
Jiří Lukavský1 & Filip Děchtěrenko1,2

Published online: 13 July 2017
# The Psychonomic Society, Inc. 2017

Abstract Previous studies have demonstrated that humans

have a remarkable capacity to memorise a large number of

scenes. The research on memorability has shown that memory

performance can be predicted by the content of an image. We

explored how remembering an image is affected by the image

properties within the context of the reference set, including the

extent to which it is different from its neighbours (image-

space sparseness) and if it belongs to the same category as

its neighbours (uniformity). We used a reference set of 2,048

scenes (64 categories), evaluated pairwise scene similarity

using deep features from a pretrained convolutional neural

network (CNN), and calculated the image-space sparseness

and uniformity for each image. We ran three memory experi-

ments, varying the memory workload with experiment length

and colour/greyscale presentation. We measured the sensitiv-

ity and criterion value changes as a function of image-space

sparseness and uniformity. Across all three experiments, we

found separate effects of 1) sparseness on memory sensitivity,

and 2) uniformity on the recognition criterion. People better

remembered (and correctly rejected) images that were more

separated from others. People tended to make more false

alarms and fewer miss errors in images from categorically

uniform portions of the image-space. We propose that both

image-space properties affect human decisions when

recognising images. Additionally, we found that colour pre-

sentation did not yield better memory performance over gray-

scale images.

Keywords Scene perception .Memory: visual working and

short-termmemory . Categorization

People have a remarkable capability to remember photo-

graphs. This capability is notable in terms of both capacity

and fidelity (the number of images that we can remember

and the size of the differences that we can distinguish, respec-

tively). People can study thousands of images for a few sec-

onds each and achieve high recognition rates (Standing, 1973;

Standing, Conezio, & Haber, 1970; Voss, 2009). Recent stud-

ies showed that people are able to encode subtle details. They

can distinguish between state changes (Brady, Konkle,

Alvarez, & Oliva, 2008) or between a large number of exem-

plars in a single category (Vogt & Magnussen, 2007).

Surprisingly, the information decay for some features over

time is not significant. For example, Brady, Konkle, Gill,

Oliva, & Alvarez (2013) reported that the long-term memory

fidelity for object colour is as high as the fidelity of the work-

ing memory.

Recognition performance for scenes (complex photographs

with many objects) is comparable to memory for photographs

of isolated images (Konkle, Brady, Alvarez, & Oliva, 2010b).

The scenes feature multiple objects, which require more re-

sources. On the other hand, the content of the scenes is se-

mantically coherent and spatially constrained, which reduces

the variability.

Recent studies on image memorability (Bainbridge, Isola,

& Oliva, 2013; Bylinskii, Isola, Bainbridge, Torralba, &
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Oliva, 2015; Isola, Xiao, Torralba, &Oliva, 2011) have shown

interindividual consistency in terms of which images are re-

membered and which are forgotten. Originally, this consisten-

cy was observed in a dataset featuring hundreds of categories

(Isola et al., 2011). The consistency also was present at a more

fine-grained level when the stimuli were constrained to a nar-

row selection of categories (Bylinskii et al., 2015). Image

memorability can be predicted from the content of the image.

Simple low-level features (colour, saturation or number of

objects) were poor predictors of which images would be re-

membered or forgotten. Semantic features, such as the pres-

ence of people or interiors, were correlated with higher mem-

orability. Khosla, Raju, Torralba, & Oliva (2015) predicted

memorability using a convolutional neuron network (CNN).

Eye movement data can further improve prediction in an in-

dividual trial in terms of whether an image will be remem-

bered or forgotten (Bylinskii et al., 2015).

To understand what information we store in our memory

when memorizing scenes, we may ask how the remembered

images interfere with each other. Memorability research has

shown that memory performance is dependent upon image

content and may be predicted and potentially modelled

(Bylinskii et al., 2015; Isola et al., 2011; Khosla et al.,

2015). In this manuscript, we assume that images can be

projected into an image-space (i.e., representational space).

Similar images will have similar representations in the im-

age-space, which will lead to interference and potential mem-

ory errors. The latter claim about image similarity has been

supported by many studies. Human memory is poorer when

the individual is required to distinguish between similar im-

ages or other stimuli (Konkle et al., 2010b; Konkle, Brady,

Alvarez, & Oliva, 2010a). People also remember distinctive

stimuli that stand out from their context more effectively

(Bylinskii et al., 2015; Standing, 1973; Watier & Collin,

2012). A similar approach of multidimensional representa-

tional space has been proposed in face processing literature

(Valentine, 1991).

Konkle et al. (2010a) explored howmemory interference is

affected by the visual properties of the exemplars. They de-

fined perceptual distinctiveness (variability in terms of colour

or shape) and conceptual distinctiveness (few or many differ-

ent kinds of object within a category). They found that the

object categories with conceptually distinctive exemplars

were associated with decreased interference in memory as

the number of exemplars increased. Perceptual distinctiveness

did not affect interference. Their results show observers’ ca-

pacity to remember visual information in long-term memory

depends more on conceptual structure than perceptual distinc-

tiveness. The distinctiveness values were based on observers’

ratings (Konkle et al., 2010a). Here, we extend their approach

towards scene stimuli. We also replace the observers’ ratings

of distinctiveness with pairwise similarity measures. Given

the current progress in computer image classification and

recognition, the computational comparison of similarity is

possible and it provides pairwise similarity results for large

image sets.

In the image-space model that we apply here, we primarily

focus on two properties: sparseness and uniformity (Fig. 1; for

detailed definition, see Experiment 1, Stimuli/Image-space

properties section). Both properties are derived from the fea-

tures of a particular image, but they also take the context (the

set of reference images) into account. An image comes from a

sparsely populated region of the image-space if it is relatively

far from its neighbours (versus when it comes from a densely

populated region). An image comes from a uniform part of the

image-space if it shares its scene category with many of its

neighbours. In other words, we are interested in how the prox-

imity of potential distractors and their conceptual similarity

affect the memory of an image. An important difference be-

tween the proposed properties is that sparseness depends sole-

ly on the image-space distance (perceptual similarity), where-

as uniformity requires an additional classification scheme

among pictures (i.e., categorization). These two measures

are not guaranteed to be orthogonal, but they capture potential

mechanisms of memory interference: interference via feature

similarities (sparseness) and interference via confusion with

other images of the same category (uniformity). We tested the

effect of these two potential interference mechanisms (sparse-

ness and uniformity) in a series of three experiments and

found the effect of sparseness on memory sensitivity, and

the effect of uniformity on the recognition criterion.

Experiment 1

We first took a large set of images and evaluated their mutual

similarity. In the next step, we asked participants to memorise

subsets of these images. Finally, we evaluated how their per-

formance was affected by the similarity measures. The design

is similar to that of other large-scale memory experiments

(Brady et al., 2008; Konkle et al., 2010b). We used an old/

new decision task to assess memory as it is more ecologically

valid, because we are rarely allowed to pick among alterna-

tives (Andermane & Bowers, 2015). The common approach

(2AFC) also leads to a more complex decision task when the

choice of the distractor affects performance (Brady et al.,

2008), but we were interested in how image-space properties

affect recognition of a single image.

More specifically, we were interested in how the image-

space properties affect memory sensitivity and response

bias. We measured the similarity of images via the activa-

tion of the penultimate layer of a convolutional neuron

network (or deep features). Deep features provide a pow-

erful image representation surpassing other features in

computer vision. Deep features also are applicable beyond
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the original purpose of the trained network (Razavian,

Azizpour, Sullivan, & Carlsson, 2014).

We decided to present the scenes in greyscale to emphasize

their structure and layout, because the informativeness of col-

our is known to vary across scene categories (Oliva & Schyns,

2000). In Experiment 3, we came back to this question and

used the colour stimuli.

Method

Participants

Forty university students (34 women) participated in

Experiment 1 (age range: 19-47 years, mean: 21.7 years).

The participants signed the informed consent form and re-

ceived course credit for their participation.

Stimuli

We sampled the images from a set of 2,048 scenes (64 cate-

gories, 32 images per category). The images were 256 ×

256 pixels in size, and we presented them either in greyscale

(Experiments 1 and 2) or colour (Experiment 3). The images

were selected from the image dataset used by Konkle et al.

(2010b). Their dataset contained 64 images per category. We

calculated a gist descriptor for each image (Oliva & Torralba,

2001), and we selected 32 images from each category with the

smallest distances from the mean category gist1 to select more

typical views within each category.

Measure of image similarityWe used deep features distance

to measure similarity between images. We obtained the fea-

tures from a pretrained CNN (Zhou, Lapedriza, Xiao,

Torralba, & Oliva, 2014). This CNN is based on AlexNet

(Krizhevsky, Sutskever, & Hinton, 2012) and is trained on

205 scene categories of the Places Database that includes 2.5

million images. To compute similarity, we used the 4096-

dimensional features from the response on the last fully con-

nected layer (fc7). We defined the similarity between two

images as the Euclidean distance (L2 norm) between the cor-

responding fc7 activation vectors.

Image-space properties Given a similarity measure, we can

project images into a multidimensional space. The distribution

of the images in such a space is irregular. We were interested

in how the regions of this space vary with respect of two

properties: 1) number of images, or how dense or sparse the

region is, and 2) categorical uniformity, whether either images

of a single category or several categories overlap there. For

each image, we defined two properties: sparseness and unifor-

mity. Sparsenesswas defined as the distance of an image from

its n-th most proximal neighbour. We transformed all dis-

tances to z-scores, so it was possible to compare the values

using the mean and variance of observed distances.

Uniformity was defined as the proportion of images of the

same category within the n most proximal neighbours. The

particular number of proximal images (n = 31) to inspect was

arbitrary. Our choice of 31 was convenient because it yielded

the uniformity maximum of 100% if all neighbours were from

the same category (31 of 32 images). We tested several other

values of n, but the properties were highly correlated.

Procedure

The experimental session consisted of the study part and the

test part. The images were presented on a 9.7" iPad, and the

experiment lasted approximately 50 minutes.

In the study part, we asked participants to study a sequence

of images carefully for later recognition. Additionally, they

were asked to touch the screen whenever they noticed that

an image had been presented for a second time (vigilance

task). We presented 400 greyscale scenes in the study part of

Experiment 1. The set consisted of 320 unique scenes (5 per

category), and an additional 40 scenes were presented twice

1
Originally, we intended to measure the similarity with gist descriptors, which

provide information on perceptual similarity. During the course of the project,

we learnt about deep features, which can capture semantic similarity known to

be associated with long-termmemory interference (Konkle, Brady, Alvarez, &

Oliva, 2010a). For the parallel analysis based on gist-descriptors see

Supplement and Discussion.
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Fig. 1 Schematic illustration of sparseness and uniformity image-space

properties. Each point represents an image; different symbols represent

different image categories. Lines represent connections to the four most

proximal neighbours of the selected images. In this example, the image-

space is arranged to highlight high/low values for each property.
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(0-1 per category). Repeated images were distributed uniform-

ly throughout the study part, and they were set to recur after 3,

15, or 63 intervening items. Each image was presented one at

a time for 3 s (subtending approximately 7.2 × 7.2°), and the

sequence was interleaved with the presentations of a fixation

cross for 800 ms. Feedback (red BX^ or green BOK^ for

500 ms) was shown only if the participants responded (as in

Brady et al., 2008; Konkle et al., 2010b); therefore, they were

not notified of miss errors. The participants were allowed to

take a short break in the middle of the study part and after the

end of the study part (before test part).

In the test part, a single image was shown in the middle of

the screen, with labels Bnew^ and Bold^ on the left and right

side, respectively. There was no time limit within which par-

ticipants had to provide a response. Brief feedback (red BX^ or

green BOK^) was shown at the top of the screen for 500 ms

after each response. The test set consisted of 256 scenes (2 old

scenes and 2 new foils per category).

Performance measures We evaluated the effects of sparse-

ness and uniformity on sensitivity (d') and response bias (cri-

terion, c). We chose a criterion as a measure of bias, because it

is reportedly unaffected by changes in d' (Stanislaw &

Todorov, 1999). Given the noise and signal distributions,

values of c represent how the criterion shifts relative to the

neutral point (over which both distributions cross), and the

unit of measurement is the standard deviation. A positive val-

ue indicates a more conservative criterion (i.e., miss errors

more likely than false alarms).

The recognition test for each participant included only a

subgroup of images with respect to the entire image set (256

of 2,048), and we did not have enough recognition data to

calculate the per-image sensitivity or criterion. We decided

to pool the data of images with similar image-space properties.

We divided the main image set of 2,048 images into eight

quantiles separately for sparseness and uniformity, with 256

images in each quantile. In the analysis, each quantile was

represented with the median of the corresponding property

values. Thus, the performance data from the recognition ex-

periment were transformed into eight sensitivity and eight

criterion values for each participant.

We used R (R Core Team, 2016) with lmer package (Bates,

Mächler, Bolker, & Walker, 2015) to perform analyses using

linear mixed-effects models. We analysed the effects of

sparseness and uniformity separately, and we used a single

fixed effect (sparseness or uniformity) as a linear predictor.

For random effects, we used the maximal model (Barr, Levy,

Scheepers, & Tily, 2013) that included both individual inter-

cepts and slopes. Visual inspection of residual plots did not

reveal any obvious departures from homoscedasticity or nor-

mality. To assess the validity of the mixed-effects models, we

performed likelihood ratio tests to compare the models with

fixed effects to the null models with only the random effects

(subjects). We rejected results in which the model with fixed

effects did not differ significantly from the null model.

Throughout the paper, we report both p values for the entire

model and p values calculated with Satterthwaite’s approxi-

mation in lmerTest package (Kuznetsova, Brockhoff, &

Christensen, 2014) with 95% confidence intervals for each

fixed effect (sparseness, uniformity). In each experiment, we

tested fourmodels and the presented p values are not corrected

for multiple comparisons. The p values can be compared to

adjusted α level 0.0125 (equivalent of α = 0.05, Bonferroni

correction, 4 tests). We discuss the correction for multiple

testing across all three experiments within Experiment 3.

Results

Recognition performance Individual accuracy rates across

all participants ranged from 61-92% (mean = 75%), with the

respective d' ranging from 0.59 to 2.84 (mean = 1.45). The

criterion values ranged from −0.18 to 0.75 (mean = 0.20),

showing a significant bias towards positive values (i.e., miss

errors) (t(39) = 7.23, p < 0.001). The correlation between d'

and the criterion values for each participant/quantile combina-

tion was low (sparseness: r = −0.003, p = 0.962; uniformity:

r = −0.057, p = 0.306). In the vigilance task, the hit rate was

82% (SEM= 4%) with 3 intervening items, 78% (SEM= 4%)

with 15 intervening items, and 69% (SEM= 4%) with 63 in-

tervening items. The false-alarm rate was low (3%, SEM=

0.4%).

Image-space properties Sparseness values ranged from

−3.55 to 1.61 (mean = −1.96, SD = 0.62, median = −1.99).

The values were significantly lower than zero (t(2047) =

144.1, p < 0.001, d = 3.18). For 11 images only, the sparseness

(the distance to the 31st most proximal neighbour) was greater

than the mean interimage distance observed in the reference

set (i.e., zero). The uniformity values ranged from 0% to

100% (mean = 52%, SD = 24, median = 55%). The

Spearman correlation between sparseness and uniformity

was significant (ρ = 0.243, p < 0.001).

We wanted to examine how the values were affected by the

choice of parameter values (31 neighbours). We compared the

values with alternative calculations (7, 15, 63, and 127 neigh-

bours) and obtained similar results (ρ ranged from +0.875 to

+0.959 for sparseness and +0.780 to +0.962 for uniformity).

Image-space properties and memory performance

Figure 2 shows how the sensitivity and criterion values varied

as functions of sparseness and uniformity. We found that it is

easier to recall images that are separated to a greater extent

from their neighbours (i.e., images from sparsely populated
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image-space areas, χ2(1) = 15.285, p < 0.001). Sparseness al-

so decreased the criterion (χ2(1) = 8.062, p < 0.005).

The uniformity of the image-space had no effect on the

sensitivity (χ2(1) = 1.069, p = 0.301), but it decreased the cri-

terion (χ2(1) = 55.343, p < 0.001). In other words, people

made fewer miss errors and more false alarm errors in associ-

ation with images that had neighbours of the same category.

Studied images coming from areas in which categories were

intermixed were more often falsely considered to be new.

Discussion

We found a small but statistically significant relationship be-

tween image-space sparseness and uniformity. However, de-

spite this correlation, both measures indicated different pat-

terns of performance. Image-space sparseness was associated

with higher recognition sensitivity, as more isolated images

were easier to remember. Image-space uniformity reduced

the criterion. People tended to recognise falsely more typical

exemplars of a category. We also observed a smaller but sig-

nificant effect of sparseness on the recognition criterion.

The participants observed only a portion of the reference

set (17.6% in the study part). We calculated the sparseness/

uniformity properties relative to the whole image set as esti-

mates how the images relate to our visual experience. We

assume that, for example, the image from highly uniform re-

gions of the image-space was compared with our scene-

related experience in general, and it was considered to bemore

typical. In the test part of the experiment, the participants were

aware that the corresponding category was present and they

falsely claimed that the typical image was previously seen.

We considered two measures of visual similarity: deep fea-

tures and gist descriptors. Gist descriptors express the distri-

bution of orientation and spatial frequencies in different parts

of the image and they have been used for scene classification

(Oliva & Torralba, 2001). We do not claim that either deep

features or gist descriptor representations are actually used at

the brain level, but we assume that representational similarity

reflects the statistical regularities in the visual signal and the

corresponding difficulty to distinguish between images both

for computer vision algorithms and for humans. In the pre-

sented experiments, we report the results based on deep fea-

tures. In the parallel analysis based on the gist descriptors (see

Fig. 2 Performance in a short memory experiment with greyscale images. Sensitivity d' and criterion c as a function of image-space sparseness and

uniformity. Confidence intervals for sensitivity/criterion gradients are shown above each plot.
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Supplement), we found effects of uniformity, but not of

sparseness. This may be attributed to the difference between

distances based on gist descriptors and deep features. While

gist-based sparseness is based on perceptual similarity, deep

features capture the similarity in image semantics. The effect

of semantic similarity is in line with the findings that the

conceptual/semantic similarity is more predictive of long-

term memory performance than perceptual similarity

(Konkle et al., 2010a).

Experiment 2

As the next step, we wanted to run a longer experiment to test

whether the results would change. We expected two major

potential factors involved in a longer experiment: increased

difficulty and larger image context.

First, we wanted to check if we see a similar pattern of

results in a more difficult experiment. It is possible that the

experiment was not sufficiently challenging and that the im-

age similarity was not confusing enough to manifest. To ad-

dress this issue, we designed a longer experiment with more

images to learn (12 vs. 5 images per category in Exp. 1).

Second, we assume that the memory for a particular image

is affected by image-space properties (similarity within the

reference set). We use the reference set as a sample of our

visual experience to estimate the similarity, distance, or over-

lap of different image categories. The participants never see

the entire reference set but only its part (17.6% in the study

part of Exp. 1). We assume that, for example, the image from

highly uniform regions of the image-space is compared with

our scene-related experience in general, and it is considered to

be more typical. In the test part of the experiment, the partic-

ipants falsely claim that the typical image was previously

seen. In Experiment 2, we sampled 12 images per category

to provide a richer context for participants and remind them

better of the variability of each category.

Method

Participants

Thirty-eight university students (36 women) participated in

Experiment 2 (age range: 19-26 years, mean: 21.3 years).

The participants signed the informed consent form and re-

ceived course credit for their participation. No participant par-

ticipated in Experiment 1.

Procedure

In the study part of Experiment 2, we presented 960 greyscale

scenes. The set consisted of 768 unique scenes (12 per

category), and an additional 96 scenes were presented twice

(1-2 per category). Repeated images were set to recur after 3,

15, 63, or 255 intervening items. The test part consisted of 256

images (2 old images and 2 new foils per category, as in

Experiment 1). The trial structure was identical to that in

Experiment 1. The stimuli were sampled from the same image

set used in Experiment 1.

Results

Recognition performance Individual accuracy rates ranged

from 51-90% (mean = 70%), showing the longer version was

more difficult compared to Experiment 1 (t(69.4) = 2.47, p =

0.016, Cohen d = 0.56). The respective d' values ranged from

0.05 to 2.65 (mean = 1.15). The criterion values ranged from

−0.12 to 0.85 (mean = 0.26), showing a significant bias to-

wards miss errors (t(37) = 8.05, p < 0.001). In the vigilance

task, the hit rate was 67% (SEM= 5%) with 3 intervening

items, 64% (SEM = 5%) with 15 intervening items, 50%

(SEM = 4%) with 63 intervening items, and 41% (SEM =

4%) with 255 intervening items. The false-alarm rate was

low (2%, SEM= 0.3%). Hit rates in the vigilance task were

lower than in Experiment 1 (all t > 2.24, all p < 0.05), the

difference in false-alarm rates was not significant (t(75.1) =

1.60, p = 0.113).

Image-space properties and memory performance Similar

to Experiment 1, we found a significant effect of image-space

sparseness on recognition sensitivity (χ2(1) = 16.794,

p < 0.001). On the other hand, the effect of sparseness on the

criterion was not significant (χ2(1) = 2.330, p = 0.127). The

results are shown in Fig. 3. The result regarding the effect of

image-space uniformity was consistent with previous find-

ings. Uniformity decreased the criterion (χ2(1) = 18.956,

p < 0.001), and we found no effect on recognition sensitivity

(χ2(1) = 3.320, p = 0.068).

In our experiments, we cannot calculate ground truth

sparseness or uniformity. We rely on calculations based

on the reference set which we consider a sample of our

visual experience. The participants saw only part of the

reference set, and thus we wanted to check how properties

would differ if they were calculated based on the actually

presented images. We repeatedly sampled 12 images per

category (as in Experiment 2), calculated sparseness and

uniformity, and compared them with the values based on

the reference set with Spearman correlation coefficient. We

found strong relationships for sparseness (median ρ =

0.980, 95% confidence interval [CI] [0.970; 0.985], 100

repetitions) and uniformity (median ρ = 0.933, 95% CI

[0.920; 0.941]). When we sampled 5 images per category

(as in Experiment 1), the relationships were still very high
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(sparseness: median ρ = 0.921, 95% CI [0.892, 0.949]; uni-

formity: median ρ = 0.801, 95% CI [0.754, 0.844]).

Discussion

The results of Experiment 2 were similar to those of

Experiment 1. Image-space sparseness was associated with

higher recognition sensitivity, and image-space uniformity re-

duced the criterion. The effect of sparseness on the recognition

criterion was not significant. The experiment showed us that

separate effects of sparseness and uniformity are still observed

when the experiment is more difficult. In the longer experi-

ment, participants were exposed to a larger portion of the

reference set (42.2% in the study part). It could provide them

with greater context and remind them of the richness of each

category.We showed that image-space properties based on the

subset (stimuli of presented to each participant) are good esti-

mates of the image-space properties observed in the reference

set especially. These estimates are better when more images

are presented (as in Experiment 2). The uniformity is more

difficult to estimate, which can be partly caused by our

definition. Uniformity was defined as a proportion of images

of the same category in the neighbourhood and thus limited to

a smaller number of potential values. On the other hand,

sparseness was based on pairwise distance, which is a contin-

uous variable irrespective of the number of images.

Experiment 3

In previous experiments, we used greyscale images for two

reasons. First, we wanted participants to pay attention to the

shapes in the scenes. Second, we wanted the images to be

compatible with gist descriptors, which we had used initially

for similarity measurements.

Interestingly, it is not clear whether the participants store

the images in greyscale or in colour. After seeing a grayscale

photograph, they may retain the memories in greyscale.

Alternatively, they can attempt to estimate the probable col-

ours, because the colour is diagnostic for some categories

(Oliva & Schyns, 2000) and thus easier to infer. The following

experiment cannot resolve this question, but we assume the

Fig. 3 Performance in a long memory experiment with greyscale images. Sensitivity d' and criterion c as a function of image-space sparseness and

uniformity. Confidence intervals for sensitivity/criterion gradients are shown above each plot.
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colour version is easier. With more features provided, partic-

ipants can better distinguish between similar stimuli.

For Experiment 3, we maintained the structure and length

of Experiment 1, but we used colour versions of the images.

This approach helps us to test whether the results will hold

whenwe use a slightly different feature space derived from the

colour versions of stimuli. Additionally, we expected this ex-

periment to be easier and wanted to test whether the shift in

workload would lead to the same pattern of results.

Method

Participants

Forty-four university students (38 women) participated in

Experiment 3 (age range: 19-47 years, mean: 21.7 years).

The participants signed the informed consent form and re-

ceived course credit for their participation. No participant par-

ticipated in either Experiment 1 or 2.

Stimuli

The stimuli were the colour versions of images from the set

used in Experiment 1. We recalculated the pairwise distances

based on the colour versions and correspondingly updated the

sparseness and uniformity values.

Procedure

Both the study and test parts were identical to those of

Experiment 1. The participants studied 400 scenes (320

unique scenes, 5 per category; with additional 40 scenes pre-

sented twice). Repeated images were distributed uniformly

throughout the study part, and they were set to recur after 3,

15, or 63 intervening items. Later, participants were asked to

make old/new judgements about 256 scenes (2 old scenes and

2 new foils per category).

Results

Recognition performance Individual accuracy rates across

all participants ranged from 62-90% (mean = 76%), and they

did not differ from the accuracy rates observed in the grayscale

version in Exp. 1 (t(79.7) = 0.497, p = 0.621, Cohen d = 0.11).

The respective d' values ranged from 0.65 to 2.74 (mean =

1.55). The criterion values ranged from −0.13 to 0.81 (mean =

0.30), showing a significant bias towards miss errors (t(43) =

8.90, p < 0.001). In the vigilance task, the hit rate was 83%

(SEM= 3%) with 3 intervening items, 80% (SEM= 3%) with

15 intervening items, and 65% (SEM= 3%) with 63 interven-

ing items. The false-alarm rate was low (3%, SEM= 0.3%).

Hit rates in the vigilance task were similar to Experiment 1 (all

t < 0.40, all p > 0.700), the difference in false-alarm rates was

not significant (t(81.3) = 1.20, p = 0.235).

Image-space properties Sparseness values calculated for the

colour versions ranged from −3.16 to 2.37 (mean = −1.85,

SD = 0.59, median = −1.95). The values were lower than the

corresponding greyscale-based values found in Experiments 1

and 2 (diff = 0.11, t(2047) = 13.9, p < 0.001, d = 0.18), and

both methods yielded similar results (ρ = +0.825, p < 0.001).

The uniformity values ranged from 0% to 100% (mean =

64%, SD = 23, median = 68%). The values were higher than

the corresponding greyscale-based values (diff = 0.12,

t(2047) = 32.9, p < 0.001, d = 0.50), and both methods yielded

similar results (ρ = +0.761, p < 0.001). The Spearman correla-

tion between sparseness and uniformity was low in the colour

versions (ρ = +0.085, p < 0.001).

Image-space properties and memory performance

Figure 4 shows how the sensitivity and criterion values varied

as functions of sparseness and uniformity. We found that it is

easier to recall images that are separated to a greater extent

from their neighbours (χ2(1) = 18.829, p < 0.001). The images

from densely populated areas were more likely to be missed

(χ2(1) = 18.956, p < 0.001). With respect to uniformity, the

images from more uniform areas were more difficult to re-

member (χ2(1) = 23.89, p < 0.001) and provoked more false-

alarm errors (χ2(1) = 58.197, p < 0.001).

Discussion

The effects of sparseness and uniformity that were seen in

Experiments 1 and 2 were present in Experiment 3 as well.

Additionally, we observed the effect of sparseness on the cri-

terion and the effect of uniformity on sensitivity. In the report-

ed experiments, we analysed the effects separately and per-

formed four statistical tests in each experiment without cor-

rections. If we correct for the multiple hypothesis tests

(Bonferroni correction, 12 tests), all relationships between

sparseness/sensitivity and uniformity/criterion remain statisti-

cally significant. The sparseness/criterion relationship in Exp.

1 will become nonsignificant, and the other two relationships

in Experiment 3 will remain significant.

We expected the colour version to be easier, but we found

no difference in accuracy rates relative to the grayscale version

presented in Exp. 1. The colour presentation did not provide

benefit in memorizing and later recognition of the images,

which could mean that people estimate the probable colours

in grayscale photographs. Alternatively, the colour is not so

important for this particular task and stimuli. In some scene

perception tasks, no difference between using colour and

grayscale stimuli is observed (Meng & Potter, 2008), or the
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grayscale stimuli yield better performance (Nijboer, Kanai, de

Haan, & van der Smagt, 2008).

Across all three experiments, we found that miss errors

were more likely than false-alarm errors. We used only partial

feedback in the study part (we did not warn participants about

their miss errors), which could bias their responses. However,

other studies showed the same bias toward miss errors despite

showing feedback for both miss and false-alarm response

(Andermane & Bowers, 2015).

General discussion

We performed three experiments that varied in their difficulty

level (number of stimuli) and use of colour or grayscale stimuli,

which not only influenced the difficulty but also led to slightly

different image features and corresponding levels of image

similarity. Across all three experiments, we repeatedly observed

a similar pattern. Specifically, people remembered more isolat-

ed images more effectively (sparseness increased sensitivity)

and were prone to more false alarms and fewer miss errors in

more categorically typical images (uniformity decreased bias).

Despite the correlation between sparseness and uniformity, the

analogous relationships were observed only in Experiment 3

(sparseness/criterion and uniformity/sensitivity, after correction

for themultiple tests).We conclude that both image-space prop-

erties can affect human memory performance independently.

Images from sparse regions of the image-space have

more distinctive features, differ from their neighbours to

a greater extent, and are easier to recognize or reject (in

case on distractors). Because the participants observed

only a random sample from the reference set, these

images are different not only from the other images

presented to participants but also from other scenes in

general. This finding is in accord with many other stud-

ies showing increased memory performance for distinc-

tive images (Eysenck, 1979; Nairne, 2006; Standing,

1973). In general, images from sparsely occupied posi-

tion within the space of representation are easier to re-

trieve for recognition. The images from highly uniform

regions of the image-space were compared with our

scene-related experience in general and considered to

be more typical. Later, participants falsely claimed that

they previously had seen the typical images.

Fig. 4 Performance in a short memory experiment with colour images. Sensitivity d' and criterion c as a function of image-space sparseness and

uniformity. Confidence intervals for sensitivity/criterion gradients are shown above each plot.
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Uniformity can be related to classification certainty. Better

recognition of more typical examples could be a result of more

general principle of categorization (Rosch, 1978; Rosch,

Mervis, Gray, Johnson, & Boyes-Braem, 1976). Our results

are in accord with the assumption that basic-level categories

form information-theoretic optimum, maximizing within-

category similarity and minimizing between-category similar-

ity (Corter &Gluck, 1992). Thus, the images near the category

prototype are similar and easier to confuse with each other,

whereas the images near category boundaries are more diffi-

cult to categorize. In a categorical search experiment, the im-

ages that are further from the decision boundary of an image

classifier algorithm guide attention and eye movements more

effectively (Maxfield, Stalder, & Zelinsky, 2014).

To measure visual similarity, we used deep features derived

from the final fully connected layer of a CNN (Zhou et al.,

2014) pretrained on a large dataset of scene stimuli. Initially,

we used gist descriptors, and the results are included in the

Supplement. To summarise, gist-based uniformity correlated

with the criterion and partially with sensitivity (in Experiment

3). Gist-based sparseness was not related to sensitivity or the

criterion (after correction). This shows that memory confusion

is based to a greater extent on semantic features (the presence

of objects) than low-level features (colour or shape), which is

in line with previous research (Isola et al., 2011). The distinc-

tion between conceptual and perceptual distinctiveness

(Konkle et al., 2010a) is consistent with this observation:

colour/shape similarity is a poor predictor of memory confu-

sion in general images. We used fc7 features, because we were

interested in semantic similarity. Features derived from lower

layers of a CNN capture low-level features and would likely

yield similar results to the gist. A CNN is not designed to be

biologically plausible, although we may draw a loose analo-

gies between a CNN and the human cortex about their pro-

cessing stages and representations (VanRullen, 2017).

Comparative fMRI studies show that representations in the

CNN correlate with emerging visual representations in the

human brain (Cichy, Khosla, Pantazis, & Oliva, 2017;

Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016). Semantic

similarity corresponds to more processed visual representa-

tions found in final CNN layers (in our case, fc7) or the

inferotemporal cortex in the brain, whereas perceptual simi-

larity is based on low-level representations in lower layers of a

CNN or in the visual cortex.

Contrary to previous studies on image memorability

(Bainbridge et al., 2013; Bylinskii et al., 2015; Isola et al.,

2011), we did not analyse memory performance per individual

image. We sampled images randomly and pooled the data for

images with similar image-space properties to obtain more

robust estimates of performance. Our focus on the image-

space context of a memorised image is similar to that of the

research on extrinsic memorability factors. Bylinskii et al.

(2015) found that distinctive categories (e.g., cockpit) are

prone to the context effect. That is, many images of cockpits

look similar; however, when cockpits are presented amongst

images from other categories, they become distinctive. This

difference is minimal for less distinctive categories (e.g., liv-

ing room). This conclusion is consistent with our findings on

uniformity and its effect on the criterion.

In our experiments, we assumed that the scene images and

categories in our reference set were representative. We sam-

pled an equal number of images from each category to reflect

the structure of the reference set in the stimuli and provide a

similar context to all participants. The balanced sampling was

important, because we wanted to include potentially conflict-

ing images to test memory performance adequately for unifor-

mity. In addition to the sole image properties, performance is

likely to be affected by participants’ experience and exposi-

tion (e.g., travel enthusiasts might be better at recognising

forests or wilderness tracks) or understanding (Greene,

Botros, Beck, & Fei-Fei, 2015), which is not reflected in our

experiments.

In summary, we investigated image similarity with respect

to a larger reference set. We repeatedly observed that more

isolated images are remembered more effectively and more

typical images are falsely recognised more often. We propose

that both image-space properties affect human decisions when

recognising images.
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