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a b s t r a c t 

Robots are becoming interactive and robust enough to be adopted outside laboratories and in industrial 
scenarios as well as interacting with humans in social activities. However, the design of engaging robot- 
based applications requires the availability of usable, flexible and accessible development frameworks, 
which can be adopted and mastered by researchers and practitioners in social sciences and adult end 
users as a whole. This paper surveys Visual Programming Environments aimed at enabling a paradigm fos- 
tering the so-called End-User Development of applications involving robots with social capabilities. The 
focus of this article is on those Visual Programming Environments that are designed to support social re- 
search goals as well as to cater for professional needs of people not trained in more traditional text-based 
computer programming languages. This survey excludes interfaces aimed at supporting expert program- 
mers, at allowing industrial robots to perform typical industrial tasks (such as pick and place operations), 
and at teaching children how to code. After having performed a systematic search, sixteen programming 
environments have been included in this survey. Our goal is two-fold: first, to present these software 
tools with their technical features and Authoring Artificial Intelligence modeling approaches, and second, 
to present open challenges in the development of Visual Programming Environments for end users and 
social researchers, which can be informative and valuable to the community. The results show that the 
most recent such tools are adopting distributed and Component-Based Software Engineering approaches 
and web technologies. However, few of them have been designed to enable the independence of end 
users from high-tech scribes. Moreover, findings indicate the need for (i) more objective and comparative 
evaluations, as well as usability and user experience studies with real end users; and (ii) validations of 
these tools for designing applications aimed at working “in-the-wild” rather than only in laboratories and 
structured settings. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

Robots are programmable machines that are nowadays com- 
monly available and used in universities, research institutes, and 
manufacturing industries. Traditionally, they have been used to 
perform high-speed, efficient and repetitive tasks in hazardous and 
industrial environments, often requiring few or no interactive ca- 
pabilities [1,2] . These cases differ significantly from social robots, 
for which the main goals are to play useful social roles and en- 
gage different types of users through meaningful, natural, suitable, 
and safe interactions [3,4] . Despite being one of the most rele- 
vant emergent technologies according to the World Economic Fo- 
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rum [5] , the successful adoption and acceptance of social robots 
into our society still requires many challenges to be solved [6,7] . 
Similar to the early years of computing hardware, current social 
robotics applications and research are widely dominated by high- 
tech scribes, i.e., experts in programming or engineers [8] . More- 
over, these applications are generally designed, executed and eval- 
uated in structured, closed and controlled environments, such as 
laboratories, and under the supervision of experts in robotics en- 
gineering [9] . However, social robots are aimed at being used by 
the general public and at performing “in-the-wild”, i.e., in unstruc- 
tured, dynamic, open and everyday environments [9] . 

In order to successfully perform in these scenarios, social robots 
must be able to provide useful, safe, usable, valuable, enjoyable 
and meaningful experiences [7,10] . Unlike the requirements posed 
by the introduction of robots in industrial scenarios, use cases in 
which robots must interact with people using social norms and 
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conventions are better approached by UX/UI designers, researchers, 
practitioners in social sciences. Therefore, the inclusion of this 
new type of users in the design process of social robots is key- 
stone to ensure the successful performance of social robot based 
applications. However, people belonging to this category are tra- 
ditionally skillful in domains profoundly different from advanced 
robot and software development, and oftentimes lack the required 
level of expertise in advanced engineering topics, which are typi- 
cally needed to implement complex robot behaviors. Examples of 
approaches enabling the inclusion of non-roboticists in the cre- 
ation of interactive applications are user-centered [11] and partic- 
ipatory design [12] . Recent examples in Social Robotics applying 
these methods are presented in [13,14] . As described in [15] , user- 
centered and participatory design endorse the “design for use be- 
fore use” paradigm, which requires a clear division of labour be- 
tween the people assigned for the creation of applications at de- 
sign time and the people able to use and redesign the applica- 
tion at run time. According to [16] , approaches requiring this di- 
vision of labour have become problematic in many software devel- 
opment areas due to: (i) a lack of expert software developers or 
(manpower) able to grasp and attend all possible users as well as 
their needs; (ii) the dynamic change of requirements, which are 
often specific to individual domain applications; and (iii) possible 
misunderstandings between expert software developers and their 
users due to the difference in backgrounds and practices. 

Recently, End-User Development (EUD) has emerged as a suit- 
able alternative to those approaches requiring a division of labour 
[16] . This is done by enabling novice users of computers and peo- 
ple without training on traditional programming languages, who 
are often denoted as end users, to redesign their own applications 
not only at design time but also at run time [17] . The goal of EUD 

is to evolve from easy-to-use to easy-to-develop interactive tech- 
nologies [16] . Such a goal is not limited to software but can also 
include hardware artifacts, such as those manufactured using 3D 

printing technology [16] . A new and broad definition based in the 
meta-design manifesto [18] also considers EUD as a socio-technical 
activity whereby users can develop all software and hardware sys- 
tems that they use in their everyday life [19] , therefore enabling 
independence of the owners of the problems, i.e., end users them- 
selves, apart from the high-tech scribes [8] . The concept of EUD 

is related to End-User Programming (EUP) and End-User Software 
Engineering (EUSE). On the one hand, EUP is often considered as 
a subset of EUD [20] , because it focuses only on the techniques 
used to enable end users to write their own programs, such as vi- 
sual programming, domain-specific languages and natural language 
programming. In contrast, EUD not only focuses on the program 

creation phases but also on the methods and tools that can sup- 
port the entire software development life-cycle [17] . This requires 
reaching independence from high-tech scribes during the use, re- 
design, configuration, and extension of the software and hardware 
artifacts [19] . On the other hand, EUSE takes a different approach 
compared to EUP and EUD. This is because EUSE mostly focuses on 
providing end users with solutions derived from traditional soft- 
ware engineering, such as debugging and version control, to pro- 
mote the creation of high-quality software that is reusable, reliable 
and efficient [20,21] . 

In the past few years, a number of systems have been proposed 
to tackle EUD challenges for robotics systems at different levels, 
e.g., motion planning and execution frameworks adopting Program- 

ming by Demonstration (PbD) [22,23] , or the use of Natural Lan- 
guage Processing (NLP) to provide robots with instructions about 
how to carry out a certain task [24] . However, Visual Programming 

Environments (VPE) still follow the EUP and EUD approach, offering 
the best trade-off between usability (being easy to learn and easy 
to use) and the overall complexity characterizing the robot-based 
behaviors that can be developed with these tools. VPEs integrate 

a selected Visual Programming Language (VPL) to enable their users 
to create applications on the basis of such graphical elements as 
icons, blocks, arrows, forms, and figures, among others, rather than 
code only [25,26] . The relevance of these development tools has 
recently increased not only in Robotics-related use cases, but also 
in other fields of Computer Science such as the Internet of Things 
(IoT) [25,27] , video game development [28,29] , mobile application 
development [30] , and Virtual/Augmented Reality [31] . Due to their 
aforementioned flexibility and relevance, this article focuses on the 
EUD tools using VPEs for the design of Social Robotics applications. 

As described by Barricelli et al. [17] , most relevant literature re- 
views on EUD, such as [32–34] , present a limited number of ap- 
proaches and techniques. These relatively old literature review ar- 
ticles also tend to omit applications in Robotics. Moreover, the re- 
views presented in such articles have been performed and ana- 
lyzed in the research domain of their authors [17] , which differ 
from Robotics. Two more recent systematic reviews on EUD ap- 
proaches are [35] and [17] . The authors of [35] conducted a 10- 
year (2007–2017) systematic search, in which 21 articles were se- 
lected. However, none of them belongs to the Robotics field. In 
contrast, Barricelli et al. [17] presents an overview of applications, 
tools and techniques in EUD, EUP and EUSE over 17 years (20 0 0–
2017). From the 165 papers selected in [17] , only four are in the 
Robotics area, out of which only two are relevant for the focus of 
this article. Finally, a very recent narrative review of EUD-inspired 
software applied to domains such as smart homes, industrial and 
humanoid Robotics, task automation, and applications for human 
assistance is presented in [36] . However, the review proposed in 
[36] mainly focuses the analysis and proposed challenges to IoT- 
specific approaches and rule-based systems, such as those based 
on the trigger-action paradigm [37] . In fact, most literature reviews 
on EUD tend to omit in their analysis the more recent tools, tech- 
nologies, and approaches used in Robotics aimed at enabling the 
development of more advanced, reactive and robust robot systems. 
Relevant methods often omitted are related to the behavior mod- 
eling approaches enabling end users to create intelligent and so- 
cial robots. These approaches, which are often denoted as Author- 
ing Artificial Intelligence (AAI) or simply Artificial Intelligence (AI) 
architectures [38] , enable the control of processes in which intel- 
ligent agents can evaluate their environment to perform decision 
making. These AAI-based methods are nowadays widely used in ar- 
eas in which the development of complex and intelligent physical 
and virtual agents is needed, such as Robotics or game develop- 
ment [39] . Three of the main research goals of AAI-based meth- 
ods are: (i) overcoming limitations related to modularity, reliabil- 
ity, reusability, and robustness presented by the classical agent be- 
havior modeling methods, such as rule-based systems and script- 
ing [38] ; (ii) enabling their use for EUD and interaction design 
tasks [39] ; and (iii) generating more intelligent, reactive, believ- 
able, suitable, and explainable agent behaviors [40] . Due to this, 
the role played by the AAI-based methods in EUD and EUP must 
not be omitted. Moreover, current systematic and narrative reviews 
in EUD also tend to omit in their analysis those relevant develop- 
ment practices and approaches nowadays used to create more ad- 
vanced, reusable, scalable, interactive and reliable robot systems, 
and in particular, the use of frameworks supporting Component- 
based Software Engineering (CBSE) for Robotics. This approach has 
become quasi-standard for the development of software architec- 
tures for robots [41,42] . Therefore, their analysis is fundamental for 
a better understanding of how to develop more advanced, usable 
and robust software back-ending EUD and EUP for Robotics. Other 
recent reviews describing interesting intuitive programming tools, 
such as [43,44] , focus on educational contexts for children rather 
than EUD applications for adult users. 

The limitations of the aforementioned studies indicate that 
there is a need for a more in-depth systematic identification of re- 
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Table 1 

Cognitive dimension definitions. 

Dimension Definition 

Abstraction gradient Types and availability of abstraction 
mechanisms 

Closeness of mapping Closeness of representation to domain 
Hidden dependencies Important links between entities are 

not visible 
Premature 
commitment 

Constraints on the order of doing 
things 

Viscosity Resistance to change 
Visibility Ability to view components easily 
Diffuseness Verbosity of language 
Error-proneness Notation invites mistakes 
Hard mental 
operations 

High demand on cognitive resources 

Progressive evaluation Work-to-date can be checked at any 
time 

Provisionality Degree of commitment to actions or 
marks 

Role-expressiveness The purpose of a component is readily 
inferred 

Secondary notation Extra information in means other than 
formal syntax 

Consistency Similar semantics are expressed in 
similar syntactic forms 

search articles enabling EUD for Social Robotics, with the aim of 
providing a broader overview and understanding of the develop- 
ment approaches, tools, and practices enabling end users to cre- 
ate intelligent and interactive applications with social robots. To- 
wards this end, this article presents a systematic search and anal- 
ysis [45] of VPEs aimed at enabling the EUD paradigm for social 
human–robot interaction (HRI) and everyday life applications. The 
main contribution of this paper is as follows. By systematically 
identifying and analyzing relevant VPEs for EUD of application with 
social robots, we provide: (i) a more complete overview of current 
scenarios for EUD and EUP solutions in this area; (ii) an in-depth 
analysis of the algorithms and modeling approaches currently used 
to enable the creation of more intelligent and robust agents; (iii) a 
presentation of the trends, practices, and technologies used for the 
development of VPEs for social robots; and (iv) the definition of 
open challenges and future directions specific to Social Robotics. 

The organization of this paper is as follows. Section briefly 
presents basic concepts used in this article for the analysis of 
VPEs. Section 3 describes the main concepts underlying VPE- 
based design, with an emphasis on Robotics-related requirements. 
Section 4 describes the methodology applied to perform a sys- 
tematic analysis of the literature. Section 5 presents the VPE tools 
found in the literature following our methodology. Section 6 dis- 
cusses behavior modeling approaches used in VPEs for developing 
intelligent social robots. Section 7 describes more relevant software 
tools and technologies executing at the back-end of these VPEs. 
Section 8 presents relevant open challenges, thereby proposing a 
road-map for further research directions. Conclusions follow. 

2. Appropriate abstraction level for programming social robots 

The concept of cognitive dimension is a framework used to an- 
alyze complex software tools such as programming languages and 
interactive user interfaces [46,47] . It can be used to identify us- 
ability problems in the early stages of the design of a user in- 
terface and to perform iterative design. Brief definitions, based 
in [48] and [49] , of the most relevant cognitive dimensions are 
shown in Table 1 . As a usability principle, design of programming 
tools based in cognitive dimensions must deal with a set of trade- 
offs, i.e., attempts to improve any dimension always affects other 
dimensions. Therefore, cognitive dimension design must be goal- 

oriented by selecting the dimensions that are more important for 
the target audience. 

Recently, the work in [50] studied cognitive dimension and 
usability trade-offs when considering the programming of social 
robots. This analysis resulted in a proposal for a robot program- 
ming model that decomposes the social and intelligent abilities 
of robots in five abstraction levels, namely hardware primitives, 
algorithms primitives, social primitives, emergent primitives, and 
methods for controlling primitives. In this model, the lowest ab- 
straction level is the hardware primitives that allow programmers 
to retrieve sensory information from hardware devices and control 
robot inputs, e.g., LEDs and motors. The second abstraction level is 
the algorithm primitives that are used to build low-level interac- 
tive, perceptual and control capabilities in social robots, e.g., face 
tracking, sound source localization, and inverse kinematics. The 
third level is that of social primitives, which contains intuitive and 
reusable social interactive capabilities that are close to the domain 
expertise of the general end users. At the fourth level, emergent 
primitives are built from a combination of social primitives, e.g., 
gaze, speech, and gestures, to create high-level social behaviors, 
such as those related to emotion-inducing behaviors. Finally, the 
fifth level contains the control primitives that are in charge of per- 
forming decision making based on the current status of the inter- 
action. The simplest way of doing this task is by using if-then-else 
rules. A description of the methods used in EUD tools for Social 
Robotics for controlling primitives is the main focus of Section 6 . 
Findings of [50] suggest that using too many low-level abstrac- 
tions, i.e., hardware and algorithm primitives, for the development 
of programming tools for social robots negatively affects their us- 
ability. Such low-level primitives tend to require hard mental oper- 
ations and produce error-prone notations. At the same time, using 
too many emergent primitives affects the viscosity positively, but 
the expressive power of the programming tools and hidden de- 
pendencies negatively. In order to reach good usability and cog- 
nitive dimension trade-offs for the end user, these programming 
tools must use as many social primitives as possible. A deeper de- 
scription of these primitives and their influence on the usability 
and cognitive dimension trade-offs of a programming tool for so- 
cial robots are explained in-depth in [50] . 

3. Visual programming environments in robotics 

With some simplifications, three main Robotics-related scenar- 
ios can be identified where VPEs play a decisive role, namely (i) 
industry settings, (ii) science, technology, engineering and mathe- 
matics (STEM) education, and (iii) end-user applications. Two ma- 
jor factors form a basis for this classification, namely the required 
programming abstraction level [50] and the target users. 

One key feature that distinguishes among these classes of use 
cases is based on the most appropriate level of abstraction char- 
acterizing the programming operators and primitives , i.e., the avail- 
able visual elements, which can provide the required usability, in- 
tuitiveness, ease of learning, and flexibility. While adopting low- 
level programming abstraction primitives can enhance the flexibil- 
ity and the level of code reuse associated with VPEs, it also de- 
creases their usability and intuitiveness [50] . Furthermore, the ca- 
pability associated with easy-to-learn approaches can be negatively 
affected when developers must deal with a mixture of unbalanced 
abstraction levels [47,50] . 

A second major difference is the target end users population 
in its own right. In use cases grounded in industry scenarios, the 
use of VPE-based approaches is geared towards reducing the costs 
associated with the development and maintenance of robot ap- 
plications on the shop-floor or in the manufacturing cell by hu- 
man operators who are new or untrained in programming [51] . 
However, users of industry-oriented VPEs still require some exper- 
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tise in low-level programming and Robotics notations. Examples of 
low-level notations presented in some VPEs for industrial settings 
are coordinate frames, tools, materials, joint velocities, end-effector 
orientations and positions, and hardware configurations [52–54] . 
In general, industry-oriented VPEs are mainly focused on enabling 
robots to execute a set of well-defined sequences of repetitive and 
accurate tasks, e.g., assembly, pick-and-place, welding and mate- 
rial handling [52] , rather than enabling them to play complex and 
diverse social roles, e.g., teacher, friend or companion. Some ad- 
vanced VPEs for industrial settings also enable a mixed approach 
with PbD methods [52,53] . 

Use cases related to the adoption of VPEs in STEM and – in 
general – educational settings are typically aimed at children or 
new learners of general-purpose programming languages for de- 
veloping toy programs rather than real-world applications. This 
type of VPEs is characterized by two main peculiarities. Firstly, 
they must be based on suitable approaches to enforce learning 
Computer Science or Robotics-related topics, such as the manage- 
ment of sensors or actuators, coding, functions, data structures, 
or algorithms. Secondly, these VPEs must be engaging and suf- 
ficiently easy-to-use to keep students interested and motivated 
during programming sessions. The abstraction level typically en- 
coded in this type of interfaces depends also on the age of the 
target learners [55] . For elementary and middle school students, 
these software development environments must favour simplic- 
ity, intuitiveness and avoid the intrinsic complexity of general- 
purpose programming languages [56] . However, environments for 
students in high school and above often require the use of low- 
level general-purpose programming syntax, e.g., conditionals, loops 
and functions, to enable an easy transfer of knowledge to general- 
purpose programming languages or more complex approaches in 
advanced courses [57] . Nowadays, new STEM-targeted educational 
VPEs coupled with robot toys appear every year, notable examples 
being the interfaces for such robots as Cozmo [58] and Thymio 
[59] . 

Programming robots and learning how to use the available 
VPEs in both industrial and STEM-related educational scenarios are 
generally the main tasks or objectives of their target users. As 
mentioned above, these tasks require some low-level expertise in 
Robotics (in the case of industrial settings) or the user needs to 
acquire a complex body of knowledge by time-consuming training 
processes (in the case of STEM-related educational scenarios) [55] . 
This greatly differs from what is postulated by EUD approaches 
for domain-specific users [34,60] , whereby programming is seen as 
an optional task to support work activities carried out by an end 
user rather than being a main learning or work objective. This may 
be because many domain-specific end users do not have the time 
and motivation to learn how to use low-level Robotics software 
frameworks [61,62] . Therefore, VPEs for end users require more 
intuitive interfaces, mainly based on programming notations that 
are close to the domain knowledge of the general user. In many 
cases, these VPEs must also be flexible enough to enable the cre- 
ation of complex, dynamic and engaging social interactive experi- 
ences with robots. Such interactions often require the use of multi- 
modal approaches, e.g., gesture and speech recognition, expression 
of emotions, and engaging dialogues, among others [63] . Exam- 
ples of domain-specific end users are teachers developing robot tu- 
tors and helpers, artists programming a choreography or defining 
a script for robot-related artistic performances [64] , sellers creat- 
ing interactive experiences for customers [65] , or therapists using 
robots to help in therapy sessions, just to name a few [62] . 

This article is targeted to discuss VPEs suitable to enable the 
adoption of EUD-based paradigms for the creation of social inter- 
action applications by domain-specific end users. 

According to the discussion in [66] , most common VPL ap- 
proaches can be categorized as: (i) form-filling, (ii) data-flow, and 
(iii) block programming. 

Form-filling VPLs generally require the use of standard input 
forms, such as buttons and checkboxes, along with images to guide 
the user step-by-step. A popular AAI approach used for modeling 
robot behaviors in this type of VPLs is the use of trigger-action 
rules [27,66] . While such VPLs are popular in different IoT environ- 
ments, such as smart homes [66] , they are very poorly explored 
in Robotics [67] . This can be due to the widely known limitations 
that these approaches present when they are required for produc- 
ing intelligent agent behaviors [39,40] . Moreover, a lack of struc- 
ture when defining disjoint ad hoc rules can make trigger-action 
systems unstable and error-prone when creating relatively complex 
programs, which requires the integration of additional tools for 
solving conflicts between rules [40,68,69] . Therefore, areas requir- 
ing the creation of more complex behaviors, such as video games 
and Robotics, prefer the use of more structured, robust, and ex- 
pressive AAI-based approaches [38,70] . 

Data-flow is a commonly adopted VPL approach in Robotics, 
not only for creating EUD-based environments for non-technically 
skilled people but also for expert use in complex and robust ap- 
plications, as described in [71] . A data-flow programming environ- 
ment is represented using directed graphs [72] . Nodes in data-flow 

interfaces are referred to by different terms by various authors, 
such as blocks, functions, icons, states, procedures , and boxes . Nodes 
are connected by means of graphical lines (also referred to as wires 

or arcs ), which represent the flow of data between functions/blocks 
or transitions between states. 

Block programming , based on the primitive-as-puzzle-piece 

metaphor (also known as block-based visual programming) 
[57,73,74] , is a recently adopted approach that is gradually gaining 
attention in the development of EUD-based interfaces [73] . Unlike 
data-flow tools, visual elements in block-based VPLs are not con- 
nected using lines. Instead, block-based VPLs programs are built by 
assembling jigsaw puzzle pieces, which present visual cues that in- 
dicate to the user how visual elements may be used. This makes a 
block-based VPL an intuitive and engaging approach that is able 
to stimulate user creativity [57,66] . Following this definition, we 
consider in our review those VPEs using popular block-based VPLs 
such as Scratch [75] , Snap! [76] or Google Blockly [77,78] . 

4. Methodology 

We follow the guidelines proposed in [45,79] for performing 
systematic reviews of Software Engineering papers. Systematic re- 
views are objective literature review studies used to identify rele- 
vant research papers, trends, gaps and challenges in some specific 
research area as well as to help in the position of research direc- 
tions and activities [45] . Our protocol for performing a systematic 
review is based on recent and relevant systematic reviews with 
similar objectives and domain areas. Specifically, we follow [80] , 
which focuses on the area of human–robot interaction, and [20] , 
which focuses on the area of EUD. As described in [45,79] , and ap- 
plied in [80] , the process involved in a systematic review consists 
of five parts: (S1) definition of the review protocol , whereby the re- 
search questions are careful defined as well as the methods used to 
answer them; (S2) definition of the search strategy , which aims at 
identifying the relevant research articles in the field; (S3) documen- 

tation of the search process , whereby readers are able to evaluate 
how completely and rigorously the search process has been per- 
formed; (S4) specification of inclusion and exclusion criteria, which 
are used to select core articles in the field; and (S5) a report of 
relevant data or information from each research article or software 
tool. 

4.1. Research questions 

One of the main focuses of this article is to complement re- 
cent literature review articles in EUD, such as [20] and [36] , by 
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Table 2 

Dimensions used to obtain general information of VPEs. 

Label Dimension Description and goal 

RQ1-D1 Name Used to identify each tool analyzed in this 
article 

RQ1-D2 EUP approach Aims at discovering the VPEs technique used 
to enable the creation of end-user programs 
values in this dimension can be form-filling, 

data-flow or block-based 
RQ1-D3 Target users Aims at identifying the type of end users 

these VPEs have been designed for 
RQ1-D4 Application 

domain 
Aims at discovering the application domains 
in which these VPEs have been used to 
support end-users goals and needs 

RQ1-D5 Target robot Aims at identifying the type of robots 
supporting these VPEs 

identifying and analyzing relevant tools and technologies integrat- 
ing VPEs for enabling EUD and EUP in Social Robotics. The identi- 
fication of these tools and technologies can be used to better un- 
derstand the current scenario of EUD solutions for Social Robotics. 
We formulated the following research questions. 

(RQ1) What VPE tools for Social Robotics have been proposed 

in the literature to support end-user research goals or professional 

needs? The dimensions used to respond to RQ1 are shown in 
Table 2 . We propose RQ1-D1 (Name) to identify each tool result- 
ing from the systematic search process. This enables a comparative 
analysis of these VPEs in the other research questions. Values of 
RQ1-D2 (EUP approach) are defined based on the VPEs classifica- 
tion presented in Section 3 . The formulation of dimensions RQ1- 
D3 and RQ1-D4 is based on those proposed in [20] to obtain gen- 
eral information of EUD, EUP, and EUSE tools. Therefore, RQ1-D3 
and RQ1-D4 are focused on identifying the main target users and 
applications of these tools, respectively. Finally, RQ1-D5 is used to 
identify the social and service robots supported by these VPEs. We 
propose these dimensions in order to get a general overview of the 
goals of relevant and recent VPEs for Social Robotics. 

(RQ2) What robot behavior modeling AAI-based approaches have 

been used in these VPEs to enable the creation of intelligent social 

robots? RQ2 mostly focuses on: (i) how end users can effectively 
and intuitively compose programming primitives for the creation 
of their desired applications, and (ii) the methods enabling the 
control of these primitives. AAI-based approaches can be consid- 
ered as those AI methods enabling the modeling and control of 
programming primitives used in VPEs for Social Robotics [50] . On 
the one hand, AAI-based approaches for social robots must be flex- 
ible and expressive enough, thereby providing end users with an 
ability to create interesting and complex behaviors. On the other 
hand, they must be intuitive and simple enough to allow for an 
easy creation and reuse of desired robot behaviors. Therefore, the 
main goal of RQ2 is to identify the advantages and disadvantages 
of different AAI-based methods and how they have been used to 
enable the modeling intelligence on social robots in VPEs. Dimen- 
sions proposed to answer this research questions are aimed at 
identifying the used AAI-based approaches in VPEs for Robotics 
(RQ2-D1) and the type of programming primitives generally used 
in these VPEs (RQ2-D2) ( Table 3 ). 

(RQ3) What technologies, evaluation methods, and software tools 

have been used by the authors of these frameworks? The focus of 
RQ3 is on the capabilities of the proposed tools to enable the inde- 
pendence of end users from high-tech scribes by supporting them 

in the entire life-cycle, and not only in the creation phase. For this, 
EUD tools must be accessible, easy-to-use and install, support end- 
user devices, and allow for an easy extension of software artifacts, 
e.g., the addition of perceptual capabilities or re-use with other vir- 
tual or physical agents. Dimensions used to answer RQ3 are sum- 
marized in Table 4 . Dimensions RQ3-D1 and RQ3-D2 are proposed 

Table 3 

Dimensions used to answer RQ2. 

Label Dimension Description and goal 

RQ2-D1 AAI approach Aims at identifying the type of 
agent behavior modeling 
approach used for controlling 
programming primitives on 
reviewed VPEs 

RQ2-D2 Programming 
primitives 

Aims to identify the type of 
programming primitives used 
in reviewed VPEs 

Table 4 

Dimensions used to answer RQ3. 

Label Dimension Description and goal 

RQ3-D1 
Communication 
of modules 

Aims at discovering whether 
these VPEs have been 
developed using good 
practices for the integration of 
isolated software modules or 
nodes 

RQ3-D2 Software 
technologies 

Aims to discover if these VPEs 
have been developed using 
modern technologies 

RQ3-D3 Accessibility Ascertains whether these VPEs 
are available online 

RQ3-D4 Operating 
Systems (OS) 

Aims at determining the 
degree of support that VPEs 
have for the OS used by end 
users 

RQ3-D5 Easy-to-install 
and execute 

Aims to discover if VPEs can 
be installed and executed 
without the support of 
high-tech scribes 

RQ3-D6 Liveness and 
simulation 

Determines the level of 
responsiveness of these VPEs 
to the programmer edits as 
well the available simulation 
capabilities 

RQ3-D7 Evaluation 
methods 

Aims to identify which tools 
have been evaluated with real 
end users and which 
techniques were used for 
these evaluations 

RQ3-D8 Participation of 
end users 

Aims at defining the degree of 
participation that these tools 
enable for their target end 
users, such as design time, use 
time or both 

to analyze the software approaches used to build VPEs for Social 
Robotics, from which modular and reusability capabilities can be 
inferred. Dimensions RQ3-D3 to RQ3-D5 aim at discovering which 
VPEs tools enable the support of the entire life-cycle of application 
development. For this purpose, the user must be able to install, 
configure, and use these VPEs and create their own interactive sce- 
narios with their robots in their own computing devices without 
the help of high-tech scribes. RQ3-D6 aims to identify the levels of 
liveness supported by these VPEs as well as simulator tools sup- 
porting them. Liveness is a concept used in the literature for refer- 
ring to the capabilities of programming environments to provide 
an immediate feedback cycle [81] . This feature can reduce the cog- 
nitive burden on programmers and enable users to adopt a more 
exploratory programming style [82] . According to [83,84] , it is pos- 
sible to identify 4 liveness levels: level 1 (informative), where vi- 
sual representations understandable only for expert developers are 
provided; level 2 (informative and significant), where visual rep- 
resentations of the programs have enough information to enable 
their execution; level 2 (informative, significant and responsive), 
where feedback can be provided on demand with a “run” button; 
level 4 (informative, significant, responsive and live), where feed- 
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back is automatically provided as edits are done in the program. 
Unlike programs executed on a computer, robots can act and mod- 
ify their environment. Therefore, feedback requiring the robot to 
perform motions needs special care. A safe option to implement 
level 4 of liveness is through simulations. RQ3-D7 aims at identi- 
fying the methods used to evaluate the suitability of these VPEs in 
this sense. Finally, RQ3-D8 aims to assess which VPEs have been 
reported as: (i) only tested or evaluated by their developers and/or 
colleges (e.g., by students pursuing engineering studies), (ii) used 
by real end users at design time (i.e., in laboratories); (iii) used by 
real end users at run time (i.e, in-the-wild conditions). 

(RQ4) What are the open issues and challenges for VPEs in the do- 

main of Social Robotics? This research question is mostly addressed 
in Section 8 , based on the observed values of dimensions in RQ1, 
RQ2 and RQ3. 

4.2. Search process 

The search was carried out in well-established databases in the 
field of intelligent robotics systems, namely IEEE Xplore, Science 
Direct, ACM Digital Library, Springer Link and Web of Science. Ex- 
amples of other systematic reviews focusing on Robotics applica- 
tions and methods using these sources are [80,85,86] . The time pe- 
riod of publications covered is between 2008 and 2018. The year 
2008 was chosen as the starting year as no earlier tools are de- 
scribed in [16] and [20] . Moreover, 2008 is just before two major 
events in Robotics, which are relevant for the focus of this article. 
The first is the initial release of the Robot Operating System [87] in 
version 1.0 (2009), which become a milestone in academic robot 
development. Approaches using ROS-based frameworks are nowa- 
days quasi-standard for many researchers in Robotics. The second 
is the release of the first commercial version of Nao social robot 
(2008) and its official EUD tool [88] . Nao is probably the most suc- 
cessfully used social robot up to date, which is evidenced by the 
fact that most of the VPEs reviewed in this article support this 
robot. 

In order to obtain key terms for the search string, we applied 
three different strategies: (i) an analysis of our main goal and 
the research questions, (ii) an analysis of core articles from pre- 
vious state-of-the-art studies, and (iii) pilot testing. For step (i), 
our goal was to identify relevant and recent “End-User Develop- 
ment” or “End-User Programming” supporting “Visual Program- 
ming Languages” for “Social Robotics”. These keywords are also 
contained in our main research question (RQ1). Therefore, we ex- 
tracted “End-User”, “Programming”, “Visual”, “Development” and 
“Robot”. In step (ii), we used the SEOBook keyword density ana- 
lyzer [89] to identify the most recurrent words in two well-known 
core papers of EUD for Social Robotics, specifically [62] and [88] . 
Based on this analysis, such keywords such as “Robot”, “User”, “De- 
velopment” and “Programming” were found to be relevant. In step 
(iii), we executed and refined the keywords and the search string 
iteratively. This process was validated using a quasi-gold standard 
[90] . Finally, the main keywords used for the search were “Robot”, 
“End-User Development” and “Visual Programming”. A correlated 
keyword for “End-User Development” is “End-User Programming”, 
and one for “Visual Programming” is “Visual Language”. The search 
string was defined using the Boolean operators as follows: ‘Robot’ 
AND (‘End-User Development’ OR ‘End-User Programming’ OR ‘Visual 

Programming’ OR ‘Visual Language’) . 

4.3. Selection of papers 

The next step in the review protocol was a clear definition of 
the criteria used to decide which papers were used in this review, 
and how and when those criteria were applied. The inclusion (IC) 

Table 5 

Definitions of inclusion criteria. 

Criterion Description 

IC 1 The focus of the article is to describe an EUD or EUP 
tool for Robotics 

IC 2 The presented tool is focused on supporting end 
users and not expert developers nor people working 
on industrial robots 

Table 6 

Definitions of exclusion criteria. 

Criterion Description 

EC 1 The article only presents an Application Programming 
Interface using a purely textual programming 
language rather than an EUD or EUP tool 
implementing a VPL 

EC 2 The main focus of the presented tool is another EUP 
approach, such as NLP, tangible programming, or PbD, 
and not the use of a VPL 

EC 3 The presented VPE is technically limited to be used in 
robot toys or kits and for STEM educational proposes 

EC 4 The article is not written in English 

and exclusion (EC) criteria for this study are shown in Tables 5 and 
6 , respectively. 

The following steps indicate how and when the defined inclu- 
sion and exclusion criteria were applied: (1) reading the title, ab- 
stract and keywords of all articles applying inclusion criteria IC1 
and IC2; (2) reading the introduction, contributions, and conclu- 
sion of studies included in Step 1 to eliminate irrelevant docu- 
ments which meet some of the exclusion criteria; (3) a complete 
reading of the remaining studies in Step 2 to validate their rele- 
vance; (4) collecting all the useful information for the proposed 
research questions. The performed search process is graphically il- 
lustrated in Fig. 1 . As shown in the figure, a total of 1010 articles 
were returned by an automatic search in the selected databases. 
From these entries, 54 were selected after executing step 1. In step 
2, after performing skim reading, 33 were excluded. Finally, 21 ar- 
ticles were selected for this review. However, some articles, such 
as [91,92] , reference the same interface in different development 
steps. Therefore, in step 3 we identified more relevant and com- 
plete articles describing these VPEs. Finally, a total of 16 interfaces 
were selected for this review. Nonetheless, we went through all the 
21 articles to perform data collection. 

4.4. Limitations of the study 

The validity of the review may be limited by three factors, 
which are described in [93,94] . 

Publication bias is described in [94] as the problem that “posi- 
tive results are more likely to be published than negative results”. 
In this review, only a few of the selected papers report negative 
results. However, the interpretation of positive or negative results 
often depends on the point of view of each researcher [94] . A stan- 
dard method used to deal with this issue is scanning the gray lit- 
erature, i.e., M.Sc. and Ph.D. theses, books, workshop proceedings, 
and technical reports. However, there still exists a risk that the pre- 
sented analysis in this article does not offer a complete overview 

of the reviewed VPEs. 
Interpretive validity is achieved when the derived conclusions 

are reasonable given extracted data [93] . For this, three researchers 
experienced in areas such as Software Architectures for Robotics, 
Artificial Intelligence, Social Robotics, Usability Engineering were 
involved in the validation of conclusions. 

Theoretical validity is determined by the ability of researchers to 
capture the intended data [93] . The search process was conducted 
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Fig. 1. Flowchart of the search strategy. 

by an individual author, which is the main threat to validity. There- 
fore, during the inclusion and exclusion phase, there is the possi- 
bility that some VPEs might have been missed. In order to reduce 
this risk, we asked experts if they knew of any unpublished re- 
sults or other relevant sources not initially considered in this re- 
view. During data extraction analysis and classification phases, the 
researcher bias is also a risk. To reduce this bias, three independent 
reviewers assessed all extractions made by the one reviewer, such 
as suggested by Petersen et al. [93] and Brereton et al. [95] and 
applied in [93] . However, and as described in [93] , this risk cannot 
be eliminated completely as it involves human judgment. 

4.5. Reporting of results 

Next, we answer the research questions of this study based on 
the presented dimensions. Research questions RQ1 is answered in 
Section 5 by presenting a brief overview of the VPE tools for So- 
cial Robotics found after following the proposed search protocol. 
Section 6 is used to answer the research question RQ2 by dis- 
cussing the AAI-based tools found in the resulting articles. Re- 
search question RQ3 is addressed in Section 7 by presenting and 
analysing the software tools used in the development of VPEs 
for Social Robotics. Finally, research question RQ4 is answered in 
Section 8 , which presents the identified open challenges. 

5. VPEs for Social Robotics (RQ1) 

In order to answer RQ1, this Section presents a brief descrip- 
tion of the VPEs resulting from our systematic search and analy- 

sis. We classify these VPEs in three categories, namely dataflow- 

based, block-based and form-filling . This classification was explained 
in Section 3 . Table 7 shows the general features and the targets of 
these VPEs. 

5.1. Dataflow-based interfaces 

The Microsoft Robotics Developer Studio (MRDS) [96] provides 
a VPE oriented at enabling novice and expert programmers to 
generate robot-based applications in Microsoft Windows. MRDS is 
based on C#, includes a 3D simulator and allows for distributed 
messaging between different modules using a SOAP-based appli- 
cation layer protocol called Decentralized Software Services Protocol 

(DSSP). MRDS can be used with a set of commercially available 
robots, including Nao and Kondo KHR-1 humanoid robots. How- 
ever, the support for MRDS has been discontinued recently. 

Choregraphe [88] is a cross-platform and desktop-based VPE 
developed by Aldebaran Robotics (now Softbanks Robotics). Its pro- 
gramming approach is based on using different wires or connec- 
tors to organize multiple robot behaviors in sequence or for paral- 
lel execution. Choregraphe includes a 3D simulator and allows for 
the design and debugging of animations of robots using a timeline 
interface. Furthermore, it enables designers to develop low-level 
scripts based on Python 2, and also to create high-level modules 
(denoted as boxes ), which can be saved as libraries for later reuse. 
The editing of each box parameters can be done using form-based 
visual interfaces. 

The Tino’s Visual Programming Environment (TiViPE) [62] is a 
desktop and data-flow interface built on QT [108] . Originally, it 



8 E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970 

Table 7 

General features of VPEs for Social Robotics. 

Name Target users Application domain Robots 

CodeIt! [97] Novice and expert 
programmers 

Service robots Sovioke Relay, Turtlebot 

OpenRoberta [98] Children, teens Education Nao, toys 
Robokol [99] Therapists Robot-based therapy Ono 
BEESM [100] Novice and expert 

programmers 
Smart environments Turtlebot 

RIZE [101] UX/UI designers Long-term and social HRI, 
child–robot interaction, 
entertainment 

Many 

ProCRob [102] Teachers, therapists Robot-based therapy, tutoring QR 
MRDS [96] Novice and expert 

programmers 
Autonomous vehicles, 
competitions, entertainment 

Many 

Choregraphe [88] Novice and expert 
programmers 

Social HRI, entertainment, 
robot-based therapy 

Nao, Pepper, Romeo 

TiViPE [62] Therapists Robot-based therapy Nao 
Interaction composer [92] UX/UI designers Shopping malls Many 
RoboStudio [103] Novice and expert 

programmers 
Healthcare iRobiQ-S 

RRP-VPE [104] Novice and expert 
programmers 

N.A. Nao 

RoVer [105] UX/UI designers Social HRI Nao 
Interaction blocks [106] UX/UI designers N.A. Nao 
English2NAO [107] Therapists Robot-based therapy Nao 
PersRobIoTE [67] Novice programmers Smart environments Pepper 

was designed to enable rapid prototyping of robot behaviors us- 
ing a massively parallel processing and cross-platform approach. 
In TiViPE, modules can be developed using different programming 
languages, and can be integrated with their documentation in a 
stand-alone executable, each one characterized by its own graph- 
ical front-end. The development of abstract and complex mod- 
ules in TiViPE (i.e., made up of simpler, basic, modules) can be 
done using a form-based interface to combine selected modules. 
Then, such modules can be reused in the same or other TiViPE- 
based programs. The only robot supported by TiViPE is Nao. How- 
ever, unlike Choregraphe, TiViPE allows for the use of multiple 
Nao robots at the same time specifying their IP address. In TiViPE, 
the overall robot behavior’s control flow is organized using one- 
to-many connections between a set of input/output ports in each 
graphical module, i.e., one output port of a module can be con- 
nected to more than one input ports of different modules. A set 
of optional ports in TiViPE-based modules can also be defined to 
specify relevant parameters needed for subsequent execution in 
other modules. The latest available version of TiViPE also allows 
for the development of sensory-driven dynamic and parallel be- 
haviors, which can be defined using a domain-specific control lan- 
guage. The main real-world use cases in which TiViPE is employed 
are related to robot-based social therapy. 

Interaction Composer [92] is a flowchart-like and interaction- 
oriented design framework specifically aimed at facilitating the 
development of social robot applications via coordinating cross- 
disciplinary teams of expert developers and UX/UI designers, i.e., 
end users and researchers in social sciences. As envisaged by the 
original proposers, it is necessary to clearly separate the role of 
different professional participants in the team. Expert software de- 
velopers are in charge of low-level programming activities, such 
as data processing, interfacing with hardware equipment, and the 
development of basic robot behaviors in C++, whereas interaction 
designers only focus on defining the interaction workflow and di- 
alogue generation. Interaction Composer is characterized by a 4- 
layer, modular architecture enabling the use of different robots 
sharing a number of similar features and capabilities. Besides the 
standard interaction workflow, this framework allows for specify- 
ing interruptions when certain conditions are met. When an inter- 
ruption is handled, the control flow resumes from the point where 

the interaction workflow was interrupted. Furthermore, Interaction 
Composer allows encapsulating visual elements in a hierarchical 
way. However, notwithstanding this hierarchical approach, the au- 
thors recognize a number of issues related to scalability and flex- 
ibility in their dataflow-based interface [91] . The framework has 
been widely adopted for developing Social Robotics applications in 
real-world settings, such as shopping malls and supermarkets, and 
also in situations when a robot acts semi-autonomously [91] . The 
public availability of Interaction Composer has been discontinued 
since 2011. 

RoboStudio [103] is a desktop-based VPE aimed at the design 
and development of service robots for medical and healthcare ap- 
plications. Built on top of the Healthbots framework [109] , Ro- 
boStudio has been developed using Java and Netbeans, which en- 
able cross-platform support and a low memory footprint. It al- 
lows for using software components originally developed for ROS 
[87,110] , and OpenRTM [109] . As a consequence, RoboStudio is 
characterized by a high flexibility for the integration of robots 
and distributed sensors. The design of the application workflow is 
based on concepts borrowed from Finite State Machines (FSMs). As 
a consequence, the main programming interface has been designed 
for expert developers rather than for novices. However, the inter- 
face design can be reused and extended to embed other VPEs. A 

simple example of this is discussed in [103] , where a novel in- 
terface, called LTLCreator, has been developed on top of modules 
originally developed using RoboStudio and Netbeans. Algorithms 
developed using RoboStudio can be converted to an XML-based 
domain-specific language called Robot Behavior Description Lan- 
guage (RBDL), which can be executed using the Healthbots exe- 
cution engine [111] . Unfortunately, RoboStudio is not available for 
use to date. 

The Reactive Robot Programming – Visual Programming Envi- 
ronment (RRP-VPE) [104] is a dataflow- and web-based interface 
powered by Node.js [112] . RRP-VPE is based on the Reactive Robot 
Programming paradigm, which can be described as a “declarative 
programming approach towards the development of event-driven 
applications built around the notion of continuous time-varying of 
data streams and the propagation of change” [113] . Unlike most 
VPEs based on component-based software engineering approaches, 
RRP-VPE advocates an approach in which modules can be devel- 
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oped in the same environment rather than using a separate, in- 
dependent tool. RRP-VPE is based on the notion of RRP graphs . 
These graphs define processes aimed at transforming inputs into 
outputs using a set of different connectors organized in a possi- 
bly complex structure. Examples of such connectors include oper- 
ators to map certain data to given functions, filter inputs, sample 
data, or to merge different data sources according to a given logic. 
However, in order to use RRP-VPE, users are required to be quite 
skillful in low-level software development to fully understand the 
notation related to the declaration of variables, data assignment, 
and reactive programming operators. It is not clear whether non- 
technical end users can adopt the novel concepts used in RRP-VPEs, 
and what are the usability and cognitive issues implied. RRP-VPE is 
available online as open-source software in [114] . 

RoVer [105] is an authoring VPE designed with a two-fold pur- 
pose in mind: firstly, to enable prototyping of human–robot inter- 
action scenarios built on top of a number of available interaction 
primitives, and, secondly, to encode appropriate social norms, pos- 
sibly not known to the designers a priori but that emerge during 
the interaction. RoVer adopts formal verification techniques to en- 
sure that the developed programs satisfy a set of social norms en- 
coded as logical rules. To this end, RoVer employs the Prism Model 
Checker [115] . Moreover, this framework is able to provide design- 
ers with feedback when a certain social norm cannot be met. Anal- 
ogously to other frameworks aimed at human-robot (social) inter- 
action, RoVer adopts small behavioral primitives, called microinter- 

actions , which can be aggregated to work sequentially or in paral- 
lel. Microinteractions can be aggregated in groups, which are orga- 
nized as a set of states. Then, the overall human–robot interaction 
unfolds using a structural, FSM-based architecture, in which tran- 
sitions between groups of microinteractions depend on the current 
robot beliefs. RoVer is implemented in Java and can work in Linux 
or OSX operating systems. Currently, it has been used with the Nao 
robot. RoVer is available online [116] . 

Interaction Blocks [106] is a visual authoring environment 
aimed at the fast prototyping of human–robot interaction pro- 
cesses using Nao. The application uses a set of predefined inter- 
action patterns as basic building blocks to generate more com- 
plex interactive processes also sequenced in a time-line fash- 
ion. These patterns have been selected by observing different 
human-human interactions in typical, social settings, e.g., con- 
versations, collaborations, instructions, interviews or storytelling. 
The main capability exhibited by Interaction Blocks is an easy 
integration between human–robot interaction patterns and text- 
to-speech, speech recognition and appropriate gaze behaviors for 
robots. However, this tool is not available online. The original au- 
thors of Interaction Blocks have considered the lessons learned 
during its development for the design of RoVer [116] . 

5.2. Block-based interfaces 

The Programming Cognitive Robot (ProCRob) environment 
[102] is a full-fledged software architecture designed to support 
the development and customization of applications in which social 
robots are used by teachers and therapists. The architecture has 
been applied mainly to support innovative therapies for children 
suffering from the Autistic Spectrum Disorder (ASD) by means of 
a ROS-based humanoid robot called QT. The ProCRob’s architecture 
is composed of three layers: the first is a functional layer imple- 
mented in ROS or YARP [117] made up of software components en- 
abling such basic social skills as gesture expression, text-to-speech, 
as well as speech, face and object recognition; the second is a mid- 
dleware embedding a domain-specific language called Robot Agent 
Programming Language (RobAPL), which uses a Prolog-style rule- 
and logic-based approach to define goal-oriented behaviors using 
high-level abstractions and the Belief-Desire-Intention (BDI) model 

[118] ; the third is a front-end VPE based on Google Blockly. Pro- 
CRob allows its users to represent and manage robot plans based 
on a set of tasks organized sequentially or in parallel on the basis 
of a priori commands or external events. The basic workflow unit is 
called play , which is represented by a behavioral block embedding 
text, audio, face expressions, and body animations. Unfortunately, 
ProCRob is not available online. 

CustomPrograms/Codeit! [97] is a Google Blockly and web- 
based interface designed to reproduce the expressiveness of 
general-purpose programming languages by the use of low-level 
constructs such as loops, variables, math utilities and functions. 
Built on top of Node.js and roslibjs [119] , it also provides a set of 
high-level programming abstractions denoted as primitives . How- 
ever, it is explicitly mentioned in [120] that the use of general- 
purpose programming language constructs, while they can be eas- 
ily and intuitively used by experienced programmers, require more 
training and generate more complex systems when used by inex- 
perienced programmers. CustomPrograms/CodeIt! has been used 
for a series of end-user applications with mobile service robots 
in exhibitions, hotels [120] , and for STEM-based training programs 
[121] . It is noteworthy that one of the main advantages of this in- 
terface is its compatibility with ROS-based software modules. How- 
ever, one of its significant drawbacks is the impossibility of reusing 
code due to the limitations of the default features of the Google 
Blockly library. A study evaluating the ease-of-use and expressive- 
ness of CustomPrograms/CodeIt! is reported in [120] . This frame- 
work is available open source [97] . 

OpenRoberta [98] is a block-based VPE mainly used for edu- 
cational aims. However, this VPE has also been used in end-user 
applications [122] . OpenRoberta is based on Google Blockly, and 
enables software development for a variety of toy robots, single- 
board micro-controllers, and the social robot Nao. Unlike most 
VPEs analyzed in this article, OpenRoberta comes in two versions. 
In the first version, it can be run as a browser app connected to 
the Internet using a cloud-based server as a back-end. This option 
simplifies to a great extent installation and setup. In the second 
version, it is based on an offline, Java-based and cross-platform 

local server. However, due to its mainly educational-oriented tar- 
get, OpenRoberta exploits many low-level development abstraction 
primitives, which must be grounded to the use of classical pro- 
gramming abstractions. This approach is in fact more suitable for 
educational purposes. 

Robokol [99] is oriented to non-programmers, and is focused 
particularly on the development of applications in support for 
ASD-related therapy. The Robokol’s interface is powered by Snap! 
[76,123] , and enables cross-platform support. Such support is pos- 
sible by connecting external devices to a data exchange server (e.g., 
a remote computer running ROS). This connection can be estab- 
lished by a plug-and-play approach (i.e., the device advertises its 
own description rather than requiring a user-specific setup) via 
websockets using the ROSbridge protocol and suite [119] . Experi- 
mental settings where Robokol has been adopted are related to the 
use of the Ono social robot, as well as a therapeutic device called 
the Sensory Sleeve [99] . Like CodeIt!, Robokol uses general-purpose 
programming language abstractions. The framework does not seem 

to be available online. 
The Block-based End-user programming tool for SMart Environ- 

ments (BEESM) [100] is a VPE framework based on Google Blockly. 
The application allows for rapid prototyping of applications involv- 
ing smart environments, microcontrollers and mobile robots. Like 
Robokol and CodeIt!, the back-end is based on ROS, and the whole 
framework mainly adopts low-level general-purpose programming 
notations. This low-level abstraction enables the users to learn PHP 
and how to code with Arduino boards, which is required to pro- 
gram smart environments and mobile robots with the supported 
middlewares and libraries of this interface. It also includes a 2D 
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simulator for smart environments and mobile robots. It is reported 
that the BEESM interface will be evaluated in usability tests soon. 
However, BEESM is not available online yet. 

Our own tool, the Robot Interfaces from Zero Experience (RIZE) 
framework [101] is a cross-platform, block-, form- and web-based 
interface enabling remote control and the generation of intelligent 
authoring behaviors for different robots. RIZE is built on top of 
the NodE Primitive (NEP) programming framework [64] , which ab- 
stracts the transport layer to support distributed and modular sys- 
tems using different middlewares, message libraries (e.g., ROS, Ze- 
roMQ [124] and nanomsg [125] ), and communication patterns. Un- 
like the majority of block-based interfaces based on Google Blockly, 
RIZE does not adopt general-purpose software development ab- 
stractions. On the contrary, it uses a modular approach based on 
the definition of independent behaviors that can be easily reused 
in other RIZE-based programs. Robot behaviors are encoded as be- 
havior trees , i.e., a meta-architecture for the generation of reactive, 
modular, and complex agents [38] , and are executed by a decision- 
making engine. RIZE has been used for the remote control and 
the generation of intelligent behaviors using a ROS-based Turtle- 
bot Burger robot, Nao and Pepper humanoid robots, as well as 
a robot manipulator built with Dynamixel servomotors and con- 
trolled in Matlab/Simulink. Real-world applications include mu- 
seum exhibitions and theater performance [64] , child–robot inter- 
action [126,127] , long-term human–robot interaction experiments 
in home settings and research in emotional intelligence for robots 
[128] . RIZE is available online [101] . 

5.3. Form-filling interfaces 

English2NAO [107] is an EUP tool in which programming inputs 
can be set both by natural language processing and with a form- 
filling interface for enabling the therapists to create programs for 
NAO robots. This interface is developed as a web-based application 
using Django [129] , and runs on top of the TiViPE engine. This EUP 
tool was developed to overcome some of the usability problems 
presented by TiViPE [107] . Online availability of this English2NAO 

cannot be assessed. 
PersRobIoTE [67] is a web-based, form-filling interface. It adapts 

the Trigger-Action Programming (often used in EUD tools for IoT 
scenarios) paradigm for allowing the creation of applications in- 
volving Pepper robots. The users of PersRobIoTE need to define a 
set of rules, which are mainly composed of triggers (i.e., conditions 
concatenated by and/or Boolean operators) and actions. These rules 
are encoded in the JavaScript Object Notation (JSON) formalism, 
and are created and managed by a decision-maker module called 
the Rule Manager. Moreover, it uses backboard-like modules, re- 
ferred to as their authors, such as a Context Manager to handle 
perceptual inputs from both Pepper robots and IoT devices. The 
communication between these modules is carried out using the 
Server Sent Events (SSE) framework [130] . However, PersRobIoTE 
is not available online yet. 

6. Modeling intelligent behaviors for social robots (RQ2) 

In this Section, we address research question RQ2, which aims 
at discovering and analyzing the AAI-based tools used for support- 
ing EUP and EUD in Social Robotics. RQ2 is addressed in three 
ways: (i) presenting a general description as well as advantages 
and drawbacks of those AAI-based tools for supporting VPEs, (ii) 
analyzing the modular capabilities of these AAI-based tools, and 
(iii) identifying the abstraction levels (i.e., the programming primi- 
tives) generally used in these approaches. The values of dimensions 
used in RQ2 are shown in Table 8 . The table also includes the di- 
mension RQ1-D2 (EUP approach) for comparative purposes. 

6.1. Scripting-based 

As shown in Table 8 , most block-based programming VPEs, such 
as Open-Roberta, Robokol, and CodeIt! use general purpose script- 
ing to enable the creation of applications with social robots. In 
this approach, end users need to become familiar with classical 
scripting approaches such as if-then-else conditional statements, 
for loops, creating variables and functions, and using low-level 
mathematical and logical operations. The acquisition of these low- 
level programming skills is a major objective of STEM educational 
courses. However, the suitability of this approach for enabling the 
creation of intelligent robots by end users can be hindered by us- 
ability and code reusability issues. As described in [50] , the Cogni- 
tive Dimension framework suggests that using too many low-level 
programming notations may produce usability problems associated 
with high viscosity (i.e., users need to manipulate many elements 
to accomplish a task), and may require hard mental operations 
and distant mapping to the problem domain of social interaction. 
Moreover, using general descriptions for programming agents may 
produce code that is hard to reuse and maintain [38] ( Fig. 2 ). 

6.2. Rule-based 

The first computer games and robot-based systems used mod- 
eling and programming frameworks based on rules for building 
intelligent behaviors. This approach is simple to implement and 
presents a uniform representation method, which can be intu- 
itively used by non-programmers [131] . However, these systems 
also present many relevant drawbacks. While non-programmers 
can easily grasp the approach of using individual rules for pro- 
gramming robots, they may face difficulties in going beyond the 
declarative approach based on rules. They also may have difficulty 
in understanding the implications of multiple rules, some of which 
may conflict. Moreover, the lack of structure in rule-based systems 
often leads to (i) maintainability issues and error-prone handling 
of programming elements (rules) in complex systems [40] , and 
(ii) unstable and unexpected behaviors when creating very large 
and complex programs [132] . While programming approaches us- 
ing disjoint and priority-based rules are currently very popular for 
developing IoT applications, they have been widely replaced by 
more structured and robust AI-based architectures, such as Finite 
State Machines or Behavior Trees, in areas requiring the develop- 
ment of more complex, social and interactive agents. Many VPEs 
using rules are developed using form-filling programming environ- 
ments. Such an approach is especially popular in IoT applications. 
In this context, the approach used on PersRoboIoTE is inspired by 
EUD solutions for IoT systems, such as IFTTT [133] . Fig. 3 shows a 
simple visual notation for systems using rule-based systems and 
form-filling. For these VPEs, the main programming task of end 
users is to select a condition or a set of conditions (concatenated 
with logical AND/OR operators) that will trigger appropriate robot 
action. 

6.3. State-based 

By including the notations of states and transitions (i.e., a de- 
cision logic that makes a system to change from one state to an- 
other), as well as adding a structure to a set of disjointed rules, a 
rule-based system turns into a state-based method. The most pop- 
ular approach used to model state-driven systems is constituted 
by Finite State Machines (FSMs). FSMs are represented as directed 
graphs, where each node of the graph represents a state. In a FSM, 
each transition to a new state represents an event. These events 
can trigger the execution of some specific script or sequence of 
robot actions. In general, FSMs are robust and easy to understand 
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Table 8 

Comparison between AAI approaches using in VPEs (RQ2). 

Name EUP approach AAI approach Programming primitives 

CodeIt! Block-based Scripting Hardware, Algorithm, Social 
OpenRoberta Block-based Scripting Hardware, Algorithm, Social 
Robokol Block-based Scripting Hardware, Algorithm, Social 
BEESM Block-based Scripting N.A. 
RIZE Block-based Behavior-based Social 
ProCRob Block-based Behavior-based Social, Emergent 
MRD Data-flow N.A. Hardware, Algorithm 

Choregraphe Data-flow State-based Hardware, Algorithm, Social 
TiViPE Data-flow State-based Hardware, Algorithm, Social 
Interaction Composer Data-flow State-based Hardware, Algorithm, Emergent 
RoboStudio Data-flow State-based N.A. 
RRP-VPE Data-flow Behavior-based Hardware, Algorithm 

RoVer Data-flow State- and rule-based Social 
Interaction Blocks Data-flow State-based Emergent 
English2NAO Form-filling State-based N.A. 
PersRobIoTE Form-filling Rule-based Social 

Fig. 2. Example of a block-based programming environment using general purpose programming notations and Google Blockly. In this approach end-user code is converted 
to real code of some programming language. 

Fig. 3. The simplest notation used in a rule-based VPEs. 

even for novice end users [134] . However, the use of FSMs in- 
herently implies some reactivity and modularity issues, which are 
analogous to those associated with goto statement [40] . Both the 
goto statement and FSMs can be considered as a “one-way” con- 
trol transfer (i.e., the control flow jumps to another section of the 
program), which is described in [40,135] as “too much an invita- 
tion to make a mess of one’s program”. As described in [40] , this 
leads to a trade-off between reactivity and modularity of a pro- 
gramming system. In order to create a reactive and complex so- 
cial interactive application, a program built using FSMs requires 
too many one-way control transitions between visual elements. As 
shown in Fig. 4 , this results in very tangled diagrams where the 
modification or removal of some elements may need checking ev- 
ery transition and state associated with that component. 

6.4. Behavior-based 

By hierarchically organizing and separating the decision logic 
from the behavior code, a state-based system turns into a 
behavior-based approach. Fig. 5 shows the main difference be- 
tween state-based and behavior-based modeling methods. 

As shown in [40,70] most behavior-based modeling methods 
used in Robotics can be generalized by a Behavior Tree (BT). Un- 
like FSM, BTs are considered a “two-way” control transfer, i.e., after 
the execution of an event or function, the control flow returns to 
the calling part of the program, which enhances modularity [40] . 
A typical BT implementation is composed of two types of nodes, 
namely operators and terminal nodes. Fig. 6 shows an example of 
a simple BT. While operator nodes (in white) are used to perform 

control flow and behavior selection, terminal nodes (in blue and 
gray) define and check preconditions and execute the proper be- 
haviors. The most basic operators in BTs are Sequence and Selector . 
The functionality of these and other common operators in BTs are 
described in [40] . The execution of a BT follows a classical “depth- 
first” traversal order from the root node to some terminal node. 
After the activation of a node (when the BT traversal algorithm 

reaches the node), this node is assigned a status, which can be 
“success”, “failure” or “running” depending on the node type. Each 
iteration of the BT traversal algorithm performs decision-making 
tasks depending on the status of these nodes. By definition, BTs 
are also modular and reusable [70] , as each branch of a BT can be 
considered as an independent module. Fig. 6 shows four possible 
modules that can be easily reused in other programs. Unlike FSMs, 
BTs have just started to gain attention in Robotics. Therefore, avail- 
able software frameworks supporting this AAI-based approach are 
less mature [40,64] . Moreover, concepts involved in the creation of 
BT can be difficult to understand by end users, as it is required to 
learn the “depth-first” traversal graph search and many low-level 
operators for performing decision-making. An alternative aimed at 
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Fig. 4. Example of spaghetti code in a dataflow-based VPE (example taken from [136] . 

Fig. 5. In state-based methods (a), each state requires the definition of the decision 
logic that indicates the decision-making system how to change to another specific 
state. Behavior-based approaches (b) separate decision logic from behavior code en- 
abling a hierarchical and modular representation (adapted from [132] ). 

enabling the use of BTs for end users has been proposed in RIZE by 
changing the way BTs are modeled. In this approach, rather than 
allowing an end user to build and execute BTs using a tree struc- 
ture and low-level operators, the end user can build their programs 
by concatenating a set of BT modules or sub-BTs in a declarative 
way using a Google Blocky environment. These high-level modules 
or social primitives are built by expert programmers using a low- 
level, domain-specific language. More details are reported in [64] . 

7. Tools, technologies and evaluation methods for VPEs 

As shown in Table 9 , Web technologies, such as HTML and 
Node.js (based on Javascript), are preferred to build VPEs for Social 
Robotics applications. However, only OpenRoberta is built as a Web 
service. Instead, other VPEs using Web technologies are designed 
to be executed on a desktop using such server-side frameworks as 
Node.js and Django. In order to build block-based programming 
environments, the preferred tool is Google Blockly [78] , which 
provides more features and flexibility than similar tools such as 

Snap [76] and Scratch [75] . As was described in Sections 3 and 
6 , some block-based VPEs using Google Blockly (specifically, RIZE 
and ProCBob) use this tool as a domain-specific language, whereby 
the code is executed in a more advanced AI-based architecture 
(BTs in the case of RIZE and Belief-Desire-Intention in the case 
of ProCBob), rather than in a general purpose programming tool. 
Moreover, older VPEs, such as Choregraphe, TiViPe, and MRD were 
built as desktop-based tools for developing user interfaces such as 
Visual Studio and Qt. The only recent VPE reported to be designed 
as a classical desktop-based interface is RoVer, which was imple- 
mented in Java. 

Table 9 shows that many recent VPEs use some CBSE frame- 
works, with ROS being the most popular. In this approach, soft- 
ware modules are seen as isolated processes or nodes that are 
executed in parallel and that can be developed in different pro- 
gramming languages. This approach enables an easy reuse of many 
open-source software tools developed by the Robotics community, 
thereby creating more robust and complex robot systems. However, 
most of these recent VPEs, such as CodeIt!, Robokol and BEESM, 
require the execution of a server module or a node in a com- 
puter with the right version of Ubuntu installed. This can be a bar- 
rier to their adoption by end users for use-time design activities. 
This is mainly due to a steep learning curve associated with ROS 
[137] . Drawbacks of ROS for EUD were described by the creators of 
TiViPE in [138] as: (i) most of end users are Windows users and 
require easy-to-install software tools; and (ii) they hardly under- 
stand (without training) many of the concepts required to use ROS. 
Therefore, a high-tech scribe skilled in ROS is often required for the 
installation and execution of the web server and for maintaining or 
extending these VPEs, which can be performed by launching addi- 
tional ROS nodes. These issues are still not solved with ROS 2.0, 
as it requires following complex steps for its installation in Win- 
dows 10 and training for their use. Due to these issues, interfaces 
such as TiViPE, MRD, and Choregraphe have been developed as 
monolithic applications, which are easy to install for the average 
end user, and where software modules are executed in different 
threads. This can explain why only VPEs characterized by easy-to- 
use wizard installers have been reported as enabling both the cre- 
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Fig. 6. Example of a behavior tree. 

Table 9 

Dimensions used for answer RQ3. 

Name Communication Software Accessibility 

Operating 
Systems 

Easy-to-install 

and execute 

Reported 

liveness 

Evaluation 

methods 

Participation of end 

users 

CodeIt! (2017) ROS, rosbridge Blockly, 
Node.js, HTML 

Online Server in Linux Requires 
support of 
high-tech 
scribes 

Level 3 Quantitative engineering students 
and end users at 
design-time 

OpenRoberta 
(2014) 

POSIX socket Blockly, HTML Online Internet- 
dependent 

No installation 
required 

Level 2 / 2D 
simulator 

none children at use-time 

Robokol (2016) ROS, rosbridge Snap, HTML N.A. Server in Linux N.A. Level 3 none N.A. 
BEESM (2018) ROS, rosbridge Blockly, HTML N.A. Server in Linux N.A. Level 2 / 2D 

simulator 
none N.A. 

RIZE (2019) NEP Blockly, 
Node.js, HTML, 
Vue.js 

Online Windows, OSX, 
Linux 

End-user 
wizard-like 
installers 

Level 3 none comedians, interaction 
designers at use-time 

ProCRob (2017) ROS, YARP Blockly, HTML N.A. Server in Linux N.A. Level 2 none end users at use time 
MRD (2007) POSIX socket Visual Studio Discontinued Windows End-user 

wizard-like 
installers 

Level 3 none N.A. 

Choregraphe 
(2009) 

POSIX socket Python Online Windows, OSX, 
Linux 

End-user 
wizard-like 
installers 

Level 4 / 3D 
simulator 

none interaction designers 
at use-time 

TiViPE (2011) POSIX socket Qt Online Windows, 
Linux 

End-user 
wizard-like 
installers 

N.A. Cylomatic 
complexity, 
Cognitive 
Dimension 

interaction designers 
at use-time 

Interaction 
Composer 
(2012) 

POSIX socket N.A. N.A. N.A. N.A. N.A. none N.A. 

RoboStudio 
(2017) 

ROS, ROCOS, 
OpenRTM 

N.A. N.A N.A. N.A. N.A. none N.A. 

RRP-VPE 
(2017) 

N.A. Node.js, HTML Online N.A. Requires 
support of 
high-tech 
scribes 

Level 3 NASA-TLX engineering students 
at design-time 

RoVer (2018) N.A. Java and Prism 

Model Checker 
Online OSX and Linux Requires 

support of 
high-tech 
scribes 

Level 2 SUS engineering students 
at design-time 

Interaction 
Blocks (2014) 

N.A. N.A. N.A. N.A. N.A. N.A. SUS interaction designers 
and engineering 
students at 
design-time 

English2NAO 
(2018) 

N.A. Django, HTML, 
SQLite 

N.A. N.A. N.A. N.A. Cylomatic 
complexity, 
Cognitive 
DimensioN 

therapists at 
design-time 

PersRobIoTE 
(2019) 

Server Sent 
Events 

HTML, IoT N.A. N.A. N.A. Level 2 SUS end user at 
design-time 
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ation of applications at design time and their redesign at use-time 
by real end users. In order to communicate with external modules, 
VPEs built as monolithic applications generally use simple POSIX 

sockets for limited tasks. 
From Table 9 , it is possible to see that the most popular method 

used to validate the suitability of these VPEs is the System Us- 
ability Scale (SUS) [139] , which allows a reliable and valid eval- 
uation of usability for a wide variety of products and services 
such as hardware, software, websites, and applications. Another 
method used to detect usability problems is the Cognitive Dimen- 
sion framework, which was introduced in Section 2 . The NASA 

Task Load Index (NASA-TLX) [140] and the Cyclomatic complexity 
metric [141] have also been used to measure perceived workload 
and complexity when creating programs for social robots. How- 
ever, most of these evaluation methods are used to obtain subjec- 
tive data. In the case of Codeit!, objective and quantitative evalua- 
tions, such as the time and number of successful tasks, have been 
performed. 

8. Open challenges 

This Section discusses and summarizes the current issues and 
open challenges characterizing VPE-based authoring tools for social 
robots. These are related to accessibility to external devices and 
resources, modularity of the human–robot interaction primitives, 
scalability when large programs are needed, levels of abstraction, 
benchmarking, explainability and control of the resulting robot be- 
haviors, support for distributed robot frameworks, as well as sim- 
ulation and debugging. 

8.1. Accessibility to external devices and resources 

This open challenge is based on the data obtained from di- 
mensions RQ3-D3 (Accessibility), RQ3-D4 (Operating Systems), and 
RQ3-D5 (Easy-to-install and execute). An analysis of these dimen- 
sions reveals a number of accessibility issues in recent VPEs. From 

the point of view of non-technical end-users, such as UX/UI de- 
signers, an accessible VPE requires (i) accessibility for their use or 
evaluation (RQ3-D3), (ii) compatibility with end-user devices (RQ3- 
D4), and (iii) user-friendly installation and configuration (RQ3-D5). 

Accessibility for their use or evaluation . As shown by the val- 
ues obtained in dimension RQ3-D3 (Accessibility) in Table 9 , more 
than half of the presented VPEs are not available online, even 
though many of them are built with open source tools. This hin- 
ders their proper evaluation and denies opportunities to obtain 
feedback from both the Robotic community and end users. 

Compatibility with end-user devices . In many professional envi- 
ronments and in Academia, Linux-based systems have a good rep- 
utation and impact. However, end users who are not technically 
trained often assume the availability of software designed and de- 
veloped for Microsoft Windows or OSX, which has a bigger market 
share compared to Linux-based systems for the general consumer 
market. While this issue is well-known and deeply understood 
by most commercial VPEs, such as Choregraphe and TiViPE, it is 
mainly ignored by most community-oriented or open-source VPEs, 
therefore jeopardizing their ability to gain widespread use. A com- 
mon argument used to justify cross-platform support is to design 
the VPE’s architecture as a (possibly web-based) front-end running 
on Microsoft Windows or OSX coupled with a back-end typically 
running on a Linux-based system, which is done by Robokol and 
the offline version of OpenRoberta. However, such architecture still 
requires the server-side to be configured on a Linux-based plat- 
form. 

User-friendly installation and configuration . The first impression 
an end user has about any software tool is based on the installa- 
tion and configuration phases. Therefore, these phases must be as 

easy and simple to complete as possible. On the one hand, such 
commercial VPEs as MRDS, Choregraphe, and TiViPE can be in- 
stalled via user-friendly wizards. However, they are characterized 
by a huge memory footprint. On the other hand, most community- 
oriented, open source interfaces require the expertise of profes- 
sional software developers for installation and configuration, which 
is mainly due to the necessity to setup a Linux-based system to 
run the server, install the third-party software from the command 
line, and build the required binaries. An option that enables cross- 
platform support and reduces the installation and configuration ef- 
forts, as well as the required memory footprint, is to run the VPE 
in a cloud-based server, as it is done in such educational-oriented 
interfaces as OpenRoberta. However, such a possibility requires a 
stable, permanent connection to the Internet as it depends on the 
online availability of the server itself. Values in dimensions RQ3-D4 
and RQ3-D5 in Table 9 reveal the poor attention that open source 
projects have received in the creation of native and cross-platform 

applications that can be launched and used by end users even if 
they do not have access to the Internet or a Linux server. Solving 
these issues is relevant for enabling end users to bring robots out- 
side the laboratory, where it is often hard to have a stable Internet 
connection, and where the support of high-tech scribes is not al- 
ways possible. 

8.2. Modularity of human–robot interaction primitives 

In Computer Science, and as far as software architectures for 
robots are concerned, the word “modularity” is ambiguous and can 
be related to concepts present at different levels of the architec- 
ture and granularity scales. For this article, we consider two dif- 
ferent meanings associated with the notion of modularity, namely 
operational and structural modularity. The formulation of this open 
challenge is based on the data obtained from dimension RQ3-D1 
(Communication) in Table 9 , which is related to operational modu- 
larity, and the analysis presented in Section 6 about modular and 
reusable capabilities of each AAI-based method used for modeling 
social robot behaviors, which is related to structural modularity. 

Operational modularity . While a few authors consider modular- 
ity in VPEs as a simple encapsulation of function calls or a set 
of related functions, others aim at integrating higher-level modu- 
lar abstractions, such as the Separation of Concerns design principle 
in independent processes (also denoted as nodes) and/or software 
packages, as it is done for instance in ROS [87] . Recently, the lat- 
ter approach has been the most successful, being considered as the 
best practice for Robotics-related software development [142] , and 
one that provides an increased quality in software applications. Ac- 
cording to this approach, and as far as VPEs for Robotics-related 
applications are concerned, data exchange between processes is 
managed on the basis of a number of well-defined inter-process 
communication patterns [143] . 

Based on these concepts, and the values of dimension RQ3-D1 
in Table 9 , it is possible to classify VPE interfaces as having low, 
tight, or high operational modularity. In the first case, modules are 
just considered as a set of function calls. In this approach, most of 
the robot’s sensory, perceptual, decision-making and control tasks 
are carried out as parts of a single process. VPEs that exhibit 
low operational modularity include Interaction Blocks and RoVer. 
In the second case, the overall robot functionality is split among 
different modules, and various modules communicate with each 
other using a Request-Process-Reply (or Client/Server ) design pat- 
tern [144] through POSIX sockets. VPEs adopting this operational 
modularity type are MRDS, Choregraphe, TiViPE, Interaction Com- 
poser, and OpenRoberta. In the third case (also referred to as loose 
coupling ), the principles of reusability, extensibility, maintainability, 
and robustness are enforced by the use of non-blocking and asyn- 
chronous communication design patterns, such as Publish/Subscribe 
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and Observer . VPEs in this class are RRP-VPE, RobotStudio, ProCRob, 
CustomPrograms/CodeIt!, Robokol, BEESM, RIZE. 

Structural modularity . One of the main drawbacks associated 
with most of the analyzed VPEs, particularly those based on the 
flowchart concept of FSMs, is the lack of modularity, intended as 
a clear subdivision of roles within the resulting architecture. Such 
a lack of modularity-enforced design is due to the mainstream 

approach to organize internal workflow (i.e., mostly correspond- 
ing to the overall robot decision-making capabilities) as a single, 
one-way, data transfer from inputs to outputs. In a sense, such 
approaches replicate the somewhat classical Sense-Plan-Act archi- 
tecture for robot perception, planning and control [145] . The re- 
sult is characterized by issues similar to what happens with the 
use of the much critiqued goto statement, which is considered 
unstructured and a cause of unreliable behavior [40,146] . As a 
consequence, dataflow-based VPEs tend to generate spaghetti code 
( Fig. 4 ) and visual programs that are difficult to understand, main- 
tain, reuse, and scale [91] . As described in [147] and reported in 
[91] , VPEs using dataflow present three key issues: (i) their pro- 
grams tend to be very large requiring the creation of too many 
nodes even for trivial and low-level tasks; (ii) each node requires 
too many inputs and links between them producing highly tangled 
programs (referred to as spaghetti code), such as shown in the ex- 
ample in Fig. 4 ; (iii) confusing iteration: the program is difficult 
to follow or even understand. To deal with these drawbacks, a vi- 
able solution could be to develop independent and modular sys- 
tems based on two-way data exchange, e.g., hierarchical decision- 
making engines like BTs [148] . 

8.3. Scalability in large applications 

In most cases, designers and developers of VPE-based authoring 
tools advertise use cases whereby their frameworks are adopted 
to design simple human-robot social interaction patterns requiring 
the use of few primitive behavioral blocks and connections. Like 
many virtual agents [39] , the development of more complex or 
long-term applications to be delivered in everyday scenarios, such 
as those described in [9,149,150] , can require the integration of a 
large number of behaviors, as well as a possibly intricate logic to 
coordinate their orchestration. This requirement implies a rapid in- 
crease in the difficulty in following the application’s control flow, 
and in searching for appropriate primitive robot behaviors. Module 
or component encapsulation is a widely-adopted approach used 
in dataflow-based VPEs to deal with these issues. In many cases, 
however, encapsulation reduces the mess of dataflow-based work- 
flow only to a limited extent [40] . Suitable design patterns to deal 
with these issues are rare in block-based interfaces. 

8.4. Correct abstraction levels and programming notations 

As analyzed in [50] , and according to the values obtained in 
dimension RQ2-D2 (Programming primitives) in Table 8 , many of 
the VPE-based frameworks discussed in this article are character- 
ized by unbalanced abstraction levels in selecting robot behavioral 
primitives and programming notations. In fact, typical issues are 
related to the presence of primitives with low-level and varying 
abstraction levels, and to the consequence of the overall VPE us- 
ability [47] . 

As far as the abstraction level of VPEs is concerned, such VPEs 
as Choregraphe, OpenRoberta, TiViPE and Interaction Composer are 
characterized by several issues in usability, and in the cognitive di- 
mension, due to the fact that they incorporate various low-level 
programming abstractions, which are denoted in [50] as hardware 
and algorithm primitives. On the one hand, VPEs including hard- 
ware primitives use graphical elements, which enable users to ob- 
tain raw data (e.g., position, velocity, sound and images) from sen- 

sory devices or actuators. On the other hand, VPEs including algo- 
rithm primitives require that users be able to provide the data gen- 
erated by the hardware primitives as inputs of low-level perceptual 
and control modules (e.g., sound source localization, inverse kine- 
matics, keyframe animation and face tracking). However, raising 
the level of programming abstraction too high, as it is done for ex- 
ample in Interaction Blocks, can reduce the flexibility of VPEs, and 
therefore the capability to create complex behaviors with robots. 
An alternative approach allowing for a good trade-off between the 
usability and the flexibility of VPEs and robot programming soft- 
ware aimed at generating social interactions is also described in 
[50] . The correct level of abstraction for developing social interac- 
tion behaviors with robots requires the use of reusable and atomic 
domain-specific social primitives (e.g., related to speaking, ges- 
tures, gaze, facial expressions and animations). 

8.5. Benchmarking 

The evaluation of interfaces with real end users is a key task 
required not only to show the applicability of VPEs, but also to 
obtain valuable data to validate or improve usability. These eval- 
uations require data collection from both objective and subjective 
approaches. The collection of objective data is based on facts rather 
than opinions or interpretations, e.g., how many times the user 
makes an error, the number of times that a user has asked for 
help, and the task completion time. This type of data is gener- 
ally collected and analyzed by those VPEs reporting usability eval- 
uations. From the values obtained in dimension RQ3-D7 (Evalu- 
ation methods) in Table 9 , it is possible to observe that the au- 
thors of TiViPE and CodeIt!/CustomPrograms have used, to differ- 
ent degrees, the Cognitive Dimension framework as the main tool 
to perform subjective data analysis. This framework is always used 
to identify usability trade-offs in the early stages of designs and 
make decisions about those trade-offs for posterior iterations [151] . 
While the Cognitive Dimension framework has emerged as the 
predominant framework for analyzing VPL, some researchers have 
identified some of its serious theoretical and practical limitations 
for its use in the evaluation and design of visual notations [152] . 
Some of the main issues of the Cognitive Dimension framework 
described in [152] are: (i) confusion or misinterpretation when in- 
terpreting and applying dimensions; (ii) lack of evaluation proce- 
dures or metrics; (iii) the omission of issues around whether the 
visual notations chosen are “good” or “bad” ones. A complemen- 
tary approach for addressing these issues is to follow guidelines 
and the principles of the Physics of Notation [152] , which are valu- 
able tools for evaluating and designing visual notations. However, 
we observe that these guidelines and principles are often omit- 
ted in most of the reviewed VPEs. A well-accepted subjective data 
collection approach in Human-Computer Interaction (HCI) is the 
use of standard questionnaires [153] such as the System Usability 
Scale (SUS) [154] and the NASA Task Load Index (TLX) [155] . From 

the VPEs we reviewed in this article, only Interaction Blocks (us- 
ing SUS), RRP-VPE (using TLX), TiVIPE/English2NAO (using Cyclo- 
matic complexity, SUS and Cognitive Dimensions) and RoVer (using 
both SUS and TLX) have performed subjective data collection using 
standard questionnaires. Even when many of the reviewed VPEs 
have been used by real end users, only the designers of CodeIt!, 
TiViPE/English2NAO and Interaction Blocks have reported usability 
evaluations using real novice end users, rather than expert pro- 
grammers, laboratory members or engineering students. 

A comparative evaluation among interfaces, using objective and 
subjective data, is a valuable task in modern HCI research. This 
evaluation enhances the analysis and validates the suitability of 
proposed VPEs. However, this task is often omitted by the design- 
ers and developers of most VPEs presented in this work. Excep- 
tions using the NAO robot are presented in [104] and [107] . Issues 
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that limit performing such comparative evaluations are related to 
the fact that (i) some of the presented VPEs are not available on- 
line, and (ii) they support different robots and target user groups. 
Recently, a shift of emphasis in many areas of HCI to user experi- 
ence has become a central focus for interface design and evalua- 
tion [156] . However, most UX-related aspects [157] , except usabil- 
ity, have generally been omitted in the reviewed VPEs. 

8.6. Explainability and generation of robot social behaviors 

Depending on the specific use case involved in the target end- 
user applications, robot behaviors (which can be formed by a sim- 
ple action or a set of parallel robot actions requiring synchroniza- 
tion) used for social purposes in the papers analyzed for this sur- 
vey can be classified into the following classes: 

C 1 repetitive robot behaviors that do not require any specific form 

of high-level intelligence nor cognitive capabilities; 
C 2 scripted sequences of basic robot behaviors, the execution of 

which always follows a predefined list of actions and occa- 
sionally requires user-provided input, e.g., using keyboards, joy- 
sticks, touch or speech, to continue execution; 

C 3 state- or event-based dynamic behaviors that do not allow for 
any interruption nor preemption until the current behavior is 
completed; 

C 4 state- or event-based reactive and dynamic behaviors enabling 
interruption, state change or preemption on the basis of prede- 
fined priorities; 

C 5 hybrid reactive/deliberative, intelligent behaviors that require 
the robot to correctly interpret and react to external and in- 
ternal stimuli, and to make decisions about which actions to 
perform next in view of a certain goal. 

While most of the VPEs reviewed in this paper can generate 
behaviors belonging to classes C 1 , C 2 , and C 3 , very few are capa- 
ble of generating robot behaviors which can be classified as C 4 or 
C 5 . An exception that can be considered as a basic approach to- 
wards C 4 is Interaction Composer, which exhibits a dataflow in- 
terruption mechanism, where an interrupt could monitor some 
perceptual input and trigger another behavior sequence [92] . An- 
other exception towards C 4 is TiViPE, the latest release of which 
includes a textual robot language that can be used to set the exe- 
cution priorities of a set of serial and parallel actions. Other ad- 
vanced approaches towards C 4 have been proposed by RRP-VPE 
and RIZE, using Reactive Programming and BTs, respectively. VPEs 
enabling non-programming skilled end users to design hybrid re- 
active/deliberative intelligent behaviors are still rare. However, it is 
noteworthy that while moving from C 1 to C 5 in the behavior clas- 
sification, the resulting robot actions may be considered progres- 
sively less understandable and explainable for humans. This is be- 
cause the composition of many simple behaviors in an intertwined 
chain of planned actions and reactions to certain events can lead 
to widely different outcomes, even when there are only small dif- 
ferences in the (sequences of) inputs [158,159] . It is not surpris- 
ing that, as far as human–robot interaction is concerned, social 
robots exhibiting predictable behaviors are to be preferred given 
the state-of-the-art knowledge in Robotics. 

8.7. Simulation and debugging 

The benefits of simulation and debugging capabilities in any 
software development toolkit are quite obvious and do not need 
to be emphasized. However, human–robot interaction and the use 
of social robots in-the-wild are characterized by specific require- 
ments as far as simulation and debugging are concerned. These are 
mostly related to the dynamic and often unpredictable nature of 
human–robot interaction processes and social relationships: on the 

one hand, it is necessary to always ensure predictable robot be- 
havior, as well as to guarantee that the overall architecture work- 
flow does not enter into unsafe states; on the other hand, for the 
robot behavior to be engaging at the social level and to ground 
high-quality human–robot interaction experiences, it is of the ut- 
most importance to carry out time-consuming robot-based tests 
and evaluation before the final application is deployed. 

In many cases these goals are not possible or easy to attain, be- 
cause of practical reasons related to robot unavailability or incom- 
plete technical development. Therefore, being able to access and 
leverage a high-quality, accurate, and faithful simulation of robot 
behavior is crucial. 

Cross-platform, easy-to-use and easy-to-setup simulators are 
the key to increase the overall usability of VPE-based develop- 
ment. Values obtained from dimension RQ3-D6 (Liveness and Sim- 
ulation) in Table 9 , show that most of the VPEs discussed in this 
article lack any robot behavior and human–robot interaction sim- 
ulation capabilities, the only exceptions being Choregraphe, which 
provides a 3D simulation for the robots commercialized by Soft- 
bank Robotics, BEESM, which includes a 2D simulator for smart en- 
vironments, and OpenRoberta, which provides 2D web simulators 
of toy robots. Values obtained from dimension RQ3-D6 also indi- 
cate that less than half VPEs provide on-demand feedback or de- 
bugging (liveness 3), and only Choregraphe provides live feedback 
capabilities (liveness 4). The concept of liveness was discussed in 
Section 4.1 in the definition of research question RQ3. 

9. Conclusions 

In this paper, we presented a survey of different VPE-based 
frameworks to enable a EUD-based development of social robots 
and human–robot interaction scenarios. A structured comparison 
of these frameworks has been carried out from an operational 
point of view, classifying them as dataflow-based, block-based and 
form-filling. Our findings indicate that there is a need for more 
accessible, adaptable, modular, extendable and flexible tools and 
technologies to support and enable end users to become end user 
developers of their systems. We note that many recent VPEs are 
built on top of CBSE and distributed Robotics frameworks for en- 
abling enhanced modularity and flexibility. However, the inherent 
complexity of most CBSE Robotics-oriented frameworks are charac- 
terised by accessibility and usability barriers, whoch makes it dif- 
ficult to create EUD tools promoting independence between end 
users and high-tech scribes. This is because most CBSE frameworks 
were originally designed for supporting academic projects, and 
tended to have steep learning curves for their use even for expert 
developers. Solving these issues is necessary to enable end users 
to develop and redesign their applications in-the-wild. A possible 
direction can be the use of more lightweight, simple CBSE frame- 
works that (i) are adapted to the skills and resources of end users, 
and (ii) can be used as a glue between different software modules 
developed by the Robotics community and different Robotics mid- 
dlewares. Moreover, our findings point to the poor attention most 
authors of VPEs have given towards the performance and compara- 
tive evaluation of these tools with real end users, and the need for 
more user studies and objective analysis of these tools using both 
quantitative and qualitative data. 

Finally, some effort s are recently being made to overcome lim- 
itations of classical approaches using rules, scripting, and data- 
flow programming, thereby providing end users with more reliable, 
reusable and reactive programming tools to enable the creation of 
more complex behaviors for social robots. Unlike other information 
technology areas, where end-to-end black-box AI architectures are 
currently trending, e.g., Deep Neural Networks, AI architectures for 
enabling EUD of social robots mostly focus on the use of AI tools 
with authoring and explainable behaviors. This situation is similar 
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to the one facing game developers, whereby the creation of robust, 
explainable and suitable behaviors, in many cases defined by UX/UI 
designers, is more valuable than learning capabilities. 

However, the creation of more complex Robotics systems will 
require Social Robots to learn from its environment. A possible re- 
search direction can be the use of hybrid decision-making algo- 
rithms to (i) provide a sufficient level of explainability and behav- 
ior control of agents; (ii) provide learning mechanisms enabling 
robots to adapt to dynamic situations; (iii) enable easy parame- 
terization of critical aspects for developing social robots, such as 
personality and social norms. We hope that this information can 
be valuable and informative for the development of more usable 
and flexible VPE-based systems enabling the creation of more in- 
telligent social robots. 
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