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Abstract— Visual place recognition is a challenging problem 

due to the vast range of ways in which the appearance of real-

world places can vary. In recent years improvements in visual 

sensing capabilities, an ever-increasing focus on long-term mobile 

robot autonomy, and the ability to draw on state of the art 

research in other disciplines – particularly recognition in 

computer vision and animal navigation in neuroscience – have all 

contributed to significant advances in visual place recognition 

systems. This paper presents a survey of the visual place 

recognition research landscape. We start by introducing the 

concepts behind place recognition – the role of place recognition 

in the animal kingdom, how a “place” is defined in a robotics 

context, and the major components of a place recognition system. 

We then survey visual place recognition solutions for 

environments where appearance change is assumed to be 

negligible. Long term robot operations have revealed that 

environments continually change; consequently we survey place 

recognition solutions that implicitly or explicitly account for 

appearance change within the environment. Finally we close with 

a discussion of the future of visual place recognition, in particular 

with respect to the rapid advances being made in the related 

fields of deep learning, semantic scene understanding and video 

description.  

 
Index Terms—Visual Place Recognition. 

I. INTRODUCTION 

ISUAL place recognition is a well‐defined but extremely 

challenging problem to solve in the general sense; given 

an image of a place, can a human, animal or robot decide 

whether or not this image is of a place it has already seen? 

Whether referring to humans, animals, computers or robots, 

there are some fundamental things a place recognition system 

must have and must do. Firstly, a place recognition system 

must have an internal representation – a map – of the 

environment to compare to the incoming visual data. 

Secondly, the place recognition must report a belief about 
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whether or not the current visual information is from a place 

already included in the map, and if so, which one. Performing 

visual place recognition can be difficult due to a range of 

challenges; the appearance of a place can change drastically 

(see Fig. 1), multiple places in an environment may look very 

similar, a problem known as perceptual aliasing, and places 

may not always be revisited from the same viewpoint and 

position as before. 

 
Fig. 1.  A visual place recognition system must be able to (a) successfully 

match very perceptually different images while (b) also rejecting incorrect 

matches between aliased image pairs of different places. 

In robotics, this research topic is highly relevant given the 

ever increasing focus on long term mobile robot autonomy and 

rapid improvements in visual sensing capabilities and cost. 

Vision is the primary sensor for many localization and place 

recognition algorithms [1]–[19]. Place recognition is also a 

growing research field, as evidenced by citation analyses and a 

number of dedicated place recognition workshops at recent 

and upcoming robotics and computer vision conferences 

including the International Conference on Robotics and 

Automation (2014, 2015) and the IEEE Conference on 

Computer Vision and Pattern Recognition (2015). The 

problem of persistent place recognition has also formed a 

regular component of many more general workshops including 

the long-running ICRA workshop on Long‐Term Autonomy 

(2011 – 2014). 

Our aim in writing this survey article is to provide a 

comprehensive review of the current state of place recognition 

research that is relevant both to robotics and other fields of 

research including computer vision and neuroscience. The 

timing for such a survey is particularly fortuitous given major 

events across these related fields: for example, the almost 

universal usage of deep learning techniques in state of the art 

recognition systems in computer vision, and the 2014 Nobel 

Prize in Physiology or Medicine award to Edvard Moser, 

May-Britt Moser and John O’Keefe, who discovered the key 

representations of place in the mammalian brain. This paper 

provides an overview of the place recognition problem and its 
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relationship with many major roboti

including SLAM, localization, mapping

Because of the increasing focus in the rese

long term robot autonomy in challenging
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visual place recognition for robots.  

II. THE CONCEPT OF PLACE IN ROBOTICS 
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Place recognition, as observed via the f

is triggered by both sensory cues and self-

otics research fields 

ing, and recognition. 

esearch community on 

ing environments, we 

e problem of lifelong 

S AND THE NATURAL 

ace recognition has a 

neuroscience. In 1948, 

ats navigating mazes 

tive map – a mental 

 information about 

ls gradually learn. The 

not without its critics 

ly in psychology and 

rban planning, where 

 of a cognitive map be 

arks, and in robotics, 

een inspired by the 

successor, the spatial 

ues to record neural 

e the identification of 

’Keefe and Dostrovsky 

 particular place in the 

pulation of place cells 

. Furthermore, if a rat 

r, the same place cells 

ifferent environments. 

that these place cells 

p. The understanding 

 activity and places in 

ery of head direction 

d of grid cells [33] in 

ead direction cells fire 

cular direction relative 

multiple places in the 

ir firing fields form a 

 
the brains of animals such 

ach place cell fires strongly 

grid cell fires at multiple, 

iring locations of (a) a place 

of an animal in a square 

e firing of place cells, 

-motion [29]. Studies 

with rats show that place cell

motion, but if the environme

distance between start and en

cell will update to the cor

external visual landmarks [35]

smoothly or abruptly, dependi

Many of the same concept

have access to external observ

information. Topological an

places are used in combinatio

the most likely place, simila

place cells. Fig. 3 presents 

recognition system. Visual pl

three key components – an

interpret the incoming visua

representation of the robot’s 

belief generation module, whi

in combination with the map t

the robot is in a familiar or n

system may also use motio

inform the belief generation p

recognition systems are desig

must update the map accordin

Fig. 3.  Schematic of a visual place r

is processed by the image processin

world is stored in the map. The belie

current visual data matches a previo

also often included, and the map may

This paper discusses what q

of robotic navigation. It then

that make up the place r

processing module, the map

generation module. The pape

changing environments. It rev

image processing module, the

generation module – and in

adapted to incorporate the no

the place recognition system’s

III. WHA

The concept of places in

challenges of robotic naviga

has fallible sensors and actuat

a metrically accurate map of 

localization within such a rep

both these goals, known as 

Mapping (SLAM) [37]–[41

consistently achieve.  

An alternative approach is 

2

ell firing is initially based on self-

ment is changed - by altering the 

 end goals, for example - the place 

correct location according to the 

35], [36]. The correction may occur 

nding on the size of the mismatch.  

epts arise in robotics. Most robots 

ervation data as well as self-motion 

and metric relationships between 

tion with sensory cues to determine 

ilar to the neuronal firing of the 

ts a schematic of a visual place 

 place recognition systems contain 

an image processing module to 

ual data; a map that maintains a 

t’s knowledge of the world; and a 

hich uses the incoming sensor data 

p to make a decision about whether 

r novel place. A place recognition 

tion or transition information to 

n process. Furthermore, most place 

signed to operate online, and thus 

dingly.   

 
e recognition system. Incoming visual data 

sing module. The robot’s knowledge of the 

lief generation module decides whether the 

viously stored place. Motion information is 

ay be continually updated during operation. 

at qualifies as a place in the context 

en looks at the three key modules 

 recognition system: the image 

apping framework, and the belief 

aper then turns to the problem of 

 revisits each of the modules – the 

the mapping module and the belief 

 investigates how each has to be 

 notion of appearance change into 

’s model of the world.  
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rubbery and stretchy, rather than to try to place observations in 

a 2-D coordinate system” (Brooks, [40]). Such a topological 

map is conceptually similar to the biological notion of a 

cognitive map, and uses nodes to represent the possible places 

in the world and edges to represent the possible paths between 

these places. Robot navigation is reduced to following these 

edges between nodes and the places represent key 

intersections or decision points between routes [42], [43] as 

well as desirable end goals. 

This topological approach to navigation is not without 

difficulties. The robot has to associate these abstract routes 

and places with physical places and paths, and the complex 

relationship between the robot sensors, the robot controls, and 

the robot’s topological and metric interpretations of the world 

need to be defined [26]. Another issue is how a robot can 

generate topological maps. If the robot has access to a metric 

gridmap of the environment, it can extract topological 

information, emphasizing relevant navigation information like 

open spaces and passageways [44]. Alternatively, a 

topological map can be created by a robot from visual and 

transition information.  

The definition of a place depends on the navigation context, 

and may either be considered as a precise position – “a place 

describes part of the environment as a zero-dimensional point” 

(Kuipers, [26]), or as a larger area – “a place may also be 

defined as the abstraction of a region” where a region 

“represents a two-dimensional subset of the environment” 

(Kuipers, [26]). A place can be a fairly large two-dimensional 

physical area – for example, a room in a building might in 

some cases qualify as a single place, while in other cases it 

might contain many different places. A region could also be 

defined as a three-dimensional area, depending on the 

requirements of the environment or robot. Unlike a robot pose, 

a place does not have an orientation, and an ongoing challenge 

in place recognition is pose invariance – ensuring recognition 

regardless of the orientation of the robot within the place. 

The location of each place – whether a one-dimensional 

point or a larger region – can be selected based on spatial or 

temporal density. In this approach, a new place is added 

according to a particular time step, or when the robot has 

travelled a certain distance. Alternatively, a place can be 

defined in terms of its appearance. Kuipers and Byun [25] 

defined a place as somewhere distinctive relative to other 

nearby locations, according to some associated sensory 

information known as a place signature or place description. 

While the distinctiveness criterion is not always required, a 

topological place is defined as having a certain appearance 

configuration [45], [46] and the physical bounds of a place 

occur where the appearance changes significantly, called a 

“gateway” [47].  

This qualitative concept of topological places as regions 

that are visually homogeneous needs to be quantified – that is, 

how can a place recognition system actually segment the 

world into distinct places? Ranganathan [48] noted that there 

are similarities with the problem of change-point detection in 

video segmentation [49], [50], and used  change-point 

detection algorithms such as Bayesian surprise [50] and 

segmented regression [51] to define places within a 

topological map [48], [52]. These methods create a new place 

when the current appearance (determined from the sensor 

measurements) is unlikely according to the current model of 

the environment, and therefore a new model is required (see 

Fig. 4). Similarly, Korrapati, Courbon et al. [53] used Image 

Sequencing Partitioning (ISP) techniques to group visually 

similar images together as topological graph nodes, while 

Chapoulie, Rives et al. [54] combined Kalman filtering with 

the Neyman-Pearson Lemma. Murphy and Sibley [55] 

combined dynamic vocabulary building [56] and incremental 

topic modelling [57] to continually learn new topological 

places in an environment, and Volkov, Rosman et al. [58] used 

coresets [59] to segment the environment. Topic modeling, 

corsets, and Bayesian surprise techniques can also be used for 

other aspects of robotic navigation, such as summarizing a 

robot’s past experience [60]–[62], or determining exploration 

strategies [63].  

 
Fig. 4.  Topological place recognition systems segment the image stream into 

places based on the visual information. When a significant change is 

observed, a new place will be created. In this example (from [48]), the 

incoming image stream (top row) is segmented based on the detected change 

points. The detected places (bottom row) match closely to the different rooms 

shown by the ground truth location (middle row). 

Appearance-based and density-based place selection 

methods are practical to implement as they depend on 

measurable quantities such as distance, time or sensor values 

[64]. An ongoing challenge is the enhancement of appearance 

information with semantic labels such as “door” or 

“intersection” so places can be selected online based on their 

value as decision points. The addition of semantic data to 

maps can improve planning and navigation tasks [65], and 

requires place recognition to be linked with other recognition 

and classification tasks, especially scene classification and 

object recognition. These relationships are symbiotic – place 

recognition can improve object detection by providing 

contextual priming for object detection as well as contextual 

priors for object localization [66], and conversely, object 

recognition can also aid place recognition [67]–[70], 

particularly in indoor environments where the function of a 

place such as “kitchen” or “office” can be inferred from the 

objects within it, and used to infer the location from a labeled 

semantic map [71].  

IV. DESCRIBING PLACES: THE IMAGE PROCESSING MODULE 

Visual place description techniques fall into two broad 

categories; those that selectively extract parts of the image that 

are in some way interesting or notable, and those that describe 

the whole scene, without a selection phase. Examples of the 

first category are local feature descriptors such as SIFT [72] 

and SURF [73]. Local feature descriptors first require a 
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descriptors based on SURF features known as WI-SURF to 

perform localization and BRIEF-Gist [109] used BRIEF 

features [91] in a similar whole-image fashion.  

A popular whole-image descriptor is Gist [74], [75] which 

has been used for place recognition on a number of occasions 

[110]–[113]. Gist uses Gabor filters at different orientations 

and different frequencies to extract information from the 

image. The results are averaged to generate a compact vector 

that represents the “gist” of a scene.  

C. Describing places using local and global techniques 

Local and global descriptors each have different advantages 

and disadvantages. Local feature descriptors are not restricted 

to defining a place only in terms of a previous robot pose, but 

can be recombined to create new places that have not 

previously been explicitly observed by the robot. For example, 

Mei, Sibley et al. [114] defined places via co-visibility: the 

system finds cliques in the landmark co-visibility map which 

define places even when the landmarks have not 

simultaneously seen in a single frame, and can outperform 

standard image-based place recognition [78]. Lynen, Bosse et 

al. [115] generated a 2D space of descriptor votes where 

regions of high vote density represent loop closure candidates.  

Local features can also be combined with metric 

information to allow metric corrections to localization [2], [7], 

[76]. Global descriptors do not have the same flexibility, and 

furthermore, whole-image descriptors are more susceptible to 

change in the robot’s pose than local descriptor methods, as 

whole-image descriptor comparison methods tend to assume 

that the camera viewpoint remains similar. This problem can 

be somewhat ameliorated by the use of circular shifts as in 

[116] or by combining a bag-of-words approach with a Gist 

descriptor on segments of the image [17], [110].  

While global descriptors are more pose dependent than 

local feature descriptors, local feature descriptors perform 

poorly lighting conditions change [117] and are 

comprehensively out-performed by global descriptors at 

performing place recognition in changing conditions [118], 

[119]. Using global descriptors on image segments rather than 

whole images may provide a compromise between the two 

approaches, as sufficiently large image segments exhibit some 

of the condition invariance of whole images, and sufficiently 

small image segments exhibit the pose invariance of local 

features. McManus, Upcroft et al. [120] used the global 

descriptor HOG [121] on image patches to learn condition 

invariant scene signatures, while Sünderhauf, Shirazi et al. 

[122] used the Edge Boxes object proposal method [123] 

combined with a mid-level Convolutional Neural Network 

(CNN) feature [124] to identify and extract landmarks as 

illustrated in Fig. 7.  

 
Fig. 7. Object proposal methods such as the Edge Boxes method [123]  shown 

here were developed for object detection but can also be used to identify 

potential landmarks for place recognition. The colored boxes in the images 

above show landmarks that have been correctly matched between two 

viewpoints of a scene (from [122]). 

D. Including 3D information in place descriptions 

The image processing techniques described above are 

appearance-based – they “model the data directly in the visual 

domain (instead of making a geometric model)” (Krose, 

Vlassis et al., [125]). However, in metric localization systems, 

the appearance-based models must be extended with metric 

information. Monocular image data is not a natural source of 

geometric landmarks – “the essential geometry of the world 

does not ‘pop out’ of images the same way as it does from 

laser data” (Neira, Davison et al., [126]). While many systems 

use data from additional sensors such as lasers [98] or RGB-D 

cameras [127]–[129], geometric data can also be extracted 

from conventional cameras to allow metric calculation of the 

robot pose.  

Metric range information can be inferred using stereo 

cameras [2], [130]–[132]. Monocular cameras can also infer 

metric information using Structure-from-Motion algorithms 

[133]. Methods include MonoSLAM [7], PTAM [134], 

DTAM [135], LSD-SLAM [136] and ORB-SLAM [137]. 

Metric information can be sparse: that is, range measurements 

are associated with local features such as image patches as in 

MonoSLAM [7], SIFT features as in Se, Lowe et al. [76], 

CenSurE features as in FrameSLAM [2], or ORB features 

[138] as in ORB-SLAM [137]. In contrast, DTAM stores 

dense metric information about every pixel, and LSD-SLAM 

maintains semi-dense depth data on the parts of the image 

containing structure and information. Dense metric data 

allows a robot to perform obstacle avoidance and metric 

planning as well as mapping and localization, so fully 

autonomous vision-only navigation can be performed [16]. 

The introduction of novel sensors, such as RGB-D cameras, 

that provide dense depth information as well as image data has 

spurred the development of dense mapping techniques [70], 

[127]–[129], [139], [140]. These sensors can also exploit 3D 

object information to improve place recognition. SLAM++ 

[70] stores a database of 3D object models and uses this 

database to perform object recognition during navigation, and 

uses these objects as high-level place features. Objects have a 

number of advantages over low-level place features: they 

provide rich semantic information, and can reduce memory 

requirements via semantic compression; that is, storing object 

labels rather than full object models in the map [70].  
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V. REMEMBERING PLACES: THE MAPPING MODULE  

For a place recognition or navigation task, the system needs 

to refer to a map – a stored representation of the robot’s 

knowledge of the world – to which the current observation is 

compared. The map framework differs depending on what 

data is available and what type of place recognition is being 

performed. Table I displays a taxonomy of mapping 

approaches, which depends on the level of physical abstraction 

in the map, and whether or not metric information is included 

in the place description. The most concrete mapping 

framework listed is the topological-metric or  topometric map. 

Although it is possible to have a globally metric map, such 

maps are only feasible in small geographical areas, and there 

are mechanisms for fusing topometric maps into globally 

metric maps [141]. Thus for the purposes of place recognition 

any globally metric map can be considered as a one-node 

topometric map.   
TABLE I 

MAPPING FRAMEWORKS FOR VISUAL PLACE RECOGNITION 

Level of map 

abstraction 
Place description type Comments 

Pure image retrieval 
Appearance-based No position 

information 

Topological 
Appearance-based Includes transition 

information 

Topological-metric 

Appearance-based Includes metric 

information between 

but not within places 

Sparse metric 

information  

(landmark maps) 
SLAM system – 

includes metric 

information between 

and within places 
Dense metric 

information  

(occupancy grid maps) 

A. Pure image retrieval 

The most abstract form of mapping framework for place 

recognition only stores appearance information about each 

place in the environment, with no associated position 

information. Pure image retrieval assumes that matching is 

based solely appearance similarity and applies image retrieval 

techniques from computer vision that are not specific to place-

based information [3]. Although valuable information is lost 

by not including relative position information, there are 

computationally efficient indexing techniques that can be 

exploited. 

A key concern with place recognition is system scalability – 

as the robot visits more and more places, storage requirements 

will increase and search efficiency will decrease. As a result, 

maps need to be designed to ensure large-scale efficiency. If a 

bag-of-words model is used to quantize the descriptor space, 

image retrieval can be accelerated using inverted indices; the 

image ID numbers are stored against the words that appear in 

the image, rather than the words being stored against the 

image IDs. Inverted indices allow much quicker elimination of 

unlikely images, rather than requiring a linear search of all 

images in the database. 

Schindler, Brown et al. [3] used a hierarchical vocabulary 

tree [95] to achieve efficient visual place recognition of a city-

sized dataset (a 20km traversal with around 100 million 

features). This paper showed that place recognition 

performance improves if only the most informative features 

from each image are used, where information gain is measured 

using a conditional entropy calculation. Improved place 

recognition with a reduced feature set was also observed by Li 

and Košecká  [142].  

FAB-MAP 2.0 [87], [143] also used an inverted index with 

a bag-of-words model to demonstrate visual place recognition 

across a 1000 km path. While Schindler, Brown et al. [3] used 

a voting scheme to match locations, FAB-MAP’s probabilistic 

model that includes negative observations – words that do not 

appear in the image – as well as positive observations requires 

simplification before the inverted index approach can be 

applied.  

Place recognition can also be made more efficient by using 

hierarchical searching at the place level as well as at the 

vocabulary level. Mohan, Gálvez-López et al. [144] selected 

the most likely environment using co-occurent feature 

matrices. Then place matching is performed using only a 

subset of the previously seen places, reducing the time 

required for searching.  

B. Topological maps 

Pure topological maps contains information about relative 

positions of places but do not store metric information 

regarding how these places are related [5], [6], [118], [119].  

Topological information can be used to both increase the 

number of correct place matches and filter out incorrect 

matches [14], [84]. A probabilistic system like FAB-MAP can 

be run as a pure image retrieval process by assuming a 

uniform location prior at all steps, but performance improves 

when transition information is included through Bayesian 

filtering or similar techniques.  

While image retrieval techniques can use an inverted index 

to improve efficiency, topological maps can use a location 

prior to speed up matching: the place recognition system only 

has to search places known to be close to the robot’s current 

position. A sampling-based method such as a particle filter can 

be used to sample possible places [12], [13], [111], [145]. The 

particles are resampled according to which places are the most 

likely, and can stay close by the current robot location if it is 

well-localized, or spread out across the whole environment if 

the robot is lost. Computation time is thus proportional to the 

number of particles, not the size of the environment [146]. 

Alternatively, since the number of loop closures in an 

environment is naturally sparse, Latif, Huang et al. [19] use 

topological information to formulate place recognition as a 

sparse convex L1-minimization problem, and apply efficient 

homotopy methods [147] to provide loop closure hypotheses.  

The addition of topological information into the recognition 

process allows place recognition using low-resolution data and 

thus lower memory requirements. Using the sparse convex L1-

minimization formulation, successful place recognition was 

achieved using images as small as 48 pixels [19]. Even in 

challenging scenarios where images are blurred or observed 

under different environment conditions such as different times 

of day, the use of topological information allows visual place 
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recognition using as few as 32 4-bit pixels per image, [148], 

[149]. 

C. Topological-metric maps 

As image retrieval can be enhanced by adding topological 

information, topological maps can be enhanced by including 

metric information – distance, direction, or both – on the map 

edges. For example, both FAB-MAP [6] and SeqSLAM [118] 

are originally purely topological systems, but the addition of 

odometry information has been demonstrated to improve each 

system’s place recognition performance by CAT-SLAM [13] 

and SMART [150] respectively. 

These topological-metric maps can be appearance-based, in 

which case metric information is only included as relative 

poses between each place node [151]–[154]. However, metric 

information about the position of landmarks or objects in a 

place can also be stored within each node [1], [2], [26], [141], 

[155]–[158]. The metric information within the topological 

place node can be stored as a sparse landmark map [2], [7], 

[76], or as a dense occupancy grid map [135] if depth 

information is extracted from the image data. Although the 

notion of dense spatial modeling using a truncated signed 

distance function (TSDF) representation can be traced back to 

the work of Moravec and Elfes [39] in the mid-1980s, it has 

become feasible only in the past few years, with the advent of 

GPU technology [135].  

VI. RECOGNIZING PLACES: THE BELIEF GENERATION MODULE  

Ultimately the purpose of a place recognition system is to 

determine whether a place has been seen before. Thus the 

central goal of any place recognition system is reconciling 

visual input with the stored map data to generate a belief 

distribution. This distribution provides a measure of likelihood 

or confidence that the current visual input matches a particular 

location in the robot’s map representation of the world. There 

is a general understanding that if two places descriptions 

appear similar there is a greater likelihood of them being 

captured at the same physical location, but the degree to which 

this is true depends on the particular environment. For 

example, repetitive environments may exhibit perceptual 

aliasing where different places look indistinguishable. 

Conversely, changing conditions may cause the same place to 

appear drastically different at different times. 

A. Place recognition and SLAM 

Place recognition plays an important role in pose graph 

SLAM algorithms by providing loop closure candidates [159]. 

Pose graphs, also known as view-based representations [160], 

[161], are widely utilized in modern SLAM systems because 

of their computational efficiency for fixed size maps, although 

they can suffer from an increase in computational 

requirements for long duration missions. Loop closure is vital 

for consistent mapping as it allows the system to correct drift 

in local odometry measurements [162], [163]. It can be 

decoupled from the online local update step, and many 

systems independently perform both SLAM-like local metric 

correction and topological-like loop closure [1], [2], [80], 

[163]: a system can perform local metric correction using laser 

scan data [80], [163] or visual odometry [1], [2] while a 

separate global process looks for matches in order to close 

large loops.  

If the place descriptions are appearance-based, and do not 

contain any metric information, but the map contains metric 

distances between places, the system can still use the loop 

closures to perform metric correction at the place level [151]–

[154]. However, if the place descriptions contain metric 

information associated with the image features, as is the case 

for FrameSLAM [2], then a more precise correction can be 

performed. Maps that are purely topological or pure image 

retrieval do not provide any metric pose correction. In these 

cases, localization at a topological level occurs; that is, the 

system simply identifies the most likely location. 

The place recognition maps that contain metric information 

both within and between the place descriptions can be used to 

perform a full metric SLAM solution. There are a wide range 

of SLAM techniques available as summarized in [164]–[166]. 

Thrun and Leonard [166] identify three key SLAM paradigms: 

Extended Kalman Filters (EKF) [37], [38], [167]–[169] and 

Rao-Blackwellized particle filters [170], as well as the pose 

graph approach discussed above [162], [163], [171]–[173]. 

Vision-based systems utilize all these methods: MonoSLAM 

[7] uses an EKF, while Rao-Blackwellized particle filters are 

used in [12], [174], [175] and pose graph optimization 

techniques in [2], [176].  

B. Topological place recognition 

If multiple streams of data are available a voting scheme 

[3], [5], [79], [96], [177] can be used. Ulrich and Nourbakhsh 

[5] used a Jeffrey divergence to compare color histograms and 

each color band votes for what it considers the most likely 

location. Depending on the votes, the system can be confident 

if the confident bands are unanimous and the total confidence 

is above a certain threshold, uncertain if none of the bands are 

sufficiently confident, or the total confidence value is too low, 

or confused if the confident bands disagree on the location.  

If a system uses the bag-of-words model, inspired as it is by 

text-based document analysis, it may use the related Term 

Frequency-Inverse Document Frequency (TF-IDF) score [56], 

[114], [178]. Each visual word in an image has a TF-IDF 

score, which is made up of two parts – the term frequency, 

which measures how often the word appears in the image, and 

the inverse document frequency, which measures whether the 

word is common across all images. The TF-IDF score is then 

the product of these two values. 

A probabilistic calculation can also be used to compute 

place matching likelihood, using a calculation based on Bayes 

theorem. Early examples of appearance-based probabilistic 

localization used Gaussians to represent probability [179], or a 

mixture of Gaussians combined with Expectation 

Maximization (EM) [180], or a Gaussian kernel [181] with 

Parzen smoothing [125]. Other choices for the observation 

likelihood include the use of TF-IDF for the observation 

likelihood, if a bag-of-words model is being used [83], [182]. 

Siagian and Itti [111], [183] use Monte Carlo Localization 
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(MCL) with two observation update steps each with an 

independent observation likelihood, one based on the segment 

likelihood and one based on the object likelihood. Garcia-

Fidalgo and Ortiz [184] use the observation likelihood that 

relates the number of feature matches between two images to 

the overall number of features in the image, scaled by a 

normalizing constant. 

The observational likelihood can also be computed via a 

data-driven approach. FAB-MAP [6], [87] is a probabilistic 

appearance-based localization system that uses a data-driven 

approach to calculating an observational likelihood. FAB-

MAP uses a bag-of-words model with SIFT or SURF features 

for image description and calculates the distinctiveness of 

each word during a training phase. As a bag-of-words model 

may have many words – FAB-MAP has been used with a 

100,000-word vocabulary [87] – the full joint probability 

distribution of the observed words (Fig. 8(a)) can be 

approximated by a naïve Bayes assumption (Fig. 8(b)) or a 

Chow-Liu tree [185] (Fig. 8(c)). 

 
Fig. 8. FAB-MAP learns a probabilistic model of the relationship between 

word appearance and place recognition. (a) A full joint distribution takes into 

account the relationships between words (the thick lines between words 

represent those with the largest mutual information). (b) A naïve Bayes 

approximation of the full joint distribution ignores the mutual information 

between the words and assumes that all words appear independently. (c) A 

Chow-Liu tree approximates the full joint distribution as a junction tree where 

each word depends only on one other word (from [6]). 

FAB-MAP handles the perceptual aliasing problem by 

considering not only whether two locations are similar in the 

sense that they have many visual words in common, but also 

whether the words in common are sufficiently rare that the 

locations can be considered distinctive. As a result, if two 

locations look similar but the words that appear are frequently 

observed, FAB-MAP will generate a low matching 

probability. FAB-MAP achieves this by using the denominator 

as a normalizing constant that is calculated over the set of all 

previously seen locations and the set of all locations that have 

not yet been visited.  

Originally, the set of unvisited locations was modelled by 

randomly sampling from the Chow-Liu tree, and the 

probability that the robot was at a location that has not yet 

been observed was a user-defined parameter.  However, Paul 

and Newman [60], [62], [186] presented an iterative learning 

mechanism to generate a representative set of the true 

distribution of the appearance of the world. Latent Dirichlet 

Allocation (LDA) [187] was used to cluster images into major 

topics that summarize how the world, as seen so far by the 

robot, appears. These topics are used to generate a sampling 

set that is proportional to what is common in the world – for 

example, foliage occurs frequently in many environments so 

should not be considered distinctive. The system learns 

incrementally: after each deployment a better sampling set is 

created as the system incrementally learns about the world. 

Furthermore, an online-offline learning process is proposed – 

during the robot’s “down-time” further relevant data can be 

searched for on the internet to learn more about the world.  

Olson [188] observes that “correct hypotheses generally 

agree with each other, whereas incorrect hypotheses tend to 

disagree with each other”. This property can be used to 

eliminate false positive matches by calculating a pair-wise 

consistency matrix between possible hypotheses and finding 

the most consistent set of hypotheses from the dominant 

eigenvectors. The same paper also observes that the amount of 

information required to generate a belief match should scale 

with the robot's positional uncertainty. The system ensures this 

by requiring that local hypothesis matches cover a large 

physical space in comparison to the robot’s positional 

uncertainty, to ensure that the robot will not be incorrectly 

located within its uncertainty ellipse. 

This approach contrasts with FAB-MAP’s requirement of a 

few highly distinctive matches. Instead, many matches are 

required over a large area, but these matches do not need to be 

particularly distinctive, as the geometrical relationship 

between the matches ensures the uniqueness of the hypothesis. 

Biologically-inspired methods for place recognition mimic 

the known place cells structure in the rat hippocampus [116], 

[189]. In RatSLAM [116], a type of neural network known as 

a continuous attractor network (CAN) is used to model place 

cells (see Fig. 9). A continuous attractor network uses a 

combination of local excitation and global inhibition 

combined with input from ego-motion and visual sensors to 

perform localization. In a similar manner Giovannangeli, 

Gaussier et al. [189] use a place cell model to perform vision-

based navigation in indoor and outdoor environments without 

a metric map.  

 
Fig. 9.  Continuous attractor networks (CANs) are a type of neural network 

that can be used to model the behavior of place cells, head direction cells, and 

grid cells. (a) shows an example of a CAN used to model head direction cells. 

Each cell excites itself and units near itself (see local excitation arrows) and 

inhibits other cells. (b) shows a stable activity packet centered at 120° 

generated by the combination of local excitation and global inhibition with 

input from a motion input (from [116]). 

C. Evaluation of place recognition systems 

Topological place recognition systems are typically 

evaluated using precision and recall metrics and their 

relationship via a precision-recall curve. A system selects 
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matches based on a particular confidence measure. The correct 

matches are known as true positives, the incorrect matches are 

false positives, and matches that the system erroneously 

discards are false negative matches. Precision is defined as the 

proportion of selected matches that are true positive matches, 

and recall is the proportion of true positives to the total 

number of correct values, that is: 

FPTP

TP

+
=Precision  

     
FNTP

TP

+
=Recall  

A perfect system would be one that achieves precision of 

100% and recall of 100%. Precision and recall are often 

related to each other via a precision-recall curve which plots 

recall against precision for a range of confidence values. 

Until recently, place recognition prioritized avoidance of 

false positive matches [6], as introducing false matches into a 

map could cause catastrophic failure. As a result, recall at 

100% precision was the key metric for place recognition 

success. However, several methods for using topological 

information to correct false positive matches have been 

proposed [190]–[192] and attention has turned from 

eliminating all false positives to finding many potential place 

matches and then correcting any mismatches in a topological 

post-processing step. Increasing the number of potential 

matches is particularly important when performing place 

recognition in changing environments, when strict matching 

methods are liable to fail.  

Furthermore, as place recognition systems transition from 

“demonstration” (typically with pre-recorded data sets) to 

“deployment” (operating in real-time on autonomous 

vehicles), the performance evaluation methodology may 

change further to include a consideration of the spatial 

distribution of place matches within the environment. For 

example, McManus, Churchill et al. [193] used the probability 

of travelling a given distance without a successful match as a 

measure of place recognition success. This metric expresses 

how evenly distributed the place matches are across the 

environment and is an important measure for the overall 

integrity of a navigation system that uses place recognition as 

a module. 

VII. VISUAL PLACE RECOGNITION IN CHANGING 

ENVIRONMENTS 

Early place recognition systems often implicitly used the 

simplifying assumption that the visual appearance of each 

place would not change over the course of the experiment. 

However, as robotic systems operate in ever-larger, 

uncontrolled environments and for longer time periods, it has 

rapidly become apparent that this assumption is no longer 

valid. Consequently, in recent years there has been a growing 

focus on creating persistent robotic navigation systems, 

including persistent place recognition techniques. The ability 

to localize in and generate maps of dynamic environments has 

been identified as being of key importance [194]. This section 

revisits each of the previous concepts – how a place can be 

represented, how the mapping frameworks work and how the 

belief generation process works – and discusses how each has 

to change to manage a changing environment. 

A. Describing places in changing environments 

It is clear that the appearance of a place can vary greatly 

over time due to a large number of causes including changes 

in lighting and weather (see Fig. 1). There are two methods for 

performing place recognition when faced with appearance 

change – the first tries to find a condition-invariant description 

of the place, the way local feature descriptors are designed to 

be scale-, rotation- and illumination-invariant. The second 

method tries to learn how appearance change occurs. 

1) Invariant methods 

The difficulty of matching places in changing environments 

using conventional local features is a significant one for 

persistent robot navigation: Furgale and Barfoot [117] 

observed that the non-repeatability of SURF features due to 

changing appearance, particularly lighting change, was a 

major cause of failure during visual-teach-and-repeat 

experiments. Existing image description methods have been 

tested to determine their robustness to illumination and other 

change. In [195], Valgren and Lilienthal tested SIFT features 

and a number of SURF variants across change in lighting, 

cloud cover, and seasonal conditions. The SURF variants all 

outperformed SIFT, but none of the tested features were found 

to be robust across all conditions. However, in later work 

[100] the authors combined U-SURF [73], the most successful 

SURF variant, with a consistency check using the epipolar 

constraint, and achieved between 80% and 100% correct 

matching within small (40 image) datasets.  

Ross, English et al. [196], [197] studied the effect of 

lighting change on features using time-lapse footage across 

full days to determine the illumination sensitivity of each 

descriptor. The feature keypoints were predefined within each 

image, and only the variance of the feature descriptor was 

tested, in contrast to the work of Valgren and Lilienthal [100], 

[195] which tested the combined effect of feature detector and 

descriptor. The U-SIFT [72] descriptor was shown to display 

the greatest lighting invariance of the tested descriptors.  

Instead of using point features such as SIFT or SURF, other 

descriptors can be chosen. Whole-image descriptors have been 

used in systems such as SeqSLAM [118], [119], [198] that 

demonstrate robustness against environmental change. 

However, as for other description methods, too drastic a 

change in appearance will cause system failure [111] and 

whole-image descriptors also suffer from the additional 

problem of sensitivity to viewpoint change [199]. Edge 

features can be used in appropriate environments [174], [200], 

as they are invariant to lighting, orientation and scale [200]. 

Nuske, Roberts et al. [200] used line-based localization to 

localize against an existing map with a fish-eye camera and 

tested it in an outdoor industrial area under various lighting 

conditions across times of day from 7:00 to 17:00. Borges, 

Zlot et al. [201] extended this system to generate its own edge 

map using 3D laser data for localization. However data 

association using edge features can be challenging [174]. 
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Techniques such as shadow removal [202] and the use of an 

illumination invariant color space [193] can lessen the effect 

of appearance variability caused by illumination change. 

Alternatively, a hardware-based solution to place recognition 

in variable lighting conditions can be used. McManus, Furgale 

et al. [203] used scanning laser-rangefinders to create 

“camera-like” images that were not affected by the 

illumination of the scene. This solution had the advantage of 

being applicable in complete darkness. A long-wave infrared 

thermal imaging camera is another sensor that can be deployed 

in a manner similar to a standard camera but which responds 

differently to lighting variance. Maddern and Vidas [204] 

showed thermal imaging cameras can provide improved place 

recognition at night-time when visible light cameras fail.  

Convolutional Neural Networks (CNNs) have recently been 

used as robust feature extractors for place recognition in 

changing environments. Exploring the utility of CNNs for 

place recognition has been motivated by their ability to learn 

generic features that are transferrable to a variety of related 

but different visual tasks [205], [206]. [207], [208] utilized 

CNN features as holistic image descriptors and analyzed the 

robustness of different layers against visual appearance and 

viewpoint changes. They concluded that mid-level features 

exhibit a robustness against appearance changes, while higher 

level features are more robust against changes in viewpoint 

and carry more semantic information that can be used to 

partition the search space [208].  

One aspect of visual data that has not been investigated in 

depth for changing environments is that of color. While 

conventional images descriptors such as SURF and BRISK 

operate on grayscale images, most available cameras capture 

color images, which have the potential to provide new and 

interesting information about place recognition in changing 

environments. Color information presents an interesting 

paradox for place recognition in changing environments: it is 

known to perform poorly as a feature when the illumination of 

a scene changes [196], but conversely, relative color 

information contains information about lighting that can 

improve place recognition dramatically by identifying and 

removing shadows [202]. Illumination invariant images use 

relative color information and are more reliable for place 

recognition during the day, but are out-performed by color 

images at night, when the underlying assumptions about 

black-body illumination are violated [209].  

2) Learning methods 

The alternative to invariant approaches is to learn a 

relationship between how places appear at different times. 

These method assume that places change appearance in a 

similar way across an environment, and so change learned 

during training can be generalized to previously unseen 

locations. This assumption has been tested by observing static 

webcams from different locations [210], [211] and 

demonstrating that the most significant transformations across 

time are similar across different places. Furthermore, a 

training set of locations can be used to compute a principal 

component basis that encodes new locations with only a small 

loss of accuracy. 

Ranganathan, Matsumoto et al. [212] learned a fine 

vocabulary [213]; a fine vocabulary is similar to a bag-of-

words model in that it segments a descriptor space, such as 

SIFT descriptors, but it does so very finely – into over 16 

million words in [213]. The system then learned a probability 

distribution over these words. The motivation for the fine 

vocabulary is the observation that descriptors transform in a 

highly non-linear way due to illumination change, changing 

viewpoint and other effects, and learning a distribution of 

alternative words allows these changes to be learned and 

quantified. In [212] the distribution was learned over multiple 

training runs over the same environment and features were 

matched across different illumination conditions to generate 

the probability distribution. Improved performance was 

reported over using a conventional vocabulary tree [95], with 

an additional 10%-15% of the dataset being correctly matched. 

The distance metric was also compared and the symmetric 

KL-divergence was shown to out-perform either the standard 

descriptor distance metric or a probability distance metric. 

Using webcam footage, Carlevaris-Bianco and Eustice 

[214] tracked image patches over different lighting conditions 

to generate a large set (3 million features) of positive and 

negative examples. From this data, a neural network learning 

technique [215] mapped the patches into a new space in which 

positive matches were close together, according to the 

Euclidean distance, and negative matches were further away. 

The mapped descriptors were shown to be substantially more 

successful at place recognition than SIFT and SURF 

descriptors – compared to SURF descriptors, an additional 

10% of the test locations were correctly matched. 

Neubert, Sünderhauf et al. [18] learned a visual translation 

between two different seasons. Training images from two 

different seasons were segmented using SLIC superpixels 

[216]. The superpixels were described using a color histogram 

and a SURF descriptor, and a dictionary of translations of 

superpixels from one season to another season was learned. 

Similarly, Lowry, Milford et al. [217] learned a linear 

transformation from images captured in the morning to images 

captured in the late afternoon. However, for such appearance 

translation to be successful, the pairs of training images must 

be well aligned.  

Learning-based methods frequently require a supervised 

training phase, which implies that the likely appearance 

change is known and that relevant training data is available. 

Lowry, Wyeth et al. [218] proposed an unsupervised learning 

method for place recognition in changing environments. 

Instead of attempting to predict the appearance of a location, 

the system instead identified and removed potentially 

changing aspects of each observation.  

B. Remembering places in changing environments  

If the environment is changing, the map also needs to 

change to continue representing the environment. The system 

must determine what to remember and what to forget. It may 

also be beneficial for the system to maintain multiple 

representations of a place, as places can vary between 

different configurations. This section presents mapping 



15-0149 

 

11 

frameworks for place recognition that have the capacity to 

handle changing environments in one of these two ways – 

either by deciding what to remember and what to forget, 

and/or by remembering multiple different representations. 

These systems are not all specific to vision-based systems, and 

many have been designed to handle laser data, but 

demonstrate concepts that are relevant to any sensor modality 

or map framework. 

1) Remembering and forgetting data 

In a dynamic environment, each place representation must 

be updated as new observations are obtained by the robot. A 

balance has to be found between using recent observations to 

overwrite obsolete information, and not allowing fleeting 

events to overwrite the status quo. However, it is difficult to 

determine which events are transient and which are worth 

remembering. Drawing inspiration from concepts in 

neuroscience, Biber and Duckett [219] referred to this as the 

“stability-plasticity dilemma”. Biological brains can inspire 

solutions for coping with this dilemma: concepts such as 

sensory memory, short-term memory and long-term memory 

found in human memory models have been co-opted to create 

decision models for remembering and forgetting.  

One biologically inspired mapping system passes sensor 

information through an analogue of sensory memory to short-

term memory and long-term memory storage areas [220], 

[221]. In the first stage, a selective attention mechanism 

decides which information will be upgraded from sensory 

memory to short-term memory, based on information from the 

long-term memory. The second stage involves using a 

rehearsal mechanism to determine which information will be 

transferred from short-term to long-term memory. Using 

attention and rehearsal mechanisms ensures that more 

persistent, stable and frequently occurring features are 

remembered, whilst transient features are forgotten. Elements 

must be seen and recognized sufficiently often before they are 

considered for promotion to a higher level of memory. 

Furthermore, obsolete features are slowly filtered out of the 

long-term memory. There is a complementary problem of 

which elements to ‘remember’, which typically uses similar 

criteria [220], [222] to the forgetting process.  

Andrade-Cetto and Sanfeliu [223] required that features be 

trustworthy and reliable as well as up-to-date in order to be 

retained, while Bailey [222] considered a usefulness criteria 

based on visibility – a feature that can be blocked by other 

elements of the environment is liable to suffer from occlusion 

errors and be less useful in the future. Johns and Yang [102] 

and Hafez, Singh et al. [224] used a bag-of-words model and 

applied a quality measure to determine useful features to 

retain, considering both feature distinctiveness and feature 

reliability when generating a model of a location. Johns and 

Yang [225] also proposed a generative bag-of-words model 

that considered the variance as well as the mean value of each 

data point when matching scenes.  

2) Multiple representations of the environment 

Not only do places change in appearance over time, but they 

may also change in a cyclic manner that cannot be represented 

by a single description. During a two-week office-based 

experiment [226], Milford and Wyeth noted that “the 

weakness is that the system deals rather inefficiently with 

cyclic changes such as day–night time cycles. Over a full night 

of operation, the pruning process gradually develops the 

experience map representation into one suited to localization 

at night time, somewhat hindering localization in the 

morning.” These observations were corroborated by 

Ranganathan, Matsumoto et al. [212], who stated that for an 

indoor office environment, consistently good localization 

through the 24-hour cycle would require around 3-4 images 

per location. Rather than continuously remembering and 

forgetting information, the map should hold multiple 

representations of the area – whether at a place or higher level.  

A place recognition system can use multiple maps of the 

same environment. In the work of Biber and Duckett, each 

map remembered a different timescale [227]. Some of these 

maps represented short-term memory and were updated 

frequently whilst others were analogous to long-term memory 

and are not updated for hours, days, or weeks. Keeping maps 

that updated at different timescales ensured that old mapping 

data was not immediately overwritten by a temporary change 

in the environment. Instead the most static elements were 

reinforced over time, whilst transient events were filtered out. 

Place recognition was performed by selecting the local map 

that best fitted the current sensor data.  

Systems that maintain multiple maps of the same 

environment may also add new map configurations only when 

they are necessary, rather than according to a pre-set 

timeframe [221]. Furthermore, Stachniss and Burgard [228] 

noted that not every place needs multiple representations – 

certain areas such as doorways may exhibit more change than 

the rest of the environment. Such areas may only possess a 

few key configurations – for example, a door may be open or 

closed – so the world can be described sufficiently accurately 

using a finite number of submaps. Each region in which 

dynamic activity is observed was segmented from the rest of 

the map in a submap. Fuzzy k-means clustering was used with 

the Bayesian Information Criterion to determine the optimal 

number of typical configurations of this area. Using submaps 

to segregate dynamic areas allowed multiple environmental 

configurations where necessary whilst keeping the map 

manageable. 
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Fig. 10.  The varying appearance of a changing environment may require a 

system store multiple representations of each place. This image (from [229]) 

shows the number of robot “experiences” stored during repeated traversals of 

a path over a number of months. While most places require 5-10 experiences 

(shown in blue) some regions require as many as 30 (shown in red).  

Elements of a scene that are moving when the robot 

observes them must be detected and may also be removed 

[230], [231]. However, there are often semi-static elements 

that are not obviously moving but appear and disappear over 

time. While these elements can simply be removed as 

unreliable [69], [232] it is also possible that such elements 

may be temporarily useful for localization in specific parts of 

an environment [233]. For example, in a car park building the 

static elements such as the walls can be far away and not 

particularly distinctive, and so are not useful for localization 

while the semi-static parked cars are many and relatively 

distinctive, and can be used for localization for a matter of 

hours or a day, before being forgotten and replaced. If this is 

the case, temporary maps are created when the robot 

observations do not match the expected results of the provided 

static map. The temporary maps are discarded when they fail 

to adequately match the robot observations over multiple 

consecutive time steps.  

The systems presented above [221], [227], [228], [233] 

were designed for metric systems. Multiple representations 

can also be generated for appearance-based systems if 

multiple training runs are available. Johns and Yang [102] 

used feature co-occurrence maps generated during five 

training runs on a 20 km urban road-based dataset between 

14:00 and 22:00. Localization can then be achieved on the 

same route at times interpolated between the five runs.  

McManus, Upcroft et al. [120] used multiple training runs 

through an environment to learn scene signatures – locally 

distinctive elements of a place that are also stable over 

changes in appearance. For each location within the 

environment, image patches are selected that specifically 

demonstrate both distinctiveness and stability. The selected 

patches were described using HOG descriptors [121], and used 

to train an SVM classifier for each location. Using scene 

signatures for each places allowed 100% correct place 

recognition in a 31 location dataset, while SURF features 

performed poorly, particular in rainy and foggy conditions. 

If the appearance of the environment is assumed to be 

affected by a series of hidden periodic processes, spectral 

analysis such as Fourier analysis can be used to predict the 

most likely appearance of a location from multiple training 

passes at a particular time in the future. Krajnik, Fentanes et 

al. [234] learned and modeled these processes over an 

environment and demonstrated that this information can halve 

the number of place recognition errors when localizing three 

months later. 

All of the systems described above share an underlying 

assumption – that the robot knows where it is sufficiently well 

to match different representations of the same location 

together, even if the representations are visually dissimilar. A 

map cannot be updated if the system does not know which 

location to update and, in a changing environment, it may not 

be possible to know exactly where the robot is. To avoid this 

assumption, Churchill and Newman proposed a plastic map 

formulation [15] that explicitly localizes within robot 

“experiences” rather than physical locations. A new 

experience is generated each time a robot visits a location that 

it does not recognize, and the map may implicitly have 

multiple representations of each location, depending on the 

difficulty of matching at that particular location (see Fig. 10). 

However, unlike the systems discussed previously, the 

multiple representations will not necessarily be linked together 

as the same physical place. The plastic map is more 

informative if the system can recognize and link more 

experiences together. However, it is a pragmatic approach that 

allows for graceful place recognition failure without 

catastrophic map collapse. 

Retaining multiple representations of each location 

increases the place recognition search space and can decrease 

efficiency unless only a subset of representations is used for 

comparison. Because observations captured at similar times 

tend to demonstrate similar appearance characteristics, future 

potential matches can be probabilistically selected based on 

the system’s current localization belief. Carlevaris-Bianco and 

Eustice [235] approximated the likelihood of two location 

exemplars being “co-observed” within a short time-frame with 

a Chow-Liu tree, while Linegar, Churchill et al. [236] used 

“path memory” to select past experiences as candidate 

matches and improve place recognition without increasing 

computation time.   

C. Recognizing places in changing environments 

Integrating appearance change into a place recognition 

system requires some key alterations to the belief generation 

process. Firstly, as discussed above, changing environments 

require multiple representations of each place. If this is the 

case, a system may select the best map given its current sensor 

data [227] or it may try to predict the most likely appearance 

matches [18], [234]–[236]. 

Alternatively, the place recognition system may run 

multiple hypotheses in parallel. Churchill and Newman [15] 

assigned every saved experience its own localizer that reports 

whether or not the robot is successfully localized within that 

environment, while Morris, Dayoub et al. [221] performed 

filtering over possible map configurations as well as possible 

robot poses. Instead of selecting the single map that best 

matches the current sensor data, the system instead actively 

tracks the N best navigation hypotheses in multiple maps, 

while pending hypotheses are maintained and swapped out 

when an active hypothesis drops below the best pending 

hypothesis. Using multiple map hypotheses was reported to 

decrease the mean path error in an indoor office experiment by 

as much as 80%.  

One factor for place recognition in changing environments 

is that topological information becomes more important as 

incoming sensor data becomes less reliable and more difficult 

to match to previous observations [118], [119]. It has been 

observed that matching image sequences rather than individual 

images can improve place recognition in general, and 
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particularly in changing environments [14], [84], [118], [149], 

and image sequences can be integrated with conditional 

random fields [237] to identify and if necessary verify loop 

closures [14].  

The place recognition systems that are most successful in 

changing environments exploit the assumption that the system 

is not just passing through a particular place, but traversing the 

same or a very similar path through the environment. 

SeqSLAM [118] demonstrated that image sequences can 

perform place recognition in particularly visually challenging 

environments. The original version assumed a similar velocity 

profile between traversals. Methods to deal with this limitation 

include searching non-linear paths as well as linear paths [102] 

through the image similarity matrix and using odometry input 

to linearize the signal [150]. Liu and Zhang [238] used a 

particle filter to improve the computation efficiency over the 

exhaustive search process and achieved a 10 times speed-up 

factor with equivalent performance at 100% precision.  

Naseer, Spinello et al. [119] exploited sequence information 

by formulating image matching as a minimum cost flow. Flow 

networks are directed graphs with a source node and a sink 

node, which for path-based place recognition represent the 

start of the traversal and the end of the traversal respectively. 

By equating image comparison values to flow cost, the 

formulation found the optimal sequence through the 

environment. Differing velocity profiles were handled by 

allowing nodes to be either matching or hidden. Similarly, 

Hansen and Browning [239] used Hidden Markov Models to 

determine the most likely path through an environment using 

the Viterbi algorithm. 

VIII. CONCLUSION 

Visual place recognition has made great advances in the last 

15 years, but we are still a long way from a universal place 

recognition system for robots that is robust and widely 

applicable across a range of robotic platforms and varying 

environments. Here we highlight several promising avenues of 

ongoing and future research that are moving us closer towards 

this outcome. 

The most successful approaches to combatting changing 

appearance typically do so at the cost of viewpoint invariance 

or increased training requirements. As discussed above, as 

sensor information becomes less reliable, it can be 

compensated for by topological information, which requires 

not only viewpoint invariance at a single point, but along a 

possibly quite long path. Some potential avenues include using 

image patches rather than whole images, as image patches 

have much of the condition invariant advantages of whole 

images while allowing some coarse viewpoint invariance, and 

investigating the use of deep learning features which also have 

some viewpoint invariant characteristics.  

Visual place recognition is benefitting from research in 

other fields, particularly the great strides being achieved in 

computer vision in the fields of deep learning, image 

classification, object recognition, video description. While 

techniques such as convolutional neural networks depend on 

Big Data and Big Compute, techniques such as cloud robotics 

and online / offline processing paradigms could be exploited 

even by small, cheap mobile platforms. Developments in GPU 

hardware and novel camera sensors will inspire new concepts 

in place recognition as well as improving the efficiency and 

robustness of existing approaches.  

Research in place recognition can also benefit from the 

ongoing research in object detection and scene classification. 

By exploiting object detections, it is possible to learn that 

objects such as buildings are useful for long-term place 

recognition, objects such as pedestrians should be ignored, and 

objects such as cars might be useful depending on the 

semantic and temporal context. An increased robustness to 

structural changes can be achieved by exploiting knowledge 

about which objects are dynamic or static and how that 

property is depending on the temporal and semantic context – 

for example, cars in a parking garage can temporarily provide 

useful place recognition cues. Exploiting the expressiveness of 

convolutional neural networks by training or fine-tuning such 

networks specifically for the task of place recognition is a 

worthwhile direction for future research. 

Visual place recognition systems can also exploit context. 

Although places change drastically in appearance, the relative 

location of places remains unchanged. This fact is integrated 

into belief generation modules by using location priors, 

recursive filtering and path-based sequences of images, and 

the dependence on these techniques increases as the variation 

in the visual appearance of the environment increases. The use 

of other sources of contextual information also has the 

potential to improve place recognition capability – knowledge 

about the time of day, or the current weather conditions can 

also change how the place recognition system interprets the 

incoming visual data. 

Semantic scene context can furthermore limit the search 

space for place recognition to semantically similar scenes to 

ensure scalability towards long-term autonomy. Semantic 

context can support learning and predicting the changes in a 

scene and help increase the robustness against environmental 

condition changes. Semantic mapping also has the potential to 

reduce memory requirements – imagine a house map only 

requiring words such as “kitchen”, “bedroom”, and 

“bathroom” to describe places – and current research in topic 

modeling, coresets and other semantic compression methods is 

already showing promise, as is the use of objects as high-level 

place recognition features. 

Finally, what can visual place recognition offer to other 

research tasks? By necessity and opportunity, visual place 

recognition has taken up the challenge to solve condition 

invariant recognition to a degree that many fields have not, 

albeit under a more tightly constrained task specification than 

other tasks such as scene interpretation. The experience gained 

in developing robust features, in addressing the combination 

of both appearance change and viewpoint change and other 

challenges may have valuable applications both in other 

robotic tasks such as object recognition and classification in 

the wild, and a diverse range of other areas including remote 

sensing, environmental monitoring and tasks that require 

recognition and identification in uncontrolled environments. 



15-0149 

 

14 

REFERENCES 

[1] G. Sibley, C. Mei, I. Reid, and P. Newman, “Vast-scale outdoor 

navigation using adaptive relative bundle adjustment,” Int. J. Rob. 

Res., vol. 29, no. 8, pp. 958–980, 2010. 

[2] K. Konolige and M. Agrawal, “FrameSLAM: From bundle 

adjustment to real-time visual mapping,” IEEE Trans. Robot., vol. 

24, no. 5, pp. 1066–1077, 2008. 

[3] G. Schindler, M. Brown, and R. Szeliski, “City-scale location 

recognition,” in Computer Vision and Pattern Recognition (CVPR 

2007), IEEE Conference on, 2007, pp. 1–7. 

[4] M. Milford, G. Wyeth, and D. Prasser, “RatSLAM: A hippocampal 

model for simultaneous localization and mapping,” Robot. Autom. 

(ICRA 2004), 2004 IEEE Int. Conf., pp. 403–408, 2004. 

[5] I. Ulrich and I. Nourbakhsh, “Appearance-based place recognition 

for topological localization,” in Robotics and Automation (ICRA 

2000), 2000 IEEE International Conference on, 2000, vol. 2, pp. 

1023–1029. 

[6] M. Cummins and P. Newman, “FAB-MAP: Probabilistic 

localization and mapping in the space of appearance,” Int. J. Rob. 

Res., vol. 27, no. 6, pp. 647–665, 2008. 

[7] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, 

“MonoSLAM: Real-time single camera SLAM,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1052–1067, 2007. 

[8] C. G. Harris and J. M. Pike, “3D positional integration from image 

sequences,” Image Vis. Comput., vol. 6, no. 2, pp. 87–90, 1988. 

[9] J. Neira, M. I. Ribeiro, and J. D. Tardós, “Mobile robot localization 

and map building using monocular vision,” in In The 5th 

Symposium for Intelligent Robotics Systems, 1997. 

[10] M. Bosse, R. Rikoski, J. Leonard, and S. Teller, “Vanishing points 

and three-dimensional lines from omni-directional video,” in IEEE 

International Conference on Image Processing (ICIP), 2002, vol. 

19, no. 6, pp. 417–430. 

[11] R. Eustice, H. Singh, J. J. Leonard, M. Walter, and R. Ballard, 

“Visually Navigating the RMS Titanic with SLAM Information 

Filters,” in Robotics: Science and Systems, 2005, pp. 57–64. 

[12] R. Sim, P. Elinas, M. Griffin, and J. J. Little, “Vision-based SLAM 

using the Rao-Blackwellised particle filter,” in IJCAI Workshop on 

Reasoning with Uncertainty in Robotics, 2005, vol. 14, no. 1, pp. 9–

16. 

[13] W. Maddern, M. Milford, and G. Wyeth, “CAT-SLAM: 

Probabilistic localisation and mapping using a continulous 

appearance-based trajectory,” Int. J. Rob. Res., vol. 31, no. 4, pp. 

429–451, 2012. 

[14] C. Cadena, D. Gálvez-López, J. D. Tardós, and J. Neira, “Robust 

place recognition with stereo sequences,” Robot. IEEE Trans., vol. 

28, no. 4, pp. 871–885, 2012. 

[15] W. Churchill and P. Newman, “Experience-based navigation for 

long-term localisation,” Int. J. Rob. Res., vol. 32, no. 14, pp. 1645–

1661, 2013. 

[16] F. Dayoub, T. Morris, B. Upcroft, and P. Corke, “Vision-only 

autonomous navigation using topometric maps,” in IEEE/RSJ 

International Conference on Intelligent Robots and Systems 

November 3-8, 2013 at Tokyo Big Sight, Japan, 2013. 
[17] A. Murillo, G. Singh, J. Košecká, and J. Guerrero, “Localization in 

urban environments using a panoramic Gist descriptor,” IEEE 

Trans. Robot., vol. 29, no. 1, pp. 146–160, 2013. 

[18] P. Neubert, N. Sünderhauf, and P. Protzel, “Superpixel-based 

appearance change prediction for long-term navigation across 

seasons,” Rob. Auton. Syst., 2014. 

[19] Y. Latif, G. Huang, J. Leonard, and J. Neira, “An online sparsity-

cognizant loop-closure algorithm for visual navigation,” in 

Proceedings of Robotics: Science and Systems Conference (RSS), 

2014. 

[20] E. C. Tolman, “Cognitive maps in rats and men,” Psychol. Rev., vol. 

55, no. 4, p. 189, 1948. 

[21] A. T. Bennett, “Do animals have cognitive maps?,” J Exp Biol, vol. 

199, no. Pt 1, pp. 219–224, 1996. 

[22] R. Jensen, “Behaviorism, latent learning, and cognitive maps: 

needed revisions in introductory psychology textbooks,” Behav 

Anal, vol. 29, no. 2, pp. 187–209, 2006. 

[23] K. Lynch, The Image of the City. Cambridge, MA: MIT press, 1960. 

[24] B. Kuipers, “Modeling Spatial Knowledge,” Cogn. Sci., vol. 2, no. 

2, pp. 129–153, 1978. 

[25] B. Kuipers and Y.-T. Byun, “A robot exploration and mapping 

strategy based on a semantic hierarchy of spatial representations,” 

Rob. Auton. Syst., vol. 8, no. 1, pp. 47–63, 1991. 

[26] B. Kuipers, “The spatial semantic hierarchy,” Artif. Intell., vol. 119, 

no. 1, pp. 191–233, 2000. 

[27] F. Strumwasser, “Long-term recording from single neurons in brain 

of unrestrained mammals,” Science (80-. )., vol. 127, no. 3296, pp. 

469–470, 1958. 

[28] J. O’Keefe and J. Dostrovsky, “The hippocampus as a spatial map. 

Preliminary evidence from unit activity in the freely-moving rat,” 

Brain Res., vol. 34, no. 1, pp. 171–175, 1971. 

[29] J. O’Keefe, “Place units in the hippocampus of the freely moving 

rat,” Exp. Neurol., vol. 51, no. 1, pp. 78–109, 1976. 

[30] M. A. Wilson and B. L. McNaughton, “Dynamics of the 

hippocampal ensemble code for space,” Science (80-. )., vol. 261, 

no. 5124, pp. 1055–1058, 1993. 

[31] J. O’Keefe and D. H. Conway, “Hippocampal place units in the 
freely moving rat: why they fire where they fire,” Exp. Brain Res., 

vol. 31, no. 4, pp. 573–590, 1978. 

[32] J. S. Taube, R. U. Muller, and J. B. Ranck  Jr., “Head-direction cells 

recorded from the postsubiculum in freely moving rats. II. Effects of 

environmental manipulations,” J Neurosci, vol. 10, no. 2, pp. 436–

447, 1990. 

[33] T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser, 

“Microstructure of a spatial map in the entorhinal cortex,” Nature, 

vol. 436, no. 7052, pp. 801–806, 2005. 

[34] E. I. Moser, E. Kropff, and M. B. Moser, “Place cells, grid cells, and 

the brain’s spatial representation system,” Annu Rev Neurosci, vol. 

31, pp. 69–89, 2008. 

[35] K. M. Gothard, W. E. Skaggs, and B. L. McNaughton, “Dynamics 

of mismatch correction in the hippocampal ensemble code for 

space: interaction between path integration and environmental 

cues,” J Neurosci, vol. 16, no. 24, pp. 8027–8040, 1996. 

[36] A. D. Redish, E. S. Rosenzweig, J. D. Bohanick, B. L. 

McNaughton, and C. A. Barnes, “Dynamics of hippocampal 

ensemble activity realignment: time versus space,” J Neurosci, vol. 

20, no. 24, pp. 9298–9309, 2000. 

[37] R. Chatila and J. P. Laumond, “Position referencing and consistent 

world modeling for mobile robots,” in Robotics and Automation 

(ICRA 1985), 1985 IEEE International Conference on, 1985, pp. 

138–145. 

[38] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for 

uncertain spatial relationships,” in Proceedings of the 4th 

International Symposium on Robotics Research, 1988, pp. 467–474. 

[39] H. Moravec and A. E. Elfes, “High resolution maps from wide angle 

sonar,” in Robotics and Automation (ICRA 1985), 1985 IEEE 

International Conference on, 1985, pp. 116–121. 

[40] R. A. Brooks, “Visual map making for a mobile robot,” in Robotics 

and Automation (ICRA 1985), 1985 IEEE International Conference 

on, 1985, vol. 2, pp. 824–829. 

[41] H. Durrant-Whyte, D. Rye, and E. Nebot, “Localization of 

autonomous guided vehicles,” in Proceedings of the 8th 

International Symposium on Robotics Research, 1995, pp. 613–625. 

[42] H. Shatkay and L. P. Kaelbling, “Learning geometrically-

constrained hidden Markov models for robot navigation: bridging 

the geometrical-topological gap,” J. Artif. Intell. Res., 2002. 

[43] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic 

exploration as graph construction,” IEEE Trans. Robot. Autom., vol. 

7, no. 6, pp. 859–865, 1991. 

[44] E. Fabrizi and A. Saffiotti, “Extracting topology-based maps from 

gridmaps,” Robot. Autom. (ICRA 2000), 2000 IEEE Int. Conf., vol. 

3, 2000. 

[45] T. Bailey, E. M. Nebot, J. K. Rosenblatt, and H. F. Durrant-Whyte, 

“Robust distinctive place recognition for topological maps,” Int. 

Conf. F. Serv. Robot., pp. 347–352, 1999. 

[46] P. Beeson, N. K. Jong, and B. Kuipers, “Towards autonomous 

topological place detection using the extended Voronoi graph,” in 

Robotics and Automation (ICRA 2005), 2005 IEEE International 

Conference on, 2005, pp. 4373–4379. 

[47] D. Kortenkamp, L. D. Baker, and T. Weymouth, “Using gateways 

to build a route map,” in Intelligent Robots and Systems (IROS 

1992), 1992 IEEE/RSJ International Conference on, 1992, vol. 3, 

pp. 2209–2214. 



15-0149 

 

15 

[48] A. Ranganathan, “PLISS: Detecting and Labeling Places Using 

Online Change-Point Detection,” in Robotics: Science and Systems, 

2010. 

[49] G. Tsechpenakis, D. N. Metaxas, C. Neidle, and O. Hadjiliadis, 

“Robust Online Change-point Detection in Video Sequences,” in 

Computer Vision and Pattern Recognition Workshop, 2006. 

CVPRW ’06. Conference on, 2006, p. 155. 

[50] L. Itti and P. Baldi, “A principled approach to detecting surprising 

events in video,” in Computer Vision and Pattern Recognition 

(CVPR 2005), IEEE Computer Society Conference on, 2005, vol. 1, 

pp. 631–637 vol. 1. 

[51] S. R. Esterby and A. H. El-Shaarawi, “Inference about the point of 

change in a regression model,” Appl. Stat., pp. 277–285, 1981. 

[52] A. Ranganathan and F. Dellaert, “Bayesian surprise and landmark 

detection,” in Robotics and Automation, 2009. ICRA ’09. IEEE 

International Conference on, 2009, pp. 2017–2023. 

[53] H. Korrapati, J. Courbon, Y. Mezouar, and P. Martinet, “Image 
Sequence Partitioning for outdoor mapping,” in Robotics and 

Automation (ICRA), 2012 IEEE International Conference on, 2012, 

pp. 1650–1655. 

[54] A. Chapoulie, P. Rives, and D. Filliat, “Topological segmentation of 

indoors/outdoors sequences of spherical views,” in Intelligent 

Robots and Systems (IROS), 2012 IEEE/RSJ International 

Conference on, 2012, pp. 4288–4295. 

[55] L. Murphy and G. Sibley, “Incremental unsupervised topological 

place discovery,” in Robotics and Automation (ICRA), 2014 IEEE 

International Conference on, 2014, pp. 1312–1318. 

[56] T. Nicosevici and R. Garcia, “Automatic Visual Bag-of-Words for 

Online Robot Navigation and Mapping,” Robot. IEEE Trans., vol. 

28, no. 4, pp. 886–898, 2012. 

[57] C. Tzu-Chuan and C. Meng Chang, “Using Incremental PLSI for 

Threshold-Resilient Online Event Analysis,” Knowl. Data Eng. 

IEEE Trans., vol. 20, no. 3, pp. 289–299, 2008. 

[58] M. Volkov, G. Rosman, D. Feldman, J. W. F. III, and D. Rus, 

“Coresets for Visual Summarization with Applications to Loop 

Closure,” in IEEE International Conference on Robotics and 

Automation (ICRA), 2015. 

[59] D. Feldman, M. Schmidt, and C. Sohler, “Turning big data into tiny 

data: Constant-size coresets for k-means, PCA and projective 

clustering,” in Proceedings of the Twenty-Fourth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2013, New 

Orleans, Louisiana, USA, January 6-8, 2013, 2013, pp. 1434–1453. 

[60] R. Paul, D. Rus, and P. Newman, “How was your day? Online 

visual workspace summaries using incremental clustering in topic 

space,” in Robotics and Automation (ICRA), 2012 IEEE 

International Conference on, 2012, pp. 4058–4065. 

[61] Y. Girdhar and G. Dudek, “Efficient on-line data summarization 

using extremum summaries,” in IEEE International Conference on 

Robotics and Automation (ICRA), 2012. 

[62] R. Paul, D. Feldman, D. Rus, and P. Newman, “Visual precis 

generation using coresets,” in Robotics and Automation (ICRA), 

2014 IEEE International Conference on, 2014, pp. 1304–1311. 

[63] Y. Girdhar, P. Giguere, and G. Dudek, “Autonomous adaptive 

exploration using realtime online spatiotemporal topic modeling,” 

Int. J. Rob. Res., vol. 33, no. 4, pp. 645–657, 2014. 

[64] D. Filliat and J.-A. Meyer, “Map-based navigation in mobile 

robots:: I. a review of localization strategies,” Cogn. Syst. Res., vol. 

4, no. 4, pp. 243–282, 2003. 

[65] M. R. Walter, S. Hemachandra, B. Homberg, S. Tellex, and S. 

Teller, “Learning semantic maps from natural language 

descriptions,” 2013. 

[66] A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Rubin, 

“Context-based vision system for place and object recognition,” in 

Computer Vision (ICCV 2003), Ninth IEEE International 

Conference on, 2003, pp. 273–280. 

[67] D. Filliat, E. Battesti, S. Bazeille, G. Duceux, A. Gepperth, L. 

Harrath, I. Jebari, R. Pereira, A. Tapus, C. Meyer, I. Sio-Hoi, R. 

Benosman, E. Cizeron, J. C. Mamanna, and B. Pothier, “RGBD 

object recognition and visual texture classification for indoor 

semantic mapping,” in Technologies for Practical Robot 

Applications (TePRA), 2012 IEEE International Conference on, 

2012, pp. 127–132. 

[68] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and 

reasoning with heterogeneous modalities,” in Robotics and 

Automation (ICRA 2012), 2012 IEEE International Conference on, 

2012. 

[69] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun, “Towards object 

mapping in non-stationary environments with mobile robots,” in 

Intelligent Robots and Systems (IROS 2002), 2002 IEEE/RSJ 

International Conference on, 2002, pp. 1014–1019. 

[70] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, 

and A. J. Davison, “SLAM++: Simultaneous localisation and 

mapping at the level of objects,” in 2013 IEEE Conference on 

Computer Vision and Pattern Recognition, Portland, OR, USA, June 

23-28, 2013, 2013, pp. 1352–1359. 

[71] J. Wu, H. I. Christensen, and J. M. Rehg, “Visual place 

categorization: Problem, dataset, and algorithm,” in Intelligent 

Robots and Systems, 2009. IROS 2009. IEEE/RSJ International 

Conference on, 2009, pp. 4763–4770. 

[72] D. Lowe, “Object recognition from local scale-invariant features,” 

in IEEE International Conference on Computer Vision (ICCV), 
1999, vol. 2, pp. 1150–1157. 

[73] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up 

Robust Features (SURF),” Comput. Vis. Image Underst., vol. 110, 

no. 3, pp. 346–359, 2008. 

[74] A. Oliva and A. Torralba, “Building the gist of a scene: The role of 

global image features in recognition,” Prog. Brain Res., vol. 155, 

pp. 23–36, 2006. 

[75] A. Oliva and A. Torralba, “Modeling the shape of the scene: A 

holistic representation of the spatial envelope,” Int. J. Comput. Vis., 

vol. 42, no. 3, pp. 145–175, 2001. 

[76] S. Se, D. Lowe, and J. Little, “Mobile robot localization and 

mapping with uncertainty using scale-invariant visual landmarks,” 

Int. J. Rob. Res., vol. 21, no. 8, pp. 735–758, 2002. 

[77] H. Andreasson and T. Duckett, “Topological localization for mobile 

robots using omni-directional vision and local features,” in Proc. of 

the 5th IFAC Symposium on Intelligent Autonomous Vehicles (IAV), 

2004. 

[78] E. Stumm, C. Mei, and S. Lacroix, “Probabilistic place recognition 

with covisibility maps,” in Intelligent Robots and Systems (IROS 

2013), 2013 IEEE/RSJ International Conference on, 2013, pp. 

4158–4163. 

[79] J. Košecká, F. Li, and X. Yang, “Global localization and relative 

positioning based on scale-invariant keypoints,” Rob. Auton. Syst., 

vol. 52, no. 1, pp. 27–38, 2005. 

[80] P. Newman and K. Ho, “SLAM - Loop closing with visually salient 

features,” in Robotics and Automation (ICRA 2005), 2005 IEEE 

International Conference on, 2005, pp. 635–642. 

[81] A. Gil, O. Reinoso, O. M. Mozos, C. Stachniss, and W. Burgard, 

“Improving data association in vision-based SLAM,” in Intelligent 

Robots and Systems, 2006 IEEE/RSJ International Conference on, 

2006, pp. 2076–2081. 

[82] A. Angeli, S. Doncieux, J.-A. Meyer, and D. Filliat, “Incremental 

vision-based topological slam,” in Intelligent Robots and Systems 

(IROS 2008), 2008 IEEE/RSJ International Conference on, 2008, 

pp. 1031–1036. 

[83] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer, “Fast and 

incremental method for loop-closure detection using bags of visual 

words,” IEEE Trans. Robot., vol. 24, no. 5, pp. 1027–1037, 2008. 

[84] K. L. Ho and P. Newman, “Detecting loop closure with scene 

sequences,” Int. J. Comput. Vis., vol. 74, no. 3, pp. 261–286, 2007. 

[85] K. Mikolajczyk and C. Schmid, “Indexing based on scale invariant 

interest points,” in Computer Vision, 2001. ICCV 2001. 

Proceedings. Eighth IEEE International Conference on, 2001, vol. 

1, pp. 525–531 vol.1. 

[86] A. C. Murillo, J. J. Guerrero, and C. Sagues, “SURF features for 

efficient robot localization with omnidirectional images,” in 

Robotics and Automation (ICRA 2007), 2007 IEEE International 

Conference on, 2007, pp. 3901–3907. 

[87] M. Cummins and P. Newman, “Appearance-only SLAM at large 

scale with FAB-MAP 2.0,” Int. J. Rob. Res., vol. 30, no. 9, pp. 

1100–1123, 2011. 

[88] M. Agrawal, K. Konolige, and M. R. Blas, “CenSurE: Center 

Surround Extremas for Realtime Feature Detection and Matching,” 

in Computer Vision - ECCV, 2008, vol. 4, pp. 102–115. 

[89] C. Mei, G. Sibley, M. Cummins, P. M. Newman, and I. D. Reid, “A 

constant-time efficient stereo SLAM system,” in BMVC, 2009, pp. 

1–11. 



15-0149 

 

16 

[90] E. Rosten and T. Drummond, “Machine learning for high-speed 

corner detection,” in Computer Vision–ECCV 2006, Springer, 2006, 

pp. 430–443. 

[91] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and 

P. Fua, “BRIEF: computing a local binary descriptor very fast,” 

Pattern Anal. Mach. Intell. IEEE Trans., pp. 778–792, 2012. 

[92] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach 

to object matching in videos,” in IEEE International Conference on 

Computer Vision (ICCV), 2003, pp. 1470–1477. 

[93] L. Fei-Fei and P. Perona, “A Bayesian hierarchical model for 

learning natural scene categories,” in IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition (CVPR), 

2005, vol. 2, pp. 524–531. 

[94] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, 

vol. 463. ACM press New York., 1999. 

[95] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary 

tree,” in Computer Vision and Pattern Recognition, 2006 IEEE 

Computer Society Conference on, 2006, vol. 2, pp. 2161–2168. 

[96] J. Wang, H. Zha, and R. Cipolla, “Combining interest points and 

edges for content-based image retrieval,” in Image Processing, 

2005. ICIP 2005. IEEE International Conference on, 2005, vol. 3, 

pp. III–1256–9. 

[97] D. Filliat, “A visual bag of words method for interactive qualitative 

localization and mapping,” in Robotics and Automation, 2007 IEEE 

International Conference on, 2007, pp. 3921–3926. 

[98] R. Paul and P. Newman, “FAB-MAP 3D: Topological Mapping 

with Spatial and Visual Appearance,” in IEEE International 

Conference on Robotics and Automation (ICRA), 2010, pp. 2649–

2656. 

[99] P. Newman, M. Smith, A. Harrison, C. Mei, I. Posner, R. Shade, D. 

Schröter, W. Churchill, and I. Reid, “Navigating, Recognising and 

Describing Urban Spaces With Vision and Laser,” Int. J. Rob. Res., 

vol. 28, no. 11–12, pp. 1406–1433, 2009. 

[100] C. Valgren and A. Lilienthal, “SIFT, SURF & seasons: Appearance-

based long-term localization in outdoor environments,” Rob. Auton. 

Syst., vol. 58, no. 2, pp. 157–165, 2010. 

[101] C. Cadena and J. Neira, “A learning algorithm for place 

recognition,” ICRA 2011 Workshop on Long-term Autonomy. 

Shanghai, China, 2011. 

[102] E. Johns and G.-Z. Yang, “Feature co-occurrence maps: 

Appearance-based localisation throughout the day,” in Proc. ICRA, 

2013. 

[103] M. Milford, W. Scheirer, E. Vig, A. Glover, O. Baumann, J. 

Mattingley, and D. Cox, “Condition-invariant, top-down visual 

place recognition,” in Robotics and Automation (ICRA 2014), 2014 

IEEE International Conference on, 2014. 

[104] B. J. A. Kröse, N. Vlassis, R. Bunschoten, and Y. Motomura, “A 

Probabilistic Model for Appearance-Based Robot Localization,” in 

In First European Symposium on Ambience Intelligence (EUSAI, 

2000, pp. 264–274. 

[105] P. Lamon, I. Nourbakhsh, B. Jensen, and R. Siegwart, “Deriving 

and matching image fingerprint sequences for mobile robot 

localization,” in IEEE International Conference on Robotics and 

Automation (ICRA), 2001, pp. 1609–1614. 

[106] J. Canny, “A computational approach to edge detection,” Pattern 

Anal. Mach. Intell. IEEE Trans., no. 6, pp. 679–698, 1986. 

[107] C. Harris and M. Stephens, “A Combined Corner and Edge 

Detector,” in 4th Alvey Vision Conference, 1988, vol. 147–151. 

[108] H. Badino, D. Huber, and T. Kanade, “Real-time topometric 

localization,” in IEEE International Conference on Robotics and 

Automation (ICRA), 2012, pp. 1635–1642. 

[109] N. Sunderhauf and P. Protzel, “BRIEF-Gist - closing the loop by 

simple means,” in Intelligent Robots and Systems (IROS 2011), 

2011 IEEE/RSJ International Conference on, 2011, pp. 1234–1241. 

[110] A. Murillo and J. Košecká, “Experiments in place recognition using 

gist panoramas,” in IEEE International Conference on Computer 

Vision (ICCV), 2009, pp. 2196–2203. 

[111] C. Siagian and L. Itti, “Biologically inspired mobile robot vision 

localization,” Robot. IEEE Trans., vol. 25, no. 4, pp. 861–873, 

2009. 

[112] G. Singh and J. Košecká, “Visual loop closing using gist descriptors 

in manhattan world,” in Omnidirectional Robot Vision workshop, 

with IEEE Int. Conf. on Robotics and Automation, 2010. 

[113] Y. Liu and H. Zhang, “Visual loop closure detection with a compact 

image descriptor,” in Intelligent Robots and Systems (IROS), 2012 

IEEE/RSJ International Conference on, 2012, pp. 1051–1056. 

[114] C. Mei, G. Sibley, and P. Newman, “Closing loops without places,” 

in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ 

International Conference on, 2010, pp. 3738–3744. 

[115] S. Lynen, M. Bosse, P. Furgale, and R. Siegwart, “Placeless Place-

Recognition,” in International Conference on 3D Vision, 2014. 

[116] M. Milford and G. Wyeth, “Mapping a Suburb With a Single 

Camera Using a Biologically Inspired SLAM System,” Robot. IEEE 

Trans., vol. 24, no. 5, pp. 1038–1053, 2008. 

[117] P. Furgale and T. Barfoot, “Visual teach and repeat for long-range 

rover autonomy,” J. F. Robot., vol. 27, no. 5, pp. 534–560, 2010. 

[118] M. Milford and G. Wyeth, “SeqSLAM: Visual route-based 

navigation for sunny summer days and stormy winter nights,” in 

IEEE International Conference on Robotics and Automation 

(ICRA), 2012, pp. 1643–1649. 
[119] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss, “Robust 

visual robot localization across seasons using network flows,” in 

Conference on the Association for the Advancement of Artificial 

Intelligence, 2014. 

[120] C. McManus, B. Upcroft, and P. Newman, “Scene signatures: 

Localised and point-less features for localisation,” in Robotics: 

Science and Systems, 2014. 

[121] N. Dalal and B. Triggs, “Histograms of oriented gradients for 

human detection,” in Computer Vision and Pattern Recognition, 

2005. CVPR 2005. IEEE Computer Society Conference on, 2005, 

vol. 1, pp. 886–893. 

[122] N. Sunderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell, B. 

Upcroft, and M. Milford, “Place recognition with ConvNet 

landmarks: Viewpoint-robust, condition-robust, training-free,” in 

Robotics: Science and Systems, 2015. 

[123] C. L. Zitnick and P. Dollár, “Edge Boxes: Locating Object 

Proposals from Edges,” in ECCV, 2014. 

[124] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet 

Classification with Deep Convolutional Neural Networks,” in NIPS, 

2012, vol. 1, no. 2, p. 4. 

[125] B. Krose, N. Vlassis, R. Bunschoten, and Y. Motomura, “A 

probabilistic model for appearance-based robot localization,” Image 

Vis. Comput., vol. 19, no. 6, pp. 381–391, 2001. 

[126] J. Neira, A. J. Davison, and J. J. Leonard, “Guest editorial - Special 

issue on visual SLAM,” IEEE Trans. Robot., vol. 24, no. 5, pp. 

929–931, 2008. 

[127] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. 

Burgard, “An evaluation of the RGB-D SLAM system,” in Robotics 

and Automation (ICRA), 2012 IEEE International Conference on, 

2012, pp. 1691–1696. 

[128] M. Labbe and F. Michaud, “Online global loop closure detection for 

large-scale multi-session graph-based SLAM,” in Intelligent Robots 

and Systems (IROS 2014), 2014 IEEE/RSJ International Conference 

on, 2014, pp. 2661–2666. 

[129] T. Whelan, M. Kaess, R. Finman, M. Fallon, H. Johannsson, J. 

Leonard, and J. McDonald, “Real-time large scale dense RGB-D 

SLAM with volumetric fusion,” Int. J. Rob. Res., 2014. 

[130] A. J. Davison and D. W. Murray, “Simultaneous localization and 

map-building using active vision,” Pattern Anal. Mach. Intell. IEEE 

Trans., vol. 24, no. 7, pp. 865–880, 2002. 

[131] K. Konolige and J. Bowman, “Towards lifelong visual maps,” in 

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ 

International Conference on, 2009, pp. 1156–1163. 

[132] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich, M. Calonder, V. 

Lepetit, and P. Fua, “View-based maps,” Int. J. Rob. Res., vol. 29, 

no. 8, pp. 941–957, 2010. 

[133] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, 

“Bundle adjustment—a modern synthesis,” in Vision algorithms: 

theory and practice, Springer, 2000, pp. 298–372. 

[134] G. Klein and D. Murray, “Parallel tracking and mapping for small 

AR workspaces,” in Mixed and Augmented Reality, 2007. ISMAR 

2007. 6th IEEE and ACM International Symposium on, 2007, pp. 

225–234. 

[135] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: 

Dense tracking and mapping in real-time,” in Computer Vision 

(ICCV), 2011 IEEE International Conference on, 2011, pp. 2320–

2327. 



15-0149 

 

17 

[136] J. Engel, T. Schops, J. Sturm, and D. Cremers, “LSD-SLAM: Large-

Scale Direct Monocular SLAM,” in European Conference on 

Computer Vision (ECCV), 2014. 

[137] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: a 

versatile and accurate monocular SLAM system,” CoRR, vol. 

abs/1502.0, 2015. 

[138] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An 

efficient alternative to SIFT or SURF,” in Proceedings of the IEEE 

International Conference on Computer Vision, 2011, pp. 2564–

2571. 

[139] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. 

J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. W. Fitzgibbon, 

“KinectFusion: Real-time dense surface mapping and tracking,” in 

10th IEEE International Symposium on Mixed and Augmented 

Reality, ISMAR 2011, Basel, Switzerland, October 26-29, 2011, 

2011, pp. 127–136. 

[140] R. Finman, L. Paull, and J. J. Leonard, “Toward object-based place 
recognition in dense RGB-D maps,” in ICRA workshop on visual 

place recognition in changing environments, 2015. 

[141] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous 

localization and map building in large-scale cyclic environments 

using the Atlas framework,” Int. J. Rob. Res., vol. 23, no. 12, pp. 

1113–1139, 2004. 

[142] F. Li and J. Košecká, “Probabilistic location recognition using 

reduced feature set,” in Robotics and Automation (ICRA 2006), 

2006 IEEE International Conference on, 2006, pp. 3405–3410. 

[143] M. Cummins and P. Newman, “Highly scalable appearance-only 

SLAM - FAB-MAP 2.0,” Robot. Sci. Syst., vol. 1, pp. 12–18, 2009. 

[144] M. Mohan, D. Gálvez-López, C. Monteleoni, and G. Sibley, 

“Environment selection and hierarchical place recognition,” in 

Robotics and Automation (ICRA 2015), 2015 IEEE International 

Conference on, 2015. 

[145] H. Andreasson, A. Treptow, and T. Duckett, “Localization for 

Mobile Robots using Panoramic Vision, Local Features and Particle 

Filter,” Proc. 2005 IEEE Int. Conf. Robot. Autom., 2005. 

[146] W. Maddern, M. Milford, and G. Wyeth, “Capping computation 

time and storage requirements for appearance-based localization 

with CAT-SLAM,” in Robotics and Automation (ICRA), 2012 IEEE 

International Conference on, 2012, pp. 822–827. 

[147] D. L. Donoho and Y. Tsaig, “Fast solution of-norm minimization 

problems when the solution may be sparse,” Inf. Theory, IEEE 

Trans., vol. 54, no. 11, pp. 4789–4812, 2008. 

[148] M. Milford, “Visual route recognition with a handful of bits,” Proc. 

Robot. Sci. Syst. Conf. 2012, 2012. 

[149] M. Milford, “Vision-based place recognition: How low can you 

go?,” Int. J. Rob. Res., vol. 32, no. 7, pp. 766–789, 2013. 

[150] E. Pepperell, P. Corke, and M. Milford, “All-environment visual 

place recognition with SMART,” in Robotics and Automation 

(ICRA 2014), 2014 IEEE International Conference on, 2014, pp. 

1612–1618. 

[151] T. Duckett, S. Marsland, and J. Shapiro, “Learning globally 

consistent maps by relaxation,” in Robotics and Automation, 2000. 

Proceedings. ICRA’00. IEEE International Conference on, 2000, 

vol. 4, pp. 3841–3846. 

[152] D. Filliat and J.-A. Meyer, “Global localization and topological 

map-learning for robot navigation,” From Anim. to Animat., vol. 7, 

pp. 131–140, 2002. 

[153] A. Angeli, S. Doncieux, J.-A. Meyer, and D. Filliat, “Visual 

topological SLAM and global localization,” in Robotics and 

Automation, 2009. ICRA’09. IEEE International Conference on, 

2009, pp. 4300–4305. 

[154] S. Bazeille and D. Filliat, “Incremental topo-metric SLAM using 

vision and robot odometry,” in Robotics and Automation (ICRA), 

2011 IEEE International Conference on, 2011, pp. 4067–4073. 

[155] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid, 

“RSLAM: A system for large-scale mapping in constant-time using 

stereo,” Int. J. Comput. Vis., vol. 94, no. 2, pp. 198–214, 2011. 

[156] G. Sibley, C. Mei, I. Reid, and P. Newman, “Adaptive relative 

bundle adjustment,” in Robotics: Science and Systems, 2009. 

[157] K. Konolige, E. Marder-Eppstein, and B. Marthi, “Navigation in 

hybrid metric-topological maps,” in Robotics and Automation 

(ICRA 2011), 2011 IEEE International Conference on, 2011, pp. 

3041–3047. 

[158] P. Beeson, J. Modayil, and B. Kuipers, “Factoring the mapping 

problem: Mobile robot map-building in the Hybrid Spatial Semantic 

Hierarchy,” Int. J. Rob. Res., vol. 29, no. 4, pp. 428–459, 2010. 

[159] H. Johannsson, M. Kaess, M. F. Fallon, and J. J. Leonard, 

“Temporally scalable visual SLAM using a reduced pose graph,” in 

Robotics and Automation (ICRA 2013), 2013 IEEE International 

Conference on, 2013. 

[160] I. Mahon, S. Williams, O. Pizarro, and M. Johnson-Roberson, 

“Efficient view-based SLAM using visual loop closures,” Robot. 

IEEE Trans., vol. 24, no. 5, pp. 1002–1014, 2008. 

[161] R. M. Eustice, H. Singh, J. J. Leonard, and M. R. Walter, “Visually 

mapping the RMS Titanic: Conservative covariance estimates for 

SLAM information filters,” Int. J. Rob. Res., vol. 25, no. 12, pp. 

1223–1242, Dec. 2006. 

[162] F. Lu and E. Milios, “Globally consistent range scan alignment for 

environment mapping,” Auton. Robots, vol. 4, no. 4, pp. 333–349, 

1997. 
[163] J. S. Gutmann and K. Konolige, “Incremental mapping of large 

cyclic environments,” in IEEE International Symposium on 

Computational Intelligence in Robotics and Automation, 1999, pp. 

318–325. 

[164] H. Durrant-Whyte and T. Bailey, “Simultaneous Localization and 

Mapping: Part I,” Robot. Autom. Mag. IEEE, vol. 13, no. 2, pp. 99–

110, 2006. 

[165] T. Bailey and H. Durrant-Whyte, “Simultaneous Localization and 

Mapping (SLAM): Part II,” Robot. Autom. Mag. IEEE, vol. 13, no. 

3, pp. 108–117, 2006. 

[166] S. Thrun and J. Leonard, “Simultaneous Localisation and Mapping,” 

in Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds. 

2008, pp. 871–889. 

[167] R. C. Smith and P. Cheeseman, “On the representation and 

estimation of spatial uncertainty,” Int. J. Rob. Res., vol. 5, no. 4, pp. 

56–68, 1987. 

[168] J. E. Guivant and E. M. Nebot, “Optimization of the simultaneous 

localization and map-building algorithm for real-time 

implementation,” IEEE Trans. Robot. Autom., vol. 17, no. 3, pp. 

242–257, 2001. 

[169] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-

Whyte, and M. Csorba, “A solution to the simultaneous localization 

and map building (SLAM) problem,” IEEE Trans. Robot. Autom., 

vol. 17, no. 3, pp. 229–241, 2001. 

[170] M. Montemerlo, S. Thrun, and B. Siciliano, FastSLAM : a scalable 

method for the simultaneous localization and mapping problem in 

robotics, no. v 27. Berlin: Springer, 2007. 

[171] S. Thrun and M. Montemerlo, “The GraphSLAM algorithm with 

applications to large-scale mapping of urban structures,” Int. J. Rob. 

Res., vol. 25, no. 5–6, pp. 403–429, 2006. 

[172] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose 

graphs with poor initial estimates,” in Robotics and Automation 

(ICRA 2006), 2006 IEEE International Conference on, 2006, pp. 

2262–2269. 

[173] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental 

smoothing and mapping,” IEEE Trans. Robot., vol. 24, no. 6, pp. 

1365–1378, 2008. 

[174] E. Eade and T. Drummond, “Edge landmarks in monocular SLAM,” 

in BMVC, 2006, pp. 7–16. 

[175] E. Eade and T. Drummond, “Scalable monocular SLAM,” in 

Computer Vision and Pattern Recognition, 2006 IEEE Computer 

Society Conference on, 2006, vol. 1, pp. 469–476. 

[176] E. Eade and T. Drummond, “Unified loop closing and recovery for 

real time monocular SLAM,” BMVC, vol. 13, p. 136, 2008. 

[177] A. Jacobson, Z. Chen, and M. Milford, “Autonomous Multisensor 

Calibration and Closed‐loop Fusion for SLAM,” J. F. Robot., 2014. 

[178] D. Galvez-Lopez and J. D. Tardos, “Real-time loop detection with 

bags of binary words,” in Intelligent Robots and Systems (IROS), 

2011 IEEE/RSJ International Conference on, 2011, pp. 51–58. 

[179] N. Vlassis and B. Krose, “Robot environment modeling via 

principal component regression,” in IEEE/RSJ Int. Conf. on 

Intelligent Robots and Systems, 1999, pp. 677–682. 

[180] N. Vlassis and B. Krose, “Mixture conditional density estimation 

with the EM algorithm,” in ICANN’99: 9th International 

Conference on Artificial Neural Networks, 1999. 

[181] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge 

University Press, 1996. 



15-0149 

 

18 

[182] A. Angeli, S. Doncieux, J. A. Meyer, and D. Filliat, “Real-time 

visual loop-closure detection,” in Robotics and Automation (ICRA 

2008), 2008 IEEE International Conference on, 2008, pp. 1842–

1847. 

[183] C. Siagian and L. Itti, “Biologically-inspired robotics vision monte-

carlo localization in the outdoor environment,” in Intelligent Robots 

and Systems (IROS 2007), 2007 IEEE/RSJ International Conference 

on, 2007, pp. 1723–1730. 

[184] E. Garcia-Fidalgo and A. Ortiz, “Probabilistic appearance-based 

mapping and localization using visual features,” in IbPRIA 2013 : 

Iberian Conference on Pattern Recognition and Image Analysis, 

2013, pp. 277–285. 

[185] C. K. Chow and C. N. Liu, “Approximating discrete probability 

distributions with dependence trees,” IEEE Trans. Inf. Theory, vol. 

14, no. 3, pp. 462–467, 1968. 

[186] R. Paul and P. Newman, “Self-help: Seeking out perplexing images 

for ever improving topological mapping,” Int. J. Rob. Res., vol. 32, 
no. 14, pp. 1742–1766, 2013. 

[187] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet 

allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003. 

[188] E. Olson, “Recognizing places using spectrally clustered local 

matches,” Rob. Auton. Syst., vol. 57, no. 12, pp. 1157–1172, Dec. 

2009. 

[189] C. Giovannangeli, P. Gaussier, and G. Desilles, “Robust mapless 

outdoor vision-based navigation,” in Intelligent Robots and Systems 

(IROS 2006), IEEE/RSJ International Conference on, 2006, pp. 

3293–3300. 

[190] E. Olson and P. Agarwal, “Inference on networks of mixtures for 

robust robot mapping,” Robotics:  Science and Systems. Sydney, 

Australia, 2012. 

[191] N. Sunderhauf and P. Protzel, “Switchable constraints for robust 

pose graph SLAM,” in Intelligent Robots and Systems (IROS 2012), 

2012 IEEE/RSJ International Conference on, 2012, pp. 1879–1884. 

[192] Y. Latif, C. Cadena, and J. Neira, “Robust loop closing over time 

for pose graph SLAM,” Int. J. Rob. Res., vol. 32, no. 14, pp. 1611–

1626, 2013. 

[193] C. McManus, W. Churchill, W. Maddern, A. Stewart, and P. 

Newman, “Shady dealings: robust, long-term visual localisation 

using illumination invariance,” in Robotics and Automation (ICRA 

2014), 2014 IEEE International Conference on, 2014. 

[194] T. Barfoot, J. Kelly, and G. Sibley, “Special Issue on Long-Term 

Autonomy,” Int. J. Rob. Res., vol. 32, no. 14, pp. 1609–1610, 2013. 

[195] C. Valgren and A. Lilienthal, “SIFT, SURF and Seasons: Long-term 

Outdoor Localization Using Local Features,” in European 

Conference on Mobile Robotics (ECMR), 2007, vol. 128, pp. 1–6. 

[196] P. Ross, A. English, D. Ball, B. Upcroft, G. Wyeth, and P. Corke, 

“A novel method for analysing lighting variance,” in Proceedings of 

Australasian Conference on Robotics and Automation, 2013, pp. 1–

8. 

[197] P. Ross, A. English, D. Ball, and P. Corke, “A method to quantify a 

descriptor’s illumination variance,” in Proceedings of Australasian 

Conference on Robotics and Automation, 2014. 

[198] M. J. Milford, I. Turner, and P. Corke, “Long exposure localization 

in darkness using consumer cameras,” in Robotics and Automation 

(ICRA 2013), 2013 IEEE International Conference on, 2013, pp. 

3755–3761. 

[199] N. Sünderhauf, P. Neubert, and P. Protzel, “Are we there yet? 

Challenging SeqSLAM on a 3000 km journey across all four 

seasons,” in Proc. of Workshop on Long-Term Autonomy, IEEE 

International Conference on Robotics and Automation (ICRA), 

2013. 

[200] S. Nuske, J. Roberts, and G. Wyeth, “Robust outdoor visual 

localization using a three-dimensional-edge map,” J. F. Robot., vol. 

26, no. 9, pp. 728–756, 2009. 

[201] P. Borges, R. Zlot, M. Bosse, S. Nuske, and A. Tews, “Vision-based 

localization using an edge map extracted from 3D laser range data,” 

in Robotics and Automation (ICRA), 2010 IEEE International 

Conference on, 2010, pp. 4902–4909. 

[202] P. Corke, R. Paul, W. Churchill, and P. Newman, “Dealing with 

shadows: Capturing intrinsic scene appearance for image-based 

outdoor localisation,” in Intelligent Robots and Systems (IROS 

2013), 2013 IEEE/RSJ International Conference on, 2013, pp. 

2085–2092. 

[203] C. McManus, P. Furgale, and T. D. Barfoot, “Towards lighting-

invariant visual navigation: An appearance-based approach using 

scanning laser-rangefinders,” Rob. Auton. Syst., 2013. 

[204] W. Maddern and S. Vidas, “Towards robust night and day place 

recognition using visible and thermal imaging,” RSS 2012 Beyond 

laser Vis. Altern. Sens. Tech. Robot. Percept., 2012. 

[205] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN 

Features off-the-shelf: an Astounding Baseline for Recognition,” in 

Computer Vision and Pattern Recognition Workshops (CVPRW), 

2014 IEEE Conference on, 2014, pp. 512–519. 

[206] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and 

transferring mid-level image representations using convolutional 

neural networks,” in Computer Vision and Pattern Recognition 

(CVPR), 2014 IEEE Conference on, 2014, pp. 1717–1724. 

[207] L. O. J. A. & M. M. Chen Zetao, “Convolutional Neural Network-

based Place Recognition,” in Australasian Conference on Robotics 

and Automation 2014, 2014. 
[208] N. Sünderhauf, S. Shirazi, F. Dayoub, B. Upcroft, and M. Milford, 

“On the performance of ConvNet features for place recognition,” in 

Intelligent Robots and Systems (IROS 2015), 2015 IEEE/RSJ 

International Conference on, 2015. 

[209] W. Maddern, A. D. Stewart, C. McManus, B. Upcroft, W. 

Churchill, and P. Newman, “Illumination invariant imaging: 

applications in robust vision-based localisation, mapping and 

classification for autonomous vehicles,” Proc. Work. Vis. Place 

Recognit. Chang. Environ. IEEE Int. Conf. Robot. Autom., 2014. 

[210] N. Jacobs, N. Roman, and R. Pless, “Consistent Temporal 

Variations in Many Outdoor Scenes,” IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR). Minneapolis, 

MN, 2007. 

[211] A. Abrams, E. Feder, and R. Pless, “Exploratory analysis of time-

lapse imagery with fast subset PCA,” in Applications of Computer 

Vision (WACV), 2011 IEEE Workshop on, 2011, pp. 336–343. 

[212] A. Ranganathan, S. Matsumoto, and D. Ilstrup, “Towards 

illumination invariance for visual localization,” in Robotics and 

Automation (ICRA 2013), 2013 IEEE International Conference on, 

2013, pp. 3791–3798. 

[213] A. Mikulík, M. Perdoch, O. Chum, and J. Matas, “Learning a fine 

vocabulary,” in Computer Vision–ECCV 2010, Springer, 2010, pp. 

1–14. 

[214] N. Carlevaris-Bianco and R. M. Eustice, “Learning visual feature 

descriptors for dynamic lighting conditions,” Proc. of Workshop on 

Visual Place Recognition in Changing Environments, IEEE 

International Conference on Robotics and Automation (ICRA). 

2014. 

[215] J. M. Bromley, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah, 

“Signature verification using a Siamese time delay neural network,” 

in 7th Annual Neural Information Processing Systems Conference, 

1994, vol. 7, pp. 737–744. 

[216] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, 

“SLIC superpixels Compared to state-of-the-art superpixel 

methods,” Pattern Anal. Mach. Intell. IEEE Trans., vol. 34, no. 11, 

pp. 2274–2282, 2012. 

[217] S. Lowry, M. Milford, and G. Wyeth, “Transforming morning to 

afternoon using linear regression techniques,” in Robotics and 

Automation (ICRA 2014), 2014 IEEE International Conference on, 

2014. 

[218] S. Lowry, G. Wyeth, and M. Milford, “Unsupervised online 

learning of condition-invariant images for place recognition,” Proc. 

Australas. Conf. Robot. Autom. 2014, 2014. 

[219] P. Biber and T. Duckett, “Dynamic maps for long-term operation of 

mobile service robots,” in Robotics: Science and Systems, 2005, pp. 

17–24. 

[220] F. Dayoub and T. Duckett, “An adaptive appearance-based map for 

long-term topological localization of mobile robots,” in Intelligent 

Robots and Systems (IROS 2008), 2008 IEEE/RSJ International 

Conference on, 2008, pp. 3364–3369. 

[221] T. Morris, F. Dayoub, P. Corke, G. Wyeth, and B. Upcroft, 

“Multiple map hypotheses for planning and navigating in non-

stationary environments,” in Robotics and Automation (ICRA 2014), 

2014 IEEE International Conference on, 2014. 

[222] T. Bailey, “Mobile robot localisation and mapping in extensive 

outdoor environments,” University of Sydney, 2002. 



15-0149 

 

[223] J. Andrade-Cetto and A. Sanfeliu, “Conc

localisation in indoor dynamic environ

Recognit. Artif. Intell., vol. 16, no. 3, pp. 36

[224] A. H. Hafez, M. Singh, K. M. Krishna, an

localization in highly crowded urban envi

Robots and Systems (IROS 2013), 2013 

Conference on, 2013, pp. 2778–2783. 

[225] E. Johns and G.-Z. Yang, “Generative met

recognition in dynamic scenes,” Int. J. Com

pp. 297–314, 2014. 

[226] M. Milford and G. Wyeth, “Persistent navig

a biologically inspired SLAM system,” Int.

9, pp. 1131–1153, 2010. 

[227] P. Biber and T. Duckett, “Experimental a

maps for long-term SLAM,” Int. J. Rob. Re

33, 2009. 

[228] C. Stachniss and W. Burgard, “Mobi

localization in non-static environments,” 

National Conference on Artificial Intelli

1329. 

[229] W. Churchill and P. Newman, “Practice m

and leveraging visual experiences for 

Robotics and Automation (ICRA 2012), 2

Conference on, 2012, pp. 4525–4532. 

[230] C.-C. Wang, C. Thorpe, S. Thrun, M. H

Whyte, “Simultaneous localization, mapp

tracking,” Int. J. Rob. Res., vol. 26, no. 9, p

[231] J. F. Dong, S. Wijesoma, and A. P. Sha

Blackwellised genetic algorithmic filte

environment with raw sensor measuremen

and Systems (IROS 2007), 2007 IEEE/RSJ 

on, 2007, pp. 1473–1478. 

[232] D. F. Wolf and G. S. Sukhatme, “Mo

localization and mapping in dynamic envir

vol. 19, no. 1, pp. 53–65, 2005. 

[233] D. Meyer-Delius, J. Hess, G. Grisetti, and 

Maps for Robust Localisation in Sem

Intelligent Robots and Systems (IR

International Conference on. 2010. 

[234] T. Krajnik, J. P. Fentanes, O. M. Mozos, 

and M. Hanheide, “Long-term topologica

robots in dynamic environments using spec

Robots and Systems (IROS 2014), 2014 

Conference on, 2014, pp. 4537–4542. 

[235] N. Carlevaris-Bianco and R. M. Eustice,

observability relationships for lifelong rob

Workshop on Lifelong Learning for Mobi

2012. 

[236] C. Linegar, W. Churchill, and P. Newman

Recalling relevant experiences for vast-sc

localisation,” in Robotics and Automation 

International Conference on, 2015, pp. 90–

[237] J. Lafferty, A. McCallum, and F. C. N

random fields: Probabilistic models for 

sequence data,” 2001. 

[238] Y. Liu and H. Zhang, “Towards impr

sequence-based SLAM,” in Mechatronics

2013), 2013 IEEE International Conferen

1266. 

[239] P. Hansen and B. Browning, “Visual place

sequence matching,” in Intelligent Robots a

2014 IEEE/RSJ International Conference o

 
Stephanie Lowry 

(Hons) degree in log

and the M.Sc in com

from Victoria Univer

New Zealand, and the 

from Queensland 

Technology, Australia

    She is currently

Researcher with the A

ncurrent map building and 

onments,” Int. J. Pattern 

 361–374, 2002. 

 and C. V Jawahar, “Visual 

nvironments,” in Intelligent 

13 IEEE/RSJ International 

ethods for long-term place 

omput. Vis., vol. 106, no. 3, 

vigation and mapping using 

Int. J. Rob. Res., vol. 29, no. 

l analysis of sample-based 

. Res., vol. 28, no. 1, pp. 20–

obile robot mapping and 

,” in AAAI’05 - The 20th 

elligence, 2005, pp. 1324–

e makes perfect? Managing 

 lifelong navigation,” in 

), 2012 IEEE International 

. Hebert, and H. Durrant-

apping and moving object 

, pp. 889–916, 2007. 

hacklock, “Extended Rao-

ilter SLAM in dynamic 

ent,” in Intelligent Robots 

SJ International Conference 

obile robot simultaneous 

vironments,” Auton. Robots, 

d W. Burgard, “Temporary 

Semi-static environments,” 

(IROS 2010), IEEE/RSJ 

s, T. Duckett, J. Ekekrantz, 

ical localisation for service 

pectral maps,” in Intelligent 

14 IEEE/RSJ International 

ce, “Learning temporal co-

robotic mapping,” in IROS 

bile Robotics Applications, 

an, “Work smart, not hard: 

scale but time-constrained 

on (ICRA 2015), 2015 IEEE 

–97. 

. N. Pereira, “Conditional 

r segmenting and labeling 

proving the efficiency of 

ics and Automation (ICMA 

rence on, 2013, pp. 1261–

ace recognition using HMM 

ts and Systems (IROS 2014), 

e on, 2014, pp. 4549–4555.  

 received the B.Sc 

ogic and computation 

omputer science, both 

versity of Wellington, 

he Ph.D in engineering 

d University of 

lia in 2014. 

tly a Postdoctoral 

e Australian Research 

Council Centre of Excellence

University of Technology. He

term robot autonomy and the

to robotic vision. 

 

Niko Sün

2012 and t

science in

Universitä

was a res

2014.  

In Mar

University

is now a research fellow with

Centre of Excellence in Robo

include robust visual perceptio

conditions, deep learning, SL

probabilistic estimation with

mobile robotics, his research c

fusion, especially NLOS-

localization systems. 

 

Paul New

degree in

University

1995 and 

navigation

Field Ro

Sydney, N

He is 

informatio

Department of Engineering Sc

heads the Oxford Mobile R

research interest includes au

over large spatial and tempora

the U.K. to work in the 

industry. In late 2000, he jo

Engineering, Massachusetts

Cambridge, where as a Post

Research Scientist, he worked

robust autonomous navigati

agents. In early 2003, he retu

as a Departmental Lecturer 

being appointed to a Universit

 

John J.

received 

engineerin

University

and the 

science f

Oxford, U

Current

Mechanic

Department of Mechanica

Institute of Technology (M

member of the MIT Com

Intelligence Laboratory (CSA

problems of navigation, mapp

19 

nce in Robotic Vision, Queensland 

Her research interests include long-

he application of machine learning 

ünderhauf received the Ph.D. in 

d the Diploma (M.Sc.) in computer 

 in 2006, both from Technische 

ität Chemnitz, Germany, where he 

research fellow between 2006 and 

arch 2014 he joined Queensland 

ity of Technology in Brisbane and 

ith the Australian Research Council 

botic Vision. His research interests 

ption, place recognition in changing 

 SLAM, long-term autonomy, and 

ith graphical models. Apart from 

h covers robust methods for sensor 

-mitigation for satellite-based 

ewman (F’15) received the M.Eng. 

in engineering science from the 

ity of Oxford, Oxford, U.K., in 

d the Ph.D. degree in autonomous 

ion from the Australian Center for 

Robotics, University of Sydney, 

, N.S.W., Australia.  

is currently a BP Professor of 

tion engineering with the 

 Science, University of Oxford. He 

e Robotics Research Group. His 

autonomous navigation, especially 

oral scales. In 1999, he returned to 

e commercial sub-sea navigation 

 joined the Department of Ocean 

etts Institute of Technology, 

ostdoctoral Researcher and later a 

ked on algorithms and software for 

ation for both land and sub-sea 

eturned to the University of Oxford 

rer in engineering science before 

rsity Lectureship in 2005. 

J. Leonard (S’87–M’87–F’13) 

d the B.S.E. degree in electrical 

ering and science from the 

sity of Pennsylvania, Philadelphia, 

e D.Phil. degree in engineering 

 from the University of Oxford, 

, U.K., in 1994.  

ently, he is a Professor of 

nical and Ocean Engineering in the 

ical Engineering, Massachusetts 

(MIT), Cambridge. He is also a 

omputer Science and Artificial 

SAIL). His research addresses the 

pping, and persistent autonomy for 



15-0149 

 

20 

autonomous mobile robots operating in unstructured 

environments. 

 

David Cox received the A.B. degree in 

biology and psychology from Harvard 

University, Cambridge, MA, USA, in 

2000 and the Ph.D. degree in 

computational neuroscience from 

Massachusetts Institute of Technology, 

Cambridge, MA, USA in 2007.  

 He is currently an Assistant 

Professor of Molecular and Cellular 

Biology and of Computer Science at Harvard University. He 

was previously a Junior Fellow at the Rowland Institute at 

Harvard University, a multidisciplinary institute focused on 

high-risk, high-reward scientific research at the boundaries of 

traditional fields. His laboratory seeks to understand the 

computational underpinnings of high-level visual processing 

through concerted efforts in both reverse- and forward-

engineering. To this end, his group employs a wide range of 

experimental techniques (ranging from microelectrode 

recordings in living brains to visual psychophysics in humans) 

to probe natural systems, while at the same time actively 

developing practical computer vision systems based on what is 

learned about the brain. 

 

Peter Corke received Bachelor of 

Engineering, Masters of Engineering and 

PhD degrees from University of 

Melbourne, Melbourne, Australia and is a 

Fellow of the IEEE.  

He is currently director of the 

Australian Research Council Centre of 

Excellence in Robotic Vision, and a 

Professor of Robotics and Control at Queensland University of 

Technology (QUT), Brisbane, Australia. His research is 

concerned with robotic vision, flying robots and robots for 

agriculture. 

Prof. Corke worked at the University of Melbourne, first as 

a research assistant and later as a lecturer. In 1984 he 

commenced with the Commonwealth Scientific and Industrial 

Research Organisation (CSIRO), where he founded the 

Autonomous Systems laboratory of the CSIRO ICT Centre, 

and served as Research Director from 2004–2007. He was a 

Senior Principal Research Scientist when he left to take up a 

chair at QUT in 2010. He was editor-in-chief of the IEEE 

Robotics & Automation magazine from 2009 to 2013, and is a 

founding editor of the Journal of Field Robotics. 

 

Michael Milford received the Ph.D. in 

electrical engineering and the Bachelor of 

Mechanical and Space Engineering from 

the University of Queensland (UQ), 

Brisbane, Australia.  

He is currently a Senior Lecturer and 

Australian Research Council Future 

Fellow at Queensland University of 

Technology, Brisbane, Australia, and a Chief Investigator for 

the Australian Centre of Excellence for Robotic Vision. He 

was a Research Fellow on the Thinking Systems Project at the 

Queensland Brain Institute on the Thinking Systems Project 

until 2010, when he became a Lecturer at QUT.  

Dr. Milford was awarded an inaugural Australian Research 

Council Discovery Early Career Researcher Award in 2012 

and became a Microsoft Faculty Fellow in 2013.  

 


