, 7]). We found that the orientation selectivity index (OSI; see Methods) for

excitatory cells was ~0.4–0.5 on average, in excellent agreement with the experiments (Fig 3B).

For inhibitory cells, OSI was ~0.05 on average, whereas the experimental value was ~0.3. The

relatively low OSI values were due to non-selective thalamic inputs and recurrent connectivity

for inhibitory cells (see Methods), which were chosen that way at model construction to con-

form to an often-expressed view that excitatory cells are tuned and inhibitory fast-spiking cells

are not. However, recent experiments [34], as well as our own data (Fig 3B), suggest moderate

levels of tuning for these neurons, and therefore future models will need to reflect these obser-

vations better. Nevertheless, qualitatively the model already captures the trend of better tuning

of excitatory cells compared to inhibitory fast-spiking cells.

Another often-observed phenomenon is that the orientation tuning width of cortical excit-

atory neurons stays approximately constant with respect to contrast (see, e.g., [6, 8, 38, 53]).

This is considered important because simple feedforward models typically produce broaden-

ing of tuning curves with contrast, and, thus, contrast invariance may reflect mechanisms

inherent to cortical processing. Interestingly, it has been shown that responses in L4 of mouse

V1 do not simply maintain tuning width, but actually exhibit sharpening of tuning curves and

increase of OSI with contrast for excitatory cells (and broadening of tuning curves/reduction

of OSI for inhibitory cells) [9]. We found strong orientation tuning in excitatory cells for con-

trast as low as 10% in our model (S5C Fig). The changes in tuning curve width (characterized

as differences of the half-width at half-height at high and low contrasts, ΔHWHH) were cen-

tered relatively narrowly around zero (S5D Fig; 4+/-5 degrees for 80% vs. 10% and –2+/-4

degrees for 80% vs. 30% contrasts on average). Thus, our model of excitatory and inhibitory

recurrent connections was adequate for preventing broadening of tuning curves, but not
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sufficient to produce sharpening of tuning curves at high contrasts [9]. We further character-

ized OSI changes with contrast and found on average slight increase in OSI of excitatory cells

and more substantial decrease in OSI of inhibitory cells (S5E Fig). Whereas this trend is con-

sistent with experimental observations [9], it is not sufficiently strong in our model, most likely

due to the insufficiently sharp tuning of inhibitory cells mentioned above. Thus, the model

captures the overall tendency of cortical circuits to prevent broadening of tuning curves with

contrast, but should be improved in the future to capture the more delicate properties of tun-

ing sharpening and broadening in distinct cell populations.

By contrast to OSI, the model performed poorly on the direction selectivity index (DSI; Fig

3B), which was close to zero in simulations, whereas experimentally it was ~0.4–0.5. This was

due to the extreme simplicity of the LGN inputs, which were constructed based on experimen-

tal data, but at this point did not include all types of LGN activity observed experimentally [7,

17, 21]. In particular, for simplicity, we did not include the sustained LGN responses (i.e., all

LGN filters produced transient responses), whereas the most recent experimental data suggest

a critical role for the interplay between sustained and transient LGN inputs in generating

direction selectivity in V1 [23]. Proper incorporation of direction selectivity is the subject of

ongoing work on the next generation of the model.

Another important aspect of neuronal activity in vivo is the population-level oscillatory

rhythms, which are observed in a variety of frequency bands. Whereas oscillations at many of

such frequencies are likely caused by non-local interactions in the brain, and therefore cannot

be expected to arise in an isolated L4 model, some of them may be generated locally. Indeed,

our simulations exhibited oscillations in the 15–50 Hz range (sometimes referred to as “mouse

gamma”), with a peak at ~20 Hz (Fig 3C). This is consistent with extracellular electrophysiol-

ogy data [10], which exhibits a particularly strong peak at similar frequencies in L4.

Global luminance changes present another challenge to models, due to simultaneous

engagement of all cells by these stimuli. We studied responses to 50 ms long full-field flashes

and observed, in both experiment and simulations, that a sharp and fast peak in activity was

evoked by the first white-to-gray transition, followed by a second smaller and wider peak (Figs

2D and 3D). The magnitude of the first peak was about 2–4 times higher in simulation than in

the experiment, whereas that of the second peak was approximately the same, and the time

course of the response was uniformly ~2-fold faster in simulations (Fig 3D and 3E and S5B

Fig). These differences were most likely again caused by the absence of sustained LGN

responses in the model. Importantly, however, in both simulations and experiments, the sec-

ond peak was delayed–instead of 50 ms (the flash duration), it appeared 100 ms after the first

(200 ms in the experiment). This reflects a known phenomenon of suppression following lumi-

nance change, where the second peak corresponds to release from inhibition (e.g., [54, 55]).

Thus, qualitatively the model reproduces well the critical features of cortical responses to

global luminance change, which likely affect perception of visual stimuli (such as in, e.g., lumi-

nance-induced visual masking).

Finally, artificial stimuli such as gratings are quite different from natural images and movies

and it is an important question to ask whether a model reproduces differences in response sta-

tistics between artificial and natural stimuli. We did observe in simulations that responses to a

natural movie (e.g., Fig 2E) were very distinct from those to a horizontally drifting grating (Fig

2C; both panels use the same ID labels). For a grating, cells with certain IDs respond strongly

throughout the simulation (as they prefer the grating’s orientation). By contrast, natural mov-

ies evoked episodes of concerted responses in distinct populations of cells (which share similar

orientation preference). Notably, such concerted responses were mostly absent when movie

frames were shuffled in time (Fig 2E, bottom). To quantify the differences, we computed life-

time sparsity for each cell following Vinje and Gallant [56] (see Methods). Sparsity was higher
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for movies than for gratings (Fig 3F) in both simulations and experiments, consistent with pre-

vious observations (including Ca2+ imaging [16]): 0.77+/-0.16 in simulation vs. 0.71+/-0.22 in

experiments for movies and 0.64+/-0.14 vs. 0.65+/-0.25 for gratings. Thus, the model correctly

accounts for the distinction in sparsity between these two classes of stimuli.

To investigate how trial-to-trial neural variability in the L4 model responses compares

with experimental observations for gratings and natural movies, we computed several

metrics (see Methods for details). The coefficients of variation of inter-spike intervals

(S6A Fig) were consistent between the experiment and the model, as was the trend that

spontaneous activity and drifting gratings produced lower values than natural movies.

The model was also consistent with reports of stimulus-induced suppression of variabil-

ity [57], as the Fano factor (S6B Fig) tended to be lower for stimulus-evoked responses

(especially, for gratings) than for spontaneous activity. This effect, however, was weak for

excitatory neurons in the model and was not clearly identifiable in our experimental

recordings (S6B Fig), where it might have been obscured by the noise due to relatively

small number of recorded cells. The signal correlations were widely distributed in both

simulation and experiment (S6C Fig), with the median close to 0 for gratings and close to

1 for spontaneous activity. The signal correlations for natural movies tended to be higher

than for gratings, although only slightly so in the experiment and more substantially in

simulation. The noise correlations (S6D Fig) were more narrowly distributed and on

average close to zero in both simulation and experiment.

Mechanisms underlying neural activity and computation in the L4 circuit

We further used the model to shed light on the mechanisms that determine patterns of neural

activity and computations performed by the L4 circuit. One important question is to what

extent the L4 activity and computations are inherited from the input regions (here, LGN) vs.

being shaped by intrinsic, recurrent connectivity (see, e.g., [58]). To investigate this, in addi-

tion to regular (“Full”) simulations, we performed a number of simulations where recurrent

and background connections were removed, so that neurons received LGN inputs only (“LGN

only”). Using in silico voltage clamp (see Methods), we measured (Fig 4A) synaptic excitatory

currents at the cell body–from the LGN only, ILGN, and the total, Itot – and found that, for pre-

ferred directions of 2 Hz drifting gratings, the fraction of Itot contributed by ILGN was 0.41

+/-0.05 for excitatory cells, in good agreement with experiment (0.36+/-0.02 [17]). Also in

agreement with experiment [17], the mean ILGN was untuned, since individual LGN filters

were mostly untuned [17] (but see [19, 20]), whereas mean Itot and Isub = Itot = ILGN (i.e., the

current due to recurrent connections) were well tuned to the grating orientation (Fig 4B), and

F1 components (i.e., the amplitude of the mode at the stimulus frequency; see Methods) of all

of these currents were tuned. Besides these features that were consistent with experimental

recordings [17], we observed one distinction: the F1 component of Isub was substantially

smaller than that of ILGN or Itot (Fig 4B) and the temporal dynamics of Isub was in antiphase

with that of ILGN (S7A Fig). This turned out to be a space clamp artefact, where a stronger ILGN
current increases the membrane voltage at the synapses, resulting in weaker driving force for

recurrent excitation and, therefore, antiphase relationship of ILGN and Isub; simulations where

LGN current was removed from the recorded cells exhibited Isub with no oscillations at the

grating frequency (S7A Fig). Thus, the overall picture was that the ILGNmean was untuned

whereas its F1 component was; the recurrent connections added current that was tuned over-

all, but was not time-modulated (whereas in the experiment [17] it is time-modulated); and

the resulting total current was tuned in both mean and F1. The inhibitory currents were mostly

untuned at the level of both the mean and F1 (Fig 4B); the F1 did show a preference to
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Fig 4. Mechanistic characterization of the model. (a) Cortical amplification of the LGN inputs. The excitatory currents (from the LGN only, as well as total) in
biophysical cells were measured using voltage clamp recordings. Top–an example; bottom–distributions of LGN contribution to the total excitatory current
across excitatory and inhibitory cells (computed for each cell as the average current over time and over all trials of the preferred orientation). (b) Tuning curves
for the mean and F1 component of the total and LGN-only currents, and their difference (“Sub”, i.e., the cortical component), as well as inhibitory current. The
data for each cell were normalized to the peak value of the “Total” and shifted so that the preferred direction is at 0 degrees; averages and s.e.m. over all recorded
excitatory cells are shown (TF = 2 Hz, contrast 80%). The inhibitory currents were normalized and aligned to their own peak values, since their magnitude is
significantly higher than that of excitatory currents. (c) Amplification of excitatory current. Top, the total current vs. the LGN-only current, for an individual
Rorb cell (each point is an average over time and over 10 trials). Linear fits (Itot = A ILGN + B) are shown for data aggregated from all grating directions, TFs, and
contrasts (black), for one selected direction (yellow), and for a fixed contrast and TF (i.e., representing a sample direction tuning curve; right plot). Bottom,
summary of linear fits across all cells analyzed. (d) Tuning curves for mean firing rate in full network simulations (“Full”, red) and in simulations where all
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orientation, but its magnitude was only a few percent of the mean and the current was not

strongly modulated in time (S7A Fig).

Comparing mean Itot and ILGN of individual cells (Fig 4C) for all grating conditions (i.e.,

not only the preferred one shown in Fig 4A) and different contrasts, we observed a complex

dependence. The relationship of Itot with ILGN was essentially linear along the contrast dimen-

sion. The quality of the linear fit,

Itot ¼ AILGN þ B;

was r2 = 0.76 for excitatory cells for all conditions, and 0.97 for a specific grating direction.

This is consistent with the prediction of an earlier, much simpler self-consistent model [58]

(see also [59]). For the orientation dimension, the dependence was highly non-linear (r2 =

0.18). The latter was the consequence of the mean of ILGN being untuned to orientation,

whereas the tuned current from recurrent connections made the mean of Itot highly tuned (Fig

4B). Due to the same reason, the amplification factor A was approximately 2 across all condi-

tions (since B was very small on average, A can be thought of as the inverse of the LGN contri-

bution described above; across all conditions 1/A = 0.54+/-0.04, Fig 4C), whereas for the

preferred orientation it was 1/0.41 = 2.44 (as the LGN contribution at the preferred orientation

was 0.41+/-0.05, Fig 4A).

How do these relationships between currents shape the properties of the spiking output?

We found that the OSI in L4 at the level of spikes was inherited from the combined LGN

inputs to each cell [17], producing weakly selective output, and was strongly increased by

recurrent connections (Figs 4D and S7B). Generally, the relationship between the rates in Full

and LGN only simulations (S7C Fig) was not close to linear (attempting a linear fit

fFull ¼ Af fLGN þ Bf ;

where fFull and fLGN are the firing rates in Full and LGN only simulations, and the parameters

Af and Bf are marked with the subscript “f” to distinguish them from the parameters of linear

fit of currents above, we found r2 = 0.5 for all conditions and 0.65 for one grating direction for

excitatory cells). The firing rates at fixed contrast and TF exhibited a much more linear rela-

tionship (r2 = 0.88), but only locally–the good linear fit required negative values of parameter

Bf (-4+/-3 Hz on average), which is non-physiological given that Bf is the firing rate of the cell

under the conditions when the firing rate induced by the LGN-only input is zero. Thus, overall

the relationship was non-linear, but close to linear past the firing threshold for LGN-only

inputs. Interestingly, the overall effect of recurrent connections on the spiking output in our

model was that of suppression, as the Full-network firing rates at non-preferred orientations

tended to be smaller than LGN-only rates (Fig 4D and S7C Fig, top right), and only at the pre-

ferred orientations Full-network firing reached the same rates as in the LGN-only case. Conse-

quently, Rmax values were approximately the same in the Full and LGN-only cases (S7B Fig).

To investigate the L4 circuit mechanisms further, we performed in silico optogenetic silenc-

ing of LGN inputs and of a subset of the circuit (see Methods). Despite the significant recur-

rent amplification, L4 activity shut down rapidly when the LGN spiking was silenced (Fig 4E),

in agreement with an analogous experiment [18]. Although the time course of activity decay

connections except the feedforward connections from the LGN were removed (“LGN only”, blue). The data for each cell were normalized to the peak value of the
“Full” and shifted so that the preferred direction is at 0 degrees; averages and s.e.m. over all excitatory cells are shown (TF = 2 Hz, contrast 80%). (e) Simulations
of responses to a drifting grating, with the LGN activity switched off at 1000 ms. The black curve is the firing rate averaged over all cells, models, and trials; green
is the exponential fit. (f) Distribution of the optogenetic modulation index (OMI) by cell type in responses to gratings, for simulations of optogenetic silencing of
the Scnn1a population (top). Combined distribution for all biophysical excitatory cells is compared to the experimental result (bottom).

https://doi.org/10.1371/journal.pcbi.1006535.g004
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was faster in the model (2.3 vs. 9+/-2 ms, likely due to the absence of excitatory stimulation

from other cortical regions), otherwise the effect of LGN silencing was the same. The wide-

spread and powerful intracortical inhibition appears to be the most plausible driving force

behind this effect. We then separately silenced the Scnn1a population of excitatory cells in sim-

ulations and conducted analogous experiments in vivo (using Archaeorhodopsin-mediated

silencing on randomly selected trials during presentation of TF = 2 Hz drifting gratings, while

extracellular multielectrode recordings were performed, see Methods). Results were character-

ized by converting firing rates with (fp) and without (fcontrol) perturbation to the optogenetic

modulation index (OMI),

OMI ¼
fp � fcontrol

fp þ fcontrol

Simulations qualitatively agreed with experiment (Figs 4F, S8A and S8B) in terms of the

OMI distribution over L4 excitatory cells (few inhibitory cells were recorded experimentally),

which was approximately bimodal, with one “lobe” concentrated close to -1 (totally silenced

neurons) and the other near 0 (weak or no effect). Due to challenges of recording form the

thin layer 4, a small number of cells was obtained in the experiment, but they all showed a con-

sistent trend of OMI values belonging to one of these two lobes (S8A Fig). Whereas weak and/

or sparse silencing of Scnn1a cells in simulations did not result in a two-lobe distribution, a

strong and dense silencing did (S8C Fig), consistent with the experimental perturbation that

attempted to silence as many Scnn1a cells as possible. Simulations showed (Fig 4F) that the

left lobe in the OMI distribution was due to near-complete silencing of Scnn1a cells. This

silencing reduced the amount of excitation in the network and resulted in moderate decrease

of firing of inhibitory cells. The net effect is that the firing rates of the other excitatory cell

types (Rorb and Nr5a1) remained almost unaffected–yielding the OMI lobe with values close

to zero.

We investigated the effect of the logics of connections between L4 excitatory cells on the

neural activity and computation. In our regular models, a “like-to-like” (“L”) rule [25, 26, 24,

29] was used for both the connectivity and synaptic weights of excitatory-to-excitatory connec-

tions, based on the anticipated orientation tuning of the cells (Fig 1C–1E); because the rule

applied to both synaptic connectivity and amplitude distributions, we refer to this set as “LL”.

We then studied three alternative sets of models. In one, both the connectivity and weights

were randomly (“R”) assigned independently of cell tuning (“RR”). The remaining two sets

had the random rule applied to connectivity and like-to-like to weights (“RL”), or vice versa

(“LR”). Each set consisted of 3 models. Besides the “R” or “L” rules, everything else was exactly

the same between the four sets, including the probabilistic distance-dependent connectivity

(Fig 1C).

Synaptic weights for all models were tuned following the same procedure (tuning only

involved scaling of weights uniformly across populations, thus not affecting the “L” vs. “R”

property, which applies to individual cell pairs), resulting in similar levels of activity for the

training stimulus (grating) in all models. We then assessed how functional properties differed.

We found that OSIs were extremely reduced in the RR set, with LR being only slightly better

tuned, whereas RL came close to the original well-tuned LL set (Fig 5A). Because the mean

LGN current was untuned in all models, the critical amplification of orientation selectivity

(Fig 4B–4D) came from the lateral L4 connections, which were well tuned in LL and RL sets

and poorly tuned in LR and RR sets (Fig 5B). As a result, the total current as well as spiking

output was well tuned in LL and RL sets and barely tuned in LR and RR (Fig 5). This suggests

a bigger role of synaptic weights than connection probability in shaping network responses
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[60], which can be easily understood since the “L” rule for weights results in low contributions

from non-like-to-like connections, even if such connections are present, thus effectively

enforcing the “L” type connectivity.

Performance of a simplified model

How does the ability to reproduce experimental recordings depend on the level of granularity

of the model? To address this question, we built two versions of a radically simplified model,

where biophysical neurons and bi-exponential synapses were replaced by LIF neurons and

either instantaneous “charge-dump” synapses (using NEURON’s IntFire1 function) or synap-

ses with exponential time dependence of synaptic current (NEURON’s IntFire4 function).

These all-LIF models used exactly the same cell-to-cell connections and inputs as the biophysi-

cal models and were optimized using the same protocol (see Methods). By contrast to another

recent study [30], our coarse-graining procedure did not aim to replicate results of the bio-

physical simulations, but, rather, aimed to match certain experimental observables using the

point-neuron networks in the same way as we did for the biophysical network; nevertheless,

both that study and ours agree in that results of the simplified models were quite similar to

those of the biophysical models.

The results of the all-LIF simulations were qualitatively similar to the results of biophysical

simulations (Fig 6), but specific quantitative distinctions were obvious. The overall appearance

of responses (Fig 6A) and mean values of spontaneous rates and Rmax were similar to the bio-

physical case (Fig 6B). However, there were apparent differences in the way spontaneous rates

were distributed (Fig 6B): the bottom three quartiles of cells in all-LIF simulations exhibited

no spontaneous firing, whereas in the biophysical case that was true for half or less of the cells;

nevertheless, the means across cells were similar. The OSI values were elevated in the IntFire1

case (Fig 6B). Most noticeable, the gamma oscillation was largely absent in the IntFire1 models

(Fig 6C). This was likely due to instantaneous synapses in IntFire1, since gamma oscillations

[11, 12, 13, 14, 15] are thought to be strongly dependent on the properties of inhibitory

Fig 5. Like-to-like vs. random connectivity and synaptic weights. (a) Distribution of OSI for biophysical excitatory cells for the LL, RL, LR, and RR cases. (b) Tuning
curves for the mean total and LGN-only currents, and their difference (“Sub”, i.e., the cortical component). The data for each cell were normalized to the peak value of
the “Total” and shifted so that the preferred direction is at 0 degrees; averages and s.e.m. over all recorded excitatory cells are shown (TF = 2 Hz, contrast 80%).

https://doi.org/10.1371/journal.pcbi.1006535.g005
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Fig 6. Comparison of biophysical and all-LIF simulations employing the IntFire1 or IntFire4 models. (a) An example spike raster in response to a drifting grating in
an all-LIF IntFire1 simulation. (b) Spontaneous rate, Rmax, OSI and DSI by cell type. (c) Spectra of multi-unit activity (weighted by 1/r, where r is the distance from the
cell to the center of the system). This is used as a proxy to LFP, which cannot be directly computed for the point-neuron models. Note that exact match between this
metric and the actual LFP computed for biophysical model (see Fig 3C) is not expected, but they both exhibit similar features, such as a prominent peak at ~20 Hz. (d)
Distributions of lifetime sparsity of responses to gratings and movies, averaged over 10 trials. The data are for three directions of a grating (0, 45, and 90 degrees) and for
three movies. (e) Distributions of LGN contribution to the total excitatory synaptic inputs across excitatory and inhibitory cells (in the IntFire1 and IntFire4 cases, this is
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perisomatic synapses [11, 14], and especially their time constants. Thus, removal of the appro-

priate synaptic kinetics from the large and distributed network model like ours may be

expected to disrupt gamma oscillations. By contrast, the IntFire4 model employed a simple

form of synaptic kinetics (see Methods) and produced oscillations in the range of 10–20 Hz,

i.e., close to ~20 Hz gamma oscillation in the biophysical model (Fig 6C; note that the

weighted multi-unit activity metric used here is only a proxy for the actual LFP that can be

computed for the biophysical model, as shown in Fig 3C, but not for point-neuron models;

nevertheless, both metrics show similar trends for the biophysical model, such as the large

peak at ~20 Hz).

Further distinctions were observed for sparsity values (Fig 6D). The overall trend of higher

sparsity for movies than for gratings was reproduced by both all-LIF models, but they both

also exhibited higher sparsity values than the biophysical case and the experiment (Fig 3F).

Perhaps the most significant difference with the biophysical model was observed for the mag-

nitude of cortical amplification (Fig 6E) for excitatory cells (interestingly, inhibitory cells did

not show substantial differences). The LGN contribution was 0.41+/-0.05 in the biophysical

model and 0.36+/-0.02 in experiment [17], whereas it was 0.53+/-0.13 for IntFire1 and even

higher, 0.68+/-0.12, for the otherwise more realistic IntFire4. The distributions of amplifica-

tion values were also quite different in all-LIF models (Fig 6E), exhibiting multiple peaks–

apparently for the multiple excitatory cell types–instead of a single peak in the biophysical

model. Finally, the functional connectivity had the same consequences in the all-LIF models as

in the biophysical case–the orientation tuning was high for models with the LL or RL rules,

and low for LR and RR (Fig 6F). On the other hand, the small difference between the LL and

RL cases, observed in the biophysical model, was mostly eliminated, and overall the OSIs were

higher for the IntFire1 model and, in the RR and LR cases, for IntFire4 as well.

Discussion

The promise of data-driven neuroscience modeling lies in harnessing computing power to

establish a platform for discovery that would work hand-in-hand with experiments. For that

promise to materialize, models need to be biologically realistic in recapitulating knowledge

about brain structure as well as in reproducing in vivo activity. Doing either is difficult, and

doing both together is more difficult yet, and is less widely practiced (for some powerful exam-

ples, see [2, 3, 4]). We described here a model of the L4 in mouse V1 that was built using a

high degree of biological realism and simulated in a framework of an in silico visual physiology

experiment. We asked how well the model reproduces activity observed in vivo across a variety

of stimuli, which mechanisms underlie the activity and computation in the modeled L4 circuit,

and how the levels of simplification used in the model affect its performance.

Our software code, the model, and simulation results are made publicly available (see SI) to

enable further efforts in modeling in vivo activity and function.

Despite the small training set of stimuli for which our model was optimized–a gray screen

and a single grating presentation for 0.5 s–it generalized well to a large test set of stimuli. The

model reproduced major features of in vivo observations with respect to, e.g., the magnitude of

responses to gratings, orientation selectivity, prominence of gamma oscillations, long-tailed

distributions of firing rates, lifetime sparsity for gratings and movies, trends in variability of

neural responses, magnitude of cortical amplification, and effect of optogenetic perturbations

of the LGN or the Scnn1a population in L4 (Figs 3 and 4). Such an agreement across stimulus

computed for each cell as the average synaptic input over time and over all trials of the preferred orientation; see Methods), for TF = 2 Hz drifting gratings. (f)
Distribution of OSI for excitatory cells for the LL, RL, LR, and RR cases.

https://doi.org/10.1371/journal.pcbi.1006535.g006
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classes and types of observation is remarkable given that, although the model included a signif-

icant degree of biological realism, many simplifications were used: neurons possessed active

conductances only at the soma, the variety of neuron models was limited to five unique single

cell morphologies and sets of membrane conductances, synapses had no short-term plasticity,

LGN inputs were simplified, connectivity was established via simple probabilistic rules, most

known interneuron cell types [34] were absent, and, finally, and probably most importantly,

the influence of most of V1 (L1, L2/3, L5, and L6) and the rest of the brain was reduced to

extremely simple background states. This may suggest that many of L4 computations are pro-

duced by its local network, and other layers may play a primarily modulatory role–such as

gain control exerted by L6 [61]–as far as L4 activity is concerned.

Perhaps even more instructive than successes, a number of deficiencies were observed. In

terms of reproducing in vivo activity, the most important issues were the absence of direction

selectivity and too fast responses to full-field flashes (Fig 3B and 3E). Both appear to be due to

the extreme simplicity of the LGN inputs–in particular, the absence of sustained LGN

responses in the model. This provides an immediate direction for improving the model, espe-

cially based on the more recent experimental results [23], which is the aim of ongoing work on

the next model generation.

In applying the model to study mechanisms underlying the operation of the L4 circuit (Figs

4 and 5), we found the following principles. Tuning in L4 cells arose from combination of con-

vergent LGN inputs, but to reach physiological levels of selectivity, the functional like-to-like

connectivity was essential (Figs 4D, 5 and S7B). This suggests that like-to-like rules, experi-

mentally observed in L2/3 [25, 26, 24, 29], are likely to be found in L4 as well, and may play an

essential role in determining functional information processing in the cortex. The amplifica-

tion of excitatory current due to recurrent connections was by 2-3-fold (Fig 4A, 4B and 4C),

in quantitative agreement with experiment [17], and was linear [58, 59] along the contrast

dimension, but highly non-linear along the orientation dimension (Fig 4C). Despite this

strong excitatory amplification, the whole circuit was controlled by even stronger inhibition,

which readily shut down the activity in the absence of the LGN input [18] (Fig 4E).

Another insight again followed from a model deficiency: the cortical component of the

excitatory current (“Sub”) was orientation-tuned, but poorly modulated in time (Figs 4B and

S7A), whereas in the experiment it was modulated at the grating frequency and matched the

phase of LGN input [17]. The like-to-like connectivity we used enables orientation tuning of

the “Sub” current, but does not take phase into account. Thus, for a given target cell, all source

cells supply different phases, explaining why the “Sub” current was not modulated at the grat-

ing frequency. The fact that in the experiment it is modulated in phase with LGN current sug-

gests more sophisticated like-to-like connectivity rules that include information about phase

[17]. This is consistent with data from L2/3 [25, 24] showing that similarity in orientation pref-

erence is a good but not only predictor of connectivity and with theories (e.g., [28]) that lateral

connections optimally enhance features such as extended lines.

A further simplification of our network model, replacing all biophysical neurons by LIF

units, preserved most general trends in features of neuronal activity, but quantitative agree-

ment with experiment suffered. The levels of orientation selectivity and sparsity of responses

were altered (Fig 6B, 6D and 6F). The oscillations at the level of population activity were elim-

inated when instantaneous synaptic kinetics was used and partially rescued with non-instanta-

neous synapses (Fig 6C). Although further exploration is necessary to find out how one can

match the oscillations spectrum of the biophysical model with a simpler network model, this

result supports the importance of synaptic kinetics for generating oscillations (e.g., [11, 14]).

Perhaps the most substantial difference with the biophysical model was observed in the magni-

tude of cortical amplification (Fig 6E), hinting that mechanisms shaping activity and
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computation in the L4 circuit may not be well represented by these simpler models. Overall,

however, it is clear that the simplified models captured well the major aspects of network

dynamics.

This suggests that in many cases more complex models may not be necessary to gain impor-

tant insights about brain networks or to fit the relationship between visual stimuli and neuro-

nal responses (just like in the stationary domain, a single hidden-layer network containing a

finite number of neurons can approximate any measurable function under some mild assump-

tions [62, 63]). However, it is likely that neuronal point-model approximations will be insuffi-

cient to capture dendritic nonlinearities, such as synaptic saturation, veto-type inhibition,

NMDA or calcium spikes and so on, that may be critical to neuronal selectivity and plasticity.

For the discrepancies that we did observe, many reasons are possible. These include, for

example, dendritic filtering and distinct distributions of synapse types over dendritic trees in

the biophysical, but not all-LIF models; imperfect match of synaptic kinetics (the IntFire1

model used instantaneous synapses and IntFire4 a mixture of single- and double-exponential

synapses, by contrast to double-exponential synapses of the biophysical case, see Methods);

and much more sophisticated somatic mechanisms in the biophysical model (mostly Hodg-

kin-Huxley based [31], as opposed to simple integrate-and-fire mechanisms in both IntFire1

and IntFire4), which enabled spike adaptation, after-spike hyper- and depolarization, and

other nonlinear phenomena. Exploring how these different factors contribute to specific dif-

ferences under systematic, data-driven constrains of our model network is an exciting direc-

tion for future studies, which will be enabled by the code and model data that we publicly

share (see SI). For example, if IntFire1 and IntFire4 are not sufficient to capture all aspects of

dynamics and mechanisms, would the performance improve substantially in the case where all

neurons are still represented as points, but are supplied with Hodgkin-Huxley mechanisms?

This could shed light, for example, on roles of synapse distributions over dendritic arbors.

There are also neuron models that employ much simplified mechanisms that can account for

such phenomena as spike adaptation or dendritic computations (e.g., [64, 65, 66]), and such

models may furnish a better match with the biophysical simulations and experiments.

Furthermore, although we observed mismatch in certain features between the all-LIF and

biophysical models, we cannot claim the all-LIF models are incapable of reproducing these fea-

tures. A different optimization procedure than our relatively straightforward training on a

small dataset (a short trial of grating and another of spontaneous activity, see Methods) could

result in a better match. These considerations, and the fact that we did obtain mostly consistent

results, support broad applicability of point-neuron models. Similar conclusions were reached

in another recent study [30], even though their coarse-graining approach was different (the

simpler model was optimized to match results of the complex model, whereas we optimized

both the simple and complex models to match experiment) and the point neuron models were

more complex than ours (the “Generalized Integrate-and-Fire” model vs. our simple Leaky

Integrate-and-Fire model). Thus, while our results exhibiting, e.g., a poor match of cortical

amplification, show that it is important to exercise caution in applying simplified models espe-

cially when one attempts to gain quantitative understanding of mechanisms, it is likely that

point-neuron models will be sufficient to describe major qualitative features of cortical

networks.

Ultimately, it is useful to apply a variety of multi-granular modeling techniques to study

brain circuits–from abstract multi-layered, machine learning networks to population coding

statistical models, point models, and biophysically detailed models reported here [67, 68]. As

mentioned above, we here describe the biophysical model as it is the easiest to directly inter-

pret in terms of biological variables that can be queried experimentally and that yields a
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concise summary of our present-date understanding of the anatomy and the physiology of L4

(and the limits of this knowledge).

Methods

Ethics statement

All experiments, animal treatment and surgical protocols were carried out with authorization

from the Institutional Animal care and Use Committee of the Allen Institute in accordance

with the Public Health Service (PHS) Policy on Humane Care and Use of Laboratory Animals.

Code availability

The software code used to build models, perform simulations, and perform analysis is included

in this published article in its supplementary files and at https://github.com/AllenInstitute/

arkhipov2018_layer4.

Model building and simulation details

All simulations were performed with the parallelized code (available in Supplementary Files)

written in Python 2.7 and employing NEURON 7.4 [36] as a simulation engine. Simulations

were carried out typically on 120 CPU cores (Intel Xeon CPU E5-2620 v2, 2.10GHz; 128 GB

RAM per a 24-core node), requiring ~1 hour to simulate 1 s. Visual stimuli for the simulations,

as well as experiments (see below), were chosen primarily from the stimulus set in the Allen

Brain Observatory [69].

Network composition. The network model was constructed from five biophysically

detailed models of individual neurons [31] from an early version of the Allen Cell Types Data-

base [32], and two models of leaky-integrate-and-fire (LIF) neurons (one for excitatory type

and one for inhibitory type). The biophysical models employed passive conductances in the

dendrites and 10 active conductances in the soma, including Na+, K+, and Ca2+ conductances,

as described in detail in [31]. The five models represented three types of excitatory L4 neurons

(expressing the genes Scnn1a, Rorb, and Nr5a1) and two types of fast-spiking parvalbumin-

expressing (PV) interneurons. Cells expressing these markers comprise the majority of neu-

rons in L4 of V1. These models consisted of 264 (Scnn1a), 141 (Rorb), 101 (Nr5a1), 121 (PV1),

and 91 (PV2) compartments. The LIF neuron models were implemented using the IntFire1()

function of NEURON, which contains two parameters–the time constant and the refractory

period–and employs instantaneous “charge-dump” synapses. The time constant of LIF neu-

rons was set to the average time constant from the corresponding biophysical models (from

Scnn1a, Rorb, and Nr5a1 for the excitatory LIF neuron and PV1 and PV2 for the inhibitory

LIF neuron); the refractory period was 3 ms for both LIF models. All the models are available

in the Supplementary Files (see SI).

The 45,000 cells in the network model were distributed as follows: 3700 for Scnn1a, 3300

for Rorb, 1500 for Nr5a1, 800 for PV1, 700 for PV2, 29750 for excitatory LIF, and 5250 for

inhibitory LIF. The cells were distributed in a cylinder 100 μm in height; the biophysical cells

occupied the inner core with the 400 μm radius, and the LIF cells, the outer shell with the radii

from 400 μm to 845 μm.

Three independent models were generated using different random seeds. These three mod-

els were used for each connectivity case (LL, LR, RL, and RR, see Main Text). For each model,

the recurrent connectivity and synaptic weights (see below) differed across the LL, LR, RL, and

RR cases, since different connectivity/weight rules were applied; everything else was identical

across these four cases.
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Connectivity within the network. For the purposes of establishing recurrent connections,

all neurons were considered to belong to two groups–excitatory (E; Scnn1a, Rorb, Nr5a1, and

excitatory LIF) and inhibitory (I; PV1, PV2, and inhibitory LIF). Four types of connections

were established: E-to-E, E-to-I, I-to-E, and I-to-I. The probability of connection was chosen

as a product of a function dependent on the distance between the somata of the two cells and

the function dependent on the difference of the assigned preferred orientation angle (see Fig

1). The latter function was constant, 1.0, for E-to-I, I-to-E, and I-to-I, whereas for E-to-E it dif-

fered depending on the model we assumed. The models with like-to-like connection probabil-

ity (LL and LR, see Main text) employed a linear function, starting at 1 for the zero difference

in the preferred orientation angle, and equal to 0.5 at 90 degrees difference; for the models

with random connection probability (RL and RR), the function was set to one. The distance

dependent function was linear, with the peak at zero distance (0.34 for E-to-E and 0.26 for E-

to-I in the case of LL and LR models; 0.255 for both E-to-E and E-to-I in the case of RL and RR

models; and 1.0 for I-to-E and I-to-I in all cases). The linear decay was determined by the dis-

tance at which the function became zero (300 μm for E-to-E and E-to-I, and 160 μm for I-to-E

and I-to-I). For established connections, the number of synapses was selected randomly with

uniform probability between 3 and 7 (see, e.g., [2, 70]).

The numbers of synapses from different sources per neuron are not well established for the

mouse visual cortex, but are known approximately for cat [44], where, for the L4 excitatory

cells (spiny stellate cells projecting to L2/3 or L4, and for pyramidal cells), the number of

incoming synapses is ~5,000–7,000. Out of those, e.g., for pyramidal cells, ~1,100 synapses

come from L4 excitatory cells, ~2,550 from excitatory cells in other layers, and ~2,000 are

excitatory with unassigned source. Assuming the same distribution of sources for unassigned

synapses, one can expect that ~1,700 excitatory synapses are from L4 sources. Note that the

number of synapses from LGN is ~100–150 in the cat cortex [44, 71]. Converting these num-

bers to fractions, one finds that ~25–30% of all synapses are from the L4 excitatory sources,

55–60% from other excitatory sources, and 15–20% from inhibitory sources. For the inhibitory

cells in L4, the fractions are similar, but the total number of synapses is smaller (~3,250 synap-

ses for basket cells).

We assumed similar fractions for the mouse visual cortex, except the number of synapses

from the LGN, for which we experimentally found a much larger number, ~1,000 per cell (see

Main Text). Assuming somewhat smaller number of synapses for mouse cells than for cat cells,

we posited (Table 1) for the purposes of our model that pyramidal cells in L4 of V1 receive

~6,000 synapses total, with ~1,000 (17%) coming from LGN, ~2,000 (~33%) from L4 excit-

atory sources, and ~400 (~7%) from L4 PV+ inhibitory sources. The rest was not modeled

explicitly (except for the background, see Main Text and below), as it comes from other L4

inhibitory sources (PV- interneurons–presumably, another 7%, i.e., ~400 synapses) and from

excitatory sources from other layers and brain regions (~2,200, i.e., 36%), both of which were

not represented in the model. For the synapses from the LGN, we did not model explicitly all

the LGN cell types (see below), and thus restricted the number of LGN synapses to ~600 out of

the expected 1,000 total. For simplicity, we assumed numbers for synapses from LGN and L4

neurons to the PV+ cells to be similar in our model to the numbers used for pyramidal cells.

Due to the randomness of connections and of the number of synapses per connection, the

actual number of synapses from L4 sources for each cell varied within ~10% from the average

(S1A Fig).

Table 1. Assumed average numbers of synapses per an excitatory cell in L4 of mouse V1. See text for details.

From LGN From L4 excitatory cells From L4 PV+ interneurons From L4 PV- interneurons From neurons in other layers and brain regions Total

1,000 2,000 400 400 2,200 6,000

https://doi.org/10.1371/journal.pcbi.1006535.t001
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Thus, each cell in our simulations received on average ~3,000 synapses from other excit-

atory and inhibitory cells in the L4 model and LGN sources. After building our models, includ-

ing connectivity, we found that, for recurrent connections among the L4 cells, excitatory

neurons received connections from 490 +/- 20 and sent connections to 480 +/- 20 neurons on

average, whereas inhibitory neurons received connections from 490 +/- 20 and sent connec-

tions to 530 +/- 20 neurons on average. In addition, each cell also received a small number of

“background” synapses, as described below.

Synapses were distributed on the dendritic trees of the target cells randomly within certain

distance constraints, on the soma, basal, or apical processes, according to the literature (e.g.,

[33, 34, 44, 72, 73, 71, 74, 75, 53]). Namely, all synapses to PV1 and PV2 cells were distributed

on the soma and basal dendrites without limitations. For Scnn1a, Rorb, and Nr5a1 cells, excit-

atory synapses from L4 and background were placed on basal and apical dendrites, 30 to

150 μm from the soma, excitatory synapses from LGN were placed on basal and apical den-

drites, 0 to 150 μm from the soma, and inhibitory synapses were placed on the soma and basal

and apical dendrites, 0 to 50 μm from the soma.

Model of background inputs. Whereas the recurrent connections within L4 and the LGN

inputs (see below) were modeled explicitly, the connections from the rest of the brain were

represented using a simple model of “background” traveling waves (see Main Text). For pro-

ducing the waves, we distributed 3,000 Poisson spike generators in the x-y space covered by

the model (the L4 plane), and drew random connections from these generators to the modeled

L4 cells if the distance between a generator and a cell’s soma was within 150 μm, allowing

between 18 and 24 such connections per cell. This approximation of a small number of con-

nections (much fewer than what is expected for incoming connections per L4 pyramidal cell

from outside L4 or LGN) was chosen for simplicity and for reducing computing expense; in

the absence of heterogeneity in the population of sources, providing a much larger number of

connections does not appear necessary.

The background sources produced Poisson spike trains from a time dependent firing rate,

f(x, y, t), which was controlled by the plane traveling waves (see Fig 2). The waves were pre-

generated from a different random seed for each simulation trial. The direction of each wave’s

movement in the x-y plane was randomly selected, its width in the direction of movement was

kept constant in time, in the perpendicular direction the wave was infinite, and its magnitude

was also constant and randomly selected to be between 5 and 15 Hz. In the absence of the

wave, f(x, y, t) for each spike generator was set to zero, and it sharply rose to the value given by

the wave’s height when the wave moved through the (x, y) location of the generator. The waves

were produced so that they rarely overlapped, and thus the firing rate of the spike generators

mostly exhibited periods of silence and periods of constant firing output, as waves swept

through each generator’s location (see Fig 2).

The utilization of background traveling waves furnished a simple and computationally effi-

cient analogue of different cortical states. To approximate physiological observations with the

choice of the wave parameters, we performed a small set of patch-clamp recordings in pyrami-

dal cells (n = 3, targeting L2/3 neurons in V1 for easiness of access) of anesthetized mice. In

the neural responses during spontaneous activity (gray screen; S1B Fig), we observed clearly

distinct intervals of rest and baseline depolarization, and found that on average the duration of

depolarized states was 700+/-300 ms and the interval between the end of one such state and

beginning of the next was 1,100+/-600 ms, overall consistent with observations illustrated in

the literature (e.g., [47, 46]). Clearly, this is only one measurement under particular conditions,

and, generally speaking, the actual characteristics of the cortical states, such as duration of the

hyperpolarized state, interval between such states, and also potentially gradations in the degree

of depolarization or hyperpolarization, would depend on the type of modulation one
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considers. These characteristics may exhibit a variety of time scales. Nevertheless, it appears

that largely these cortical states may be modulated on the time scale of 1,000 ms or longer, by

order of magnitude. Therefore, for simplicity, for the L4 model we generated background

waves that lasted from 200 ms to 1,200 ms (i.e., 700 ms on average) and were separated by

intervals of 250 ms to 1,750 ms (i.e., 1,000 ms on average)–both parameters being drawn ran-

domly for each wave from uniform distributions. The spatial extent of each wave was set to

2,000 μm, and the propagation speed was set based on that and on the randomly selected dura-

tion of the wave.

The remaining parameters were the number of synapses per connection from a spike gener-

ator to a L4 cell and the conductance amplitude of these synapses at the synapse site. The

amplitudes were set to a single number for cells of one type; the variation in the resulting post-

synaptic potentials/currents (PSPs/PSCs) was due to varying synapse number per connection

and random placement of synapses on the dendritic tree (see below for a general description

of the choice of synaptic weights). First, the weights for the background synapses were set so

that the Vm of target cells was elevated by 10–15 mV from rest during the wave condition

(which was the amount of elevation we observed between the depolarized and rest states in the

patch clamp experiments), in purely feedforward regime in absence of any other connections.

The weights were then further adjusted to reproduce the spontaneous firing rates in the con-

text of the full network (see below).

The number of synapses per background connection was the remaining parameter that we

used to generate a long-tailed distribution of background input strengths, which we found to

be important for producing a skewed (log-normal-like) distribution of firing rates (see Fig

3A), as observed experimentally [5]. Specifically, for each L4 cell, the numbers of synapses

received from every background connection were the same, but differed between cells. These

numbers were drawn from a long-tailed distribution heavily weighted towards 1 synapse, but

permitting up to 16 synapses (S1C Fig). As a result, most L4 cells received a similar amount of

background excitation, but small fractions of cells received much higher amounts of back-

ground excitation.

Synaptic characteristics. Bi-exponential synapses (NEURON’s Exp2Syn) were used for

biophysical and instantaneous synapses for LIF target cells; the reversal potential was -70 mV

for inhibition and 0 mV for excitation. For simplicity, synapses did not employ short-term or

other plasticity rules and had a 100% release probability.

Although presence of plasticity or probabilistic release is well documented for cortical syn-

apses, especially in vitro, the role of these phenomena in functional properties in vivo is not

well understood. Short-term plasticity may be less prominent in vivo than in vitro (due to satu-

ration to baseline levels) [18], whereas the non-deterministic nature of individual synapses is

somewhat alleviated by the fact that multiple such synapses are typically present per connec-

tion. In the current study, neglecting plasticity and probabilistic nature of synaptic release lead

to significant conceptual simplifications, as well as savings in computing power. The generally

good agreement of the simulated neural activity with the in vivo experimental data (see Main

Text) suggests that the roles of plasticity and probabilistic release in vivomay be subtle and not

straightforward to analyze. Clearly, these roles are important subjects for future investigation.

As a side observation, one should note that, because the modeled synapses were determin-

istic, the synaptic weights we used are probably underestimated in terms of the conductance

values at the synapse location. However, the postsynaptic effects at the soma–peak PSPs and

PSCs–were found to be consistent with the experiment (see below).

No complete resource exists yet with a characterization of synaptic weights and kinetics in

L4 of mouse V1, and the literature on the subject of synaptic weights in general is large and

somewhat disparate in the details of experimental methods used and features recorded and
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reported (such as post-synaptic potentials, or PSPs, vs. post-synaptic currents, or PSCs, defini-

tions of time constants for PSP or PSC kinetics, etc.). Therefore, choices of synaptic weights

and time constants in our models were guided only approximately by the existing literature on

the synaptic properties of the cortex in various species (e.g., [25, 49, 51, 76, 77]), and for vari-

ous cortical areas and layers (e.g., somatosensory [51] and anterior cingulate [49] cortices).

Because of the lack of a consistent benchmark, we aimed at restricting the synaptic weights

and time constants within approximately an order of magnitude of the values reported across

a variety of experimental studies.

The kinetic parameters were fixed in the models. The Exp2Syn’s tau1 and tau2 constants

were set to 1 ms and 3 ms for excitatory-to-excitatory synapses, 2.7 ms and 15 ms for inhibi-

tory-to-excitatory synapses, 0.1 ms and 0.5 ms for excitatory-to-inhibitory synapses, and 0.2

ms and 8 ms for inhibitory-to-inhibitory synapses. These constants are related to the temporal

characteristics of PSPs and PSCs in complex ways that depend on synapse distributions on the

dendritic tree and electrical properties of the cell membrane. Therefore, the specific choices

for the values of these constants were based on single-cell modeling runs where we searched

for values that provide an approximate match with the literature about kinetics of PSPs and

PSCs. Post-hoc analysis of full-network simulations confirmed (S2 Fig) that our choices of

tau1 and tau2 resulted in PSP and PSC kinetics that was overall consistent with the literature

(e.g., [49, 51]).

The synaptic weights were allowed to be varied globally (such as, e.g., uniformly scaling

weights of all excitatory synapses on Scnn1a biophysical cells by a multiplicative constant, etc.)

at the optimization stage (see Optimization of synaptic weights below). The optimization stage

aimed at reproducing firing rates to a grating, spontaneous activity, and avoid epileptic-like

time-locked activity of all cells. Once the weights were scaled so that these aims were approxi-

mately reached, they were kept constant throughout all simulations for a given model.

The synaptic weights were given constant values for each connection type (namely, four

source types–excitatory from L4, inhibitory from L4, excitatory from LGN, and excitatory

from background–to the seven target types–Scnn1a, Rorb, Nr5a1, PV1, PV2, and excitatory

and inhibitory LIF), which for the biophysical cells corresponded to a constant value of the

peak conductance at the synapse site. For the models where like-to-like synaptic weights were

employed (LL and RL, see Main Text), the uniform synaptic weights from above were further

multiplied by a factor Fw that depended on the difference between the assigned preferred ori-

entation angle between the two cells:

Fw ¼ exp �
Dy

2

s2

y

� �

;

where Δθ is the angle difference (defined within 90˚), and σθ = 50˚ was used in all cases.

Despite weights at the synapse location being constant for most connection types, the actual

PSPs or PSCs at the soma were widely distributed, because synapses were randomly distributed

on the dendritic trees. The peak somatic PSCs for E-to-E synapses (S1D Fig), for example,

were observed in the model to be within 2 orders of magnitude, consistent with experimental

findings [5]. Their distribution on the log scale was wide–i.e., similar to a skewed, lognormal

distribution (or representable as a sum of a few lognormal distributions) described in the liter-

ature [5]. These distributions were very similar between the LL, RL, LR, and RR models, half of

which employed constant E-to-E synaptic weights and the other half used Fw-modulated

weights.

LGN filters. To enable simulations with arbitrary movies as visual stimuli, we developed a

filter layer, the output of which was used to drive the L4 model, representing inputs from the
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lateral geniculate nucleus (LGN). The linear-nonlinear Poisson (LNP; see, e.g., [40]) filters

accepted movies (x,y,t-arrays) as inputs and produced time series of a firing rate as output.

The output firing rates were taken to represent the rates of LGN neurons, which project to L4.

We used 3,000 filters each for three filter types–transient ON, OFF, and ON/OFF [6], i.e.,

representing 9,000 LGN cells. The transient types correspond to cells that produce an increase

in firing rate to transitions from dark to bright (ON), bright to dark (OFF), or both (ON/

OFF), such that the firing rate returns relatively quickly back to baseline levels after the change

in scene. For simplicity, the sustained LGN cell types [6, 41, 42], for which firing rates may dif-

fer substantially from the baseline after the initial transient (depending on the resulting bright-

ness level), were neglected. The major reason for neglecting these types and overall

representing the LGN inputs with rather simple filters was that little is known about how dif-

ferent LGN cell types combine their projections onto L4 neurons, and how properties of these

projections are correlated with functional properties of the target cells. Including these sus-

tained and other less numerous, but likely important LGN types in the model is an essential

objective for future work.

Each LGN filter was represented by one (for ON and OFF filters) or two (for ON/OFF fil-

ters) receptive subfields, which were described by the following equations (see Fig 1). The lin-

ear response, L(t), of a receptive subfield was given by

LðtÞ ¼

Z 1

o

dt

ZZ

dx dy DtðtÞDSðx; yÞSðx; y; t � tÞ;

where x and y are the coordinates in the visual space (angles), t is the time, S(x,y,t) is the input

signal (a movie), Dt(t) is the temporal kernel, and DS(x,y) is the spatial kernel. For all opera-

tions with filters, we used a linear angle approximation for x and y (that is, replacing the tan-

gent of an angle by the angle value in radians, which is approximately correct for small angles).

The double-gaussian spatial kernel (center-surround) was used,

DS x; yð Þ ¼ Ac exp �
ðx� x

0
Þ
2

þ ðy� y
0
Þ
2

2sC
2

� �

� AS exp �
ðx� x

0
Þ
2

þ ðy� y
0
Þ
2

2sS
2

� �

;

where we used AS = AC/6,σS = 2σC. The temporal kernel had the form

Dt tð Þ ¼ k t
expð�k tÞ

1� k2t2

6

:

The input signal was grayscale, represented on a 0 to 255 scale (from black to white), with a

time step of 1 ms and the pixel size of 1.25˚ in x and y (the frames were 192x96 pixels). It was

fed directly into ON-type receptive subfields, or converted to 255 − S(x,y,t) and then fed into

OFF-type receptive subfields. The linear response L(t) was then combined with the baseline

rate R0 and passed through a rectifying nonlinearity, resulting in the firing rate:

RðtÞ ¼ maxðR
0
þ LðtÞ; 0Þ:

For the ON/OFF filter, R(t) from the ON and OFF receptive subfields were summed, and

the mean of the corresponding R0 values was subtracted, to produce the final R(t) output.

The resulting firing rate R(t) was converted to spike trains using a Poisson random process,

independently for each LGN filter (Fig 7A). The firing rate exhibited a transient at the begin-

ning of each visual stimulus, due to transition from no visual stimulation to a movie. To avoid

this artefact, we always prepended 500 ms of full-field gray screen to a movie used as a visual

stimulus, and replaced the resulting first 500 ms of R(t) simply by R0.
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The centers of the individual filters, (x0,y0), were distributed randomly in the visual space,

limited to approximately 130˚ x 90˚. The two receptive subfields of each ON/OFF LGN cell

were displaced with respect to each other (in random direction in x, y for each ON/OF cell), so

as to enable orientation selectivity. Aside from that, the filters were axially symmetric, resulting

in no orientation or direction selectivity. The temporal and spatial frequency (TF and SF)

selectivity was thus primarily determined by the constants σC, σS, and k in the spatial and tem-

poral kernels.

A new set of filters has been created for each of the three instantiations of the LL model

type. These three instantiations of filter sets were then used for the three models within the LR,

RL, and RR types.

The values of parameters for the filters were chosen randomly with a uniform probability

within certain range (S1 Table). The ranges were selected to produce approximately the same

preferred SF and TF (0.05 cycles per degree, or cpd, and 4 Hz, respectively) across filters,

which is approximately in the middle of the typical preferred SF and TF range in real LGN

Fig 7. LGN filters. (a) Example responses of a single filter to visual stimuli, as a time-dependent firing rate that is the filter output (blue) and the firing rate
computed from generated spike trains, averaged over all trials (green). The panel for images contains responses to 10 images shown in a sequence, 250 ms each. (b)
F0 and F1 components of the responses to gratings for two example LGN filters. Tuning curves to orientation, SF, and TF are shown. The data points are averages
from generated spike trains over time and over trials. (c) Connecting LGN filters to L4 cells. Geometry in the visual space is illustrated. The left panel shows
centers of all filters present in a portion of the visual space around the mapped position of an example excitatory cell from L4. The dashed lines correspond to the
“lasso” subfields around one illustrative L4 cell, used to capture input LGN filters of the ON, OFF, and ON/OFF type. The filters that are selected to send inputs to
this L4 cells are in deep color; all other filters are dimmed. On the right, the same L4 cell with the filters selected to provide inputs to it are shown. For the filters,
the approximate size of their receptive subfields is illustrated (a single subfield for ON or OFF filters and two subfields for ON/OFF filters; the radius of each RF
circle is 2σC). (d) Convergence of LGN connectivity onto L4 cells that are not connected to each other (“No con.”), one-way connected (“One-way con.”), and
reciprocally connected (“Reciprocal con.”). For each pair of L4 cells, the LGN convergence is defined as the number of LGN filters that connect to both cells
divided by the sum of the numbers of LGN filters connected to each of the cells. The data are aggregated from three L4 models.

https://doi.org/10.1371/journal.pcbi.1006535.g007
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cells [7]. Although real LGN cells exhibit a wide range of preferred SF and TF values, we used

the above simplification in order to avoid complexities of how different information process-

ing channels with different SF and TF tuning converge on the L4 cells, as these aspects of feed-

forward connectivity from LGN to V1 are largely unknown. The specific choice of parameters

also allowed for relatively wide tuning over SF and TF for our LGN filters, even though the

peak was almost always at SF = 0.05 cpd and TF = 4 Hz. This is generally consistent with exper-

imental observations, where most LGN cells exhibit smooth progression of diminishing

responses away from preferred SF and TF, rather than very sharply tuned responses [7].

The above requirements were used to select values of σC and k. The baseline firing rate, R0,

was selected to conform approximately to the levels of spontaneous activity exhibited by LGN

cells [7] (S1 Table). The remaining free parameter, Ac, was selected so that the maximal

observed F0 component (see below) of the responses to gratings was 11–12 Hz (S1 Table), also

approximating experimental findings [7]; +/-10% variation was allowed for this parameter.

It should be noted that for this parameterization and for the analysis described below we

used the definitions of the F0 and F1 components of responses to drifting gratings following

Ref. [7]. Specifically, we used the cycle-averaged firing histograms for each cell (using the cycle

period of the drifting grating stimulus); F0 was the mean rate computed from the histogram

and F1 was the absolute value of the Fourier component at the frequency of the drifting grating

stimulus (i.e., for a sine function, a + b sin(ωt), F0 = a and F1 = |b|).

Response properties of instantiated filters were analyzed and are presented in S1 Table.

Example responses of a transient ON and transient ON/OFF filters to gratings, in terms of tun-

ing to orientation, SF, and TF, are also shown in Fig 7B (responses of transient OFF cells are

very similar to those of transient ON cells, except being inverted with respect to dark vs.

bright). These analyses show that indeed the filters are not selective to the orientation and

direction (except for F1 responses for transient ON/OFF cells), and are tuned almost exclu-

sively to SF = 0.05 cycles per degree (cpd) and TF = 4 Hz. However, the SF and TF tuning of

individual cells (Fig 7B) is relatively broad, as intended.

Supplying inputs from LGN filters to L4 neurons. Feedforward connections from

groups of LGN filters to the L4 cells were created based on shared retinotopy. Whereas the

LGN filters were defined in the visual space, the L4 cells were not, and for connecting them we

introduced retinotopy in the L4 model by mapping the x, y coordinates (i.e., the plane of the

layer) in the space of L4 cells to the x, y positions in the visual space. The center of the L4

model was assumed to correspond to the center of the visual space (i.e., center of the eye field).

The positions were mapped using the conversion factor (from physical to visual space) of

120˚/mm in x and 50˚/mm in y, following the experimental observation that representation of

azimuth and elevation on the surface of mouse V1 differs in length scale approximately by a

factor of 2 [78]. With this mapping, each L4 cell was assigned an x,y position in the visual

space.

To connect LGN cells to L4 cells, we created separate “lasso” subfields for each of three

LGN types (transient ON, OFF, and ON/OFF), independently for each L4 cell (Fig 7C; see also

Fig 1 in Main Text). As above, a linear angle approximation was used here. The three subfields

were positioned around the visual-space x, y location of the L4 cell. The lasso subfields for

inhibitory L4 target cells were bigger, more symmetric, and more overlapping than those for

excitatory target cells, since experimental studies show that receptive fields of fast-spiking

interneurons tend to be larger than those of excitatory cells in L4 and L2/3, and orientation

selectivity of fast-spiking interneurons is also significantly lower (see, e.g., [79]). Specifically,

for target L4 cells of PV1, PV2, and inhibitory LIF types, all lasso subfields were centered at the

L4 cell’s position and were circular, with the diameter randomly selected from the range [15˚,

20˚]. For the excitatory target cells, the ON/OFF lasso subfield was centered at the L4 cell’s
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position and was circular, whereas centers of the ON and OFF subfields were equidistant from

the center, separated by an offset distance chosen randomly from the range of [10˚, 11˚] (thus

enabling orientation selectivity and preference for a particular SF). These subfields were ellip-

soidal (of equal size for a given target cell), with the ellipse aspect ratio being selected randomly

from a range of [2.8, 3.0]. The ellipse minor radius was chosen randomly from the range [3˚,

4˚], and the major radius was computed by multiplying the minor radius by the aspect ratio.

The minor axis was oriented along the line connecting the center of the two subfields. The

ON/OFF subfield radius was equal to the minor radius of these ellipses.

For the excitatory L4 target cells, the choice of the direction in which the ON and OFF lasso

subfields were positioned (Fig 7C) was determined by the assigned preferred orientation angle

that was set for each L4 cell at model construction. The angle between the vector connecting

the centers of the ON and OFF subfields and the (1, 0) vector in the visual space was chosen to

coincide with this assigned preferred orientation angle. Note that the actual preferred orienta-

tion angle was determined by the network activity in the simulations, and generally speaking

did differ (more or less) from the assigned one.

Once all the lasso subfields were established for an L4 cell, the corresponding LGN cells

were selected based on whether centers of their spatial kernels happened to be inside the sub-

fields or not. Among those inside, a random set of LGN cells was selected, with the total num-

ber of each LGN type selected for one L4 target cell being capped at 15 for the inhibitory target

cells and at 8 for the excitatory target cells (i.e., because we used 3 types of LGN cells, the maxi-

mum number of source LGN cells was 45 for inhibitory targets and 24 for excitatory targets).

For the ON/OFF filters, an additional condition was applied during the selection of sources,

which required the axis connecting the centers of the ON and OFF subfields of selected filters

to be within +/-15˚ from the assigned preferred orientation angle of the L4 cell. In terms of

connections from individual LGN filters to L4 cells, after instantiating models we found broad

diversity in the number of target L4 cells per LGN filter, from 0 to several hundred; on average,

one LGN filter connected to 100 +/- 170 L4 cells.

Since the LGN filters used did not represent all the LGN cell types (specifically, no sustained

types [7]), we assumed that the number of synapses they provided to the L4 cells was smaller

than the total expected number of synapses from the LGN (~1,000, see Main Text). We thus

set the number of synapses per each LGN filter connected to an L4 cell to be 30, resulting in

approximately 600 synapses from the LGN for each L4 excitatory cell.

The geometric constraints above (size and separation of the lasso fields, etc.) were chosen to

reflect approximately the characteristics of the receptive fields of the LGN inputs to L4 excit-

atory cells, based on in vivomeasurements of LGN-only currents into L4 cells, resulting from

visual stimulation [17], and also taking into account typical sizes of the receptive fields of LGN

cells themselves, based on extracellular electrophysiological measurements [6]. Arguably, the

constraints we applied were representative of a typical case, but did not reflect considerable

diversity of the receptive field sizes and shapes [6, 7]. This was done for simplicity, as we aimed

to represent well the responsiveness of the LGN and L4 cells to SFs and TFs that are in the mid-

dle of typical values that evoke robust responses in vivo (SF~0.05 cpd and TF~4Hz). Introduc-

ing more diversity would require further assumptions about connectivity from LGN to L4 and

within L4, in the absence of data. Another note is that the choice of the geometry of “lasso”

subfields (high aspect ratios) may appear to contradict observations of the rather symmetrical

and highly overlapping subfields for LGN inputs to L4 [17]. However, due to the large size of

individual LGN filter receptive fields, the combined receptive subfields for the LGN inputs to

L4 cells were not extremely elongated and exhibited a certain degree of overlap (see example

on the right in Fig 7C), similar to the experimental observations.
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Responses to moving bars and optimization of boundary conditions. To check whether

orientation tuning properties of the model depend on the nature of the stimulus, we used mov-

ing bars (S4A Fig) in addition to drifting gratings (see Main Text). Four moving bar stimuli

were shown: a vertical bar moving to the right (“Ori 0 degrees”) or a horizontal bar moving up

(“Ori 90 degrees”), with a black and a white bar (on a gray background) used for each of the

two conditions as separate stimuli. Ten trials were performed for each stimulus. Spikes from

each neuron were collected from all trials for a given stimulus and binned into an average

time-dependent firing rate (with 50 ms bins). The maximum of the rate over all bins was com-

puted for each neuron to characterize its response to bars.

We found that excitatory neurons had clear preferences to the orientations of the moving

bars (S4A Fig), consistent between the white and black bars. Inhibitory neurons exhibited no

preference.

We asked whether orientation preference differed between the gratings and bars. To char-

acterize that, we selected excitatory biophysical neurons that preferred 0, 90, 180, or 270

degrees according to responses to gratings (since only horizontal and vertical movements were

sampled with bars). The neurons preferring 0 or 180 degrees were combined together as pre-

ferring horizontal movement and those preferring 90 or 270 degrees–as preferring vertical

movement. We then selected the bar stimulus that evoked the largest response for each of

these neurons according to the maximum firing rate metric described above and assigned the

neurons to two groups–preferring horizontal or vertical movement based on bar responses.

Using those groupings, we computed the difference between the preferred orientation accord-

ing to gratings and according to bars for each neuron. The difference was zero for every neu-

ron (S4B Fig). Thus, in our model, excitatory neurons exhibited strong orientation preference

to moving bars, which was precisely the same as orientation preference for drifting gratings.

By contrast to full-field drifting gratings, a bar is a compact moving stimulus that is

expected to affect neural activity unequally across the cortical surface. This property was used

at the early stages of constructing the L4 models to test boundary conditions. Models that had

biophysical neurons only, employing either a circular or square geometry in the cortical plane,

exhibited dramatic differences in the numbers of connections per cell between the center and

the periphery (due to the sharp boundary). Using a square geometry with periodic boundary

conditions for connectivity, we found that responses to moving bars were smeared across the

whole cortical surface. For example, in S4C Fig (top), at t = 500 ms the bar barely reached the

first receptive fields of LGN cells projecting to the biophysical L4 cells, and at t = 1000 ms just

started moving through the retinotopic locations corresponding to the L4 cells, but these cells

started firing soon after t = 500 ms. The firing immediately engulfed the whole model, rather

than spreading over the surface following the bar’s movement. To avoid such artifacts, we

switched to a model with circular geometry and with added LIF neurons at the periphery. The

number of connections per neuron was uniform for the biophysical core in this model (they

only dropped off for LIF neurons close to the edge), and responses to bars were more confined.

In the example shown in S4C Fig (bottom), this model started responding much later than

t = 500 ms, only after the bar moved to the retinotopic location corresponding to biophysical

L4 cells, and the responses progressed roughly along the x axis with time. Thus, we subse-

quently used this geometry for all simulations.

Optimization of synaptic weights. Once the models have been constructed, including

the L4 network, LGN inputs, and background inputs, we fixed all the parameters except the

synaptic weights. The weights were then optimized manually in an iterative fashion, where at

each iteration a uniform scaling was applied to all weights belonging to a particular connection

type. For example, weights of all excitatory-to-Rorb connections would be scaled equally at

one iteration, and weights of inhibitory-to-Nr5a1 connections at another. The weights from
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LGN inputs were adjusted to produce experimentally observed LGN excitatory currents [17]

(in the absence of recurrent connections and background). The background weights were

scaled so that the firing rates of L4 cell populations in a background-only case were close to

(slightly lower than) the target spontaneous firing rates. Finally, the recurrent weights were

optimized in the context of a fully connected network with all inputs (the most difficult step).

This part of optimization was limited to two training stimuli–a single trial of a drifting grating

and one of a gray screen, 500 ms each. The targets for training were the mean spontaneous fir-

ing rates and the rates in response to the preferred grating (Rmax) of each cell population; we

allowed 0.5 Hz deviation from the target for the spontaneous rate and 1 Hz deviation for Rmax.

Another constraint was to avoid synchronous epileptic-like activity. After the optimization

was finalized, all the model parameters were frozen, and the model was applied for further sim-

ulations of all other stimuli, which were used as a test set.

After models were optimized and simulated, we extracted a subset of synaptic connections

(n = 100, each containing 3 to 7 synapses, as explained above) from each model for each con-

nection type (E-to-E, E-to-I, I-to-E, I-to-I). We computed the PSCs and PSPs in voltage clamp

and current clamp, respectively, and analyzed their peaks and time course (S2 Fig). For the

current clamp measurements, current was not injected, thus allowing for characterization of

synaptic properties near cell resting voltage. The voltage clamp measurements employed hold-

ing voltages of -70 mV and 0 mV to characterize excitatory and inhibitory synapses, respec-

tively. For the time course characterization, we computed time to peak (time between the

presynaptic spike and the peak), rise time (time between 20% and 80% of the peak at the rise

stage), time of decay (the time constant from an exponential fit to the time course of decay,

from 80% to 20% of the peak value), and the width (width at the half-peak level).

Results of this analysis indicate that the characteristics of all PSPs and PSCs are, on average,

very similar between all the models (S2 Fig). The latter observation for the peak values is inter-

esting, as the models were optimized separately based on overall characterization of network

dynamics, and in principle one could expect bigger differences in synaptic weights (and, thus,

PSP/PSC peaks) for the LL, LR, RL, and RR models. Furthermore, characteristics of PSPs and

PSCs in the models are broadly consistent with the values reported in the literature, typically

within a factor of 2 or less (e.g., [49, 51]; one should also note differences between the cortical

regions and layers, different preparations and experimental conditions, as well as the naturally

wide range of observed values). The trends observed in the literature were reproduced as well,

such as faster dynamics of postsynaptic events in PV cells than in excitatory cells and a higher

amplitude of inhibitory synaptic currents (e.g., [49]).

Stimulation protocol. All simulations were performed with visual stimuli chosen among

drifting gratings, natural movies, natural images, moving bars, and full-field flashes (S3 Fig,

the first three are part of the stimulus set in the Allen Brain Observatory [69]). Separate simula-

tions with uniformly gray screen were also carried out to characterize spontaneous activity.

The list of all visual stimuli used for all model systems is presented in S2 Table. All stimuli

were mapped (linearly subsampled or interpolated) to 192x96 pixels and a time step of 1 ms.

Each trial was a separate simulation. Typically, 10 trials were simulated for each stimulus con-

dition, with some exceptions specified below.

Drifting gratings were square-wave alternating white and black stripes (typically at contrast

80%, although simulations with other contrasts were performed as well), drifting in the direc-

tion perpendicular to the stripes, at 0, 45, 90, 135, 180, 225, 270, or 315 degrees. For LGN filter

characterization, 240 different gratings were used, in combinations of the 8 directions listed

above, 6 SF (0.025, 0.05, 0.1, 0.2, 0.4, and 0.8 cpd), and 5 TF (1, 2, 4, 8, and 15 Hz). Due to the

high computational expense associated with running simulations of the L4 model, and because

the LGN filters were tuned to respond preferentially to SF ~ 0.05 cpd, for the full model
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simulations we used a subset of these 240 conditions. A single SF = 0.05 cpd and a few TF (typ-

ically, 2, 4, and 8 Hz) were used, with all 8 directions (S2 Table). After the initial 500 ms of the

gray screen, the gratings were presented for 2500 ms.

The gratings were named from g1 to g240 in the following manner: starting from the mini-

mal TF, SF, and direction angle for g1, the numbering increased first along the TF dimension,

then along the SF dimension, and finally along the direction dimension. Thus, for example, g1,

g2, g3, g4, and g5 were all at direction 0 degrees, SF = 0.025 cpd, and TF varying from 1 to 15

Hz; or, gratings with a given SF and TF, such as SF = 0.05 cpd and TF = 4 Hz, had numbers

that were always separated by 30 –g8, g38, g68, g98, g128, g158, g188, g218, for directions 0,

45, 90, 135, 180, 225, 270, and 315 degrees, respectively. (See Supplementary Files and S2 Table

for more details.)

Natural movies were 3 clips from the opening scene of Touch of Evil [80, 69]. After the ini-

tial 500 ms of the gray screen, the movies were presented for 4500 ms. The three clips were

named "TouchOfEvil_frames_N1_to_N2", where N1 and N2 were the first and last frame

based on the sequence from the original movie clip (these frames were 33 ms each, as the

movie was encoded at a 30 Hz rate; the clips used for simulations were upsampled to a 1 kHz

rate). The N1 and N2 were 1530 and 1680 for the first clip, 3600 and 3750 for the second, and

5550 and 5700 for the third.

For natural images, we used 10 examples taken from the Berkeley Segmentation Dataset

[81] and the van Hateren Natural Image Dataset [82] (see also [69]). Each trial consisted of a

3000 ms long simulation, with the first 500 ms being the gray screen, and the rest covered by

presentation of the 10 images in a random sequence, for 250 ms each, without interruption.

We carried out simulations of 100 such trials, each named "imseq_i", where i was 0 to 99

("imseq" standing for “image sequence”).

Moving bars were single white or black stripes on gray background, moving with constant

velocity in a direction perpendicular to the stripe. Four conditions were assessed–a black or

white vertical bar moving from left to right, and a black or white horizontal bar moving from

bottom to top. The bars were approximately 4 degrees wide and moved with a velocity of 33.8

degrees per second. These simulations were named "Bbar_v50pixps_hor", "Bbar_v50pixps_-

vert", "Wbar_v50pixps_hor", and "Wbar_v50pixps_vert".

Two types of full-field flashes were used (named "flash_1" and "flash_2"). For type 1, the

screen was gray from 0 to 1000 ms, white from 1000 to 2000 ms, and gray again from 2000 to

3000 ms. For type 2, the screen was gray from 0 to 600 ms, white from 600 to 650 ms, and gray

again from 650 to 1500 ms.

Spontaneous activity was measured during 1000 ms long presentation of gray screen. Typi-

cally, 20 trials were used. These simulations were named "spont".

All analysis generally disregarded the first 500 ms of each simulation, as an equilibration

period (with gray screen presented as a visual stimulus during this time in all cases).

For computational efficiency, a core set of stimuli from those described above was used for

all systems (three cases each of LL, LR, RL, and RR), whereas the rest were applied in a targeted

manner, primarily for the LL system (S2 Table). Out of those, the richest set of stimuli was

applied to model 2 of the LL type (“LL2”).

The LGN filter and background source projections to the L4 cells were generated indepen-

dently for the 3 models of the LL type and then reused for the 3 models each of the LR, RL, and

RR types. The same procedure was applied to recurrent connections for LL and LR cases, as

well as for RL and RR. Furthermore, each trial of visual stimulation was accompanied by an

independently generated trial of the background activity. These were generated independently

for the 3 models of the LL type, and then applied consistently to the 3 models of the LR, RL,

and RR types. Thus, for example, the LGN and background feedforward connections, as well
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as LGN and background spike trains incoming to the L4 cells on a particular trial of a given

visual stimulus, were exactly the same between the models LL2, LR2, RL2, and RR2, but differ-

ent from, e.g., LL1 or RL3.

Modeling optogenetic perturbations. A number of simulations was performed to mimic

the effects of optogenetic manipulations (see below for experimental details). The experimental

optogenetic perturbation involved silencing of Scnn1a cells expressing ArchR through applica-

tion of yellow light. To model such a perturbation, we injected hyperpolarizing current into

somata of cells in our simulations (S8 Fig). We selected the cell type to be directly perturbed

(typically Scnn1a), and a fraction of the cells in this cell type (all the cells in the cell type that

were outside of this fraction did not receive current injections), and applied the current injec-

tions to those cells.

Since the light spot used in the experiments was ~2 mm in diameter, in most simulations

we applied perturbation over the whole area of our model (which was ~1.7 mm in diameter),

including the LIF neurons. In a subset of simulations LIF neurons were not affected (this dif-

ference did not qualitatively affect the observed trends). Delivering direct current injections to

LIF neurons was not supported in the NEURON implementation we used, and thus we opted

for adding inhibitory synapses to LIF neurons that were selected for optogentic perturbations.

A single such synapse was added to each silenced LIF neuron, and received a Poisson spike

train at 100 Hz frequency. The synaptic weight was calibrated to result in the reduction of the

LIF neuron’s firing rate similar to that effected by a -100 pA current injection to the soma of

biophysically detailed cells in a benchmark simulation. To represent different current injec-

tions, we linearly scaled the synaptic weights for these synapses on the LIF neurons. The LIF

neurons were selected for receiving such perturbation based on the fraction of cells repre-

sented by the perturbed cell type and the fraction of cells selected for perturbation within the

type. For example, Scnn1a constituted 43.5% of all excitatory biophysical neurons; if we were

applying optogenetic perturbation to 20% of Scnn1a biophysical cells, then we correspond-

ingly applied perturbation via inhibitory synapses to 8.7% of all LIF excitatory cells.

The modeled optogenetic manipulation was applied at the beginning of the simulation and

was maintained throughout the simulated time. For the majority of these simulations, the

injection current levels were -30, -50, -100, and -150 pA, whereas the fraction of the Scnn1a

population receiving such injections were 20, 50, and 100% (see S2 Table).

Optogenetic silencing of the LGN [18] (Fig 5D) was modeled by eliminating all spikes com-

ing from LGN filters starting at a desired time. For this study, such a time was always set to

1000 ms from the beginning of a simulation.

All-LIF network simulations. To build an all-LIF version of the L4 model network, we

replaced every biophysical cell by a LIF point-neuron model, using either IntFire1() or Int-

Fire4() models of NEURON. The refractory period was kept at 3 ms. The IntFire1() and Int-

Fire4() cell models both describe membrane voltage dynamics with a single-exponential

process containing a single parameter, the membrane time constant, which was matched to

the membrane constant of the biophysical counterpart cells. All connections (i.e., the binary

adjacency matrix) were kept the same as in the biophysical model.

The synapses were instantaneous in the IntFire1() case. In the IntFire4() case, synapses

were represented using a single-exponential kinetics for excitatory connections, with the time

constant τE, or double-exponential kinetics for inhibitory connections, with time constants τI1
and τI2. Mapping synaptic kinetics for conductances at synapse location on a dendrite in a bio-

physical cell model to synaptic kinetics at a LIF cell model, with either one- or two-exponential

kinetics, is not straightforward. We used a simple approach, in which we averaged the time

course of somatic PSPs of each of our biophysical cell model from a large number of synapses

(see S2 Fig) and approximated the resulting kinetics using either one- or two-exponential
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synaptic processes in the corresponding IntFire4() cells. An additional constraint was that in

the IntFire4() model τI2 is required to be greater than τE. As a result of this procedure, the val-

ues of the IntFire4() synaptic time constants were set to τE = 1 ms, τI1 = 4 ms, τI2 = 17 ms for

excitatory cells and τE = 7 ms, τI1 = 1 ms, τI2 = 8 ms for inhibitory cells.

Next, we optimized the synaptic weights in the all-LIF networks. A training procedure

included three separate steps, each of which had the training data taken from a single trial with

a single visual stimulus. First, we scaled LGN-to-L4 synapses at the level of individual cell types

to match the firing rates observed in biophysical simulations for a drifting grating (TF = 4 Hz,

SF = 0.05 cpd, orientation 0 degrees) in the fully feedforward regime (and without the back-

ground traveling waves). Second, the same was done for the synapses from the background

sources to the L4 cells, for a single trial of spontaneous activity (gray screen). These first steps

utilized results of biophysical simulations as targets because no experimental data on firing

rates in LGN-only or background-only cases are available. Finally, the synapses for recurrent

connections were optimized for the fully connected network. This step was done in the same

way as for optimizing the biophysical networks, by scaling synaptic weights uniformly within

each cell type, the target being the experimental spontaneous activity and Rmax.

Experimental methods

Experimental characterization of LGN-to-L4 synapses. The synapse counts were per-

formed using disectors on a systematic random sampling scheme. This allows for unbiased

sampling and it has been used in other cortical areas and animal models (e.g. [83, 43]). We

cannot however identify the cell type of the post synaptic target and therefore we assume that

thalamic neurons target cell types according to the available dendrite of each cell. Though

exceptions to this rule have been found in other areas or animal models, the contribution of L5

and L6 apical dendrites to the overall dendritic length in L4 is expected to be smaller than the

dendrite from L4 neurons and one expects that it will not change substantially the proportion

of thalamic synapses onto L4 in ways that would affect the predictions of the model.

We labeled thalamic boutons with immunohistochemistry for vesicular glutamate trans-

porter 2 (VGLUT2), selected sampling sites using rare systematic random sampling and then

used the physical disector method introduced by [84] to perform the synaptic counts.

Histology: Wild type mice were perfused with fixative (2% paraformaldehyde and 0.5% glu-

taraldehyde) and a series of 60 um coronal slices through primary visual cortex (V1) was

taken, and alternating slices were processed for electron microscopy (EM) with immunohis-

tochemistry, or processed with Nissl stain for light microscopy (LM).

Slices selected for immunohistochemistry were incubated in anti-VGLUT2 antibody.

Nickel intensified diamino benzidin or silver intensified gold particles were used to visualize

the labeled elements in the electron microscope (EM). Slices were then osmicated, dehydrated

and embedded in Durcupan resin.

We used as a primary antibody anti-VGLUT2 fromMillipore, catalog number MAB5504

(lot 2322521). The secondary antibody was biotinylated-goat-anti-mouse IgG, from vector

BA-9200 (lot X0623). Anti-VGLUT2 primary antibodies label thalamic terminals in several

species including the mouse visual, somatosensory and motor cortices [85, 43] and it had been

validated in layer 4 of mouse visual cortex by co-labeling of axons that have been injected in

the thalamus [85]. The distribution of labeled terminals in this study matches the one previ-

ously observed in the cited works.

Sampling: Slices, grids, sections and sampling sites were chosen using a systematic random

sampling (SRS). A random number in the range of the number of slices was generated via

computer, and used to select target coronal slices for the EM series. A general region of interest
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in V1 was then selected based on comparison to the cytoarchitecture of the immediately adja-

cent Nissl-stained sections. This region of interest, which contained layer 4, was excised from

the EM slice, trimmed, and sectioned with an ultramicrotome at 40 nm thickness and serial

section ribbons collected onto copper grids. Labeled terminals were then examined and photo-

graphed in a Jeol 1200 EX II electron microscope using a digital camera (Gatan).

Low magnification EM images were overlaid and used to co-register the EM sections with

the LM (Nissl) images, using vasculature and cell body (soma) landmarks. The Layer 4 region

was determined by cyto-architecture, then drawn on the EM image.

Physical disector: A regular sampling grid of 45 x 45 μmwas generated within this layer 4

region, and high magnification images were taken at each of these sampling points for disector

analysis. Reference and lookup section were separated by one intervening ultrathin section so

that the disector ‘z’ dimension was 0.08 μm. Both sections were used as reference and as lookup

in order to double the sample [83, 86]. Three hundred and forty one disectors were used from

3 mice. The disectors had a size of 5 × 5 μm and at 3.6 nm per pixel. Synapses and associated

structures were classified using conventional criteria [87, 88]. The percentage of thalamic syn-

apses was calculated by dividing the number of synapses formed by labeled boutons by the

total number of asymmetric synapses (putative excitatory).

Extracellular electrophysiological recordings in vivo. All electrophysiological recordings

were performed in the left hemisphere of awake adult C57Bl/6 mice (2 to 6 months, males). A

few weeks before the recordings, mice were first implanted with a metallic headplate using

aseptic conditions and under anesthesia (see details in [7]). The day before or of recording, we

performed a craniotomy over V1 (~0.5 x 0.5 mm above the monocular portion of V1, 2.5 mm

lateral to lambda) and implanted a reference skull screw; if the day before, then the exposed

skull was sealed with Kwik Cast. On the day of recording the exposed cortex and skull were

covered with 1% agarose in saline in order to prevent drying and to help maintain mechanical

stability. Dexamethasone was given to the animals to avoid brain inflammation (2 mg/kg, sc)

and atropine to keep the respiratory tract clear (0.3 mg/kg, ip). Then, awake mice went into

the recording setup. The headplate was clamped for stability, while the animal was free to run

or remain still on a freely rotating disk. Multi-site silicon electrode arrays (imec Neuropixels)

were dipped in DiI allowing post hoc visualization of the electrode path and lowered with a

microdrive to a depth of 800–1000 μm. Reference and ground of the electrode were made

through screws implanted in the skull. To improve the stability of recorded units, we allowed

20 minutes for the electrodes to settle.

Neurophysiological signals were amplified, band-pass filtered, and acquired continuously

at 20 or 30 kHz at 16-bit resolution using an Amplipex system (Amplipex Ltd) or Open Ephys

system (open-ephys.org). The spike sorting procedure was described in detail previously [89].

In brief, algorithmic identification and unit assignment of spikes [90, 91] was followed by

manual adjustment of the clusters [92, 93]. Only units with clear refractory periods and well-

defined cluster boundaries were included in the analyses [90].

Visual stimuli were largely the same as described above for simulations. The number of tri-

als in the experiments was 50 for flashes, 10 for natural movies, and 100 for natural images.

Rates of spontaneous activity were calculated by averaging the rates of each cell over 20 non-

overlapping intervals, 500 ms long each, that were evenly distributed over 1 minute of continu-

ous gray screen presentation (20 intervals of 500 ms were used for consistency with the 20 tri-

als of gray screen presentation in simulations; see above). Moving bars were not used. Data for

drifting gratings was taken from a previously published dataset [7].

After the recording, mice were perfused and brains fixed, sectioned, and stained with DAPI

(see details of histology and imaging in [7]) for reconstruction of the electrode path to assign a

layer to each recording site.
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The laminar location of neurons was identified using histology and confirmed, when possi-

ble, by investigating the CSD depth profile of responses to full-field flashes. Putative excitatory

neurons belonging to L4 according to this annotation were used for analysis. Since L4 is thin,

and the fraction of inhibitory neurons is only ~15%, we could not obtain a sizeable number of

such neurons for L4 in our recordings. Because of that, putative fast-spiking inhibitory neu-

rons from all layers were combined for analysis.

Whole-cell patch-clamp in vivo recordings. Data of in vivo intracellular membrane

potential (Vm) was obtained from genetically defined neuron populations in cortical layer 2/3

of mouse V1 via two-photon targeted whole-cell recordings. Adult (2–4 months old, n = 2)

transgenic mice expressing a red fluorescent cytosol marker tdTomato (tdT) under the control

of the Cux2-CreERT2 promoter were used. Recordings were performed under Isoflurane (1–

1.5% in O2) anesthesia with ~7 MO glass micropipettes filled with K-Gluconate based internal

solution (containing, in mM: potassium gluconate 125, NaCl 10, HEPES 20, Mg-ATP 3, Na-

GTP 0.4, in ddH2O; 290 mOsm; pH 7.3; Alexa 488,50 μg/ml). The exposed V1 region was cov-

ered with Artificial Cerebrospinal Fluid (ACSF) containing (in mM: NaCl 126, KCl 2.5,

NaH2PO4 1.25, MgCl2 1, NaHCO3 26, glucose 10, CaCl2 2, in ddH2O; 290 mOsm; pH 7.3). tdT

expressing neurons within 100 μm– 300 μm underneath the pia surface were targeted and

patched, as described previously [94, 95, 96].

Two-photon imaging was performed using a Sutter Moveable Objective Microscope (Sut-

ter, CA USA) coupled with a tunable Ti:Sapphire femtosecond laser (Chameleon Ultra II,

Coherent USA), controlled by the open-source software ScanImage 3.8 (Janelia Research Cam-

pus/ Vidrio Technologies), to visualize L2/3 neurons in V1. Neurons were imaged with a 40x

water-immersion objective (LUMPLFLN 40XW, Olympus USA) at the excitation wavelength

of 920 nm. Electrophysiology signals were amplified with a Multiclamp 700B, digitized with a

Digidata 1440B at 20kHz, using pClamp software (Molecular Devices) and stored on a PC

(Dell, USA). Quality of the pipette was checked both electrically and optically. Pipette would

be discarded if disproportional increase of pipette resistance (Rp) occurred, which indicates

occlusion of a pipette tip. Optically checked ejection of dye under two-photon imaging was

also used to indicate whether the pipette was free of occlusion. If both the electrical and optical

measures agreed the tip is clogged, the penetration would be terminated and the pipette was

retracted and discarded.

To conduct in vivo whole-cell recordings, a clean pipette was manually advanced towards

the target neuron with a low positive pressure (~20 mbar above ambient) under two-photon

imaging with Rp constantly monitored. Pipette capacitance was compensated before patching

the cell. Standard procedures were used to rapidly form a gigaseal [94, 95, 96]. After gigaseal

formation, a brief negative pressure was used to rupture the membrane inside the tip to

achieve the whole-cell configuration. Vm was recorded under current clamp mode with series

resistance (Rseries) appropriately compensated. Spontaneous Vm activity was recorded for at

least 1–2 mins. The recordings were not corrected for the liquid junction potential.

Optogenetic manipulations and extracellular electrophysiological recordings in vivo.

We performed in vivo multichannel silicon probe recordings from the primary visual cortex of

mice as previously described [61]. Briefly, mice were anesthetized with a combination of 5 mg/

kg chlorprothixene (intraperitoneal) and 1.2 g/kg urethane (intraperitoneal); during surgery

mice were supplemented with 0.5–1.0% isoflurane. A head frame with an ~2 mm central open-

ing was mounted over V1 and the skull was thinned using a dental drill. PBS was then applied

to the thinned skull and sharpened forceps were then used to remove a small portion of skull

wide enough to permit insertion of a NeuroNexus 32-channel linear probe (A1x32-Edge-

5mm-20-177). The probe was inserted at a depth of 800–1,000 μm. PBS was then applied to

keep the craniotomy moist. Following a recovery period following probe insertion of at least
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20 minutes, visual stimuli were presented using a gamma-corrected, Dell 52 3 32.5 cm LCD

monitor (60 Hz refresh rate, mean luminance 50 cd/m2, 25 cm from contralateral eye). We

used the Psychophysics Toolbox [97] to generate and present full-field sinusoidal drifting grat-

ings (temporal frequency, 2 Hz; Spatial frequency, 0.04 cycles per degree; 2 orientations, 0 and

90 degrees; contrasts 0, 10, 18, 32, 64, and 100% contrast). Drifting gratings were presented for

1500 ms and optogenetic stimulation trials were interleaved with non-optogenetic trials. Each

trial was separated with a 3–6 s inter-trial interval using a gray screen. To photostimulate

archaerhodopsin (optogenetic trials) we used a 1 mm LED fiber with ~20 mW power output at

the fiber tip, which was placed 0.5 mm from skull above recording location (590 nm, 1 mm

diameter, Doric Lenses). The optogenetic light delivery lasted 1.9 s and started 200 ms prior to

the visual stimulus and ended 200 ms following the stimulus. Black foil (Thor Labs) was

shaped into a shield around LED and headframe in order to prevent the LED light from reach-

ing the eyes. Recordings were amplified 1,000X and band-pass filtered between 0.3 Hz and 5

kHz using an AM systems 3500. Acquisition was done at 20 kHz with a NIDAQ PCIe-6239

board using customMATLAB software (MathWorks).

Data were analyzed with custom-written software using MATLAB. Single units were iso-

lated using software provided by D.N. Hill, S.B. Mehta, and D. Kleinfeld [98]. Signals were

high-pass filtered at 500 Hz and waveforms were extracted from four adjacent electrode sites.

Spikes were defined as events exceeding 4–5 standard deviations of the noise. Waveforms were

clustered using a k-means algorithm and further aligned using a graphical user interface.

Fisher linear discriminant analysis and refractory period violations were used to assess unit

isolation quality. Units were assigned a depth based on the channel in which they showed the

strongest signal. In this work, only the data corresponding to drifting gratings with 100% con-

trast was used.

The following mouse lines were used for in vivo extracellular recordings: Scnn1a-Tg3-Cre

(stock number: 009613; B6;C3-Tg(Scnn1a-cre)3Aibs/J) and Ai35(RCL-Arch/GFP) (stock

number: 012735; B6;129S-Gt(ROSA)26Sortm35.1(CAG-aop3/GFP)Hze/J).

Data analysis

Data analysis was performed on all simulations carried out for a given stimulus, as described

in S2 Table. That typically involved at least two independent models (usually three models)

and multiple trials. Data from these multiple models and trials were typically combined

together to produce summary plots.

Summary figures that present box plots of various analyzed quantities adhere to the follow-

ing standard. The box bottom and top represent the lower boundary of the second quartile of

the data and the top boundary of the third quartile, respectively, thus marking the inter-quar-

tile range (IQR); the median is shown in red. Whiskers mark +/-1.5 IQR from the bottom and

top of the plot, as long as there are data points in that range. The rest of the data (outliers) are

shown as separate dots or other symbols. In cases when the plot range does not include the

whole span of the data (which was sometimes necessary due to the log-normal-like distribu-

tion of the data points over several orders of magnitude), the outliers outside of the plot range

are indicated by an arrow. The numbers next to such arrows (“N1/N2”) indicate the number

of such outliers (N1) and the total number of data points (N2). The mean and s.e.m. of the

data are shown on these plots as circles with error bars (thick black lines).

Computation of the features of firing rate responses. Spontaneous activity was charac-

terized by analyzing the responses of cells from 20 gray screen trials, each 1,000 ms long. For

each cell, the spikes from the second 500 ms of every trial were used to compute the firing rate,

which was then averaged over trials.
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The maximal response to gratings (Rmax), the orientation selectivity index (OSI) and the

direction selectivity index (DSI) were computed using responses to drifting gratings (disre-

garding the first 500 ms of the gray screen). First, the firing rate for each cell was obtained,

using spikes from the 2,500 ms of grating presentation, and averaging over all trials. This rate

was computed separately for every grating condition. The Rmaxmetric for each cell was the

maximal firing rate among all conditions.

Following [7], we used the firing rate directly to compute the OSI and DSI (i.e., without

subtracting the spontaneous rate). The analysis was performed for each cell independently.

For each orientation, an average response across all SF and TF was computed, and the orienta-

tion that corresponded to the greatest averaged response was assigned as the preferred orienta-

tion of the cell. The SF and TF that evoked the strongest response at the preferred orientation

were then considered as preferred frequencies. OSI and DSI were computed using the

responses at all orientations for these preferred SF and TF. The OSI was computed as one

minus the circular variance,

OSI ¼
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where k is the index for summation over all directions θk, and fk is the firing rate response for

each direction. The DSI was computed as

DSI ¼
fpref � fnull

fpref þ fnull
;

where fpref is the firing rate response at the preferred direction (θpref) and fnull is the response at

the opposite direction (θpref + π).

Responses to flashes were characterized by averaging firing rates of multiple cells in multi-

ple trials, in 2 ms bins. The number of trials was 10 for simulations and 50 for experiments.

For simulations, the averaging was done separately for each of the two models for which 50 ms

flash stimuli were simulated, and for each of the three biophysical excitatory cell populations,

resulting in 6 firing rate vs. time traces. For experiments, the averaging was done separately for

each mouse over all L4 excitatory cells, resulting in 8 traces. The peak magnitude and time to

peak from the flash onset were then computed on each of those traces for the 1st and 2nd

peaks.

Spectra of the local field potential (LFP) and of spiking activity. The extracellular

potential F was calculated along the central axis of the model (perpendicular to the L4 plane),

at locations distributed with increments of 10 μm along the axis. The extracellular potential at

the j-th location (i.e., electrode site) for a particular cell was computed as Fj = ∑kRjkIk, where Ik
is the membrane current through the k-th neuronal compartment and Rjk is the transfer resis-

tance between the k-th neuronal compartment and the j-th electrode site. The transfer resis-

tances were computed using the line-source approximation [99] assuming homogeneous and

isotropic extracellular conductivity of 0.3 S/m. The contributions of the individual cells to the

recordings are then summed up to find the total recorded potential at each recording electrode

site. The membrane currents were obtained with NEURON’s cvode.use_fast_imem() function

which returns the transmembrane currents without needing to utilize the computationally

expensive extracellular mechanism. The computation of the extracellular potential was imple-

mented by modifying NEURON’s advance() function—called on each time step—to include

the function call to our Python module computing the extracellular potential.

The local field potential (LFP) was obtained by low-pass filtering the simulated extracellular

potential with the 6th-order Butterworth filter, with the cutoff frequency of 200 Hz. The power
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spectra of the LFP (computed employing the fast Fourier transform) were then used for analy-

sis of oscillations in population activity. The LFP recorded at the site closest to the center of

the model was utilized for this analysis.

Power spectra of spiking activity (S7 Fig) were computed as follows. A position in space

was selected for recording; in all cases in this work we chose the center of the model for this

purpose. The signal was then computed as the inverse-distance weighted multiunit activity,

i.e., the time-binned firing rate accumulated from all neurons with the weight 1/ri, where ri is

the distance from the neuron’s soma to the recording position. The time bin of 1 ms was used.

The power spectrum was then computed using fast Fourier transform.

Both LFP and spiking activity spectra were averaged over all trials of a given stimulus.

Computation of sparsity. Sparsity of responses was computed following the definition in

[56]. The formula used was

S ¼
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where S is the sparsity, fi is the response within time bin i (we used the firing rates averaged for

each cell within each time bin over all trials for a given visual stimulus), and n is the number of

bins. This defines the lifetime sparsity for each cell, for a given visual stimulus. We used time

bins of 33.3 ms to match the frame rate (30 Hz) of natural movie stimuli.

For purposes of illustrating sparsity in our simulations, we computed lifetime sparsity for

the three natural movies and three drifting grating stimuli (SF = 0.05 cpd, TF = 4 Hz, orienta-

tion of 0, 45, and 90 degrees). Since gratings were presented for 2.5 seconds vs. 4.5 seconds for

the movies, only the first 2.5 seconds of movie responses were used for this analysis (to enable

equal comparison).

Measurement of the excitatory currents in the model. To measure the currents flowing

through the somata of biophysical cells, we used NEURON’s function SEClamp(), which pro-

vides a simple voltage clamp. Out of all 10,000 biophysical cells in a model, every 200th cell

was voltage-clamped at the soma at -70 mV, to measure the excitatory current [17]. Thus, the

currents were recorded for 50 cells in such a simulation (e.g., cell ID 2, 202, 402, 602, 802, . . .,

9802). The currents were saved from the SEClamp() objects, at each simulation time step.

For the measured current, the F0 (mean) and F1 (amplitude at the frequency of the stimu-

lus) components were obtained according to Ref. [17]. The current was averaged over trials

and then cycle-averaged. F0 was computed as the mean (over the cycle time) of the cycle-aver-

aged current. F0 was then subtracted from the cycle-averaged current, and the result was fit

with a sinusoid function at the stimulus frequency, b sin(ωt + φ), where ω = 2πν (ν being the

stimulus frequency). The F1 component value was taken as F1 = 2|b|.

For all-LIF models, we measured the contribution of LGN synaptic inputs to the total excit-

atory synaptic inputs as a proxy to the excitatory synaptic currents measured for the biophysi-

cal model. Specifically, for each spike arriving to a synapse, that synapse contributed its weight

to the accumulating sum for the target cell; the sum was computed for synapses from LGN

only or for all synapses and was normalized by time and number of trials.

Computation of the coefficient of variation of inter-spike intervals, Fano factor, and

noise and signal correlations. To study the variability of spike counts, we report coefficient

of variation, Fano factor, signal and noise correlation of spike counts for both simulation and

experiment. Each of these factors were computed separately for gratings, natural movies and

spontaneous activity.
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The coefficient of variation was defined as the squared ratio of standard deviation to the

mean of the inter-spike intervals. The data points from all trials were included.

To compute the Fano factor, we found the variance and mean of the spike counts in the 50

ms sliding window moving in 10ms steps. The Fano factor was defined as the slope of the lin-

ear regression line relating the variances to the means of spike counts in these sliding windows

in all trials [57].

The signal correlation was computed as the Pearson correlation coefficient between the

trial-averaged spike counts for each pair of neurons. For gratings, we computed the correlation

over spike counts in 8 different orientations. For natural movies and spontaneous activity, the

correlation was computed for binned spike counts in non-overlapping windows, each 333 ms

long (corresponding to 10 frames of a natural movie). The noise correlation was computed as

the Pearson correlation coefficient between single-trial spike counts for each pair of neurons,

and then averaged over stimuli (8 orientations for gratings and non-overlapping 333 ms win-

dows for natural movies and spontaneous activity).

Supporting information

S1 Fig. Model construction. (a) Distribution of the number of synapses from L4 sources onto

the five cell types in the network model. Three curves are shown for each type, corresponding

to three independent model instantiations. (b) An example trace of the membrane voltage Vm
from patch clamp recordings from V1 L2/3 cells in vivo (under anesthesia) during spontane-

ous activity. Blue portion of the trace corresponds to the data points removed from the analysis

of the state characteristics (clipped spikes). The gray stripes mark the identified rest states. (c)

Number of synapses formed on an L4 cell by a connection from a single background source.

The distribution of synapse numbers over all background connections is shown, combined

from the three independent models. (d) Distribution of peak somatic EPSC values for E-to-E

recurrent connections in all simulated models (for biophysical neurons), on the log scale. Data

for three models per system type (LL, LR, RL, or RR) are shown (see Main Text).

(TIF)

S2 Fig. Features of PSPs and PSCs for the recurrent connections. See Online Methods for

details of box plots. The features are voltage or current peak (“peak”), time from spike to peak

(“t_to_peak”), rise time (“t_rise”), decay time (“t_decay”) and the PSP or PSC width

(“t_width”). (a) Somatic PSP features. (b) Somatic PSC features. For each feature and each

model type (i.e., LL, LR, RL, or RR), the sample sizes are n = 900 for “E-to-E” and “I-to-E” and

n = 600 for “E-to-I” and “I-to-I”.

(TIF)

S3 Fig. Visual stimuli. Examples of visual stimuli used for simulations and experiments are

shown, such as (a) drifting gratings, (b) natural movies, (c) static natural images, (d) moving

white or black bars, and (e) full-field flashes.

(TIF)

S4 Fig. Responses to moving bars. (a) Responses of each biophysical neuron in one model to

black and white bars; either a vertical bar was moving in a horizontal direction (“Ori 0

degrees”) or a horizontal bar was moving in a vertical direction (“Ori 90 degrees”). The

responses shown were obtained from time-dependent firing rates (in 50 ms bins) averaged

over all trials of a given stimulus; the maximum over all bins is computed for each neuron. The

neuron IDs for each type are arranged according to the neurons’ assumed direction preference

for gratings (see Online Methods), from 0 degrees for the first ID of a type to 360 degrees for

the last (hence the pseudo-periodicity apparent in the plots). The types are Scnn1a (IDs 0 to

Visual physiology of layer 4 in silico

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1006535 November 12, 2018 39 / 47

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006535.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006535.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006535.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006535.s004
https://doi.org/10.1371/journal.pcbi.1006535


3699), Rorb (3700 to 6999), Nr5a1 (7000 to 8499), PV1 (8500 to 9299), and PV2 (9300 to

9999). (b) The difference ΔOri between the preferred orientations of a neuron according to

responses to gratings and to bars, averaged over all excitatory neurons that prefer 0, 90, 180, or

270 degrees for gratings. The averages and standard deviations are exactly zero for all three

models tested. (c) Spike rasters (left) for biophysical neurons from pilot simulations of

responses to a horizontally moving white bar, using different model layouts illustrated on the

right. For each spike, the position of the neuron along the x dimension (which coincides with

the direction of the moving bar) is plotted versus spike time. Top, a model without LIF neu-

rons, with biophysical neurons confined to a rectangular area, and using periodic boundary

conditions for connectivity. Bottom, a model with biophysical neurons confined to a cylinder,

with LIF neurons distributed at the periphery (no periodic boundary conditions)–that is, the

model layout chosen for all simulations reported in the Main Text. The approximate extent of

the receptive fields (RFs) of LGN cells that feed into the biophysical portion of the model are

marked by white dashed lines. Note that in these preliminary test simulations, the parameters

of the moving bar (its width and speed) were somewhat different from those chosen later for

production simulations.

(TIF)

S5 Fig. Additional characteristics of visual responses. (a) Distributions of skewness of firing

rates. Left, simulation; right, electrophysiological experimental recordings. (b) The PSTHs

from experimental electrophysiological recordings in response to a 50 ms flash (average over

all L4 excitatory cells or all inhibitory cells recorded, and all trials, in 2 ms bins). (c) Example

tuning curves of a single Scnn1a or PV1 cell to drifting gratings at contrasts C = 80% and

C = 10%. For the Scnn1a cell, responses normalized to the peak of the tuning curve are also

shown (middle). The data are averages over 10 trials. Error bars: standard deviation. Dashed

lines: spontaneous rate (it is close to zero for the example Scnn1a cell shown). (d) Summary

of responses to the gratings at different contrasts (C = 30% or 10% vs. C = 80%). The distribu-

tions of differences ΔHWHH = HWHH(C = 80%)—HWHH(C = 30%) (top) and ΔHWHH =

HWHH(C = 80%)—HWHH(C = 10%) (bottom), are shown for all excitatory cells, with the

average +/- standard deviation indicated. (e) Same as (d) for the differences of OSI for excit-

atory (red) and inhibitory (blue) neurons.

(TIF)

S6 Fig. Comparison of variability and correlations between simulations (left) and experiment

(right). Results of the analysis are shown for gratings (magenta), natural movies (green) and

spontaneous activity (beige). (a) Coefficient of variation of inter-spike intervals. (b) Fano fac-

tor. (c) Signal correlations. (d) Noise correlations.

(TIF)

S7 Fig. Features of the responses of the L4 circuit. (a) Temporal dynamics of current amplifi-

cation (for a TF = 2 Hz grating). The total and LGN-only currents are shown, along with their

difference (“Sub”, i.e., the cortical component); the top plot shows the inhibitory current. Data

for individual cells for the preferred direction are averaged over 10 trials; the traces are then

shifted in time (periodically with respect to the trial start and end, i.e., 500 ms and 3000 ms) so

that the phases of the LGN component are aligned across all cells. The data are then averaged

over all biophysical excitatory cells. Additional tests were performed, where LGN and back-

ground inputs to the voltage-clamped cells were eliminated (gray). In this case, the measured

current is from the L4 circuit only. This demonstrates that in simulations the oscillation of the

“Sub” component (black) is due to a space clamp artifact. (b) Comparison of the maximal

responses to drifting gratings (Rmax) and OSI between the full network simulations (“Full”)
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and the purely feedforward simulations with the inputs to L4 coming only from the LGN filters

(“LGN only”). Note that the OSIs of PV1 and PV2 cells are nominally high for the feedforward

case because the firing rates of these cells in that situation are very close to zero. An occasional

rare spike results in a “strong” response in comparison with zero responses for most trials of

most orientations, which leads to elevated OSI values. (c) Comparison of the firing rates in the

full network vs. firing rates in a purely feedforward model receiving only inputs from the

LGN. Top, an individual Rorb cell (each point is an average over time and over 10 trials). Lin-

ear fits are shown for data aggregated from all grating directions, TFs, and contrasts (black),

for one selected direction (yellow), and for a fixed contrast and TF (i.e., representing a sample

direction tuning curve; right plot). Bottom, summary of linear fits across all cells analyzed.

(TIF)

S8 Fig. Optogenetic suppression of the Scnn1a cells in the L4 circuit. (a) Summary of exper-

imental manipulations. The OMI index data are shown for each cell in all 6 experiments (col-

ors, m1 to m6) in the top plot. The bottom plot shows the same data normalized to the total

number of cells from all 6 experiments and the combined normalized distribution (gray). Note

that in the bottom plot, the curves for m1, m3, m5, and m6 fully or partially overlap. (b) Spike

rasters from two simulations–with and without optogenetic perturbation of the Scnn1a popu-

lation. In both cases, the same drifting grating is presented (TF = 4 Hz), with the stimulation

illustrated at the bottom. The hyperpolarizing current at the level of -100 pA, representing the

optogenetic perturbation, was injected in the somata of 100% of the Scnn1a cells. (c) OMI

computed across all recorded layer 4 excitatory neurons in experiments and simulations. The

experimental curve (gray; it is the same in all plots and same as in (a)) is used as a benchmark.

The simulation conditions differ between the plots (in the amount of current injected and the

proportion of cells that receive the injected current), and thus the simulation curves (black)

are different.

(TIF)

S1 Table. Parameters and properties of LGN filters. The ranges of parameters from which

values are randomly selected for each instantiated filter are shown. Properties of the filter

responses to visual stimuli are indicated for mean and standard deviation based on spike train

responses from 10 trials for gratings and 20 trials for all other stimuli. Orientation selectivity

index (OSI) and direction selectivity index (DSI) are computed separately for the F0 and F1

components of the responses to gratings.

(DOCX)

S2 Table. Simulations of the L4 models. The simulated systems (of the LL, RL, LR, and RR

types) are indicated together with the path name in the file repository. The five types of visual

stimuli, as well as spontaneous activity (“Spont.”) are listed in columns. If simulations of a par-

ticular type were performed for a given system, they are indicated together with the corre-

sponding file name suffix and the number of trials.

(DOCX)

SI 1. A zip archive containing the python/NEURON code for running simulations, along

with a simple example of a model and a simulation using that model (see instructions in

the README.txt file within the archive).

(ZIP)

SI 2. A zip archive containing software code for building L4 network models (see instruc-

tions in the README.txt file within the archive).

(ZIP)
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SI 3. A zip archive containing software code for distributing LGN filter models in the

visual space and producing LGN spike trains in response to movies, as well as for instanti-

ating background inputs (see instructions in the README.txt file within the archive).

(ZIP)

SI 4. A zip archive containing software code for generating visual stimulus movies–grat-

ings, moving bars, and full field flashes, as well as ready natural movies and natural images

(see instructions in the README.txt file within the archive).

(ZIP)

SI 5. A zip archive containing software code for analysis of simulation results (see instruc-

tions in the README.txt file within the archive).

(ZIP)

Acknowledgments

We are grateful to Gabe J. Murphy for helpful discussions. We thank the Allen Institute foun-

ders, Paul G. Allen and Jody Allen, for their vision, encouragement and support.

Author Contributions

Conceptualization: Anton Arkhipov, Christof Koch.

Data curation: Anton Arkhipov, NathanW. Gouwens, Yazan N. Billeh, Sergey Gratiy, Rama-

krishnan Iyer, Ziqiang Wei, Zihao Xu, Jim Berg, Nuno da Costa, Saskia de Vries, Daniel
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