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Abstract Previous studies have demonstrated that humans
have a remarkable capacity to memorise a large number of
scenes. The research on memorability has shown that memory
performance can be predicted by the content of an image. We
explored how remembering an image is affected by the image
properties within the context of the reference set, including the
extent to which it is different from its neighbours (image-
space sparseness) and if it belongs to the same category as
its neighbours (uniformity). We used a reference set of 2,048
scenes (64 categories), evaluated pairwise scene similarity
using deep features from a pretrained convolutional neural
network (CNN), and calculated the image-space sparseness
and uniformity for each image. We ran three memory experi-
ments, varying the memory workload with experiment length
and colour/greyscale presentation. We measured the sensitiv-
ity and criterion value changes as a function of image-space
sparseness and uniformity. Across all three experiments, we
found separate effects of 1) sparseness on memory sensitivity,
and 2) uniformity on the recognition criterion. People better
remembered (and correctly rejected) images that were more
separated from others. People tended to make more false
alarms and fewer miss errors in images from categorically
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uniform portions of the image-space. We propose that both
image-space properties affect human decisions when
recognising images. Additionally, we found that colour pre-
sentation did not yield better memory performance over gray-
scale images.

Keywords Scene perception - Memory: visual working and
short-term memory - Categorization

People have a remarkable capability to remember photo-
graphs. This capability is notable in terms of both capacity
and fidelity (the number of images that we can remember
and the size of the differences that we can distinguish, respec-
tively). People can study thousands of images for a few sec-
onds each and achieve high recognition rates (Standing, 1973;
Standing, Conezio, & Haber, 1970; Voss, 2009). Recent stud-
ies showed that people are able to encode subtle details. They
can distinguish between state changes (Brady, Konkle,
Alvarez, & Oliva, 2008) or between a large number of exem-
plars in a single category (Vogt & Magnussen, 2007).
Surprisingly, the information decay for some features over
time is not significant. For example, Brady, Konkle, Gill,
Oliva, & Alvarez (2013) reported that the long-term memory
fidelity for object colour is as high as the fidelity of the work-
ing memory.

Recognition performance for scenes (complex photographs
with many objects) is comparable to memory for photographs
ofisolated images (Konkle, Brady, Alvarez, & Oliva, 2010b).
The scenes feature multiple objects, which require more re-
sources. On the other hand, the content of the scenes is se-
mantically coherent and spatially constrained, which reduces
the variability.

Recent studies on image memorability (Bainbridge, Isola,
& Oliva, 2013; Bylinskii, Isola, Bainbridge, Torralba, &
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Oliva, 2015; Isola, Xiao, Torralba, & Oliva, 2011) have shown
interindividual consistency in terms of which images are re-
membered and which are forgotten. Originally, this consisten-
cy was observed in a dataset featuring hundreds of categories
(Isolaetal.,2011). The consistency also was present at a more
fine-grained level when the stimuli were constrained to a nar-
row selection of categories (Bylinskii et al., 2015). Image
memorability can be predicted from the content of the image.
Simple low-level features (colour, saturation or number of
objects) were poor predictors of which images would be re-
membered or forgotten. Semantic features, such as the pres-
ence of people or interiors, were correlated with higher mem-
orability. Khosla, Raju, Torralba, & Oliva (2015) predicted
memorability using a convolutional neuron network (CNN).
Eye movement data can further improve prediction in an in-
dividual trial in terms of whether an image will be remem-
bered or forgotten (Bylinskii et al., 2015).

To understand what information we store in our memory
when memorizing scenes, we may ask how the remembered
images interfere with each other. Memorability research has
shown that memory performance is dependent upon image
content and may be predicted and potentially modelled
(Bylinskii et al., 2015; Isola et al., 2011; Khosla et al.,
2015). In this manuscript, we assume that images can be
projected into an image-space (i.e., representational space).
Similar images will have similar representations in the im-
age-space, which will lead to interference and potential mem-
ory errors. The latter claim about image similarity has been
supported by many studies. Human memory is poorer when
the individual is required to distinguish between similar im-
ages or other stimuli (Konkle et al., 2010b; Konkle, Brady,
Alvarez, & Oliva, 2010a). People also remember distinctive
stimuli that stand out from their context more effectively
(Bylinskii et al., 2015; Standing, 1973; Watier & Collin,
2012). A similar approach of multidimensional representa-
tional space has been proposed in face processing literature
(Valentine, 1991).

Konkle et al. (2010a) explored how memory interference is
affected by the visual properties of the exemplars. They de-
fined perceptual distinctiveness (variability in terms of colour
or shape) and conceptual distinctiveness (few or many differ-
ent kinds of object within a category). They found that the
object categories with conceptually distinctive exemplars
were associated with decreased interference in memory as
the number of exemplars increased. Perceptual distinctiveness
did not affect interference. Their results show observers’ ca-
pacity to remember visual information in long-term memory
depends more on conceptual structure than perceptual distinc-
tiveness. The distinctiveness values were based on observers’
ratings (Konkle et al., 2010a). Here, we extend their approach
towards scene stimuli. We also replace the observers’ ratings
of distinctiveness with pairwise similarity measures. Given
the current progress in computer image classification and

recognition, the computational comparison of similarity is
possible and it provides pairwise similarity results for large
image sets.

In the image-space model that we apply here, we primarily
focus on two properties: sparseness and uniformity (Fig. 1; for
detailed definition, see Experiment 1, Stimuli/Image-space
properties section). Both properties are derived from the fea-
tures of a particular image, but they also take the context (the
set of reference images) into account. An image comes from a
sparsely populated region of the image-space if it is relatively
far from its neighbours (versus when it comes from a densely
populated region). An image comes from a uniform part of the
image-space if it shares its scene category with many of its
neighbours. In other words, we are interested in how the prox-
imity of potential distractors and their conceptual similarity
affect the memory of an image. An important difference be-
tween the proposed properties is that sparseness depends sole-
ly on the image-space distance (perceptual similarity), where-
as uniformity requires an additional classification scheme
among pictures (i.e., categorization). These two measures
are not guaranteed to be orthogonal, but they capture potential
mechanisms of memory interference: interference via feature
similarities (sparseness) and interference via confusion with
other images of the same category (uniformity). We tested the
effect of these two potential interference mechanisms (sparse-
ness and uniformity) in a series of three experiments and
found the effect of sparseness on memory sensitivity, and
the effect of uniformity on the recognition criterion.

Experiment 1

We first took a large set of images and evaluated their mutual
similarity. In the next step, we asked participants to memorise
subsets of these images. Finally, we evaluated how their per-
formance was affected by the similarity measures. The design
is similar to that of other large-scale memory experiments
(Brady et al., 2008; Konkle et al., 2010b). We used an old/
new decision task to assess memory as it is more ecologically
valid, because we are rarely allowed to pick among alterna-
tives (Andermane & Bowers, 2015). The common approach
(2AFC) also leads to a more complex decision task when the
choice of the distractor affects performance (Brady et al.,
2008), but we were interested in how image-space properties
affect recognition of a single image.

More specifically, we were interested in how the image-
space properties affect memory sensitivity and response
bias. We measured the similarity of images via the activa-
tion of the penultimate layer of a convolutional neuron
network (or deep features). Deep features provide a pow-
erful image representation surpassing other features in
computer vision. Deep features also are applicable beyond
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Fig. 1 Schematic illustration of sparseness and uniformity image-space
properties. Each point represents an image; different symbols represent
different image categories. Lines represent connections to the four most
proximal neighbours of the selected images. In this example, the image-
space is arranged to highlight high/low values for each property.

the original purpose of the trained network (Razavian,
Azizpour, Sullivan, & Carlsson, 2014).

We decided to present the scenes in greyscale to emphasize
their structure and layout, because the informativeness of col-
our is known to vary across scene categories (Oliva & Schyns,
2000). In Experiment 3, we came back to this question and
used the colour stimuli.

Method
Participants

Forty university students (34 women) participated in
Experiment 1 (age range: 19-47 years, mean: 21.7 years).
The participants signed the informed consent form and re-
ceived course credit for their participation.

Stimuli

We sampled the images from a set of 2,048 scenes (64 cate-
gories, 32 images per category). The images were 256 X
256 pixels in size, and we presented them either in greyscale
(Experiments 1 and 2) or colour (Experiment 3). The images
were selected from the image dataset used by Konkle et al.
(2010b). Their dataset contained 64 images per category. We
calculated a gist descriptor for each image (Oliva & Torralba,
2001), and we selected 32 images from each category with the
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smallest distances from the mean category gist' to select more
typical views within each category.

Measure of image similarity We used deep features distance
to measure similarity between images. We obtained the fea-
tures from a pretrained CNN (Zhou, Lapedriza, Xiao,
Torralba, & Oliva, 2014). This CNN is based on AlexNet
(Krizhevsky, Sutskever, & Hinton, 2012) and is trained on
205 scene categories of the Places Database that includes 2.5
million images. To compute similarity, we used the 4096-
dimensional features from the response on the last fully con-
nected layer (fc7). We defined the similarity between two
images as the Euclidean distance (L2 norm) between the cor-
responding fc7 activation vectors.

Image-space properties Given a similarity measure, we can
project images into a multidimensional space. The distribution
of the images in such a space is irregular. We were interested
in how the regions of this space vary with respect of two
properties: 1) number of images, or how dense or sparse the
region is, and 2) categorical uniformity, whether either images
of a single category or several categories overlap there. For
each image, we defined two properties: sparseness and unifor-
mity. Sparseness was defined as the distance of an image from
its n-th most proximal neighbour. We transformed all dis-
tances to z-scores, so it was possible to compare the values
using the mean and variance of observed distances.
Uniformity was defined as the proportion of images of the
same category within the n most proximal neighbours. The
particular number of proximal images (n=31) to inspect was
arbitrary. Our choice of 31 was convenient because it yielded
the uniformity maximum of 100% if all neighbours were from
the same category (31 of 32 images). We tested several other
values of n, but the properties were highly correlated.

Procedure

The experimental session consisted of the study part and the
test part. The images were presented on a 9.7" iPad, and the
experiment lasted approximately 50 minutes.

In the study part, we asked participants to study a sequence
of images carefully for later recognition. Additionally, they
were asked to touch the screen whenever they noticed that
an image had been presented for a second time (vigilance
task). We presented 400 greyscale scenes in the study part of
Experiment 1. The set consisted of 320 unique scenes (5 per
category), and an additional 40 scenes were presented twice

! Originally, we intended to measure the similarity with gist descriptors, which
provide information on perceptual similarity. During the course of the project,
we learnt about deep features, which can capture semantic similarity known to
be associated with long-term memory interference (Konkle, Brady, Alvarez, &
Oliva, 2010a). For the parallel analysis based on gist-descriptors see
Supplement and Discussion.
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(0-1 per category). Repeated images were distributed uniform-
ly throughout the study part, and they were set to recur after 3,
15, or 63 intervening items. Each image was presented one at
a time for 3 s (subtending approximately 7.2 x 7.2°), and the
sequence was interleaved with the presentations of a fixation
cross for 800 ms. Feedback (red “X” or green “OK” for
500 ms) was shown only if the participants responded (as in
Brady et al., 2008; Konkle et al., 2010b); therefore, they were
not notified of miss errors. The participants were allowed to
take a short break in the middle of the study part and after the
end of the study part (before test part).

In the test part, a single image was shown in the middle of
the screen, with labels “new” and “old” on the left and right
side, respectively. There was no time limit within which par-
ticipants had to provide a response. Brief feedback (red “X” or
green “OK”) was shown at the top of the screen for 500 ms
after each response. The test set consisted of 256 scenes (2 old
scenes and 2 new foils per category).

Performance measures We evaluated the effects of sparse-
ness and uniformity on sensitivity (d') and response bias (cri-
terion, ¢). We chose a criterion as a measure of bias, because it
is reportedly unaffected by changes in d' (Stanislaw &
Todorov, 1999). Given the noise and signal distributions,
values of ¢ represent how the criterion shifts relative to the
neutral point (over which both distributions cross), and the
unit of measurement is the standard deviation. A positive val-
ue indicates a more conservative criterion (i.e., miss errors
more likely than false alarms).

The recognition test for each participant included only a
subgroup of images with respect to the entire image set (256
of 2,048), and we did not have enough recognition data to
calculate the per-image sensitivity or criterion. We decided
to pool the data of images with similar image-space properties.
We divided the main image set of 2,048 images into eight
quantiles separately for sparseness and uniformity, with 256
images in each quantile. In the analysis, each quantile was
represented with the median of the corresponding property
values. Thus, the performance data from the recognition ex-
periment were transformed into eight sensitivity and eight
criterion values for each participant.

We used R (R Core Team, 2016) with /mer package (Bates,
Michler, Bolker, & Walker, 2015) to perform analyses using
linear mixed-effects models. We analysed the effects of
sparseness and uniformity separately, and we used a single
fixed effect (sparseness or uniformity) as a linear predictor.
For random effects, we used the maximal model (Barr, Levy,
Scheepers, & Tily, 2013) that included both individual inter-
cepts and slopes. Visual inspection of residual plots did not
reveal any obvious departures from homoscedasticity or nor-
mality. To assess the validity of the mixed-effects models, we
performed likelihood ratio tests to compare the models with
fixed effects to the null models with only the random effects

(subjects). We rejected results in which the model with fixed
effects did not differ significantly from the null model.
Throughout the paper, we report both p values for the entire
model and p values calculated with Satterthwaite’s approxi-
mation in /merTest package (Kuznetsova, Brockhoff, &
Christensen, 2014) with 95% confidence intervals for each
fixed effect (sparseness, uniformity). In each experiment, we
tested four models and the presented p values are not corrected
for multiple comparisons. The p values can be compared to
adjusted o level 0.0125 (equivalent of & =0.05, Bonferroni
correction, 4 tests). We discuss the correction for multiple
testing across all three experiments within Experiment 3.

Results

Recognition performance Individual accuracy rates across
all participants ranged from 61-92% (mean = 75%), with the
respective d' ranging from 0.59 to 2.84 (mean=1.45). The
criterion values ranged from —0.18 to 0.75 (mean = 0.20),
showing a significant bias towards positive values (i.e., miss
errors) (#(39)=7.23, p<0.001). The correlation between d’
and the criterion values for each participant/quantile combina-
tion was low (sparseness: 7 =—0.003, p =0.962; uniformity:
r=-0.057, p=0.306). In the vigilance task, the hit rate was
82% (SEM = 4%) with 3 intervening items, 78% (SEM =4%)
with 15 intervening items, and 69% (SEM =4%) with 63 in-
tervening items. The false-alarm rate was low (3%, SEM =
0.4%).

Image-space properties Sparseness values ranged from
—3.55 to 1.61 (mean=-1.96, SD =0.62, median =—1.99).
The values were significantly lower than zero (#(2047)=
144.1,p <0.001, d = 3.18). For 11 images only, the sparseness
(the distance to the 3 1st most proximal neighbour) was greater
than the mean interimage distance observed in the reference
set (i.e., zero). The uniformity values ranged from 0% to
100% (mean=52%, SD =24, median=55%). The
Spearman correlation between sparseness and uniformity
was significant (p =0.243, p <0.001).

We wanted to examine how the values were affected by the
choice of parameter values (31 neighbours). We compared the
values with alternative calculations (7, 15, 63, and 127 neigh-
bours) and obtained similar results (p ranged from +0.875 to
+0.959 for sparseness and +0.780 to +0.962 for uniformity).

Image-space properties and memory performance
Figure 2 shows how the sensitivity and criterion values varied
as functions of sparseness and uniformity. We found that it is
easier to recall images that are separated to a greater extent
from their neighbours (i.e., images from sparsely populated
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Fig. 2 Performance in a short memory experiment with greyscale images. Sensitivity d' and criterion ¢ as a function of image-space sparseness and
uniformity. Confidence intervals for sensitivity/criterion gradients are shown above each plot.

image-space areas, x°(1) = 15.285, p <0.001). Sparseness al-
so decreased the criterion (y?(1) = 8.062, p<0.005).

The uniformity of the image-space had no effect on the
sensitivity (x(1) = 1.069, p = 0.301), but it decreased the cri-
terion (y(1)=55.343, p<0.001). In other words, people
made fewer miss errors and more false alarm errors in associ-
ation with images that had neighbours of the same category.
Studied images coming from areas in which categories were
intermixed were more often falsely considered to be new.

Discussion

We found a small but statistically significant relationship be-
tween image-space sparseness and uniformity. However, de-
spite this correlation, both measures indicated different pat-
terns of performance. Image-space sparseness was associated
with higher recognition sensitivity, as more isolated images
were easier to remember. Image-space uniformity reduced
the criterion. People tended to recognise falsely more typical
exemplars of a category. We also observed a smaller but sig-
nificant effect of sparseness on the recognition criterion.

@ Springer

The participants observed only a portion of the reference
set (17.6% in the study part). We calculated the sparseness/
uniformity properties relative to the whole image set as esti-
mates how the images relate to our visual experience. We
assume that, for example, the image from highly uniform re-
gions of the image-space was compared with our scene-
related experience in general, and it was considered to be more
typical. In the test part of the experiment, the participants were
aware that the corresponding category was present and they
falsely claimed that the typical image was previously seen.

We considered two measures of visual similarity: deep fea-
tures and gist descriptors. Gist descriptors express the distri-
bution of orientation and spatial frequencies in different parts
of the image and they have been used for scene classification
(Oliva & Torralba, 2001). We do not claim that either deep
features or gist descriptor representations are actually used at
the brain level, but we assume that representational similarity
reflects the statistical regularities in the visual signal and the
corresponding difficulty to distinguish between images both
for computer vision algorithms and for humans. In the pre-
sented experiments, we report the results based on deep fea-
tures. In the parallel analysis based on the gist descriptors (see
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Supplement), we found effects of uniformity, but not of
sparseness. This may be attributed to the difference between
distances based on gist descriptors and deep features. While
gist-based sparseness is based on perceptual similarity, deep
features capture the similarity in image semantics. The effect
of semantic similarity is in line with the findings that the
conceptual/semantic similarity is more predictive of long-
term memory performance than perceptual similarity
(Konkle et al., 2010a).

Experiment 2

As the next step, we wanted to run a longer experiment to test
whether the results would change. We expected two major
potential factors involved in a longer experiment: increased
difficulty and larger image context.

First, we wanted to check if we see a similar pattern of
results in a more difficult experiment. It is possible that the
experiment was not sufficiently challenging and that the im-
age similarity was not confusing enough to manifest. To ad-
dress this issue, we designed a longer experiment with more
images to learn (12 vs. 5 images per category in Exp. 1).

Second, we assume that the memory for a particular image
is affected by image-space properties (similarity within the
reference set). We use the reference set as a sample of our
visual experience to estimate the similarity, distance, or over-
lap of different image categories. The participants never see
the entire reference set but only its part (17.6% in the study
part of Exp. 1). We assume that, for example, the image from
highly uniform regions of the image-space is compared with
our scene-related experience in general, and it is considered to
be more typical. In the test part of the experiment, the partic-
ipants falsely claim that the typical image was previously
seen. In Experiment 2, we sampled 12 images per category
to provide a richer context for participants and remind them
better of the variability of each category.

Method

Participants

Thirty-eight university students (36 women) participated in
Experiment 2 (age range: 19-26 years, mean: 21.3 years).
The participants signed the informed consent form and re-
ceived course credit for their participation. No participant par-
ticipated in Experiment 1.

Procedure

In the study part of Experiment 2, we presented 960 greyscale
scenes. The set consisted of 768 unique scenes (12 per

category), and an additional 96 scenes were presented twice
(1-2 per category). Repeated images were set to recur after 3,
15, 63, or 255 intervening items. The test part consisted of 256
images (2 old images and 2 new foils per category, as in
Experiment 1). The trial structure was identical to that in
Experiment 1. The stimuli were sampled from the same image
set used in Experiment 1.

Results

Recognition performance Individual accuracy rates ranged
from 51-90% (mean = 70%), showing the longer version was
more difficult compared to Experiment 1 (#(69.4)=2.47, p=
0.016, Cohen d = 0.56). The respective d' values ranged from
0.05 to 2.65 (mean = 1.15). The criterion values ranged from
—0.12 to 0.85 (mean=0.26), showing a significant bias to-
wards miss errors (#37)=8.05, p<0.001). In the vigilance
task, the hit rate was 67% (SEM =5%) with 3 intervening
items, 64% (SEM =5%) with 15 intervening items, 50%
(SEM =4%) with 63 intervening items, and 41% (SEM =
4%) with 255 intervening items. The false-alarm rate was
low (2%, SEM =0.3%). Hit rates in the vigilance task were
lower than in Experiment 1 (all £>2.24, all p <0.05), the
difference in false-alarm rates was not significant (#(75.1)=
1.60, p=0.113).

Image-space properties and memory performance Similar
to Experiment 1, we found a significant effect of image-space
sparseness on recognition sensitivity (x?(1)=16.794,
p<0.001). On the other hand, the effect of sparseness on the
criterion was not significant (’(1) =2.330, p=0.127). The
results are shown in Fig. 3. The result regarding the effect of
image-space uniformity was consistent with previous find-
ings. Uniformity decreased the criterion (y(1)=18.956,
p<0.001), and we found no effect on recognition sensitivity
(x’(1)=3.320, p=0.068).

In our experiments, we cannot calculate ground truth
sparseness or uniformity. We rely on calculations based
on the reference set which we consider a sample of our
visual experience. The participants saw only part of the
reference set, and thus we wanted to check how properties
would differ if they were calculated based on the actually
presented images. We repeatedly sampled 12 images per
category (as in Experiment 2), calculated sparseness and
uniformity, and compared them with the values based on
the reference set with Spearman correlation coefficient. We
found strong relationships for sparseness (median p=
0.980, 95% confidence interval [CI] [0.970; 0.985], 100
repetitions) and uniformity (median p=0.933, 95% CI
[0.920; 0.941]). When we sampled 5 images per category
(as in Experiment 1), the relationships were still very high
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Fig. 3 Performance in a long memory experiment with greyscale images. Sensitivity d' and criterion ¢ as a function of image-space sparseness and
uniformity. Confidence intervals for sensitivity/criterion gradients are shown above each plot.

(sparseness: median p=0.921, 95% CI [0.892, 0.949]; uni-
formity: median p=10.801, 95% CI [0.754, 0.844]).

Discussion

The results of Experiment 2 were similar to those of
Experiment 1. Image-space sparseness was associated with
higher recognition sensitivity, and image-space uniformity re-
duced the criterion. The effect of sparseness on the recognition
criterion was not significant. The experiment showed us that
separate effects of sparseness and uniformity are still observed
when the experiment is more difficult. In the longer experi-
ment, participants were exposed to a larger portion of the
reference set (42.2% in the study part). It could provide them
with greater context and remind them of the richness of each
category. We showed that image-space properties based on the
subset (stimuli of presented to each participant) are good esti-
mates of the image-space properties observed in the reference
set especially. These estimates are better when more images
are presented (as in Experiment 2). The uniformity is more
difficult to estimate, which can be partly caused by our
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definition. Uniformity was defined as a proportion of images
of the same category in the neighbourhood and thus limited to
a smaller number of potential values. On the other hand,
sparseness was based on pairwise distance, which is a contin-
uous variable irrespective of the number of images.

Experiment 3

In previous experiments, we used greyscale images for two
reasons. First, we wanted participants to pay attention to the
shapes in the scenes. Second, we wanted the images to be
compatible with gist descriptors, which we had used initially
for similarity measurements.

Interestingly, it is not clear whether the participants store
the images in greyscale or in colour. After seeing a grayscale
photograph, they may retain the memories in greyscale.
Alternatively, they can attempt to estimate the probable col-
ours, because the colour is diagnostic for some categories
(Oliva & Schyns, 2000) and thus easier to infer. The following
experiment cannot resolve this question, but we assume the
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colour version is easier. With more features provided, partic-
ipants can better distinguish between similar stimuli.

For Experiment 3, we maintained the structure and length
of Experiment 1, but we used colour versions of the images.
This approach helps us to test whether the results will hold
when we use a slightly different feature space derived from the
colour versions of stimuli. Additionally, we expected this ex-
periment to be easier and wanted to test whether the shift in
workload would lead to the same pattern of results.

Method
Participants

Forty-four university students (38 women) participated in
Experiment 3 (age range: 19-47 years, mean: 21.7 years).
The participants signed the informed consent form and re-
ceived course credit for their participation. No participant par-
ticipated in either Experiment 1 or 2.

Stimuli

The stimuli were the colour versions of images from the set
used in Experiment 1. We recalculated the pairwise distances
based on the colour versions and correspondingly updated the
sparseness and uniformity values.

Procedure

Both the study and test parts were identical to those of
Experiment 1. The participants studied 400 scenes (320
unique scenes, 5 per category; with additional 40 scenes pre-
sented twice). Repeated images were distributed uniformly
throughout the study part, and they were set to recur after 3,
15, or 63 intervening items. Later, participants were asked to
make old/new judgements about 256 scenes (2 old scenes and
2 new foils per category).

Results

Recognition performance Individual accuracy rates across
all participants ranged from 62-90% (mean =76%), and they
did not differ from the accuracy rates observed in the grayscale
version in Exp. 1 (#79.7)=0.497, p=0.621, Cohen d=0.11).
The respective d’ values ranged from 0.65 to 2.74 (mean =
1.55). The criterion values ranged from —0.13 to 0.81 (mean =
0.30), showing a significant bias towards miss errors (#(43) =
8.90, p<0.001). In the vigilance task, the hit rate was 83%
(SEM = 3%) with 3 intervening items, 80% (SEM = 3%) with
15 intervening items, and 65% (SEM = 3%) with 63 interven-
ing items. The false-alarm rate was low (3%, SEM =0.3%).

Hit rates in the vigilance task were similar to Experiment 1 (all
t<0.40, all p>0.700), the difference in false-alarm rates was
not significant (#81.3) =1.20, p =0.235).

Image-space properties Sparseness values calculated for the
colour versions ranged from —3.16 to 2.37 (mean=-1.85,
SD =0.59, median =—1.95). The values were lower than the
corresponding greyscale-based values found in Experiments 1

and 2 (diff=0.11, #2047)=13.9, p<0.001, d=0.18), and
both methods yielded similar results (p =+0.825, p <0.001).
The uniformity values ranged from 0% to 100% (mean =

64%, SD =23, median = 68%). The values were higher than
the corresponding greyscale-based values (diff=0.12,
#2047)=32.9, p<0.001, d = 0.50), and both methods yielded
similar results (p =+0.761, p <0.001). The Spearman correla-
tion between sparseness and uniformity was low in the colour
versions (p =+0.085, p <0.001).

Image-space properties and memory performance
Figure 4 shows how the sensitivity and criterion values varied
as functions of sparseness and uniformity. We found that it is
easier to recall images that are separated to a greater extent
from their neighbours CROE 18.829, p <0.001). The images
from densely populated areas were more likely to be missed
(Xz(l) =18.956, p<0.001). With respect to uniformity, the
images from more uniform areas were more difficult to re-
member (x°(1)=23.89, p <0.001) and provoked more false-
alarm errors (y°(1)=58.197, p <0.001).

Discussion

The effects of sparseness and uniformity that were seen in
Experiments 1 and 2 were present in Experiment 3 as well.
Additionally, we observed the effect of sparseness on the cri-
terion and the effect of uniformity on sensitivity. In the report-
ed experiments, we analysed the effects separately and per-
formed four statistical tests in each experiment without cor-
rections. If we correct for the multiple hypothesis tests
(Bonferroni correction, 12 tests), all relationships between
sparseness/sensitivity and uniformity/criterion remain statisti-
cally significant. The sparseness/criterion relationship in Exp.
1 will become nonsignificant, and the other two relationships
in Experiment 3 will remain significant.

We expected the colour version to be easier, but we found
no difference in accuracy rates relative to the grayscale version
presented in Exp. 1. The colour presentation did not provide
benefit in memorizing and later recognition of the images,
which could mean that people estimate the probable colours
in grayscale photographs. Alternatively, the colour is not so
important for this particular task and stimuli. In some scene
perception tasks, no difference between using colour and
grayscale stimuli is observed (Meng & Potter, 2008), or the
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Fig. 4 Performance in a short memory experiment with colour images. Sensitivity d’ and criterion ¢ as a function of image-space sparseness and
uniformity. Confidence intervals for sensitivity/criterion gradients are shown above each plot.

grayscale stimuli yield better performance (Nijboer, Kanai, de
Haan, & van der Smagt, 2008).

Across all three experiments, we found that miss errors
were more likely than false-alarm errors. We used only partial
feedback in the study part (we did not warn participants about
their miss errors), which could bias their responses. However,
other studies showed the same bias toward miss errors despite
showing feedback for both miss and false-alarm response
(Andermane & Bowers, 2015).

General discussion

We performed three experiments that varied in their difficulty
level (number of stimuli) and use of colour or grayscale stimuli,
which not only influenced the difficulty but also led to slightly
different image features and corresponding levels of image
similarity. Across all three experiments, we repeatedly observed
a similar pattern. Specifically, people remembered more isolat-
ed images more effectively (sparseness increased sensitivity)
and were prone to more false alarms and fewer miss errors in
more categorically typical images (uniformity decreased bias).

@ Springer

Despite the correlation between sparseness and uniformity, the
analogous relationships were observed only in Experiment 3
(sparseness/criterion and uniformity/sensitivity, after correction
for the multiple tests). We conclude that both image-space prop-
erties can affect human memory performance independently.

Images from sparse regions of the image-space have
more distinctive features, differ from their neighbours to
a greater extent, and are easier to recognize or reject (in
case on distractors). Because the participants observed
only a random sample from the reference set, these
images are different not only from the other images
presented to participants but also from other scenes in
general. This finding is in accord with many other stud-
ies showing increased memory performance for distinc-
tive images (Eysenck, 1979; Nairne, 2006; Standing,
1973). In general, images from sparsely occupied posi-
tion within the space of representation are easier to re-
trieve for recognition. The images from highly uniform
regions of the image-space were compared with our
scene-related experience in general and considered to
be more typical. Later, participants falsely claimed that
they previously had seen the typical images.
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Uniformity can be related to classification certainty. Better
recognition of more typical examples could be a result of more
general principle of categorization (Rosch, 1978; Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976). Our results
are in accord with the assumption that basic-level categories
form information-theoretic optimum, maximizing within-
category similarity and minimizing between-category similar-
ity (Corter & Gluck, 1992). Thus, the images near the category
prototype are similar and easier to confuse with each other,
whereas the images near category boundaries are more diffi-
cult to categorize. In a categorical search experiment, the im-
ages that are further from the decision boundary of an image
classifier algorithm guide attention and eye movements more
effectively (Maxfield, Stalder, & Zelinsky, 2014).

To measure visual similarity, we used deep features derived
from the final fully connected layer of a CNN (Zhou et al.,
2014) pretrained on a large dataset of scene stimuli. Initially,
we used gist descriptors, and the results are included in the
Supplement. To summarise, gist-based uniformity correlated
with the criterion and partially with sensitivity (in Experiment
3). Gist-based sparseness was not related to sensitivity or the
criterion (after correction). This shows that memory confusion
is based to a greater extent on semantic features (the presence
of objects) than low-level features (colour or shape), which is
in line with previous research (Isola et al., 2011). The distinc-
tion between conceptual and perceptual distinctiveness
(Konkle et al., 2010a) is consistent with this observation:
colour/shape similarity is a poor predictor of memory confu-
sion in general images. We used fc7 features, because we were
interested in semantic similarity. Features derived from lower
layers of a CNN capture low-level features and would likely
yield similar results to the gist. A CNN is not designed to be
biologically plausible, although we may draw a loose analo-
gies between a CNN and the human cortex about their pro-
cessing stages and representations (VanRullen, 2017).
Comparative fMRI studies show that representations in the
CNN correlate with emerging visual representations in the
human brain (Cichy, Khosla, Pantazis, & Oliva, 2017;
Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016). Semantic
similarity corresponds to more processed visual representa-
tions found in final CNN layers (in our case, fc7) or the
inferotemporal cortex in the brain, whereas perceptual simi-
larity is based on low-level representations in lower layers of a
CNN or in the visual cortex.

Contrary to previous studies on image memorability
(Bainbridge et al., 2013; Bylinskii et al., 2015; Isola et al.,
2011), we did not analyse memory performance per individual
image. We sampled images randomly and pooled the data for
images with similar image-space properties to obtain more
robust estimates of performance. Our focus on the image-
space context of a memorised image is similar to that of the
research on extrinsic memorability factors. Bylinskii et al.
(2015) found that distinctive categories (e.g., cockpit) are

prone to the context effect. That is, many images of cockpits
look similar; however, when cockpits are presented amongst
images from other categories, they become distinctive. This
difference is minimal for less distinctive categories (e.g., liv-
ing room). This conclusion is consistent with our findings on
uniformity and its effect on the criterion.

In our experiments, we assumed that the scene images and
categories in our reference set were representative. We sam-
pled an equal number of images from each category to reflect
the structure of the reference set in the stimuli and provide a
similar context to all participants. The balanced sampling was
important, because we wanted to include potentially conflict-
ing images to test memory performance adequately for unifor-
mity. In addition to the sole image properties, performance is
likely to be affected by participants’ experience and exposi-
tion (e.g., travel enthusiasts might be better at recognising
forests or wilderness tracks) or understanding (Greene,
Botros, Beck, & Fei-Fei, 2015), which is not reflected in our
experiments.

In summary, we investigated image similarity with respect
to a larger reference set. We repeatedly observed that more
isolated images are remembered more effectively and more
typical images are falsely recognised more often. We propose
that both image-space properties affect human decisions when
recognising images.
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