
Journal of Computer Languages 58 (2020) 100970

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

Visual Programming Environments for End-User Development of
intelligent and social robots, a systematic review

Enrique Coronado
a , ∗, Fulvio Mastrogiovanni b , Bipin Indurkhya c , Gentiane Venture

a

a Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
b Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
c Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, Cracow, Poland

a r t i c l e i n f o

Article history:

Received 9 September 2019
Revised 28 February 2020
Accepted 18 April 2020
Available online 20 May 2020

2019 MSC:

00-01
99-00

Keywords:

Visual Programming Environment
End-User Development
Human–robot interaction
Social robot
Robotics

a b s t r a c t

Robots are becoming interactive and robust enough to be adopted outside laboratories and in industrial
scenarios as well as interacting with humans in social activities. However, the design of engaging robot-
based applications requires the availability of usable, flexible and accessible development frameworks,
which can be adopted and mastered by researchers and practitioners in social sciences and adult end
users as a whole. This paper surveys Visual Programming Environments aimed at enabling a paradigm fos-
tering the so-called End-User Development of applications involving robots with social capabilities. The
focus of this article is on those Visual Programming Environments that are designed to support social re-
search goals as well as to cater for professional needs of people not trained in more traditional text-based
computer programming languages. This survey excludes interfaces aimed at supporting expert program-
mers, at allowing industrial robots to perform typical industrial tasks (such as pick and place operations),
and at teaching children how to code. After having performed a systematic search, sixteen programming
environments have been included in this survey. Our goal is two-fold: first, to present these software
tools with their technical features and Authoring Artificial Intelligence modeling approaches, and second,
to present open challenges in the development of Visual Programming Environments for end users and
social researchers, which can be informative and valuable to the community. The results show that the
most recent such tools are adopting distributed and Component-Based Software Engineering approaches
and web technologies. However, few of them have been designed to enable the independence of end
users from high-tech scribes. Moreover, findings indicate the need for (i) more objective and comparative
evaluations, as well as usability and user experience studies with real end users; and (ii) validations of
these tools for designing applications aimed at working “in-the-wild” rather than only in laboratories and
structured settings.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Robots are programmable machines that are nowadays com-
monly available and used in universities, research institutes, and
manufacturing industries. Traditionally, they have been used to
perform high-speed, efficient and repetitive tasks in hazardous and
industrial environments, often requiring few or no interactive ca-
pabilities [1,2] . These cases differ significantly from social robots,
for which the main goals are to play useful social roles and en-
gage different types of users through meaningful, natural, suitable,
and safe interactions [3,4] . Despite being one of the most rele-
vant emergent technologies according to the World Economic Fo-

∗ Corresponding author.

E-mail address: enriquecoronadozu@gmail.com (E. Coronado).

rum [5] , the successful adoption and acceptance of social robots
into our society still requires many challenges to be solved [6,7] .
Similar to the early years of computing hardware, current social
robotics applications and research are widely dominated by high-
tech scribes, i.e., experts in programming or engineers [8] . More-
over, these applications are generally designed, executed and eval-
uated in structured, closed and controlled environments, such as
laboratories, and under the supervision of experts in robotics en-
gineering [9] . However, social robots are aimed at being used by
the general public and at performing “in-the-wild”, i.e., in unstruc-
tured, dynamic, open and everyday environments [9] .

In order to successfully perform in these scenarios, social robots
must be able to provide useful, safe, usable, valuable, enjoyable
and meaningful experiences [7,10] . Unlike the requirements posed
by the introduction of robots in industrial scenarios, use cases in
which robots must interact with people using social norms and

https://doi.org/10.1016/j.cola.2020.100970
2590-1184/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cola.2020.100970
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cola
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2020.100970&domain=pdf
mailto:enriquecoronadozu@gmail.com
https://doi.org/10.1016/j.cola.2020.100970

2 E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970

conventions are better approached by UX/UI designers, researchers,
practitioners in social sciences. Therefore, the inclusion of this
new type of users in the design process of social robots is key-
stone to ensure the successful performance of social robot based
applications. However, people belonging to this category are tra-
ditionally skillful in domains profoundly different from advanced
robot and software development, and oftentimes lack the required
level of expertise in advanced engineering topics, which are typi-
cally needed to implement complex robot behaviors. Examples of
approaches enabling the inclusion of non-roboticists in the cre-
ation of interactive applications are user-centered [11] and partic-
ipatory design [12] . Recent examples in Social Robotics applying
these methods are presented in [13,14] . As described in [15] , user-
centered and participatory design endorse the “design for use be-
fore use” paradigm, which requires a clear division of labour be-
tween the people assigned for the creation of applications at de-
sign time and the people able to use and redesign the applica-
tion at run time. According to [16] , approaches requiring this di-
vision of labour have become problematic in many software devel-
opment areas due to: (i) a lack of expert software developers or
(manpower) able to grasp and attend all possible users as well as
their needs; (ii) the dynamic change of requirements, which are
often specific to individual domain applications; and (iii) possible
misunderstandings between expert software developers and their
users due to the difference in backgrounds and practices.

Recently, End-User Development (EUD) has emerged as a suit-
able alternative to those approaches requiring a division of labour
[16] . This is done by enabling novice users of computers and peo-
ple without training on traditional programming languages, who
are often denoted as end users, to redesign their own applications
not only at design time but also at run time [17] . The goal of EUD

is to evolve from easy-to-use to easy-to-develop interactive tech-
nologies [16] . Such a goal is not limited to software but can also
include hardware artifacts, such as those manufactured using 3D

printing technology [16] . A new and broad definition based in the
meta-design manifesto [18] also considers EUD as a socio-technical
activity whereby users can develop all software and hardware sys-
tems that they use in their everyday life [19] , therefore enabling
independence of the owners of the problems, i.e., end users them-
selves, apart from the high-tech scribes [8] . The concept of EUD

is related to End-User Programming (EUP) and End-User Software
Engineering (EUSE). On the one hand, EUP is often considered as
a subset of EUD [20] , because it focuses only on the techniques
used to enable end users to write their own programs, such as vi-
sual programming, domain-specific languages and natural language
programming. In contrast, EUD not only focuses on the program

creation phases but also on the methods and tools that can sup-
port the entire software development life-cycle [17] . This requires
reaching independence from high-tech scribes during the use, re-
design, configuration, and extension of the software and hardware
artifacts [19] . On the other hand, EUSE takes a different approach
compared to EUP and EUD. This is because EUSE mostly focuses on
providing end users with solutions derived from traditional soft-
ware engineering, such as debugging and version control, to pro-
mote the creation of high-quality software that is reusable, reliable
and efficient [20,21] .

In the past few years, a number of systems have been proposed
to tackle EUD challenges for robotics systems at different levels,
e.g., motion planning and execution frameworks adopting Program-

ming by Demonstration (PbD) [22,23] , or the use of Natural Lan-
guage Processing (NLP) to provide robots with instructions about
how to carry out a certain task [24] . However, Visual Programming

Environments (VPE) still follow the EUP and EUD approach, offering
the best trade-off between usability (being easy to learn and easy
to use) and the overall complexity characterizing the robot-based
behaviors that can be developed with these tools. VPEs integrate

a selected Visual Programming Language (VPL) to enable their users
to create applications on the basis of such graphical elements as
icons, blocks, arrows, forms, and figures, among others, rather than
code only [25,26] . The relevance of these development tools has
recently increased not only in Robotics-related use cases, but also
in other fields of Computer Science such as the Internet of Things
(IoT) [25,27] , video game development [28,29] , mobile application
development [30] , and Virtual/Augmented Reality [31] . Due to their
aforementioned flexibility and relevance, this article focuses on the
EUD tools using VPEs for the design of Social Robotics applications.

As described by Barricelli et al. [17] , most relevant literature re-
views on EUD, such as [32–34] , present a limited number of ap-
proaches and techniques. These relatively old literature review ar-
ticles also tend to omit applications in Robotics. Moreover, the re-
views presented in such articles have been performed and ana-
lyzed in the research domain of their authors [17] , which differ
from Robotics. Two more recent systematic reviews on EUD ap-
proaches are [35] and [17] . The authors of [35] conducted a 10-
year (2007–2017) systematic search, in which 21 articles were se-
lected. However, none of them belongs to the Robotics field. In
contrast, Barricelli et al. [17] presents an overview of applications,
tools and techniques in EUD, EUP and EUSE over 17 years (20 0 0–
2017). From the 165 papers selected in [17] , only four are in the
Robotics area, out of which only two are relevant for the focus of
this article. Finally, a very recent narrative review of EUD-inspired
software applied to domains such as smart homes, industrial and
humanoid Robotics, task automation, and applications for human
assistance is presented in [36] . However, the review proposed in
[36] mainly focuses the analysis and proposed challenges to IoT-
specific approaches and rule-based systems, such as those based
on the trigger-action paradigm [37] . In fact, most literature reviews
on EUD tend to omit in their analysis the more recent tools, tech-
nologies, and approaches used in Robotics aimed at enabling the
development of more advanced, reactive and robust robot systems.
Relevant methods often omitted are related to the behavior mod-
eling approaches enabling end users to create intelligent and so-
cial robots. These approaches, which are often denoted as Author-
ing Artificial Intelligence (AAI) or simply Artificial Intelligence (AI)
architectures [38] , enable the control of processes in which intel-
ligent agents can evaluate their environment to perform decision
making. These AAI-based methods are nowadays widely used in ar-
eas in which the development of complex and intelligent physical
and virtual agents is needed, such as Robotics or game develop-
ment [39] . Three of the main research goals of AAI-based meth-
ods are: (i) overcoming limitations related to modularity, reliabil-
ity, reusability, and robustness presented by the classical agent be-
havior modeling methods, such as rule-based systems and script-
ing [38] ; (ii) enabling their use for EUD and interaction design
tasks [39] ; and (iii) generating more intelligent, reactive, believ-
able, suitable, and explainable agent behaviors [40] . Due to this,
the role played by the AAI-based methods in EUD and EUP must
not be omitted. Moreover, current systematic and narrative reviews
in EUD also tend to omit in their analysis those relevant develop-
ment practices and approaches nowadays used to create more ad-
vanced, reusable, scalable, interactive and reliable robot systems,
and in particular, the use of frameworks supporting Component-
based Software Engineering (CBSE) for Robotics. This approach has
become quasi-standard for the development of software architec-
tures for robots [41,42] . Therefore, their analysis is fundamental for
a better understanding of how to develop more advanced, usable
and robust software back-ending EUD and EUP for Robotics. Other
recent reviews describing interesting intuitive programming tools,
such as [43,44] , focus on educational contexts for children rather
than EUD applications for adult users.

The limitations of the aforementioned studies indicate that
there is a need for a more in-depth systematic identification of re-

E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970 3

Table 1

Cognitive dimension definitions.

Dimension Definition

Abstraction gradient Types and availability of abstraction
mechanisms

Closeness of mapping Closeness of representation to domain
Hidden dependencies Important links between entities are

not visible
Premature
commitment

Constraints on the order of doing
things

Viscosity Resistance to change
Visibility Ability to view components easily
Diffuseness Verbosity of language
Error-proneness Notation invites mistakes
Hard mental
operations

High demand on cognitive resources

Progressive evaluation Work-to-date can be checked at any
time

Provisionality Degree of commitment to actions or
marks

Role-expressiveness The purpose of a component is readily
inferred

Secondary notation Extra information in means other than
formal syntax

Consistency Similar semantics are expressed in
similar syntactic forms

search articles enabling EUD for Social Robotics, with the aim of
providing a broader overview and understanding of the develop-
ment approaches, tools, and practices enabling end users to cre-
ate intelligent and interactive applications with social robots. To-
wards this end, this article presents a systematic search and anal-
ysis [45] of VPEs aimed at enabling the EUD paradigm for social
human–robot interaction (HRI) and everyday life applications. The
main contribution of this paper is as follows. By systematically
identifying and analyzing relevant VPEs for EUD of application with
social robots, we provide: (i) a more complete overview of current
scenarios for EUD and EUP solutions in this area; (ii) an in-depth
analysis of the algorithms and modeling approaches currently used
to enable the creation of more intelligent and robust agents; (iii) a
presentation of the trends, practices, and technologies used for the
development of VPEs for social robots; and (iv) the definition of
open challenges and future directions specific to Social Robotics.

The organization of this paper is as follows. Section briefly
presents basic concepts used in this article for the analysis of
VPEs. Section 3 describes the main concepts underlying VPE-
based design, with an emphasis on Robotics-related requirements.
Section 4 describes the methodology applied to perform a sys-
tematic analysis of the literature. Section 5 presents the VPE tools
found in the literature following our methodology. Section 6 dis-
cusses behavior modeling approaches used in VPEs for developing
intelligent social robots. Section 7 describes more relevant software
tools and technologies executing at the back-end of these VPEs.
Section 8 presents relevant open challenges, thereby proposing a
road-map for further research directions. Conclusions follow.

2. Appropriate abstraction level for programming social robots

The concept of cognitive dimension is a framework used to an-
alyze complex software tools such as programming languages and
interactive user interfaces [46,47] . It can be used to identify us-
ability problems in the early stages of the design of a user in-
terface and to perform iterative design. Brief definitions, based
in [48] and [49] , of the most relevant cognitive dimensions are
shown in Table 1 . As a usability principle, design of programming
tools based in cognitive dimensions must deal with a set of trade-
offs, i.e., attempts to improve any dimension always affects other
dimensions. Therefore, cognitive dimension design must be goal-

oriented by selecting the dimensions that are more important for
the target audience.

Recently, the work in [50] studied cognitive dimension and
usability trade-offs when considering the programming of social
robots. This analysis resulted in a proposal for a robot program-
ming model that decomposes the social and intelligent abilities
of robots in five abstraction levels, namely hardware primitives,
algorithms primitives, social primitives, emergent primitives, and
methods for controlling primitives. In this model, the lowest ab-
straction level is the hardware primitives that allow programmers
to retrieve sensory information from hardware devices and control
robot inputs, e.g., LEDs and motors. The second abstraction level is
the algorithm primitives that are used to build low-level interac-
tive, perceptual and control capabilities in social robots, e.g., face
tracking, sound source localization, and inverse kinematics. The
third level is that of social primitives, which contains intuitive and
reusable social interactive capabilities that are close to the domain
expertise of the general end users. At the fourth level, emergent
primitives are built from a combination of social primitives, e.g.,
gaze, speech, and gestures, to create high-level social behaviors,
such as those related to emotion-inducing behaviors. Finally, the
fifth level contains the control primitives that are in charge of per-
forming decision making based on the current status of the inter-
action. The simplest way of doing this task is by using if-then-else
rules. A description of the methods used in EUD tools for Social
Robotics for controlling primitives is the main focus of Section 6 .
Findings of [50] suggest that using too many low-level abstrac-
tions, i.e., hardware and algorithm primitives, for the development
of programming tools for social robots negatively affects their us-
ability. Such low-level primitives tend to require hard mental oper-
ations and produce error-prone notations. At the same time, using
too many emergent primitives affects the viscosity positively, but
the expressive power of the programming tools and hidden de-
pendencies negatively. In order to reach good usability and cog-
nitive dimension trade-offs for the end user, these programming
tools must use as many social primitives as possible. A deeper de-
scription of these primitives and their influence on the usability
and cognitive dimension trade-offs of a programming tool for so-
cial robots are explained in-depth in [50] .

3. Visual programming environments in robotics

With some simplifications, three main Robotics-related scenar-
ios can be identified where VPEs play a decisive role, namely (i)
industry settings, (ii) science, technology, engineering and mathe-
matics (STEM) education, and (iii) end-user applications. Two ma-
jor factors form a basis for this classification, namely the required
programming abstraction level [50] and the target users.

One key feature that distinguishes among these classes of use
cases is based on the most appropriate level of abstraction char-
acterizing the programming operators and primitives , i.e., the avail-
able visual elements, which can provide the required usability, in-
tuitiveness, ease of learning, and flexibility. While adopting low-
level programming abstraction primitives can enhance the flexibil-
ity and the level of code reuse associated with VPEs, it also de-
creases their usability and intuitiveness [50] . Furthermore, the ca-
pability associated with easy-to-learn approaches can be negatively
affected when developers must deal with a mixture of unbalanced
abstraction levels [47,50] .

A second major difference is the target end users population
in its own right. In use cases grounded in industry scenarios, the
use of VPE-based approaches is geared towards reducing the costs
associated with the development and maintenance of robot ap-
plications on the shop-floor or in the manufacturing cell by hu-
man operators who are new or untrained in programming [51] .
However, users of industry-oriented VPEs still require some exper-

4 E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970

tise in low-level programming and Robotics notations. Examples of
low-level notations presented in some VPEs for industrial settings
are coordinate frames, tools, materials, joint velocities, end-effector
orientations and positions, and hardware configurations [52–54] .
In general, industry-oriented VPEs are mainly focused on enabling
robots to execute a set of well-defined sequences of repetitive and
accurate tasks, e.g., assembly, pick-and-place, welding and mate-
rial handling [52] , rather than enabling them to play complex and
diverse social roles, e.g., teacher, friend or companion. Some ad-
vanced VPEs for industrial settings also enable a mixed approach
with PbD methods [52,53] .

Use cases related to the adoption of VPEs in STEM and – in
general – educational settings are typically aimed at children or
new learners of general-purpose programming languages for de-
veloping toy programs rather than real-world applications. This
type of VPEs is characterized by two main peculiarities. Firstly,
they must be based on suitable approaches to enforce learning
Computer Science or Robotics-related topics, such as the manage-
ment of sensors or actuators, coding, functions, data structures,
or algorithms. Secondly, these VPEs must be engaging and suf-
ficiently easy-to-use to keep students interested and motivated
during programming sessions. The abstraction level typically en-
coded in this type of interfaces depends also on the age of the
target learners [55] . For elementary and middle school students,
these software development environments must favour simplic-
ity, intuitiveness and avoid the intrinsic complexity of general-
purpose programming languages [56] . However, environments for
students in high school and above often require the use of low-
level general-purpose programming syntax, e.g., conditionals, loops
and functions, to enable an easy transfer of knowledge to general-
purpose programming languages or more complex approaches in
advanced courses [57] . Nowadays, new STEM-targeted educational
VPEs coupled with robot toys appear every year, notable examples
being the interfaces for such robots as Cozmo [58] and Thymio
[59] .

Programming robots and learning how to use the available
VPEs in both industrial and STEM-related educational scenarios are
generally the main tasks or objectives of their target users. As
mentioned above, these tasks require some low-level expertise in
Robotics (in the case of industrial settings) or the user needs to
acquire a complex body of knowledge by time-consuming training
processes (in the case of STEM-related educational scenarios) [55] .
This greatly differs from what is postulated by EUD approaches
for domain-specific users [34,60] , whereby programming is seen as
an optional task to support work activities carried out by an end
user rather than being a main learning or work objective. This may
be because many domain-specific end users do not have the time
and motivation to learn how to use low-level Robotics software
frameworks [61,62] . Therefore, VPEs for end users require more
intuitive interfaces, mainly based on programming notations that
are close to the domain knowledge of the general user. In many
cases, these VPEs must also be flexible enough to enable the cre-
ation of complex, dynamic and engaging social interactive experi-
ences with robots. Such interactions often require the use of multi-
modal approaches, e.g., gesture and speech recognition, expression
of emotions, and engaging dialogues, among others [63] . Exam-
ples of domain-specific end users are teachers developing robot tu-
tors and helpers, artists programming a choreography or defining
a script for robot-related artistic performances [64] , sellers creat-
ing interactive experiences for customers [65] , or therapists using
robots to help in therapy sessions, just to name a few [62] .

This article is targeted to discuss VPEs suitable to enable the
adoption of EUD-based paradigms for the creation of social inter-
action applications by domain-specific end users.

According to the discussion in [66] , most common VPL ap-
proaches can be categorized as: (i) form-filling, (ii) data-flow, and
(iii) block programming.

Form-filling VPLs generally require the use of standard input
forms, such as buttons and checkboxes, along with images to guide
the user step-by-step. A popular AAI approach used for modeling
robot behaviors in this type of VPLs is the use of trigger-action
rules [27,66] . While such VPLs are popular in different IoT environ-
ments, such as smart homes [66] , they are very poorly explored
in Robotics [67] . This can be due to the widely known limitations
that these approaches present when they are required for produc-
ing intelligent agent behaviors [39,40] . Moreover, a lack of struc-
ture when defining disjoint ad hoc rules can make trigger-action
systems unstable and error-prone when creating relatively complex
programs, which requires the integration of additional tools for
solving conflicts between rules [40,68,69] . Therefore, areas requir-
ing the creation of more complex behaviors, such as video games
and Robotics, prefer the use of more structured, robust, and ex-
pressive AAI-based approaches [38,70] .

Data-flow is a commonly adopted VPL approach in Robotics,
not only for creating EUD-based environments for non-technically
skilled people but also for expert use in complex and robust ap-
plications, as described in [71] . A data-flow programming environ-
ment is represented using directed graphs [72] . Nodes in data-flow

interfaces are referred to by different terms by various authors,
such as blocks, functions, icons, states, procedures , and boxes . Nodes
are connected by means of graphical lines (also referred to as wires

or arcs), which represent the flow of data between functions/blocks
or transitions between states.

Block programming , based on the primitive-as-puzzle-piece

metaphor (also known as block-based visual programming)
[57,73,74] , is a recently adopted approach that is gradually gaining
attention in the development of EUD-based interfaces [73] . Unlike
data-flow tools, visual elements in block-based VPLs are not con-
nected using lines. Instead, block-based VPLs programs are built by
assembling jigsaw puzzle pieces, which present visual cues that in-
dicate to the user how visual elements may be used. This makes a
block-based VPL an intuitive and engaging approach that is able
to stimulate user creativity [57,66] . Following this definition, we
consider in our review those VPEs using popular block-based VPLs
such as Scratch [75] , Snap! [76] or Google Blockly [77,78] .

4. Methodology

We follow the guidelines proposed in [45,79] for performing
systematic reviews of Software Engineering papers. Systematic re-
views are objective literature review studies used to identify rele-
vant research papers, trends, gaps and challenges in some specific
research area as well as to help in the position of research direc-
tions and activities [45] . Our protocol for performing a systematic
review is based on recent and relevant systematic reviews with
similar objectives and domain areas. Specifically, we follow [80] ,
which focuses on the area of human–robot interaction, and [20] ,
which focuses on the area of EUD. As described in [45,79] , and ap-
plied in [80] , the process involved in a systematic review consists
of five parts: (S1) definition of the review protocol , whereby the re-
search questions are careful defined as well as the methods used to
answer them; (S2) definition of the search strategy , which aims at
identifying the relevant research articles in the field; (S3) documen-

tation of the search process , whereby readers are able to evaluate
how completely and rigorously the search process has been per-
formed; (S4) specification of inclusion and exclusion criteria, which
are used to select core articles in the field; and (S5) a report of
relevant data or information from each research article or software
tool.

4.1. Research questions

One of the main focuses of this article is to complement re-
cent literature review articles in EUD, such as [20] and [36] , by

E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970 5

Table 2

Dimensions used to obtain general information of VPEs.

Label Dimension Description and goal

RQ1-D1 Name Used to identify each tool analyzed in this
article

RQ1-D2 EUP approach Aims at discovering the VPEs technique used
to enable the creation of end-user programs
values in this dimension can be form-filling,

data-flow or block-based
RQ1-D3 Target users Aims at identifying the type of end users

these VPEs have been designed for
RQ1-D4 Application

domain
Aims at discovering the application domains
in which these VPEs have been used to
support end-users goals and needs

RQ1-D5 Target robot Aims at identifying the type of robots
supporting these VPEs

identifying and analyzing relevant tools and technologies integrat-
ing VPEs for enabling EUD and EUP in Social Robotics. The identi-
fication of these tools and technologies can be used to better un-
derstand the current scenario of EUD solutions for Social Robotics.
We formulated the following research questions.

(RQ1) What VPE tools for Social Robotics have been proposed

in the literature to support end-user research goals or professional

needs? The dimensions used to respond to RQ1 are shown in
Table 2 . We propose RQ1-D1 (Name) to identify each tool result-
ing from the systematic search process. This enables a comparative
analysis of these VPEs in the other research questions. Values of
RQ1-D2 (EUP approach) are defined based on the VPEs classifica-
tion presented in Section 3 . The formulation of dimensions RQ1-
D3 and RQ1-D4 is based on those proposed in [20] to obtain gen-
eral information of EUD, EUP, and EUSE tools. Therefore, RQ1-D3
and RQ1-D4 are focused on identifying the main target users and
applications of these tools, respectively. Finally, RQ1-D5 is used to
identify the social and service robots supported by these VPEs. We
propose these dimensions in order to get a general overview of the
goals of relevant and recent VPEs for Social Robotics.

(RQ2) What robot behavior modeling AAI-based approaches have

been used in these VPEs to enable the creation of intelligent social

robots? RQ2 mostly focuses on: (i) how end users can effectively
and intuitively compose programming primitives for the creation
of their desired applications, and (ii) the methods enabling the
control of these primitives. AAI-based approaches can be consid-
ered as those AI methods enabling the modeling and control of
programming primitives used in VPEs for Social Robotics [50] . On
the one hand, AAI-based approaches for social robots must be flex-
ible and expressive enough, thereby providing end users with an
ability to create interesting and complex behaviors. On the other
hand, they must be intuitive and simple enough to allow for an
easy creation and reuse of desired robot behaviors. Therefore, the
main goal of RQ2 is to identify the advantages and disadvantages
of different AAI-based methods and how they have been used to
enable the modeling intelligence on social robots in VPEs. Dimen-
sions proposed to answer this research questions are aimed at
identifying the used AAI-based approaches in VPEs for Robotics
(RQ2-D1) and the type of programming primitives generally used
in these VPEs (RQ2-D2) (Table 3).

(RQ3) What technologies, evaluation methods, and software tools

have been used by the authors of these frameworks? The focus of
RQ3 is on the capabilities of the proposed tools to enable the inde-
pendence of end users from high-tech scribes by supporting them

in the entire life-cycle, and not only in the creation phase. For this,
EUD tools must be accessible, easy-to-use and install, support end-
user devices, and allow for an easy extension of software artifacts,
e.g., the addition of perceptual capabilities or re-use with other vir-
tual or physical agents. Dimensions used to answer RQ3 are sum-
marized in Table 4 . Dimensions RQ3-D1 and RQ3-D2 are proposed

Table 3

Dimensions used to answer RQ2.

Label Dimension Description and goal

RQ2-D1 AAI approach Aims at identifying the type of
agent behavior modeling
approach used for controlling
programming primitives on
reviewed VPEs

RQ2-D2 Programming
primitives

Aims to identify the type of
programming primitives used
in reviewed VPEs

Table 4

Dimensions used to answer RQ3.

Label Dimension Description and goal

RQ3-D1
Communication
of modules

Aims at discovering whether
these VPEs have been
developed using good
practices for the integration of
isolated software modules or
nodes

RQ3-D2 Software
technologies

Aims to discover if these VPEs
have been developed using
modern technologies

RQ3-D3 Accessibility Ascertains whether these VPEs
are available online

RQ3-D4 Operating
Systems (OS)

Aims at determining the
degree of support that VPEs
have for the OS used by end
users

RQ3-D5 Easy-to-install
and execute

Aims to discover if VPEs can
be installed and executed
without the support of
high-tech scribes

RQ3-D6 Liveness and
simulation

Determines the level of
responsiveness of these VPEs
to the programmer edits as
well the available simulation
capabilities

RQ3-D7 Evaluation
methods

Aims to identify which tools
have been evaluated with real
end users and which
techniques were used for
these evaluations

RQ3-D8 Participation of
end users

Aims at defining the degree of
participation that these tools
enable for their target end
users, such as design time, use
time or both

to analyze the software approaches used to build VPEs for Social
Robotics, from which modular and reusability capabilities can be
inferred. Dimensions RQ3-D3 to RQ3-D5 aim at discovering which
VPEs tools enable the support of the entire life-cycle of application
development. For this purpose, the user must be able to install,
configure, and use these VPEs and create their own interactive sce-
narios with their robots in their own computing devices without
the help of high-tech scribes. RQ3-D6 aims to identify the levels of
liveness supported by these VPEs as well as simulator tools sup-
porting them. Liveness is a concept used in the literature for refer-
ring to the capabilities of programming environments to provide
an immediate feedback cycle [81] . This feature can reduce the cog-
nitive burden on programmers and enable users to adopt a more
exploratory programming style [82] . According to [83,84] , it is pos-
sible to identify 4 liveness levels: level 1 (informative), where vi-
sual representations understandable only for expert developers are
provided; level 2 (informative and significant), where visual rep-
resentations of the programs have enough information to enable
their execution; level 2 (informative, significant and responsive),
where feedback can be provided on demand with a “run” button;
level 4 (informative, significant, responsive and live), where feed-

6 E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970

back is automatically provided as edits are done in the program.
Unlike programs executed on a computer, robots can act and mod-
ify their environment. Therefore, feedback requiring the robot to
perform motions needs special care. A safe option to implement
level 4 of liveness is through simulations. RQ3-D7 aims at identi-
fying the methods used to evaluate the suitability of these VPEs in
this sense. Finally, RQ3-D8 aims to assess which VPEs have been
reported as: (i) only tested or evaluated by their developers and/or
colleges (e.g., by students pursuing engineering studies), (ii) used
by real end users at design time (i.e., in laboratories); (iii) used by
real end users at run time (i.e, in-the-wild conditions).

(RQ4) What are the open issues and challenges for VPEs in the do-

main of Social Robotics? This research question is mostly addressed
in Section 8 , based on the observed values of dimensions in RQ1,
RQ2 and RQ3.

4.2. Search process

The search was carried out in well-established databases in the
field of intelligent robotics systems, namely IEEE Xplore, Science
Direct, ACM Digital Library, Springer Link and Web of Science. Ex-
amples of other systematic reviews focusing on Robotics applica-
tions and methods using these sources are [80,85,86] . The time pe-
riod of publications covered is between 2008 and 2018. The year
2008 was chosen as the starting year as no earlier tools are de-
scribed in [16] and [20] . Moreover, 2008 is just before two major
events in Robotics, which are relevant for the focus of this article.
The first is the initial release of the Robot Operating System [87] in
version 1.0 (2009), which become a milestone in academic robot
development. Approaches using ROS-based frameworks are nowa-
days quasi-standard for many researchers in Robotics. The second
is the release of the first commercial version of Nao social robot
(2008) and its official EUD tool [88] . Nao is probably the most suc-
cessfully used social robot up to date, which is evidenced by the
fact that most of the VPEs reviewed in this article support this
robot.

In order to obtain key terms for the search string, we applied
three different strategies: (i) an analysis of our main goal and
the research questions, (ii) an analysis of core articles from pre-
vious state-of-the-art studies, and (iii) pilot testing. For step (i),
our goal was to identify relevant and recent “End-User Develop-
ment” or “End-User Programming” supporting “Visual Program-
ming Languages” for “Social Robotics”. These keywords are also
contained in our main research question (RQ1). Therefore, we ex-
tracted “End-User”, “Programming”, “Visual”, “Development” and
“Robot”. In step (ii), we used the SEOBook keyword density ana-
lyzer [89] to identify the most recurrent words in two well-known
core papers of EUD for Social Robotics, specifically [62] and [88] .
Based on this analysis, such keywords such as “Robot”, “User”, “De-
velopment” and “Programming” were found to be relevant. In step
(iii), we executed and refined the keywords and the search string
iteratively. This process was validated using a quasi-gold standard
[90] . Finally, the main keywords used for the search were “Robot”,
“End-User Development” and “Visual Programming”. A correlated
keyword for “End-User Development” is “End-User Programming”,
and one for “Visual Programming” is “Visual Language”. The search
string was defined using the Boolean operators as follows: ‘Robot’
AND (‘End-User Development’ OR ‘End-User Programming’ OR ‘Visual

Programming’ OR ‘Visual Language’) .

4.3. Selection of papers

The next step in the review protocol was a clear definition of
the criteria used to decide which papers were used in this review,
and how and when those criteria were applied. The inclusion (IC)

Table 5

Definitions of inclusion criteria.

Criterion Description

IC 1 The focus of the article is to describe an EUD or EUP
tool for Robotics

IC 2 The presented tool is focused on supporting end
users and not expert developers nor people working
on industrial robots

Table 6

Definitions of exclusion criteria.

Criterion Description

EC 1 The article only presents an Application Programming
Interface using a purely textual programming
language rather than an EUD or EUP tool
implementing a VPL

EC 2 The main focus of the presented tool is another EUP
approach, such as NLP, tangible programming, or PbD,
and not the use of a VPL

EC 3 The presented VPE is technically limited to be used in
robot toys or kits and for STEM educational proposes

EC 4 The article is not written in English

and exclusion (EC) criteria for this study are shown in Tables 5 and
6 , respectively.

The following steps indicate how and when the defined inclu-
sion and exclusion criteria were applied: (1) reading the title, ab-
stract and keywords of all articles applying inclusion criteria IC1
and IC2; (2) reading the introduction, contributions, and conclu-
sion of studies included in Step 1 to eliminate irrelevant docu-
ments which meet some of the exclusion criteria; (3) a complete
reading of the remaining studies in Step 2 to validate their rele-
vance; (4) collecting all the useful information for the proposed
research questions. The performed search process is graphically il-
lustrated in Fig. 1 . As shown in the figure, a total of 1010 articles
were returned by an automatic search in the selected databases.
From these entries, 54 were selected after executing step 1. In step
2, after performing skim reading, 33 were excluded. Finally, 21 ar-
ticles were selected for this review. However, some articles, such
as [91,92] , reference the same interface in different development
steps. Therefore, in step 3 we identified more relevant and com-
plete articles describing these VPEs. Finally, a total of 16 interfaces
were selected for this review. Nonetheless, we went through all the
21 articles to perform data collection.

4.4. Limitations of the study

The validity of the review may be limited by three factors,
which are described in [93,94] .

Publication bias is described in [94] as the problem that “posi-
tive results are more likely to be published than negative results”.
In this review, only a few of the selected papers report negative
results. However, the interpretation of positive or negative results
often depends on the point of view of each researcher [94] . A stan-
dard method used to deal with this issue is scanning the gray lit-
erature, i.e., M.Sc. and Ph.D. theses, books, workshop proceedings,
and technical reports. However, there still exists a risk that the pre-
sented analysis in this article does not offer a complete overview

of the reviewed VPEs.
Interpretive validity is achieved when the derived conclusions

are reasonable given extracted data [93] . For this, three researchers
experienced in areas such as Software Architectures for Robotics,
Artificial Intelligence, Social Robotics, Usability Engineering were
involved in the validation of conclusions.

Theoretical validity is determined by the ability of researchers to
capture the intended data [93] . The search process was conducted

E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970 7

Fig. 1. Flowchart of the search strategy.

by an individual author, which is the main threat to validity. There-
fore, during the inclusion and exclusion phase, there is the possi-
bility that some VPEs might have been missed. In order to reduce
this risk, we asked experts if they knew of any unpublished re-
sults or other relevant sources not initially considered in this re-
view. During data extraction analysis and classification phases, the
researcher bias is also a risk. To reduce this bias, three independent
reviewers assessed all extractions made by the one reviewer, such
as suggested by Petersen et al. [93] and Brereton et al. [95] and
applied in [93] . However, and as described in [93] , this risk cannot
be eliminated completely as it involves human judgment.

4.5. Reporting of results

Next, we answer the research questions of this study based on
the presented dimensions. Research questions RQ1 is answered in
Section 5 by presenting a brief overview of the VPE tools for So-
cial Robotics found after following the proposed search protocol.
Section 6 is used to answer the research question RQ2 by dis-
cussing the AAI-based tools found in the resulting articles. Re-
search question RQ3 is addressed in Section 7 by presenting and
analysing the software tools used in the development of VPEs
for Social Robotics. Finally, research question RQ4 is answered in
Section 8 , which presents the identified open challenges.

5. VPEs for Social Robotics (RQ1)

In order to answer RQ1, this Section presents a brief descrip-
tion of the VPEs resulting from our systematic search and analy-

sis. We classify these VPEs in three categories, namely dataflow-

based, block-based and form-filling . This classification was explained
in Section 3 . Table 7 shows the general features and the targets of
these VPEs.

5.1. Dataflow-based interfaces

The Microsoft Robotics Developer Studio (MRDS) [96] provides
a VPE oriented at enabling novice and expert programmers to
generate robot-based applications in Microsoft Windows. MRDS is
based on C#, includes a 3D simulator and allows for distributed
messaging between different modules using a SOAP-based appli-
cation layer protocol called Decentralized Software Services Protocol

(DSSP). MRDS can be used with a set of commercially available
robots, including Nao and Kondo KHR-1 humanoid robots. How-
ever, the support for MRDS has been discontinued recently.

Choregraphe [88] is a cross-platform and desktop-based VPE
developed by Aldebaran Robotics (now Softbanks Robotics). Its pro-
gramming approach is based on using different wires or connec-
tors to organize multiple robot behaviors in sequence or for paral-
lel execution. Choregraphe includes a 3D simulator and allows for
the design and debugging of animations of robots using a timeline
interface. Furthermore, it enables designers to develop low-level
scripts based on Python 2, and also to create high-level modules
(denoted as boxes), which can be saved as libraries for later reuse.
The editing of each box parameters can be done using form-based
visual interfaces.

The Tino’s Visual Programming Environment (TiViPE) [62] is a
desktop and data-flow interface built on QT [108] . Originally, it

8 E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970

Table 7

General features of VPEs for Social Robotics.

Name Target users Application domain Robots

CodeIt! [97] Novice and expert
programmers

Service robots Sovioke Relay, Turtlebot

OpenRoberta [98] Children, teens Education Nao, toys
Robokol [99] Therapists Robot-based therapy Ono
BEESM [100] Novice and expert

programmers
Smart environments Turtlebot

RIZE [101] UX/UI designers Long-term and social HRI,
child–robot interaction,
entertainment

Many

ProCRob [102] Teachers, therapists Robot-based therapy, tutoring QR
MRDS [96] Novice and expert

programmers
Autonomous vehicles,
competitions, entertainment

Many

Choregraphe [88] Novice and expert
programmers

Social HRI, entertainment,
robot-based therapy

Nao, Pepper, Romeo

TiViPE [62] Therapists Robot-based therapy Nao
Interaction composer [92] UX/UI designers Shopping malls Many
RoboStudio [103] Novice and expert

programmers
Healthcare iRobiQ-S

RRP-VPE [104] Novice and expert
programmers

N.A. Nao

RoVer [105] UX/UI designers Social HRI Nao
Interaction blocks [106] UX/UI designers N.A. Nao
English2NAO [107] Therapists Robot-based therapy Nao
PersRobIoTE [67] Novice programmers Smart environments Pepper

was designed to enable rapid prototyping of robot behaviors us-
ing a massively parallel processing and cross-platform approach.
In TiViPE, modules can be developed using different programming
languages, and can be integrated with their documentation in a
stand-alone executable, each one characterized by its own graph-
ical front-end. The development of abstract and complex mod-
ules in TiViPE (i.e., made up of simpler, basic, modules) can be
done using a form-based interface to combine selected modules.
Then, such modules can be reused in the same or other TiViPE-
based programs. The only robot supported by TiViPE is Nao. How-
ever, unlike Choregraphe, TiViPE allows for the use of multiple
Nao robots at the same time specifying their IP address. In TiViPE,
the overall robot behavior’s control flow is organized using one-
to-many connections between a set of input/output ports in each
graphical module, i.e., one output port of a module can be con-
nected to more than one input ports of different modules. A set
of optional ports in TiViPE-based modules can also be defined to
specify relevant parameters needed for subsequent execution in
other modules. The latest available version of TiViPE also allows
for the development of sensory-driven dynamic and parallel be-
haviors, which can be defined using a domain-specific control lan-
guage. The main real-world use cases in which TiViPE is employed
are related to robot-based social therapy.

Interaction Composer [92] is a flowchart-like and interaction-
oriented design framework specifically aimed at facilitating the
development of social robot applications via coordinating cross-
disciplinary teams of expert developers and UX/UI designers, i.e.,
end users and researchers in social sciences. As envisaged by the
original proposers, it is necessary to clearly separate the role of
different professional participants in the team. Expert software de-
velopers are in charge of low-level programming activities, such
as data processing, interfacing with hardware equipment, and the
development of basic robot behaviors in C++, whereas interaction
designers only focus on defining the interaction workflow and di-
alogue generation. Interaction Composer is characterized by a 4-
layer, modular architecture enabling the use of different robots
sharing a number of similar features and capabilities. Besides the
standard interaction workflow, this framework allows for specify-
ing interruptions when certain conditions are met. When an inter-
ruption is handled, the control flow resumes from the point where

the interaction workflow was interrupted. Furthermore, Interaction
Composer allows encapsulating visual elements in a hierarchical
way. However, notwithstanding this hierarchical approach, the au-
thors recognize a number of issues related to scalability and flex-
ibility in their dataflow-based interface [91] . The framework has
been widely adopted for developing Social Robotics applications in
real-world settings, such as shopping malls and supermarkets, and
also in situations when a robot acts semi-autonomously [91] . The
public availability of Interaction Composer has been discontinued
since 2011.

RoboStudio [103] is a desktop-based VPE aimed at the design
and development of service robots for medical and healthcare ap-
plications. Built on top of the Healthbots framework [109] , Ro-
boStudio has been developed using Java and Netbeans, which en-
able cross-platform support and a low memory footprint. It al-
lows for using software components originally developed for ROS
[87,110] , and OpenRTM [109] . As a consequence, RoboStudio is
characterized by a high flexibility for the integration of robots
and distributed sensors. The design of the application workflow is
based on concepts borrowed from Finite State Machines (FSMs). As
a consequence, the main programming interface has been designed
for expert developers rather than for novices. However, the inter-
face design can be reused and extended to embed other VPEs. A

simple example of this is discussed in [103] , where a novel in-
terface, called LTLCreator, has been developed on top of modules
originally developed using RoboStudio and Netbeans. Algorithms
developed using RoboStudio can be converted to an XML-based
domain-specific language called Robot Behavior Description Lan-
guage (RBDL), which can be executed using the Healthbots exe-
cution engine [111] . Unfortunately, RoboStudio is not available for
use to date.

The Reactive Robot Programming – Visual Programming Envi-
ronment (RRP-VPE) [104] is a dataflow- and web-based interface
powered by Node.js [112] . RRP-VPE is based on the Reactive Robot
Programming paradigm, which can be described as a “declarative
programming approach towards the development of event-driven
applications built around the notion of continuous time-varying of
data streams and the propagation of change” [113] . Unlike most
VPEs based on component-based software engineering approaches,
RRP-VPE advocates an approach in which modules can be devel-

E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970 9

oped in the same environment rather than using a separate, in-
dependent tool. RRP-VPE is based on the notion of RRP graphs .
These graphs define processes aimed at transforming inputs into
outputs using a set of different connectors organized in a possi-
bly complex structure. Examples of such connectors include oper-
ators to map certain data to given functions, filter inputs, sample
data, or to merge different data sources according to a given logic.
However, in order to use RRP-VPE, users are required to be quite
skillful in low-level software development to fully understand the
notation related to the declaration of variables, data assignment,
and reactive programming operators. It is not clear whether non-
technical end users can adopt the novel concepts used in RRP-VPEs,
and what are the usability and cognitive issues implied. RRP-VPE is
available online as open-source software in [114] .

RoVer [105] is an authoring VPE designed with a two-fold pur-
pose in mind: firstly, to enable prototyping of human–robot inter-
action scenarios built on top of a number of available interaction
primitives, and, secondly, to encode appropriate social norms, pos-
sibly not known to the designers a priori but that emerge during
the interaction. RoVer adopts formal verification techniques to en-
sure that the developed programs satisfy a set of social norms en-
coded as logical rules. To this end, RoVer employs the Prism Model
Checker [115] . Moreover, this framework is able to provide design-
ers with feedback when a certain social norm cannot be met. Anal-
ogously to other frameworks aimed at human-robot (social) inter-
action, RoVer adopts small behavioral primitives, called microinter-

actions , which can be aggregated to work sequentially or in paral-
lel. Microinteractions can be aggregated in groups, which are orga-
nized as a set of states. Then, the overall human–robot interaction
unfolds using a structural, FSM-based architecture, in which tran-
sitions between groups of microinteractions depend on the current
robot beliefs. RoVer is implemented in Java and can work in Linux
or OSX operating systems. Currently, it has been used with the Nao
robot. RoVer is available online [116] .

Interaction Blocks [106] is a visual authoring environment
aimed at the fast prototyping of human–robot interaction pro-
cesses using Nao. The application uses a set of predefined inter-
action patterns as basic building blocks to generate more com-
plex interactive processes also sequenced in a time-line fash-
ion. These patterns have been selected by observing different
human-human interactions in typical, social settings, e.g., con-
versations, collaborations, instructions, interviews or storytelling.
The main capability exhibited by Interaction Blocks is an easy
integration between human–robot interaction patterns and text-
to-speech, speech recognition and appropriate gaze behaviors for
robots. However, this tool is not available online. The original au-
thors of Interaction Blocks have considered the lessons learned
during its development for the design of RoVer [116] .

5.2. Block-based interfaces

The Programming Cognitive Robot (ProCRob) environment
[102] is a full-fledged software architecture designed to support
the development and customization of applications in which social
robots are used by teachers and therapists. The architecture has
been applied mainly to support innovative therapies for children
suffering from the Autistic Spectrum Disorder (ASD) by means of
a ROS-based humanoid robot called QT. The ProCRob’s architecture
is composed of three layers: the first is a functional layer imple-
mented in ROS or YARP [117] made up of software components en-
abling such basic social skills as gesture expression, text-to-speech,
as well as speech, face and object recognition; the second is a mid-
dleware embedding a domain-specific language called Robot Agent
Programming Language (RobAPL), which uses a Prolog-style rule-
and logic-based approach to define goal-oriented behaviors using
high-level abstractions and the Belief-Desire-Intention (BDI) model

[118] ; the third is a front-end VPE based on Google Blockly. Pro-
CRob allows its users to represent and manage robot plans based
on a set of tasks organized sequentially or in parallel on the basis
of a priori commands or external events. The basic workflow unit is
called play , which is represented by a behavioral block embedding
text, audio, face expressions, and body animations. Unfortunately,
ProCRob is not available online.

CustomPrograms/Codeit! [97] is a Google Blockly and web-
based interface designed to reproduce the expressiveness of
general-purpose programming languages by the use of low-level
constructs such as loops, variables, math utilities and functions.
Built on top of Node.js and roslibjs [119] , it also provides a set of
high-level programming abstractions denoted as primitives . How-
ever, it is explicitly mentioned in [120] that the use of general-
purpose programming language constructs, while they can be eas-
ily and intuitively used by experienced programmers, require more
training and generate more complex systems when used by inex-
perienced programmers. CustomPrograms/CodeIt! has been used
for a series of end-user applications with mobile service robots
in exhibitions, hotels [120] , and for STEM-based training programs
[121] . It is noteworthy that one of the main advantages of this in-
terface is its compatibility with ROS-based software modules. How-
ever, one of its significant drawbacks is the impossibility of reusing
code due to the limitations of the default features of the Google
Blockly library. A study evaluating the ease-of-use and expressive-
ness of CustomPrograms/CodeIt! is reported in [120] . This frame-
work is available open source [97] .

OpenRoberta [98] is a block-based VPE mainly used for edu-
cational aims. However, this VPE has also been used in end-user
applications [122] . OpenRoberta is based on Google Blockly, and
enables software development for a variety of toy robots, single-
board micro-controllers, and the social robot Nao. Unlike most
VPEs analyzed in this article, OpenRoberta comes in two versions.
In the first version, it can be run as a browser app connected to
the Internet using a cloud-based server as a back-end. This option
simplifies to a great extent installation and setup. In the second
version, it is based on an offline, Java-based and cross-platform

local server. However, due to its mainly educational-oriented tar-
get, OpenRoberta exploits many low-level development abstraction
primitives, which must be grounded to the use of classical pro-
gramming abstractions. This approach is in fact more suitable for
educational purposes.

Robokol [99] is oriented to non-programmers, and is focused
particularly on the development of applications in support for
ASD-related therapy. The Robokol’s interface is powered by Snap!
[76,123] , and enables cross-platform support. Such support is pos-
sible by connecting external devices to a data exchange server (e.g.,
a remote computer running ROS). This connection can be estab-
lished by a plug-and-play approach (i.e., the device advertises its
own description rather than requiring a user-specific setup) via
websockets using the ROSbridge protocol and suite [119] . Experi-
mental settings where Robokol has been adopted are related to the
use of the Ono social robot, as well as a therapeutic device called
the Sensory Sleeve [99] . Like CodeIt!, Robokol uses general-purpose
programming language abstractions. The framework does not seem

to be available online.
The Block-based End-user programming tool for SMart Environ-

ments (BEESM) [100] is a VPE framework based on Google Blockly.
The application allows for rapid prototyping of applications involv-
ing smart environments, microcontrollers and mobile robots. Like
Robokol and CodeIt!, the back-end is based on ROS, and the whole
framework mainly adopts low-level general-purpose programming
notations. This low-level abstraction enables the users to learn PHP
and how to code with Arduino boards, which is required to pro-
gram smart environments and mobile robots with the supported
middlewares and libraries of this interface. It also includes a 2D

10 E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970

simulator for smart environments and mobile robots. It is reported
that the BEESM interface will be evaluated in usability tests soon.
However, BEESM is not available online yet.

Our own tool, the Robot Interfaces from Zero Experience (RIZE)
framework [101] is a cross-platform, block-, form- and web-based
interface enabling remote control and the generation of intelligent
authoring behaviors for different robots. RIZE is built on top of
the NodE Primitive (NEP) programming framework [64] , which ab-
stracts the transport layer to support distributed and modular sys-
tems using different middlewares, message libraries (e.g., ROS, Ze-
roMQ [124] and nanomsg [125]), and communication patterns. Un-
like the majority of block-based interfaces based on Google Blockly,
RIZE does not adopt general-purpose software development ab-
stractions. On the contrary, it uses a modular approach based on
the definition of independent behaviors that can be easily reused
in other RIZE-based programs. Robot behaviors are encoded as be-
havior trees , i.e., a meta-architecture for the generation of reactive,
modular, and complex agents [38] , and are executed by a decision-
making engine. RIZE has been used for the remote control and
the generation of intelligent behaviors using a ROS-based Turtle-
bot Burger robot, Nao and Pepper humanoid robots, as well as
a robot manipulator built with Dynamixel servomotors and con-
trolled in Matlab/Simulink. Real-world applications include mu-
seum exhibitions and theater performance [64] , child–robot inter-
action [126,127] , long-term human–robot interaction experiments
in home settings and research in emotional intelligence for robots
[128] . RIZE is available online [101] .

5.3. Form-filling interfaces

English2NAO [107] is an EUP tool in which programming inputs
can be set both by natural language processing and with a form-
filling interface for enabling the therapists to create programs for
NAO robots. This interface is developed as a web-based application
using Django [129] , and runs on top of the TiViPE engine. This EUP
tool was developed to overcome some of the usability problems
presented by TiViPE [107] . Online availability of this English2NAO

cannot be assessed.
PersRobIoTE [67] is a web-based, form-filling interface. It adapts

the Trigger-Action Programming (often used in EUD tools for IoT
scenarios) paradigm for allowing the creation of applications in-
volving Pepper robots. The users of PersRobIoTE need to define a
set of rules, which are mainly composed of triggers (i.e., conditions
concatenated by and/or Boolean operators) and actions. These rules
are encoded in the JavaScript Object Notation (JSON) formalism,
and are created and managed by a decision-maker module called
the Rule Manager. Moreover, it uses backboard-like modules, re-
ferred to as their authors, such as a Context Manager to handle
perceptual inputs from both Pepper robots and IoT devices. The
communication between these modules is carried out using the
Server Sent Events (SSE) framework [130] . However, PersRobIoTE
is not available online yet.

6. Modeling intelligent behaviors for social robots (RQ2)

In this Section, we address research question RQ2, which aims
at discovering and analyzing the AAI-based tools used for support-
ing EUP and EUD in Social Robotics. RQ2 is addressed in three
ways: (i) presenting a general description as well as advantages
and drawbacks of those AAI-based tools for supporting VPEs, (ii)
analyzing the modular capabilities of these AAI-based tools, and
(iii) identifying the abstraction levels (i.e., the programming primi-
tives) generally used in these approaches. The values of dimensions
used in RQ2 are shown in Table 8 . The table also includes the di-
mension RQ1-D2 (EUP approach) for comparative purposes.

6.1. Scripting-based

As shown in Table 8 , most block-based programming VPEs, such
as Open-Roberta, Robokol, and CodeIt! use general purpose script-
ing to enable the creation of applications with social robots. In
this approach, end users need to become familiar with classical
scripting approaches such as if-then-else conditional statements,
for loops, creating variables and functions, and using low-level
mathematical and logical operations. The acquisition of these low-
level programming skills is a major objective of STEM educational
courses. However, the suitability of this approach for enabling the
creation of intelligent robots by end users can be hindered by us-
ability and code reusability issues. As described in [50] , the Cogni-
tive Dimension framework suggests that using too many low-level
programming notations may produce usability problems associated
with high viscosity (i.e., users need to manipulate many elements
to accomplish a task), and may require hard mental operations
and distant mapping to the problem domain of social interaction.
Moreover, using general descriptions for programming agents may
produce code that is hard to reuse and maintain [38] (Fig. 2).

6.2. Rule-based

The first computer games and robot-based systems used mod-
eling and programming frameworks based on rules for building
intelligent behaviors. This approach is simple to implement and
presents a uniform representation method, which can be intu-
itively used by non-programmers [131] . However, these systems
also present many relevant drawbacks. While non-programmers
can easily grasp the approach of using individual rules for pro-
gramming robots, they may face difficulties in going beyond the
declarative approach based on rules. They also may have difficulty
in understanding the implications of multiple rules, some of which
may conflict. Moreover, the lack of structure in rule-based systems
often leads to (i) maintainability issues and error-prone handling
of programming elements (rules) in complex systems [40] , and
(ii) unstable and unexpected behaviors when creating very large
and complex programs [132] . While programming approaches us-
ing disjoint and priority-based rules are currently very popular for
developing IoT applications, they have been widely replaced by
more structured and robust AI-based architectures, such as Finite
State Machines or Behavior Trees, in areas requiring the develop-
ment of more complex, social and interactive agents. Many VPEs
using rules are developed using form-filling programming environ-
ments. Such an approach is especially popular in IoT applications.
In this context, the approach used on PersRoboIoTE is inspired by
EUD solutions for IoT systems, such as IFTTT [133] . Fig. 3 shows a
simple visual notation for systems using rule-based systems and
form-filling. For these VPEs, the main programming task of end
users is to select a condition or a set of conditions (concatenated
with logical AND/OR operators) that will trigger appropriate robot
action.

6.3. State-based

By including the notations of states and transitions (i.e., a de-
cision logic that makes a system to change from one state to an-
other), as well as adding a structure to a set of disjointed rules, a
rule-based system turns into a state-based method. The most pop-
ular approach used to model state-driven systems is constituted
by Finite State Machines (FSMs). FSMs are represented as directed
graphs, where each node of the graph represents a state. In a FSM,
each transition to a new state represents an event. These events
can trigger the execution of some specific script or sequence of
robot actions. In general, FSMs are robust and easy to understand

E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970 11

Table 8

Comparison between AAI approaches using in VPEs (RQ2).

Name EUP approach AAI approach Programming primitives

CodeIt! Block-based Scripting Hardware, Algorithm, Social
OpenRoberta Block-based Scripting Hardware, Algorithm, Social
Robokol Block-based Scripting Hardware, Algorithm, Social
BEESM Block-based Scripting N.A.
RIZE Block-based Behavior-based Social
ProCRob Block-based Behavior-based Social, Emergent
MRD Data-flow N.A. Hardware, Algorithm

Choregraphe Data-flow State-based Hardware, Algorithm, Social
TiViPE Data-flow State-based Hardware, Algorithm, Social
Interaction Composer Data-flow State-based Hardware, Algorithm, Emergent
RoboStudio Data-flow State-based N.A.
RRP-VPE Data-flow Behavior-based Hardware, Algorithm

RoVer Data-flow State- and rule-based Social
Interaction Blocks Data-flow State-based Emergent
English2NAO Form-filling State-based N.A.
PersRobIoTE Form-filling Rule-based Social

Fig. 2. Example of a block-based programming environment using general purpose programming notations and Google Blockly. In this approach end-user code is converted
to real code of some programming language.

Fig. 3. The simplest notation used in a rule-based VPEs.

even for novice end users [134] . However, the use of FSMs in-
herently implies some reactivity and modularity issues, which are
analogous to those associated with goto statement [40] . Both the
goto statement and FSMs can be considered as a “one-way” con-
trol transfer (i.e., the control flow jumps to another section of the
program), which is described in [40,135] as “too much an invita-
tion to make a mess of one’s program”. As described in [40] , this
leads to a trade-off between reactivity and modularity of a pro-
gramming system. In order to create a reactive and complex so-
cial interactive application, a program built using FSMs requires
too many one-way control transitions between visual elements. As
shown in Fig. 4 , this results in very tangled diagrams where the
modification or removal of some elements may need checking ev-
ery transition and state associated with that component.

6.4. Behavior-based

By hierarchically organizing and separating the decision logic
from the behavior code, a state-based system turns into a
behavior-based approach. Fig. 5 shows the main difference be-
tween state-based and behavior-based modeling methods.

As shown in [40,70] most behavior-based modeling methods
used in Robotics can be generalized by a Behavior Tree (BT). Un-
like FSM, BTs are considered a “two-way” control transfer, i.e., after
the execution of an event or function, the control flow returns to
the calling part of the program, which enhances modularity [40] .
A typical BT implementation is composed of two types of nodes,
namely operators and terminal nodes. Fig. 6 shows an example of
a simple BT. While operator nodes (in white) are used to perform

control flow and behavior selection, terminal nodes (in blue and
gray) define and check preconditions and execute the proper be-
haviors. The most basic operators in BTs are Sequence and Selector .
The functionality of these and other common operators in BTs are
described in [40] . The execution of a BT follows a classical “depth-
first” traversal order from the root node to some terminal node.
After the activation of a node (when the BT traversal algorithm

reaches the node), this node is assigned a status, which can be
“success”, “failure” or “running” depending on the node type. Each
iteration of the BT traversal algorithm performs decision-making
tasks depending on the status of these nodes. By definition, BTs
are also modular and reusable [70] , as each branch of a BT can be
considered as an independent module. Fig. 6 shows four possible
modules that can be easily reused in other programs. Unlike FSMs,
BTs have just started to gain attention in Robotics. Therefore, avail-
able software frameworks supporting this AAI-based approach are
less mature [40,64] . Moreover, concepts involved in the creation of
BT can be difficult to understand by end users, as it is required to
learn the “depth-first” traversal graph search and many low-level
operators for performing decision-making. An alternative aimed at

12 E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970

Fig. 4. Example of spaghetti code in a dataflow-based VPE (example taken from [136] .

Fig. 5. In state-based methods (a), each state requires the definition of the decision
logic that indicates the decision-making system how to change to another specific
state. Behavior-based approaches (b) separate decision logic from behavior code en-
abling a hierarchical and modular representation (adapted from [132]).

enabling the use of BTs for end users has been proposed in RIZE by
changing the way BTs are modeled. In this approach, rather than
allowing an end user to build and execute BTs using a tree struc-
ture and low-level operators, the end user can build their programs
by concatenating a set of BT modules or sub-BTs in a declarative
way using a Google Blocky environment. These high-level modules
or social primitives are built by expert programmers using a low-
level, domain-specific language. More details are reported in [64] .

7. Tools, technologies and evaluation methods for VPEs

As shown in Table 9 , Web technologies, such as HTML and
Node.js (based on Javascript), are preferred to build VPEs for Social
Robotics applications. However, only OpenRoberta is built as a Web
service. Instead, other VPEs using Web technologies are designed
to be executed on a desktop using such server-side frameworks as
Node.js and Django. In order to build block-based programming
environments, the preferred tool is Google Blockly [78] , which
provides more features and flexibility than similar tools such as

Snap [76] and Scratch [75] . As was described in Sections 3 and
6 , some block-based VPEs using Google Blockly (specifically, RIZE
and ProCBob) use this tool as a domain-specific language, whereby
the code is executed in a more advanced AI-based architecture
(BTs in the case of RIZE and Belief-Desire-Intention in the case
of ProCBob), rather than in a general purpose programming tool.
Moreover, older VPEs, such as Choregraphe, TiViPe, and MRD were
built as desktop-based tools for developing user interfaces such as
Visual Studio and Qt. The only recent VPE reported to be designed
as a classical desktop-based interface is RoVer, which was imple-
mented in Java.

Table 9 shows that many recent VPEs use some CBSE frame-
works, with ROS being the most popular. In this approach, soft-
ware modules are seen as isolated processes or nodes that are
executed in parallel and that can be developed in different pro-
gramming languages. This approach enables an easy reuse of many
open-source software tools developed by the Robotics community,
thereby creating more robust and complex robot systems. However,
most of these recent VPEs, such as CodeIt!, Robokol and BEESM,
require the execution of a server module or a node in a com-
puter with the right version of Ubuntu installed. This can be a bar-
rier to their adoption by end users for use-time design activities.
This is mainly due to a steep learning curve associated with ROS
[137] . Drawbacks of ROS for EUD were described by the creators of
TiViPE in [138] as: (i) most of end users are Windows users and
require easy-to-install software tools; and (ii) they hardly under-
stand (without training) many of the concepts required to use ROS.
Therefore, a high-tech scribe skilled in ROS is often required for the
installation and execution of the web server and for maintaining or
extending these VPEs, which can be performed by launching addi-
tional ROS nodes. These issues are still not solved with ROS 2.0,
as it requires following complex steps for its installation in Win-
dows 10 and training for their use. Due to these issues, interfaces
such as TiViPE, MRD, and Choregraphe have been developed as
monolithic applications, which are easy to install for the average
end user, and where software modules are executed in different
threads. This can explain why only VPEs characterized by easy-to-
use wizard installers have been reported as enabling both the cre-

E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970 13

Fig. 6. Example of a behavior tree.

Table 9

Dimensions used for answer RQ3.

Name Communication Software Accessibility

Operating
Systems

Easy-to-install

and execute

Reported

liveness

Evaluation

methods

Participation of end

users

CodeIt! (2017) ROS, rosbridge Blockly,
Node.js, HTML

Online Server in Linux Requires
support of
high-tech
scribes

Level 3 Quantitative engineering students
and end users at
design-time

OpenRoberta
(2014)

POSIX socket Blockly, HTML Online Internet-
dependent

No installation
required

Level 2 / 2D
simulator

none children at use-time

Robokol (2016) ROS, rosbridge Snap, HTML N.A. Server in Linux N.A. Level 3 none N.A.
BEESM (2018) ROS, rosbridge Blockly, HTML N.A. Server in Linux N.A. Level 2 / 2D

simulator
none N.A.

RIZE (2019) NEP Blockly,
Node.js, HTML,
Vue.js

Online Windows, OSX,
Linux

End-user
wizard-like
installers

Level 3 none comedians, interaction
designers at use-time

ProCRob (2017) ROS, YARP Blockly, HTML N.A. Server in Linux N.A. Level 2 none end users at use time
MRD (2007) POSIX socket Visual Studio Discontinued Windows End-user

wizard-like
installers

Level 3 none N.A.

Choregraphe
(2009)

POSIX socket Python Online Windows, OSX,
Linux

End-user
wizard-like
installers

Level 4 / 3D
simulator

none interaction designers
at use-time

TiViPE (2011) POSIX socket Qt Online Windows,
Linux

End-user
wizard-like
installers

N.A. Cylomatic
complexity,
Cognitive
Dimension

interaction designers
at use-time

Interaction
Composer
(2012)

POSIX socket N.A. N.A. N.A. N.A. N.A. none N.A.

RoboStudio
(2017)

ROS, ROCOS,
OpenRTM

N.A. N.A N.A. N.A. N.A. none N.A.

RRP-VPE
(2017)

N.A. Node.js, HTML Online N.A. Requires
support of
high-tech
scribes

Level 3 NASA-TLX engineering students
at design-time

RoVer (2018) N.A. Java and Prism

Model Checker
Online OSX and Linux Requires

support of
high-tech
scribes

Level 2 SUS engineering students
at design-time

Interaction
Blocks (2014)

N.A. N.A. N.A. N.A. N.A. N.A. SUS interaction designers
and engineering
students at
design-time

English2NAO
(2018)

N.A. Django, HTML,
SQLite

N.A. N.A. N.A. N.A. Cylomatic
complexity,
Cognitive
DimensioN

therapists at
design-time

PersRobIoTE
(2019)

Server Sent
Events

HTML, IoT N.A. N.A. N.A. Level 2 SUS end user at
design-time

14 E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970

ation of applications at design time and their redesign at use-time
by real end users. In order to communicate with external modules,
VPEs built as monolithic applications generally use simple POSIX

sockets for limited tasks.
From Table 9 , it is possible to see that the most popular method

used to validate the suitability of these VPEs is the System Us-
ability Scale (SUS) [139] , which allows a reliable and valid eval-
uation of usability for a wide variety of products and services
such as hardware, software, websites, and applications. Another
method used to detect usability problems is the Cognitive Dimen-
sion framework, which was introduced in Section 2 . The NASA

Task Load Index (NASA-TLX) [140] and the Cyclomatic complexity
metric [141] have also been used to measure perceived workload
and complexity when creating programs for social robots. How-
ever, most of these evaluation methods are used to obtain subjec-
tive data. In the case of Codeit!, objective and quantitative evalua-
tions, such as the time and number of successful tasks, have been
performed.

8. Open challenges

This Section discusses and summarizes the current issues and
open challenges characterizing VPE-based authoring tools for social
robots. These are related to accessibility to external devices and
resources, modularity of the human–robot interaction primitives,
scalability when large programs are needed, levels of abstraction,
benchmarking, explainability and control of the resulting robot be-
haviors, support for distributed robot frameworks, as well as sim-
ulation and debugging.

8.1. Accessibility to external devices and resources

This open challenge is based on the data obtained from di-
mensions RQ3-D3 (Accessibility), RQ3-D4 (Operating Systems), and
RQ3-D5 (Easy-to-install and execute). An analysis of these dimen-
sions reveals a number of accessibility issues in recent VPEs. From

the point of view of non-technical end-users, such as UX/UI de-
signers, an accessible VPE requires (i) accessibility for their use or
evaluation (RQ3-D3), (ii) compatibility with end-user devices (RQ3-
D4), and (iii) user-friendly installation and configuration (RQ3-D5).

Accessibility for their use or evaluation . As shown by the val-
ues obtained in dimension RQ3-D3 (Accessibility) in Table 9 , more
than half of the presented VPEs are not available online, even
though many of them are built with open source tools. This hin-
ders their proper evaluation and denies opportunities to obtain
feedback from both the Robotic community and end users.

Compatibility with end-user devices . In many professional envi-
ronments and in Academia, Linux-based systems have a good rep-
utation and impact. However, end users who are not technically
trained often assume the availability of software designed and de-
veloped for Microsoft Windows or OSX, which has a bigger market
share compared to Linux-based systems for the general consumer
market. While this issue is well-known and deeply understood
by most commercial VPEs, such as Choregraphe and TiViPE, it is
mainly ignored by most community-oriented or open-source VPEs,
therefore jeopardizing their ability to gain widespread use. A com-
mon argument used to justify cross-platform support is to design
the VPE’s architecture as a (possibly web-based) front-end running
on Microsoft Windows or OSX coupled with a back-end typically
running on a Linux-based system, which is done by Robokol and
the offline version of OpenRoberta. However, such architecture still
requires the server-side to be configured on a Linux-based plat-
form.

User-friendly installation and configuration . The first impression
an end user has about any software tool is based on the installa-
tion and configuration phases. Therefore, these phases must be as

easy and simple to complete as possible. On the one hand, such
commercial VPEs as MRDS, Choregraphe, and TiViPE can be in-
stalled via user-friendly wizards. However, they are characterized
by a huge memory footprint. On the other hand, most community-
oriented, open source interfaces require the expertise of profes-
sional software developers for installation and configuration, which
is mainly due to the necessity to setup a Linux-based system to
run the server, install the third-party software from the command
line, and build the required binaries. An option that enables cross-
platform support and reduces the installation and configuration ef-
forts, as well as the required memory footprint, is to run the VPE
in a cloud-based server, as it is done in such educational-oriented
interfaces as OpenRoberta. However, such a possibility requires a
stable, permanent connection to the Internet as it depends on the
online availability of the server itself. Values in dimensions RQ3-D4
and RQ3-D5 in Table 9 reveal the poor attention that open source
projects have received in the creation of native and cross-platform

applications that can be launched and used by end users even if
they do not have access to the Internet or a Linux server. Solving
these issues is relevant for enabling end users to bring robots out-
side the laboratory, where it is often hard to have a stable Internet
connection, and where the support of high-tech scribes is not al-
ways possible.

8.2. Modularity of human–robot interaction primitives

In Computer Science, and as far as software architectures for
robots are concerned, the word “modularity” is ambiguous and can
be related to concepts present at different levels of the architec-
ture and granularity scales. For this article, we consider two dif-
ferent meanings associated with the notion of modularity, namely
operational and structural modularity. The formulation of this open
challenge is based on the data obtained from dimension RQ3-D1
(Communication) in Table 9 , which is related to operational modu-
larity, and the analysis presented in Section 6 about modular and
reusable capabilities of each AAI-based method used for modeling
social robot behaviors, which is related to structural modularity.

Operational modularity . While a few authors consider modular-
ity in VPEs as a simple encapsulation of function calls or a set
of related functions, others aim at integrating higher-level modu-
lar abstractions, such as the Separation of Concerns design principle
in independent processes (also denoted as nodes) and/or software
packages, as it is done for instance in ROS [87] . Recently, the lat-
ter approach has been the most successful, being considered as the
best practice for Robotics-related software development [142] , and
one that provides an increased quality in software applications. Ac-
cording to this approach, and as far as VPEs for Robotics-related
applications are concerned, data exchange between processes is
managed on the basis of a number of well-defined inter-process
communication patterns [143] .

Based on these concepts, and the values of dimension RQ3-D1
in Table 9 , it is possible to classify VPE interfaces as having low,
tight, or high operational modularity. In the first case, modules are
just considered as a set of function calls. In this approach, most of
the robot’s sensory, perceptual, decision-making and control tasks
are carried out as parts of a single process. VPEs that exhibit
low operational modularity include Interaction Blocks and RoVer.
In the second case, the overall robot functionality is split among
different modules, and various modules communicate with each
other using a Request-Process-Reply (or Client/Server) design pat-
tern [144] through POSIX sockets. VPEs adopting this operational
modularity type are MRDS, Choregraphe, TiViPE, Interaction Com-
poser, and OpenRoberta. In the third case (also referred to as loose
coupling), the principles of reusability, extensibility, maintainability,
and robustness are enforced by the use of non-blocking and asyn-
chronous communication design patterns, such as Publish/Subscribe

E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970 15

and Observer . VPEs in this class are RRP-VPE, RobotStudio, ProCRob,
CustomPrograms/CodeIt!, Robokol, BEESM, RIZE.

Structural modularity . One of the main drawbacks associated
with most of the analyzed VPEs, particularly those based on the
flowchart concept of FSMs, is the lack of modularity, intended as
a clear subdivision of roles within the resulting architecture. Such
a lack of modularity-enforced design is due to the mainstream

approach to organize internal workflow (i.e., mostly correspond-
ing to the overall robot decision-making capabilities) as a single,
one-way, data transfer from inputs to outputs. In a sense, such
approaches replicate the somewhat classical Sense-Plan-Act archi-
tecture for robot perception, planning and control [145] . The re-
sult is characterized by issues similar to what happens with the
use of the much critiqued goto statement, which is considered
unstructured and a cause of unreliable behavior [40,146] . As a
consequence, dataflow-based VPEs tend to generate spaghetti code
(Fig. 4) and visual programs that are difficult to understand, main-
tain, reuse, and scale [91] . As described in [147] and reported in
[91] , VPEs using dataflow present three key issues: (i) their pro-
grams tend to be very large requiring the creation of too many
nodes even for trivial and low-level tasks; (ii) each node requires
too many inputs and links between them producing highly tangled
programs (referred to as spaghetti code), such as shown in the ex-
ample in Fig. 4 ; (iii) confusing iteration: the program is difficult
to follow or even understand. To deal with these drawbacks, a vi-
able solution could be to develop independent and modular sys-
tems based on two-way data exchange, e.g., hierarchical decision-
making engines like BTs [148] .

8.3. Scalability in large applications

In most cases, designers and developers of VPE-based authoring
tools advertise use cases whereby their frameworks are adopted
to design simple human-robot social interaction patterns requiring
the use of few primitive behavioral blocks and connections. Like
many virtual agents [39] , the development of more complex or
long-term applications to be delivered in everyday scenarios, such
as those described in [9,149,150] , can require the integration of a
large number of behaviors, as well as a possibly intricate logic to
coordinate their orchestration. This requirement implies a rapid in-
crease in the difficulty in following the application’s control flow,
and in searching for appropriate primitive robot behaviors. Module
or component encapsulation is a widely-adopted approach used
in dataflow-based VPEs to deal with these issues. In many cases,
however, encapsulation reduces the mess of dataflow-based work-
flow only to a limited extent [40] . Suitable design patterns to deal
with these issues are rare in block-based interfaces.

8.4. Correct abstraction levels and programming notations

As analyzed in [50] , and according to the values obtained in
dimension RQ2-D2 (Programming primitives) in Table 8 , many of
the VPE-based frameworks discussed in this article are character-
ized by unbalanced abstraction levels in selecting robot behavioral
primitives and programming notations. In fact, typical issues are
related to the presence of primitives with low-level and varying
abstraction levels, and to the consequence of the overall VPE us-
ability [47] .

As far as the abstraction level of VPEs is concerned, such VPEs
as Choregraphe, OpenRoberta, TiViPE and Interaction Composer are
characterized by several issues in usability, and in the cognitive di-
mension, due to the fact that they incorporate various low-level
programming abstractions, which are denoted in [50] as hardware
and algorithm primitives. On the one hand, VPEs including hard-
ware primitives use graphical elements, which enable users to ob-
tain raw data (e.g., position, velocity, sound and images) from sen-

sory devices or actuators. On the other hand, VPEs including algo-
rithm primitives require that users be able to provide the data gen-
erated by the hardware primitives as inputs of low-level perceptual
and control modules (e.g., sound source localization, inverse kine-
matics, keyframe animation and face tracking). However, raising
the level of programming abstraction too high, as it is done for ex-
ample in Interaction Blocks, can reduce the flexibility of VPEs, and
therefore the capability to create complex behaviors with robots.
An alternative approach allowing for a good trade-off between the
usability and the flexibility of VPEs and robot programming soft-
ware aimed at generating social interactions is also described in
[50] . The correct level of abstraction for developing social interac-
tion behaviors with robots requires the use of reusable and atomic
domain-specific social primitives (e.g., related to speaking, ges-
tures, gaze, facial expressions and animations).

8.5. Benchmarking

The evaluation of interfaces with real end users is a key task
required not only to show the applicability of VPEs, but also to
obtain valuable data to validate or improve usability. These eval-
uations require data collection from both objective and subjective
approaches. The collection of objective data is based on facts rather
than opinions or interpretations, e.g., how many times the user
makes an error, the number of times that a user has asked for
help, and the task completion time. This type of data is gener-
ally collected and analyzed by those VPEs reporting usability eval-
uations. From the values obtained in dimension RQ3-D7 (Evalu-
ation methods) in Table 9 , it is possible to observe that the au-
thors of TiViPE and CodeIt!/CustomPrograms have used, to differ-
ent degrees, the Cognitive Dimension framework as the main tool
to perform subjective data analysis. This framework is always used
to identify usability trade-offs in the early stages of designs and
make decisions about those trade-offs for posterior iterations [151] .
While the Cognitive Dimension framework has emerged as the
predominant framework for analyzing VPL, some researchers have
identified some of its serious theoretical and practical limitations
for its use in the evaluation and design of visual notations [152] .
Some of the main issues of the Cognitive Dimension framework
described in [152] are: (i) confusion or misinterpretation when in-
terpreting and applying dimensions; (ii) lack of evaluation proce-
dures or metrics; (iii) the omission of issues around whether the
visual notations chosen are “good” or “bad” ones. A complemen-
tary approach for addressing these issues is to follow guidelines
and the principles of the Physics of Notation [152] , which are valu-
able tools for evaluating and designing visual notations. However,
we observe that these guidelines and principles are often omit-
ted in most of the reviewed VPEs. A well-accepted subjective data
collection approach in Human-Computer Interaction (HCI) is the
use of standard questionnaires [153] such as the System Usability
Scale (SUS) [154] and the NASA Task Load Index (TLX) [155] . From

the VPEs we reviewed in this article, only Interaction Blocks (us-
ing SUS), RRP-VPE (using TLX), TiVIPE/English2NAO (using Cyclo-
matic complexity, SUS and Cognitive Dimensions) and RoVer (using
both SUS and TLX) have performed subjective data collection using
standard questionnaires. Even when many of the reviewed VPEs
have been used by real end users, only the designers of CodeIt!,
TiViPE/English2NAO and Interaction Blocks have reported usability
evaluations using real novice end users, rather than expert pro-
grammers, laboratory members or engineering students.

A comparative evaluation among interfaces, using objective and
subjective data, is a valuable task in modern HCI research. This
evaluation enhances the analysis and validates the suitability of
proposed VPEs. However, this task is often omitted by the design-
ers and developers of most VPEs presented in this work. Excep-
tions using the NAO robot are presented in [104] and [107] . Issues

16 E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970

that limit performing such comparative evaluations are related to
the fact that (i) some of the presented VPEs are not available on-
line, and (ii) they support different robots and target user groups.
Recently, a shift of emphasis in many areas of HCI to user experi-
ence has become a central focus for interface design and evalua-
tion [156] . However, most UX-related aspects [157] , except usabil-
ity, have generally been omitted in the reviewed VPEs.

8.6. Explainability and generation of robot social behaviors

Depending on the specific use case involved in the target end-
user applications, robot behaviors (which can be formed by a sim-
ple action or a set of parallel robot actions requiring synchroniza-
tion) used for social purposes in the papers analyzed for this sur-
vey can be classified into the following classes:

C 1 repetitive robot behaviors that do not require any specific form

of high-level intelligence nor cognitive capabilities;
C 2 scripted sequences of basic robot behaviors, the execution of

which always follows a predefined list of actions and occa-
sionally requires user-provided input, e.g., using keyboards, joy-
sticks, touch or speech, to continue execution;

C 3 state- or event-based dynamic behaviors that do not allow for
any interruption nor preemption until the current behavior is
completed;

C 4 state- or event-based reactive and dynamic behaviors enabling
interruption, state change or preemption on the basis of prede-
fined priorities;

C 5 hybrid reactive/deliberative, intelligent behaviors that require
the robot to correctly interpret and react to external and in-
ternal stimuli, and to make decisions about which actions to
perform next in view of a certain goal.

While most of the VPEs reviewed in this paper can generate
behaviors belonging to classes C 1 , C 2 , and C 3 , very few are capa-
ble of generating robot behaviors which can be classified as C 4 or
C 5 . An exception that can be considered as a basic approach to-
wards C 4 is Interaction Composer, which exhibits a dataflow in-
terruption mechanism, where an interrupt could monitor some
perceptual input and trigger another behavior sequence [92] . An-
other exception towards C 4 is TiViPE, the latest release of which
includes a textual robot language that can be used to set the exe-
cution priorities of a set of serial and parallel actions. Other ad-
vanced approaches towards C 4 have been proposed by RRP-VPE
and RIZE, using Reactive Programming and BTs, respectively. VPEs
enabling non-programming skilled end users to design hybrid re-
active/deliberative intelligent behaviors are still rare. However, it is
noteworthy that while moving from C 1 to C 5 in the behavior clas-
sification, the resulting robot actions may be considered progres-
sively less understandable and explainable for humans. This is be-
cause the composition of many simple behaviors in an intertwined
chain of planned actions and reactions to certain events can lead
to widely different outcomes, even when there are only small dif-
ferences in the (sequences of) inputs [158,159] . It is not surpris-
ing that, as far as human–robot interaction is concerned, social
robots exhibiting predictable behaviors are to be preferred given
the state-of-the-art knowledge in Robotics.

8.7. Simulation and debugging

The benefits of simulation and debugging capabilities in any
software development toolkit are quite obvious and do not need
to be emphasized. However, human–robot interaction and the use
of social robots in-the-wild are characterized by specific require-
ments as far as simulation and debugging are concerned. These are
mostly related to the dynamic and often unpredictable nature of
human–robot interaction processes and social relationships: on the

one hand, it is necessary to always ensure predictable robot be-
havior, as well as to guarantee that the overall architecture work-
flow does not enter into unsafe states; on the other hand, for the
robot behavior to be engaging at the social level and to ground
high-quality human–robot interaction experiences, it is of the ut-
most importance to carry out time-consuming robot-based tests
and evaluation before the final application is deployed.

In many cases these goals are not possible or easy to attain, be-
cause of practical reasons related to robot unavailability or incom-
plete technical development. Therefore, being able to access and
leverage a high-quality, accurate, and faithful simulation of robot
behavior is crucial.

Cross-platform, easy-to-use and easy-to-setup simulators are
the key to increase the overall usability of VPE-based develop-
ment. Values obtained from dimension RQ3-D6 (Liveness and Sim-
ulation) in Table 9 , show that most of the VPEs discussed in this
article lack any robot behavior and human–robot interaction sim-
ulation capabilities, the only exceptions being Choregraphe, which
provides a 3D simulation for the robots commercialized by Soft-
bank Robotics, BEESM, which includes a 2D simulator for smart en-
vironments, and OpenRoberta, which provides 2D web simulators
of toy robots. Values obtained from dimension RQ3-D6 also indi-
cate that less than half VPEs provide on-demand feedback or de-
bugging (liveness 3), and only Choregraphe provides live feedback
capabilities (liveness 4). The concept of liveness was discussed in
Section 4.1 in the definition of research question RQ3.

9. Conclusions

In this paper, we presented a survey of different VPE-based
frameworks to enable a EUD-based development of social robots
and human–robot interaction scenarios. A structured comparison
of these frameworks has been carried out from an operational
point of view, classifying them as dataflow-based, block-based and
form-filling. Our findings indicate that there is a need for more
accessible, adaptable, modular, extendable and flexible tools and
technologies to support and enable end users to become end user
developers of their systems. We note that many recent VPEs are
built on top of CBSE and distributed Robotics frameworks for en-
abling enhanced modularity and flexibility. However, the inherent
complexity of most CBSE Robotics-oriented frameworks are charac-
terised by accessibility and usability barriers, whoch makes it dif-
ficult to create EUD tools promoting independence between end
users and high-tech scribes. This is because most CBSE frameworks
were originally designed for supporting academic projects, and
tended to have steep learning curves for their use even for expert
developers. Solving these issues is necessary to enable end users
to develop and redesign their applications in-the-wild. A possible
direction can be the use of more lightweight, simple CBSE frame-
works that (i) are adapted to the skills and resources of end users,
and (ii) can be used as a glue between different software modules
developed by the Robotics community and different Robotics mid-
dlewares. Moreover, our findings point to the poor attention most
authors of VPEs have given towards the performance and compara-
tive evaluation of these tools with real end users, and the need for
more user studies and objective analysis of these tools using both
quantitative and qualitative data.

Finally, some effort s are recently being made to overcome lim-
itations of classical approaches using rules, scripting, and data-
flow programming, thereby providing end users with more reliable,
reusable and reactive programming tools to enable the creation of
more complex behaviors for social robots. Unlike other information
technology areas, where end-to-end black-box AI architectures are
currently trending, e.g., Deep Neural Networks, AI architectures for
enabling EUD of social robots mostly focus on the use of AI tools
with authoring and explainable behaviors. This situation is similar

E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970 17

to the one facing game developers, whereby the creation of robust,
explainable and suitable behaviors, in many cases defined by UX/UI
designers, is more valuable than learning capabilities.

However, the creation of more complex Robotics systems will
require Social Robots to learn from its environment. A possible re-
search direction can be the use of hybrid decision-making algo-
rithms to (i) provide a sufficient level of explainability and behav-
ior control of agents; (ii) provide learning mechanisms enabling
robots to adapt to dynamic situations; (iii) enable easy parame-
terization of critical aspects for developing social robots, such as
personality and social norms. We hope that this information can
be valuable and informative for the development of more usable
and flexible VPE-based systems enabling the creation of more in-
telligent social robots.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.cola.2020.100970 .

CRediT authorship contribution statement

Enrique Coronado: Writing - original draft, Visualization,
Methodology. Fulvio Mastrogiovanni: Writing - review & editing,
Validation. Bipin Indurkhya: Writing - review & editing, Valida-
tion. Gentiane Venture: Writing - review & editing, Supervision.

References

[1] F. Dimeas , F. Fotiadis , D. Papageorgiou , A. Sidiropoulos , Z. Doulgeri , Towards
progressive automation of repetitive tasks through physical human-robot in-
teraction, in: Proceedings of the Human Friendly Robotics, Springer, 2019,
pp. 151–163 .

[2] H. Canbolat , Robots Operating in Hazardous Environments, BoD–Books on De-
mand, 2017 .

[3] L. Pu , W. Moyle , C. Jones , M. Todorovic , The effectiveness of social robots for
older adults: a systematic review and meta-analysis of randomized controlled
studies, Gerontologist 59 (1) (2019) e37–e51 .

[4] E. Coronado, J. Villalobos, B. Bruno, F. Mastrogiovanni, Gesture-based robot
control: design challenges and evaluation with humans, in: Proceedings of
the 2017 IEEE International Conference on Robotics and Automation (ICRA),
2017, pp. 2761–2767, doi: 10.1109/ICRA.2017.7989321 .

[5] D. Mariette , B.S. Meyerson , Top 10 Emerging Technologies 2019, Technical Re-
port, World Economic Forum, 2019 .

[6] M. Niemelä, P. Heikkilä, H. Lammi , V. Oksman , A social robot in a shopping
mall: studies on acceptance and stakeholder expectations, in: Proceedings of
the Social Robots: Technological, Societal and Ethical Aspects of Human-Robot
Interaction, Springer, 2019, pp. 119–144 .

[7] J. Lindblom , R. Andreasson , Current challenges for UX evaluation of hu-
man-robot interaction, in: Proceedings of the 2016 Advances in Ergonomics
of Manufacturing: Managing the Enterprise of the Future, Springer, 2016,
pp. 267–277 .

[8] G. Fischer , End user development and meta-design: foundations for cul-
tures of participation, in: Proceedings of the 2012 End-User Computing,
Development, and Software Engineering: New Challenges, IGI Global, 2012,
pp. 202–226 .

[9] M. Jung, P. Hinds, Robots in the Wild: A Time for More Robust Theories of
Human-Robot Interaction, 7 (1) (2018)(2:1-2:5).

[10] M. Salem , G. Lakatos , F. Amirabdollahian , K. Dautenhahn , Towards safe and
trustworthy social robots: ethical challenges and practical issues, in: Pro-
ceedings of the International conference on social robotics, Springer, 2015,
pp. 584–593 .

[11] F.E. Ritter , G.D. Baxter , E.F. Churchill , User-centered systems design: a brief
history, in: Proceedings of the Foundations for Designing User-Centered Sys-
tems, Springer, 2014, pp. 33–54 .

[12] N.B. Hansen , C. Dindler , K. Halskov , O.S. Iversen , C. Bossen , D.A. Basballe ,
B. Schouten , How participatory design works: mechanisms and effects, in:
Proceedings of the 31st Australian Conference on Human-Computer-Interac-
tion, 2019, pp. 30–41 .

[13] A.D. Frederiks , J.R. Octavia , C. Vandevelde , J. Saldien , Towards participatory
design of social robots, in: Proceedings of the IFIP Conference on Human–
Computer Interaction, Springer, 2019, pp. 527–535 .

[14] E. Efthimiou , S.-E. Fotinea , A. Vacalopoulou , X.S. Papageorgiou , A. Karavasili ,
T. Goulas , User centered design in practice: adapting HRI to real user needs,
in: Proceedings of the 12th ACM International Conference on PErvasive Tech-
nologies Related to Assistive Environments, 2019, pp. 425–429 .

[15] G. Fischer , D. Fogli , A. Piccinno , Revisiting and broadening the meta-design
framework for end-user development, in: New Perspectives in End-User De-
velopment, Springer, 2017, pp. 61–97 .

[16] F. Paternò, V. Wulf , New Perspectives in End-User Development, Springer,
2017 .

[17] B.R. Barricelli , F. Cassano , D. Fogli , A. Piccinno , End-user development,
end-user programming and end-user software engineering: a systematic
mapping study, J. Syst. Softw. 149 (2019) 101–137 .

[18] G. Fischer , E. Giaccardi , Y. Ye , A.G. Sutcliffe , N. Mehandjiev , Meta-design: a
manifesto for end-user development, Commun. ACM 47 (9) (2004) 33–37 .

[19] G. Fischer , End-user development: from creating technologies to transforming
cultures, in: Proceedings of the International Symposium on End User Devel-
opment, Springer, 2013, pp. 217–222 .

[20] L. Baillie , C. Breazeal , P. Denman , M.E. Foster , K. Fischer , J.R. Cauchard , The
challenges of working on social robots that collaborate with people, in: Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Sys-
tems, 2019, pp. 1–7 .

[21] A.J. Ko , R. Abraham , L. Beckwith , A. Blackwell , M. Burnett , M. Erwig , C. Scaf-
fidi , J. Lawrance , H. Lieberman , B. Myers , et al. , The state of the art in
end-user software engineering, ACM Comput. Surv. (CSUR) 43 (3) (2011)
1–44 .

[22] S. Calinon, F. Guenter, A. Billard, On learning, representing, and generalizing a
task in a humanoid robot, IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37
(2) (2007) 286–298, doi: 10.1109/TSMCB.2006.886952 .

[23] H. Friedrich, S. Münch, R. Dillmann, S. Bocionek, M. Sassin, Robot program-
ming by demonstration (RPD): supporting the induction by human interac-
tion, Mach. Learn. 23 (2) (1996) 163–189, doi: 10.10 07/BF0 0117443 .

[24] J.F. Gorostiza , M.A. Salichs , Natural programming of a social robot by dialogs,
Proceedings of the AAAI Fall Symposium: Dialog with Robots, 2010 .

[25] P.P. Ray, A survey on visual programming languages in internet of things, Sci.
Program. 2017 (2017), doi: 10.1155/2017/1231430 .

[26] D.-Q. Zhang, K. Zhang, On the design of a generic visual programming envi-
ronment, in: Proceedings of the 1998 IEEE Symposium on Visual Languages,
IEEE, 1998, pp. 88–89, doi: 10.1109/VL.1998.706147 .

[27] B.R. Barricelli, S. Valtolina, A visual language and interactive system for end-
user development of internet of things ecosystems, J. Vis. Lang. Comput. 40
(2017) 1–19, doi: 10.1016/j.jvlc.2017.01.004 .

[28] P.E. Dickson, J.E. Block, G.N. Echevarria, K.C. Keenan, An experience-based
comparison of unity and unreal for a stand-alone 3D game development
course, in: Proceedings of the 2017 ACM Conference on Innovation and Tech-
nology in Computer Science Education, ACM, 2017, pp. 70–75, doi: 10.1145/
3059009.3059013 .

[29] I. Sagredo-Olivenza, P.P. Gómez-Martin, M.A. Gómez-Martin, P.A. González-
Calero, Combining neural networks for controlling non-player charac-
ters in games, in: Proceedings of the International Work-Conference
on Artificial Neural Networks, Springer, 2017, pp. 694–705, doi: 10.1007/
978- 3- 319- 59147- 6 _ 59 .

[30] R. Francese, M. Risi, G. Tortora, Iconic languages: towards end-user program-
ming of mobile applications, J. Vis. Lang. Comput. 38 (2017) 1–8, doi: 10.1016/
j.jvlc.2016.10.009 .

[31] J.M. Mota, I. Ruiz-Rube, J.M. Dodero, I. Arnedillo-Sánchez, Augmented real-
ity mobile app development for all, Comput. Electr. Eng. 65 (2018) 250–260,
doi: 10.1016/j.compeleceng.2017.08.025 .

[32] M.G. Maceli , Tools of the trade: a survey of technologies in end-user develop-
ment literature, in: Proceedings of the International Symposium on End User
Development, Springer, 2017, pp. 49–65 .

[33] D. Tetteroo , P. Markopoulos , A review of research methods in end user devel-
opment, in: Proceedings of the International Symposium on End User Devel-
opment, Springer, 2015, pp. 58–75 .

[34] F. Paternò, End user development: survey of an emerging field for empower-
ing people, ISRN Softw. Eng. 2013 (2013), doi: 10.1155/2013/532659 .

[35] M. Santos , M.L.B. Villela , Characterizing end-user development solutions: a
systematic literature review, in: Proceedings of the 2019 International Con-
ference on Human-Computer Interaction, Springer, 2019, pp. 194–209 .

[36] F. Patern, C. Santoro, End-user development for personalizing applications,
things, and robots, Int. J. Hum. Comput. Stud. 131 (2019) 120–130, doi: 10.
1016/j.ijhcs.2019.06.002 .

[37] A . Bellucci, A . Vianello, Y. Florack, L. Micallef, G. Jacucci, Augmenting objects
at home through programmable sensor tokens: a design journey, Int. J. Hum.
Comput. Stud. 122 (2019) 211–231, doi: 10.1016/j.ijhcs.2018.09.002 .

[38] K. Dill , Structural architecture-common tricks of the trade, Game AI Pro: Col-
lected Wisdom of Game AI Professionals, CRC Press, 2013, p. 61 .

[39] G.N. Yannakakis, J. Togelius, Artificial Intelligence and Games, 2, Springer,
2018, doi: 10.1007/978- 3- 319- 63519- 4 .

[40] M. Colledanchise, P. Ögren, Behavior Trees in Robotics and Al: An Introduc-
tion, CRC Press, 2018, doi: 10.1201/9780429489105 .

[41] A . Hentout , A . Maoudj , B. Bouzouia , A survey of development frameworks for
robotics, in: Proceedings of the 8th International Conference on Modelling,
Identification and Control (ICMIC), IEEE, 2016, pp. 67–72 .

https://doi.org/10.1016/j.cola.2020.100970
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0001
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0001
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0001
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0001
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0001
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0001
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0002
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0002
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0003
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0003
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0003
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0003
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0003
https://doi.org/10.1109/ICRA.2017.7989321
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0005
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0005
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0005
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0006
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0006
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0006
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0006
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0006
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0007
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0007
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0007
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0008
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0008
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0009
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0009
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0009
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0009
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0009
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0010
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0010
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0010
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0010
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0011
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0012
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0012
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0012
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0012
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0012
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0013
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0013
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0013
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0013
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0013
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0013
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0013
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0014
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0014
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0014
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0014
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0015
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0015
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0015
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0016
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0016
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0016
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0016
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0016
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0017
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0017
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0017
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0017
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0017
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0017
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0018
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0018
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0019
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0019
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0019
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0019
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0019
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0019
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0019
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0020
https://doi.org/10.1109/TSMCB.2006.886952
https://doi.org/10.1007/BF00117443
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0023
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0023
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0023
https://doi.org/10.1155/2017/1231430
https://doi.org/10.1109/VL.1998.706147
https://doi.org/10.1016/j.jvlc.2017.01.004
https://doi.org/10.1145/3059009.3059013
https://doi.org/10.1007/978-3-319-59147-6_59
https://doi.org/10.1016/j.jvlc.2016.10.009
https://doi.org/10.1016/j.compeleceng.2017.08.025
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0031
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0031
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0032
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0032
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0032
https://doi.org/10.1155/2013/532659
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0034
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0034
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0034
https://doi.org/10.1016/j.ijhcs.2019.06.002
https://doi.org/10.1016/j.ijhcs.2018.09.002
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0037
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0037
https://doi.org/10.1007/978-3-319-63519-4
https://doi.org/10.1201/9780429489105
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0040
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0040
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0040
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0040

18 E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970

[42] D. Kortenkamp , R. Simmons , D. Brugali , Robotic systems architectures
and programming, in: Springer Handbook of Robotics, Springer, 2016,
pp. 283–306 .

[43] F.A. Bravo, A.M. Gonzlez, E. Gonlez, A review of intuitive robot program-
ming environments for educational purposes, in: Proceedings of the 3rd IEEE
Colombian Conference on Automatic Control (CCAC), 2017, pp. 1–6, doi: 10.
1109/CCAC.2017.8276396 .

[44] M.E. Karim, S. Lemaignan, F. Mondada, A review: can robots reshape k-
12 STEM education? in: Proceedings of the 2015 IEEE International Work-
shop on Advanced Robotics and its Social Impacts (ARSO), 2015, pp. 1–8,
doi: 10.1109/ARSO.2015.7428217 .

[45] D. Budgen , P. Brereton , Performing systematic literature reviews in software
engineering, in: Proceedings of the 28th International Conference on Software
Engineering, ACM, 2006, pp. 1051–1052 .

[46] G. Golovchinsky, Cognitive Dimensions Analysis of Interfaces for Information
Seeking, arXiv preprint arXiv:0908.3523(2009).

[47] T.R.G. Green, M. Petre, Usability analysis of visual programming environ-
ments: a ‘cognitive dimensions’ framework, J. Vis. Lang. Comput. 7 (2) (1996)
131–174, doi: 10.10 06/jvlc.1996.0 0 09 .

[48] J. Dagit , J. Lawrance , C. Neumann , M. Burnett , R. Metoyer , S. Adams , Using
cognitive dimensions: advice from the trenches, J. Vis. Lang. Comput. 17 (4)
(2006) 302–327 .

[49] T. Green , A. Blackwell , Cognitive dimensions of information artefacts: a tuto-
rial, Proceedings of the 1998 BCS HCI Conference, volume 98, 1998 .

[50] J. Diprose, B. MacDonald, J. Hosking, B. Plimmer, Designing an API at an ap-
propriate abstraction level for programming social robot applications, J. Vis.
Lang. Comput. 39 (2017) 22–40, doi: 10.1016/j.jvlc.2016.07.005 .

[51] A. Carfì, J. Villalobos, E. Coronado, B. Bruno, F. Mastrogiovanni, Can human-
inspired learning behaviour facilitate human–robot interaction? Int. J. Soc.
Robot. 1 (2019) 1–14, doi: 10.1007/s12369- 019- 00548- 5 .

[52] F. Steinmetz , A. Wollschläger , R. Weitschat , Razer – a human-robot interface
for visual task-level programming and intuitive skill parametrization, IEEE
Rob. Autom. Lett. 3 (3) (2018) 1362–1369 .

[53] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, G.D. Hager, CoSTAR: instructing
collaborative robots with behavior trees and vision, in: Proceedings of the
2017 IEEE International Conference on Robotics and Automation (ICRA), 2017,
pp. 564–571, doi: 10.1109/ICRA.2017.7989070 .

[54] D. Weintrop, D.C. Shepherd, P. Francis, D. Franklin, Blockly goes to work:
block-based programming for industrial robots, in: Proceedings of the 2017
IEEE Blocks and Beyond Workshop (BB), 2017, pp. 29–36, doi: 10.1109/BLOCKS.
2017.8120406 .

[55] E. Bilotta , P. Pantano , Some problems of programming in robotics, in: Pro-
ceedings of the 12th Annual Workshop of the Psychology of Programming In-
terest Group, Psychology of Programming Interest Group, 20 0 0, pp. 209–220 .

[56] G. Serafini, Teaching programming at primary schools: visions, experiences,
and long-term research prospects, in: I. Kalaš, R.T. Mittermeir (Eds.), Infor-
matics in Schools. Contributing to 21st Century Education, Springer, Berlin,
Heidelberg, 2011, pp. 143–154, doi: 10.1007/978- 3- 642- 24722- 4 _ 13 .

[57] D. Weintrop, U. Wilensky, To block or not to block, that is the question: stu-
dents’ perceptions of blocks-based programming, in: Proceedings of the 14th
International Conference on Interaction Design and Children, 2015, pp. 199–
208, doi: 10.1145/2771839.2771860 .

[58] D.S. Touretzky, C. Gardner-McCune, Calypso for cozmo: robotic AI for ev-
eryone (abstract only), Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, 2018, doi: 10.1145/3159450.3162200 . 1110–
1110

[59] J. Shin , R. Siegwart , S. Magnenat , Visual programming language for thymio
II robot, Proceedings of the Conference on Interaction Design and Children
(IDC’14), ETH Zürich, 2014 .

[60] M.F. Costabile , D. Fogli , G. Fresta , P. Mussio , A. Piccinno , Software environ-
ments for end-user development and tailoring, PsychNol. J. 2 (1) (2004)
99–122 .

[61] I. Zubrycki , M. Kolesi ́nski , G. Granosik , Graphical programming interface for
enabling non-technical professionals to program robots and internet-of-things
devices, in: Proceedings of the International Work-Conference on Artificial
Neural Networks, Springer, 2017, pp. 620–631 .

[62] E.I. Barakova, J.C.C. Gillesen, B.E.B.M. Huskens, T. Lourens, End-user program-
ming architecture facilitates the uptake of robots in social therapies, Rob. Au-
ton. Syst. 61 (7) (2013) 704–713, doi: 10.1016/j.robot.2012.08.001 .

[63] T. Fong, I. Nourbakhsh, K. Dautenhahn, A survey of socially interactive robots,
Rob. Auton. Syst. 42 (3) (2003) 143–166, doi: 10.1016/S0921- 8890(02)00372- X .
Socially Interactive Robots

[64] E. Coronado, F. Mastrogiovanni, G. Venture, Design of a human-centered robot
framework for end-user programming and applications, in: Proceedings of
the 2019 Robot Design, Dynamics and Control, ROMANSY 22, Springer, 2019,
pp. 450–457, doi: 10.1007/978- 3- 319- 78963- 7 _ 56 .

[65] Y. Oishi, T. Kanda, M. Kanbara, S. Satake, N. Hagita, Toward end-user pro-
gramming for robots in stores, in: Proceedings of the Companion of the 2017
ACM/IEEE International Conference on Human-Robot Interaction, ACM, 2017,
pp. 233–234, doi: 10.1145/3029798.3038340 .

[66] F. Corno, L. De Russis, A. Monge Roffarello, My IoT puzzle: debugging IF-
THEN rules through the jigsaw metaphor, in: Proceedings of the 2019 End-
User Development, Springer International Publishing, Cham, 2019, pp. 18–33,
doi: 10.1007/978- 3- 030- 24781- 2 _ 2 .

[67] N. Leonardi, M. Manca, F. Paternò, C. Santoro, Trigger-action programming
for personalising humanoid robot behaviour, in: Proceedings of the 2019 CHI

Conference on Human Factors in Computing Systems, ACM, 2019, p. 445,
doi: 10.1145/3290605.3300675 .

[68] F. Corno, L. De Russis, A. Monge Roffarello, Empowering end users in debug-
ging trigger-action rules, in: Proceedings of the 2019 CHI Conference on Hu-
man Factors in Computing Systems, ACM, 2019, p. 388, doi: 10.1145/3290605.
3300618 .

[69] S. Gaudl , Building Robust Real-Time Game AI: Simplifying & Automating In-
tegral Process Steps in Multi-Platform Design, University of Bath, 2016 Ph.D.
thesis .

[70] M. Colledanchise, P. Ögren, How behavior trees modularize hybrid control
systems and generalize sequential behavior compositions, the subsumption
architecture, and decision trees, IEEE Trans. Rob. 33 (2) (2017) 372–389,
doi: 10.1109/TRO.2016.2633567 .

[71] J. Bohren, S. Cousins, The SMACH high-level executive [ROS news], IEEE Robot.
Autom. Mag. 17 (4) (2010) 18–20, doi: 10.1109/MRA.2010.938836 .

[72] D.D. Hils, Visual languages and computing survey: data flow visual pro-
gramming languages, J. Vis. Lang. Comput. 3 (1) (1992) 69–101, doi: 10.1016/
1045- 926X(92)90034- J .

[73] D. Weintrop, Block-based programming in computer science education, Com-
mun. ACM 62 (8) (2019) 22–25, doi: 10.1145/3341221 .

[74] D. Weintrop, U. Wilensky, Comparing block-based and text-based program-
ming in high school computer science classrooms, ACM Trans. Comput. Educ.
(TOCE) 18 (1) (2017) 1–25, doi: 10.1145/3089799 .

[75] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Bren-
nan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al., Scratch: pro-
gramming for all, Commun. ACM 52 (11) (2009) 60–67, doi: 10.1145/1592761.
1592779 .

[76] D. Garcia , L. Segars , J. Paley , Snap!(build your own blocks): tutorial presenta-
tion, J. Comput. Sci. Coll. 27 (4) (2012) 120–121 .

[77] E. Pasternak , R. Fenichel , A.N. Marshall , Tips for creating a block language
with blockly, in: Proceedings of the 2017 IEEE Blocks and Beyond Workshop
(B&B), IEEE, 2017, pp. 21–24 .

[78] Google Blockly. https://developers.google.com/blockly/ , 2018, (accessed 15 Au-
gust 2019).

[79] B. Kitchenham , Procedures for Performing Systematic Reviews, Keele, UK,
Keele University 33 (2004) 1–26 .

[80] T. Schulz, J. Torresen, J. Herstad, Animation techniques in human-robot inter-
action user studies: a systematic literature review, ACM Trans. Human-Robot
Interact. (THRI) 8 (2) (2019) 1–22, doi: 10.1145/3317325 .

[81] A.R. Martin , S. Colton , Towards liveness in game development, in: Proceedings
of the 2019 IEEE Conference on Games (CoG), IEEE, 2019, pp. 1–4 .

[82] P. Rein, S. Ramson, J. Lincke, R. Hirschfeld, T. Pape, Exploratory and Live, Pro-
gramming and Coding: A Literature Study Comparing Perspectives on Live-
ness, arXiv preprint arXiv:1807.08578(2018).

[83] M. Campusano , J. Fabry , Live robot programming: the language, its
implementation, and robot API independence, Sci. Comput. Program. 133
(2017) 1–19 .

[84] S.L. Tanimoto , Viva: a visual language for image processing, J. Vis. Lang. Com-
put. 1 (2) (1990) 127–139 .

[85] S. Anjomshoae , A. Najjar , D. Calvaresi , K. Främling , Explainable agents and
robots: results from a systematic literature review, in: Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems, In-
ternational Foundation for Autonomous Agents and Multiagent Systems, 2019,
pp. 1078–1088 .

[86] L.D. Riek , Wizard of Oz studies in HRI: a systematic review and new reporting
guidelines, J. Human-Robot Interact. 1 (1) (2012) 119–136 .

[87] M. Quigley , K. Conley , B. Gerkey , J. Faust , T. Foote , J. Leibs , R. Wheeler , A.Y. Ng ,
ROS: an open-source robot operating system, in: Proceedings of the ICRA
Workshop on Open Source Software, 3, Kobe, 2009, p. 5 .

[88] E. Pot, J. Monceaux, R. Gelin, B. Maisonnier, Choregraphe: a graphical tool for
humanoid robot programming, in: Proceedings of the 18th IEEE International
Symposium on Robot and Human Interactive Communication, RO-MAN 2009,
2009, pp. 46–51, doi: 10.1109/ROMAN.2009.5326209 .

[89] Seobook, Keyword density analizer. http://tools.seobook.com/general/
keyword-density/ , 2003, (accessed 15 August 2019).

[90] H. Zhang , M.A. Babar , P. Tell , Identifying relevant studies in software engi-
neering, Inf. Softw. Technol. 53 (6) (2011) 625–637 .

[91] D.F. Glas, T. Kanda, H. Ishiguro, Human-robot interaction design using inter-
action composer eight years of lessons learned, in: Proceedings of the 11th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2016,
pp. 303–310, doi: 10.1109/HRI.2016.7451766 .

[92] D. Glas , S. Satake , T. Kanda , N. Hagita , An interaction design framework for
social robots, in: Proceedings of the 2012 Robotics: Science and Systems, 7,
2012, p. 89 .

[93] K. Petersen , S. Vakkalanka , L. Kuzniarz , Guidelines for conducting systematic
mapping studies in software engineering: an update, Inf. Softw. Technol. 64
(2015) 1–18 .

[94] S. Keele , et al. , Guidelines for Performing Systematic Literature Reviews in
Software Engineering, Technical Report, EBSE, 2007 . Technical report, Ver. 2.3
EBSE Technical Report

[95] P. Brereton , B.A. Kitchenham , D. Budgen , M. Turner , M. Khalil , Lessons from

applying the systematic literature review process within the software engi-
neering domain, J. Syst. Softw. 80 (4) (2007) 571–583 .

[96] J. Jackson, Microsoft robotics studio: a technical introduction, IEEE Robot. Au-
tom. Mag. 14 (4) (2007) 82–87, doi: 10.1109/M-RA.2007.905745 .

[97] CodeIt!. https://github.com/hcrlab/code _ it , 2018, (accessed 15 August 2019).

http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0041
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0041
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0041
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0041
https://doi.org/10.1109/CCAC.2017.8276396
https://doi.org/10.1109/ARSO.2015.7428217
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0044
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0044
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0044
https://doi.org/10.1006/jvlc.1996.0009
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0046
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0046
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0046
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0046
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0046
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0046
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0046
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0047
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0047
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0047
https://doi.org/10.1016/j.jvlc.2016.07.005
https://doi.org/10.1007/s12369-019-00548-5
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0050
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0050
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0050
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0050
https://doi.org/10.1109/ICRA.2017.7989070
https://doi.org/10.1109/BLOCKS.2017.8120406
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0053
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0053
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0053
https://doi.org/10.1007/978-3-642-24722-4_13
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/3159450.3162200
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0057
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0057
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0057
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0057
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0058
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0058
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0058
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0058
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0058
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0058
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0059
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0059
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0059
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0059
https://doi.org/10.1016/j.robot.2012.08.001
https://doi.org/10.1016/S0921-8890(02)00372-X
https://doi.org/10.1007/978-3-319-78963-7_56
https://doi.org/10.1145/3029798.3038340
https://doi.org/10.1007/978-3-030-24781-2_2
https://doi.org/10.1145/3290605.3300675
https://doi.org/10.1145/3290605.3300618
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0067
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0067
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1109/MRA.2010.938836
https://doi.org/10.1016/1045-926X(92)90034-J
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3089799
https://doi.org/10.1145/1592761.1592779
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0074
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0074
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0074
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0074
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0075
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0075
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0075
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0075
https://developers.google.com/blockly/
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0076
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0076
https://doi.org/10.1145/3317325
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0078
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0078
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0078
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0079
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0079
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0079
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0080
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0080
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0081
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0081
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0081
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0081
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0081
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0082
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0082
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0083
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0083
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0083
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0083
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0083
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0083
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0083
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0083
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0083
https://doi.org/10.1109/ROMAN.2009.5326209
http://tools.seobook.com/general/keyword-density/
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0085
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0085
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0085
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0085
https://doi.org/10.1109/HRI.2016.7451766
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0087
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0087
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0087
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0087
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0087
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0088
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0088
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0088
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0088
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0089
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0089
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0089
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0089
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0090
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0090
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0090
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0090
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0090
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0090
https://doi.org/10.1109/M-RA.2007.905745
https://github.com/hcrlab/code_it

E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970 19

[98] B. Jost, M. Ketterl, R. Budde, T. Leimbach, Graphical programming environ-
ments for educational robots: open roberta – yet another one? in: Proceed-
ings of the 2014 IEEE International Symposium on Multimedia, 2014, pp. 381–
386, doi: 10.1109/ISM.2014.24 .

[99] I. Zubrycki, G. Granosik, Designing an interactive device for sensory therapy,
in: Proceedings of the 11th ACM/IEEE International Conference on Human-
Robot Interaction (HRI), 2016, pp. 545–546, doi: 10.1109/HRI.2016.7451848 .

[100] M. Seraj, S. Autexier, J. Janssen, Beesm, a block-based educational program-
ming tool for end users, in: Proceedings of the 10th Nordic Conference on
Human-Computer Interaction, NordiCHI ’18, ACM, 2018, pp. 886–891, doi: 10.
1145/3240167.3240239 .

[101] RIZE. https://enriquecoronadozu.github.io/RIZE/ , 2020 (accessed 20 February
2020).

[102] P. Ziafati , F. Lera , A. Costa , A. Nazarikhorram , L. Van Der Torre , A. Nazarikhor ,
Procrob architecture for personalized social robotics, in: Proceedings of the
Robots for Learning Workshop@ HRI, 2017, pp. 6–9 .

[103] C. Datta, B.A. MacDonald, Architecture of an extensible visual programming
environment for authoring behaviour of personal service robots, in: Proceed-
ings of the First IEEE International Conference on Robotic Computing (IRC),
2017, pp. 156–159, doi: 10.1109/IRC.2017.60 .

[104] F. Erich, M. Hirokawa, K. Suzuki, A visual environment for reactive robot pro-
gramming of macro-level behaviors, in: Proceedings of the Social Robotics,
Springer, 2017, pp. 577–586, doi: 10.1007/978- 3- 319- 70022- 9 _ 57 .

[105] D. Porfirio, A. Sauppé, A. Albarghouthi, B. Mutlu, Authoring and verifying
human-robot interactions, in: Proceedings of the 31st Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’18, ACM, 2018, pp. 75–
86, doi: 10.1145/3242587.3242634 .

[106] A. Sauppé, B. Mutlu, Design patterns for exploring and prototyping human-
robot interactions, in: Proceedings of the 32nd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’14, ACM, 2014, pp. 1439–1448,
doi: 10.1145/2556288.2557057 .

[107] N. Buchina , S. Kamel , E. Barakova , Design and evaluation of an end-user
friendly tool for robot programming, in: Proceedings of the 25th IEEE Inter-
national Symposium on Robot and Human Interactive Communication (RO–
MAN), IEEE, 2016, pp. 185–191 .

[108] QT. http://https://www.qt.io/) , 2019, (accessed 15 August 2019).
[109] M.H. Lee , H.S. Ahn , K. Wang , B. MacDonald , Design of an API for integrating

robotic software frameworks, in: Proceedings of the 2014 Australasian Con-
ference on Robotics and Automation (ACRA 2014), 2, 2014, p. 1 .

[110] H. Bruyninckx, Open robot control software: the OROCOS project, in: Proceed-
ings of the 2001 ICRA IEEE International Conference on Robotics and Automa-
tion (Cat. No. 01CH37164), 3, 2001, pp. 2523–2528 vol.3, doi: 10.1109/ROBOT.
20 01.9330 02 .

[111] C. Datta, H.Y. Yang, I. Kuo, E. Broadbent, B.A. MacDonald, Software platform

design for personal service robots in healthcare, in: Proceedings of the 6th
IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2013,
pp. 156–161, doi: 10.1109/RAM.2013.6758576 .

[112] S. Tilkov, S. Vinoski, Node.js: using javascript to build high-performance net-
work programs, IEEE Internet Comput. 14 (6) (2010) 80–83, doi: 10.1109/MIC.
2010.145 .

[113] E. Bainomugisha, A.L. Carreton, T.v. Cutsem, S. Mostinckx, W.d. Meuter, A sur-
vey on reactive programming, ACM Comput. Surv. (CSUR) 45 (4) (2013) 52,
doi: 10.1145/2501654.2501666 .

[114] RRP. https://github.com/FlorisE/RRP , 2018, (accessed 15 August 2019).
[115] M. Kwiatkowska, G. Norman, D. Parker, Prism 4.0: verification of prob-

abilistic real-time systems, in: Proceedings of the 2011 Computer Aided
Verification, Springer, Berlin, Heidelberg, 2011, pp. 585–591, doi: 10.1007/
978- 3- 642- 22110- 1 _ 47 .

[116] RoVer. https://github.com/Wisc-HCI/RoVer , 2018, (accessed 15 August 2019).
[117] G. Metta, P. Fitzpatrick, L. Natale, Yarp: yet another robot platform, Int. J. Adv.

Rob. Syst. 3 (1) (2006) 8, doi: 10.5772/5761 .
[118] A. Haddadi , K. Sundermeyer , in: Foundations of Distributed Artificial Intelli-

gence, John Wiley & Sons, Inc., 1996, pp. 169–185 .
[119] C. Crick , G. Jay , S. Osentoski , B. Pitzer , O.C. Jenkins , Rosbridge: ROS for

Non-ROS Users, Springer, 2017, pp. 493–504 .
[120] J. Huang, T. Lau, M. Cakmak, Design and evaluation of a rapid program-

ming system for service robots, in: Proceedings of the 11th ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI), 2016, pp. 295–302,
doi: 10.1109/HRI.2016.7451765 .

[121] V. Paramasivam, J. Huang, S. Elliott, M. Cakmak, Computer science outreach
with end-user robot-programming tools, in: Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’17,
ACM, 2017, pp. 447–452, doi: 10.1145/3017680.3017796 .

[122] B. Wulff, A. Wilson, B. Jost, M. Ketterl, An adopter centric API and visual
programming interface for the definition of strategies for automated camera
tracking, in: Proceedings of the 2015 IEEE International Symposium on Mul-
timedia (ISM), 2015, pp. 587–592, doi: 10.1109/ISM.2015.106 .

[123] Snap. https://snap.berkeley.edu/) , 2018, (accessed 15 August 2019).
[124] ZeroMQ. http://zeromq.org/ , 2020, (accessed 20 February 2020).
[125] Nanomsg. http://https://nanomsg.org/ , 2020, (accessed 20 February 2020).
[126] E. Coronado , X. Indurkhya , G. Venture , Robots meet children, development of

semi-autonomous control systems for children-robot interaction in the wild,
Proceedings of the IEEE International Conference on Advanced Robotics and
Mechatronics (ICARM), IEEE, 2019 .

[127] X. Indurkhya , I. Takamune , E. Coronado , P. Zguda , B. Indurkhya , G. Venture ,
Creating a robust vocalization-based protocol for analyzing CRI group stud-

ies in the wild, Proceedings of the International Conference on Human Robot
Interaction, ACM/IEEE, 2018 .

[128] L. Rincon, E. Coronado, H. Hendra, J. Phan, Z. Zainalkefli, G. Venture, Ex-
pressive states with a robot arm using adaptive fuzzy and robust predictive
controllers, in: Proceedings of the 3rd International Conference on Control
and Robotics Engineering (ICCRE), 2018, pp. 11–15, doi: 10.1109/ICCRE.2018.
8376425 .

[129] J. Forcier , P. Bissex , W.J. Chun , Python Web Development with Django, Addis-
on-Wesley Professional, 2008 .

[130] S. Vinoski , Server-sent events with yaws, IEEE Internet Comput. 16 (5) (2012)
98–102 .

[131] T.J.M. Bench-Capon , Knowledge Representation: An Approach to Artificial In-
telligence, 32, Elsevier, 2014 .

[132] D. Mark , AI architectures: a culinary guide, Game Dev. Mag. 19 (8) (2012)
7–12 .

[133] B. Ur , E. McManus , M. Pak Yong Ho , M.L. Littman , Practical trigger-action pro-
gramming in the smart home, in: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2014, pp. 803–812 .

[134] M. Dawe , S. Garolinski , L. Dicken , T. Humphreys , D. Mark , Behavior selection
algorithms: an overview, Game AI Pro: Collected Wisdom of Game AI Profes-
sionals, CRC Press, 2014, pp. 47–60 .

[135] E.W. Dijkstra , Letters to the editor: go to statement considered harmful, Com-
mun. ACM 11 (3) (1968) 147–148 .

[136] P. Harwood , Multi Modal Human Robot Interaction Interface, Ecole Central of
Nantes, 2016, 2016 Master’s thesis .

[137] L. Joseph , J. Cacace , Mastering ROS for Robotics Programming: Design, Build,
and Simulate Complex Robots Using the Robot Operating System, Packt Pub-
lishing Ltd, 2018 .

[138] TiViPE. http://www.tivipe.com/T VPeducation/T VPuse.pdf , 2019 (accessed 25
August 2019).

[139] K. Finstad , The system usability scale and non-native english speakers, J. Us-
abil. Stud. 1 (4) (2006) 185–188 .

[140] S.G. Hart , Nasa-task load index (NASA-TLX); 20 years later, in: Proceedings of
the 2006 Human Factors and Ergonomics Society Annual Meeting, 50, Sage
Publications, CA: Los Angeles, 2006, pp. 904–908 .

[141] C. Ebert , J. Cain , Cyclomatic complexity, IEEE Softw. 33 (6) (2016) 27–29 .
[142] R. Bischoff, T. Guhl , E. Prassler , W. Nowak , G. Kraetzschmar , H. Bruyninckx ,

P. Soetens , M. Haegele , A. Pott , P. Breedveld , et al. , Brics-best practice in
robotics, in: Proceedings of the 41st International Symposium on Robotics
(ISR) and 2010 6th German Conference on Robotics (ROBOTIK), VDE, 2010,
pp. 1–8 .

[143] R. Rajkumar, M. Gagliardi, L. Sha, The real-time publisher/subscriber inter-
process communication model for distributed real-time systems: design and
implementation, in: Proceedings of the 1995 Real-Time Technology and Ap-
plications Symposium, 1995, pp. 66–75, doi: 10.1109/RTTAS.1995.516203 .

[144] A.S. Tanenbaum , M. Van Steen , Distributed Systems: Principles and
Paradigms, Prentice-Hall, 2007 .

[145] A. Orebäck, H.I. Christensen, Evaluation of architectures for mobile robotics,
Auton. Robot. 14 (1) (2003) 33–49, doi: 10.1023/A:1020975419546 .

[146] W. Gellerich , M. Kosiol , E. Ploedereder , Where does GOTO go to? in: Pro-
ceedings of the International Conference on Reliable Software Technologies,
Springer, 1996, pp. 385–395 .

[147] P. Janssen, Visual Dataflow Modelling-Some Thoughts on Complexity, Pro-
ceedings of the 32nd eCAADe Conference, England, UK, 10-12 September
2014, pp. 547-556.

[148] E. Coronado, F. Mastrogiovanni, G. Venture, Development of intelligent behav-
iors for social robots via user-friendly and modular programming tools, in:
Proceedings of the 2018 IEEE Workshop on Advanced Robotics and its Social
Impacts (ARSO), 2018, pp. 62–68, doi: 10.1109/ARSO.2018.8625839 .

[149] S. Wang, H.I. Christensen, Tritonbot: first lessons learned from deployment of
a long-term autonomy tour guide robot, in: Proceedings of the 27th IEEE In-
ternational Symposium on Robot and Human Interactive Communication (RO-
MAN), 2018, pp. 158–165, doi: 10.1109/ROMAN.2018.8525845 .

[150] I. Leite, C. Martinho, A. Paiva, Social robots for long-term interaction: a survey,
Int. J. Soc. Robot. 5 (2) (2013) 291–308, doi: 10.1007/s12369- 013- 0178- y .

[151] A.F. Blackwell, C. Britton, A. Cox, T.R.G. Green, C. Gurr, G. Kadoda, M.S. Ku-
tar, M. Loomes, C.L. Nehaniv, M. Petre, C. Roast, C. Roe, A. Wong, R.M. Young,
Cognitive dimensions of notations: design tools for cognitive technology, in:
Cognitive Technology: Instruments of Mind, Springer, Berlin, Heidelberg, 2001,
pp. 325–341, doi: 10.1007/3- 540- 44617- 6 _ 31 .

[152] D. Moody , The “physics” of notations: toward a scientific basis for construct-
ing visual notations in software engineering, IEEE Trans. Softw. Eng. 35 (6)
(2009) 756–779 .

[153] A. Assila , H. Ezzedine , et al. , Standardized usability questionnaires: features
and quality focus, Electron. J. Comput. Sci. Inf. Technol. eJCIST 6 (1) (2016) .

[154] J. Brooke , et al. , Sus-a quick and dirty usability scale, Usabil. Eval. Ind. 189
(194) (1996) 4–7 .

[155] , Development of NASA-TLX (task load index): results of empirical and the-
oretical research, in: P.A. Hancock, N. Meshkati (Eds.), Human Mental Work-
load, Advances in Psychology, 52, North-Holland, 1988, pp. 139–183, doi: 10.
1016/S0166- 4115(08)62386- 9 .

[156] A.P.O.S. Vermeeren, E.L.-C. Law, V. Roto, M. Obrist, J. Hoonhout, K. Väänänen-
Vainio-Mattila, User experience evaluation methods: current state and de-
velopment needs, in: Proceedings of the 6th Nordic Conference on Human-
Computer Interaction: Extending Boundaries, NordiCHI ’10, ACM, 2010,
pp. 521–530, doi: 10.1145/1868914.1868973 .

https://doi.org/10.1109/ISM.2014.24
https://doi.org/10.1109/HRI.2016.7451848
https://doi.org/10.1145/3240167.3240239
https://enriquecoronadozu.github.io/RIZE/
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0095
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0095
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0095
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0095
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0095
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0095
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0095
https://doi.org/10.1109/IRC.2017.60
https://doi.org/10.1007/978-3-319-70022-9_57
https://doi.org/10.1145/3242587.3242634
https://doi.org/10.1145/2556288.2557057
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0100
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0100
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0100
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0100
http://https://www.qt.io/)
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0101
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0101
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0101
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0101
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0101
https://doi.org/10.1109/ROBOT.2001.933002
https://doi.org/10.1109/RAM.2013.6758576
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1145/2501654.2501666
https://github.com/FlorisE/RRP
https://doi.org/10.1007/978-3-642-22110-1_47
https://github.com/Wisc-HCI/RoVer
https://doi.org/10.5772/5761
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0108
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0108
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0108
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0109
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0109
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0109
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0109
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0109
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0109
https://doi.org/10.1109/HRI.2016.7451765
https://doi.org/10.1145/3017680.3017796
https://doi.org/10.1109/ISM.2015.106
https://snap.berkeley.edu/)
http://zeromq.org/
http://https://nanomsg.org/
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0113
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0113
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0113
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0113
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0114
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0114
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0114
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0114
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0114
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0114
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0114
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0114
https://doi.org/10.1109/ICCRE.2018.8376425
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0116
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0116
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0116
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0116
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0117
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0117
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0118
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0118
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0119
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0119
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0120
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0120
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0120
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0120
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0120
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0121
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0121
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0121
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0121
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0121
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0121
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0122
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0122
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0123
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0123
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0124
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0124
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0124
http://www.tivipe.com/TVPeducation/TVPuse.pdf
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0125
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0125
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0126
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0126
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0127
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0127
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0127
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0128
https://doi.org/10.1109/RTTAS.1995.516203
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0130
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0130
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0130
https://doi.org/10.1023/A:1020975419546
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0132
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0132
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0132
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0132
https://doi.org/10.1109/ARSO.2018.8625839
https://doi.org/10.1109/ROMAN.2018.8525845
https://doi.org/10.1007/s12369-013-0178-y
https://doi.org/10.1007/3-540-44617-6_31
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0137
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0137
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0138
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0138
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0138
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0138
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0139
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0139
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0139
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1145/1868914.1868973

20 E. Coronado, F. Mastrogiovanni and B. Indurkhya et al. / Journal of Computer Languages 58 (2020) 100970

[157] User Experience Basics. https://www.usability.gov/what- and- why/
user-experience.html , 2018 (accessed 15 August 2019).

[158] F. Mastrogiovanni , A. Sgorbissa , R. Zaccaria , A system for hierarchical planning
in service mobile robotics, Proceedings of the Eight Conference on Intelligent
Autonomous Systems (IAS-8), 2004 . Amsterdam, The Netherlands

[159] A. Capitanelli, M. Maratea, F. Mastrogiovanni, M. Vallati, On the manipulation
of articulated objects in human-robot cooperation scenarios, Rob. Auton. Syst.
109 (2018) 139–155, doi: 10.1016/j.robot.2018.08.003 .

https://www.usability.gov/what-and-why/user-experience.html
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0142
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0142
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0142
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0142
http://refhub.elsevier.com/S2590-1184(20)30030-7/sbref0142
https://doi.org/10.1016/j.robot.2018.08.003

	Visual Programming Environments for End-User Development of intelligent and social robots, a systematic review
	1 Introduction
	2 Appropriate abstraction level for programming social robots
	3 Visual programming environments in robotics
	4 Methodology
	4.1 Research questions
	4.2 Search process
	4.3 Selection of papers
	4.4 Limitations of the study
	4.5 Reporting of results

	5 VPEs for Social Robotics (RQ1)
	5.1 Dataflow-based interfaces
	5.2 Block-based interfaces
	5.3 Form-filling interfaces

	6 Modeling intelligent behaviors for social robots (RQ2)
	6.1 Scripting-based
	6.2 Rule-based
	6.3 State-based
	6.4 Behavior-based

	7 Tools, technologies and evaluation methods for VPEs
	8 Open challenges
	8.1 Accessibility to external devices and resources
	8.2 Modularity of human-robot interaction primitives
	8.3 Scalability in large applications
	8.4 Correct abstraction levels and programming notations
	8.5 Benchmarking
	8.6 Explainability and generation of robot social behaviors
	8.7 Simulation and debugging

	9 Conclusions
	Declaration of Competing Interest
	Supplementary material
	CRediT authorship contribution statement
	References

